]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv4/udp.c
Merge tag 'staging-4.15-rc1' into v4l_for_linus
[mirror_ubuntu-bionic-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 return true;
144 #endif
145 return false;
146 }
147
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 const struct udp_hslot *hslot,
150 unsigned long *bitmap,
151 struct sock *sk, unsigned int log)
152 {
153 struct sock *sk2;
154 kuid_t uid = sock_i_uid(sk);
155
156 sk_for_each(sk2, &hslot->head) {
157 if (net_eq(sock_net(sk2), net) &&
158 sk2 != sk &&
159 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 (!sk2->sk_reuse || !sk->sk_reuse) &&
161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 inet_rcv_saddr_equal(sk, sk2, true)) {
164 if (sk2->sk_reuseport && sk->sk_reuseport &&
165 !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 uid_eq(uid, sock_i_uid(sk2))) {
167 if (!bitmap)
168 return 0;
169 } else {
170 if (!bitmap)
171 return 1;
172 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 bitmap);
174 }
175 }
176 }
177 return 0;
178 }
179
180 /*
181 * Note: we still hold spinlock of primary hash chain, so no other writer
182 * can insert/delete a socket with local_port == num
183 */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 struct udp_hslot *hslot2,
186 struct sock *sk)
187 {
188 struct sock *sk2;
189 kuid_t uid = sock_i_uid(sk);
190 int res = 0;
191
192 spin_lock(&hslot2->lock);
193 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 if (net_eq(sock_net(sk2), net) &&
195 sk2 != sk &&
196 (udp_sk(sk2)->udp_port_hash == num) &&
197 (!sk2->sk_reuse || !sk->sk_reuse) &&
198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 inet_rcv_saddr_equal(sk, sk2, true)) {
201 if (sk2->sk_reuseport && sk->sk_reuseport &&
202 !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 uid_eq(uid, sock_i_uid(sk2))) {
204 res = 0;
205 } else {
206 res = 1;
207 }
208 break;
209 }
210 }
211 spin_unlock(&hslot2->lock);
212 return res;
213 }
214
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 struct net *net = sock_net(sk);
218 kuid_t uid = sock_i_uid(sk);
219 struct sock *sk2;
220
221 sk_for_each(sk2, &hslot->head) {
222 if (net_eq(sock_net(sk2), net) &&
223 sk2 != sk &&
224 sk2->sk_family == sk->sk_family &&
225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 inet_rcv_saddr_equal(sk, sk2, false)) {
230 return reuseport_add_sock(sk, sk2);
231 }
232 }
233
234 return reuseport_alloc(sk);
235 }
236
237 /**
238 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
239 *
240 * @sk: socket struct in question
241 * @snum: port number to look up
242 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243 * with NULL address
244 */
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 unsigned int hash2_nulladdr)
247 {
248 struct udp_hslot *hslot, *hslot2;
249 struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 int error = 1;
251 struct net *net = sock_net(sk);
252
253 if (!snum) {
254 int low, high, remaining;
255 unsigned int rand;
256 unsigned short first, last;
257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258
259 inet_get_local_port_range(net, &low, &high);
260 remaining = (high - low) + 1;
261
262 rand = prandom_u32();
263 first = reciprocal_scale(rand, remaining) + low;
264 /*
265 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 */
267 rand = (rand | 1) * (udptable->mask + 1);
268 last = first + udptable->mask + 1;
269 do {
270 hslot = udp_hashslot(udptable, net, first);
271 bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 spin_lock_bh(&hslot->lock);
273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 udptable->log);
275
276 snum = first;
277 /*
278 * Iterate on all possible values of snum for this hash.
279 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 * give us randomization and full range coverage.
281 */
282 do {
283 if (low <= snum && snum <= high &&
284 !test_bit(snum >> udptable->log, bitmap) &&
285 !inet_is_local_reserved_port(net, snum))
286 goto found;
287 snum += rand;
288 } while (snum != first);
289 spin_unlock_bh(&hslot->lock);
290 cond_resched();
291 } while (++first != last);
292 goto fail;
293 } else {
294 hslot = udp_hashslot(udptable, net, snum);
295 spin_lock_bh(&hslot->lock);
296 if (hslot->count > 10) {
297 int exist;
298 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
299
300 slot2 &= udptable->mask;
301 hash2_nulladdr &= udptable->mask;
302
303 hslot2 = udp_hashslot2(udptable, slot2);
304 if (hslot->count < hslot2->count)
305 goto scan_primary_hash;
306
307 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 if (!exist && (hash2_nulladdr != slot2)) {
309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 sk);
312 }
313 if (exist)
314 goto fail_unlock;
315 else
316 goto found;
317 }
318 scan_primary_hash:
319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 goto fail_unlock;
321 }
322 found:
323 inet_sk(sk)->inet_num = snum;
324 udp_sk(sk)->udp_port_hash = snum;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 if (sk_unhashed(sk)) {
327 if (sk->sk_reuseport &&
328 udp_reuseport_add_sock(sk, hslot)) {
329 inet_sk(sk)->inet_num = 0;
330 udp_sk(sk)->udp_port_hash = 0;
331 udp_sk(sk)->udp_portaddr_hash ^= snum;
332 goto fail_unlock;
333 }
334
335 sk_add_node_rcu(sk, &hslot->head);
336 hslot->count++;
337 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
338
339 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 spin_lock(&hslot2->lock);
341 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 sk->sk_family == AF_INET6)
343 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 &hslot2->head);
345 else
346 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 &hslot2->head);
348 hslot2->count++;
349 spin_unlock(&hslot2->lock);
350 }
351 sock_set_flag(sk, SOCK_RCU_FREE);
352 error = 0;
353 fail_unlock:
354 spin_unlock_bh(&hslot->lock);
355 fail:
356 return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359
360 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
361 unsigned int port)
362 {
363 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
364 }
365
366 int udp_v4_get_port(struct sock *sk, unsigned short snum)
367 {
368 unsigned int hash2_nulladdr =
369 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
370 unsigned int hash2_partial =
371 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
372
373 /* precompute partial secondary hash */
374 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
375 return udp_lib_get_port(sk, snum, hash2_nulladdr);
376 }
377
378 static int compute_score(struct sock *sk, struct net *net,
379 __be32 saddr, __be16 sport,
380 __be32 daddr, unsigned short hnum,
381 int dif, int sdif, bool exact_dif)
382 {
383 int score;
384 struct inet_sock *inet;
385
386 if (!net_eq(sock_net(sk), net) ||
387 udp_sk(sk)->udp_port_hash != hnum ||
388 ipv6_only_sock(sk))
389 return -1;
390
391 score = (sk->sk_family == PF_INET) ? 2 : 1;
392 inet = inet_sk(sk);
393
394 if (inet->inet_rcv_saddr) {
395 if (inet->inet_rcv_saddr != daddr)
396 return -1;
397 score += 4;
398 }
399
400 if (inet->inet_daddr) {
401 if (inet->inet_daddr != saddr)
402 return -1;
403 score += 4;
404 }
405
406 if (inet->inet_dport) {
407 if (inet->inet_dport != sport)
408 return -1;
409 score += 4;
410 }
411
412 if (sk->sk_bound_dev_if || exact_dif) {
413 bool dev_match = (sk->sk_bound_dev_if == dif ||
414 sk->sk_bound_dev_if == sdif);
415
416 if (exact_dif && !dev_match)
417 return -1;
418 if (sk->sk_bound_dev_if && dev_match)
419 score += 4;
420 }
421
422 if (sk->sk_incoming_cpu == raw_smp_processor_id())
423 score++;
424 return score;
425 }
426
427 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
428 const __u16 lport, const __be32 faddr,
429 const __be16 fport)
430 {
431 static u32 udp_ehash_secret __read_mostly;
432
433 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
434
435 return __inet_ehashfn(laddr, lport, faddr, fport,
436 udp_ehash_secret + net_hash_mix(net));
437 }
438
439 /* called with rcu_read_lock() */
440 static struct sock *udp4_lib_lookup2(struct net *net,
441 __be32 saddr, __be16 sport,
442 __be32 daddr, unsigned int hnum,
443 int dif, int sdif, bool exact_dif,
444 struct udp_hslot *hslot2,
445 struct sk_buff *skb)
446 {
447 struct sock *sk, *result;
448 int score, badness, matches = 0, reuseport = 0;
449 u32 hash = 0;
450
451 result = NULL;
452 badness = 0;
453 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
454 score = compute_score(sk, net, saddr, sport,
455 daddr, hnum, dif, sdif, exact_dif);
456 if (score > badness) {
457 reuseport = sk->sk_reuseport;
458 if (reuseport) {
459 hash = udp_ehashfn(net, daddr, hnum,
460 saddr, sport);
461 result = reuseport_select_sock(sk, hash, skb,
462 sizeof(struct udphdr));
463 if (result)
464 return result;
465 matches = 1;
466 }
467 badness = score;
468 result = sk;
469 } else if (score == badness && reuseport) {
470 matches++;
471 if (reciprocal_scale(hash, matches) == 0)
472 result = sk;
473 hash = next_pseudo_random32(hash);
474 }
475 }
476 return result;
477 }
478
479 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
480 * harder than this. -DaveM
481 */
482 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
483 __be16 sport, __be32 daddr, __be16 dport, int dif,
484 int sdif, struct udp_table *udptable, struct sk_buff *skb)
485 {
486 struct sock *sk, *result;
487 unsigned short hnum = ntohs(dport);
488 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
489 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
490 bool exact_dif = udp_lib_exact_dif_match(net, skb);
491 int score, badness, matches = 0, reuseport = 0;
492 u32 hash = 0;
493
494 if (hslot->count > 10) {
495 hash2 = udp4_portaddr_hash(net, daddr, hnum);
496 slot2 = hash2 & udptable->mask;
497 hslot2 = &udptable->hash2[slot2];
498 if (hslot->count < hslot2->count)
499 goto begin;
500
501 result = udp4_lib_lookup2(net, saddr, sport,
502 daddr, hnum, dif, sdif,
503 exact_dif, hslot2, skb);
504 if (!result) {
505 unsigned int old_slot2 = slot2;
506 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
507 slot2 = hash2 & udptable->mask;
508 /* avoid searching the same slot again. */
509 if (unlikely(slot2 == old_slot2))
510 return result;
511
512 hslot2 = &udptable->hash2[slot2];
513 if (hslot->count < hslot2->count)
514 goto begin;
515
516 result = udp4_lib_lookup2(net, saddr, sport,
517 daddr, hnum, dif, sdif,
518 exact_dif, hslot2, skb);
519 }
520 return result;
521 }
522 begin:
523 result = NULL;
524 badness = 0;
525 sk_for_each_rcu(sk, &hslot->head) {
526 score = compute_score(sk, net, saddr, sport,
527 daddr, hnum, dif, sdif, exact_dif);
528 if (score > badness) {
529 reuseport = sk->sk_reuseport;
530 if (reuseport) {
531 hash = udp_ehashfn(net, daddr, hnum,
532 saddr, sport);
533 result = reuseport_select_sock(sk, hash, skb,
534 sizeof(struct udphdr));
535 if (result)
536 return result;
537 matches = 1;
538 }
539 result = sk;
540 badness = score;
541 } else if (score == badness && reuseport) {
542 matches++;
543 if (reciprocal_scale(hash, matches) == 0)
544 result = sk;
545 hash = next_pseudo_random32(hash);
546 }
547 }
548 return result;
549 }
550 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
551
552 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
553 __be16 sport, __be16 dport,
554 struct udp_table *udptable)
555 {
556 const struct iphdr *iph = ip_hdr(skb);
557
558 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
559 iph->daddr, dport, inet_iif(skb),
560 inet_sdif(skb), udptable, skb);
561 }
562
563 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
564 __be16 sport, __be16 dport)
565 {
566 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
567 }
568 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
569
570 /* Must be called under rcu_read_lock().
571 * Does increment socket refcount.
572 */
573 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
574 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
575 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
576 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
577 __be32 daddr, __be16 dport, int dif)
578 {
579 struct sock *sk;
580
581 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
582 dif, 0, &udp_table, NULL);
583 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
584 sk = NULL;
585 return sk;
586 }
587 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
588 #endif
589
590 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
591 __be16 loc_port, __be32 loc_addr,
592 __be16 rmt_port, __be32 rmt_addr,
593 int dif, int sdif, unsigned short hnum)
594 {
595 struct inet_sock *inet = inet_sk(sk);
596
597 if (!net_eq(sock_net(sk), net) ||
598 udp_sk(sk)->udp_port_hash != hnum ||
599 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
600 (inet->inet_dport != rmt_port && inet->inet_dport) ||
601 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
602 ipv6_only_sock(sk) ||
603 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
604 sk->sk_bound_dev_if != sdif))
605 return false;
606 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
607 return false;
608 return true;
609 }
610
611 /*
612 * This routine is called by the ICMP module when it gets some
613 * sort of error condition. If err < 0 then the socket should
614 * be closed and the error returned to the user. If err > 0
615 * it's just the icmp type << 8 | icmp code.
616 * Header points to the ip header of the error packet. We move
617 * on past this. Then (as it used to claim before adjustment)
618 * header points to the first 8 bytes of the udp header. We need
619 * to find the appropriate port.
620 */
621
622 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
623 {
624 struct inet_sock *inet;
625 const struct iphdr *iph = (const struct iphdr *)skb->data;
626 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
627 const int type = icmp_hdr(skb)->type;
628 const int code = icmp_hdr(skb)->code;
629 struct sock *sk;
630 int harderr;
631 int err;
632 struct net *net = dev_net(skb->dev);
633
634 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
635 iph->saddr, uh->source, skb->dev->ifindex, 0,
636 udptable, NULL);
637 if (!sk) {
638 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
639 return; /* No socket for error */
640 }
641
642 err = 0;
643 harderr = 0;
644 inet = inet_sk(sk);
645
646 switch (type) {
647 default:
648 case ICMP_TIME_EXCEEDED:
649 err = EHOSTUNREACH;
650 break;
651 case ICMP_SOURCE_QUENCH:
652 goto out;
653 case ICMP_PARAMETERPROB:
654 err = EPROTO;
655 harderr = 1;
656 break;
657 case ICMP_DEST_UNREACH:
658 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
659 ipv4_sk_update_pmtu(skb, sk, info);
660 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
661 err = EMSGSIZE;
662 harderr = 1;
663 break;
664 }
665 goto out;
666 }
667 err = EHOSTUNREACH;
668 if (code <= NR_ICMP_UNREACH) {
669 harderr = icmp_err_convert[code].fatal;
670 err = icmp_err_convert[code].errno;
671 }
672 break;
673 case ICMP_REDIRECT:
674 ipv4_sk_redirect(skb, sk);
675 goto out;
676 }
677
678 /*
679 * RFC1122: OK. Passes ICMP errors back to application, as per
680 * 4.1.3.3.
681 */
682 if (!inet->recverr) {
683 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
684 goto out;
685 } else
686 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
687
688 sk->sk_err = err;
689 sk->sk_error_report(sk);
690 out:
691 return;
692 }
693
694 void udp_err(struct sk_buff *skb, u32 info)
695 {
696 __udp4_lib_err(skb, info, &udp_table);
697 }
698
699 /*
700 * Throw away all pending data and cancel the corking. Socket is locked.
701 */
702 void udp_flush_pending_frames(struct sock *sk)
703 {
704 struct udp_sock *up = udp_sk(sk);
705
706 if (up->pending) {
707 up->len = 0;
708 up->pending = 0;
709 ip_flush_pending_frames(sk);
710 }
711 }
712 EXPORT_SYMBOL(udp_flush_pending_frames);
713
714 /**
715 * udp4_hwcsum - handle outgoing HW checksumming
716 * @skb: sk_buff containing the filled-in UDP header
717 * (checksum field must be zeroed out)
718 * @src: source IP address
719 * @dst: destination IP address
720 */
721 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
722 {
723 struct udphdr *uh = udp_hdr(skb);
724 int offset = skb_transport_offset(skb);
725 int len = skb->len - offset;
726 int hlen = len;
727 __wsum csum = 0;
728
729 if (!skb_has_frag_list(skb)) {
730 /*
731 * Only one fragment on the socket.
732 */
733 skb->csum_start = skb_transport_header(skb) - skb->head;
734 skb->csum_offset = offsetof(struct udphdr, check);
735 uh->check = ~csum_tcpudp_magic(src, dst, len,
736 IPPROTO_UDP, 0);
737 } else {
738 struct sk_buff *frags;
739
740 /*
741 * HW-checksum won't work as there are two or more
742 * fragments on the socket so that all csums of sk_buffs
743 * should be together
744 */
745 skb_walk_frags(skb, frags) {
746 csum = csum_add(csum, frags->csum);
747 hlen -= frags->len;
748 }
749
750 csum = skb_checksum(skb, offset, hlen, csum);
751 skb->ip_summed = CHECKSUM_NONE;
752
753 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
754 if (uh->check == 0)
755 uh->check = CSUM_MANGLED_0;
756 }
757 }
758 EXPORT_SYMBOL_GPL(udp4_hwcsum);
759
760 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
761 * for the simple case like when setting the checksum for a UDP tunnel.
762 */
763 void udp_set_csum(bool nocheck, struct sk_buff *skb,
764 __be32 saddr, __be32 daddr, int len)
765 {
766 struct udphdr *uh = udp_hdr(skb);
767
768 if (nocheck) {
769 uh->check = 0;
770 } else if (skb_is_gso(skb)) {
771 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
772 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
773 uh->check = 0;
774 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
775 if (uh->check == 0)
776 uh->check = CSUM_MANGLED_0;
777 } else {
778 skb->ip_summed = CHECKSUM_PARTIAL;
779 skb->csum_start = skb_transport_header(skb) - skb->head;
780 skb->csum_offset = offsetof(struct udphdr, check);
781 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
782 }
783 }
784 EXPORT_SYMBOL(udp_set_csum);
785
786 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
787 {
788 struct sock *sk = skb->sk;
789 struct inet_sock *inet = inet_sk(sk);
790 struct udphdr *uh;
791 int err = 0;
792 int is_udplite = IS_UDPLITE(sk);
793 int offset = skb_transport_offset(skb);
794 int len = skb->len - offset;
795 __wsum csum = 0;
796
797 /*
798 * Create a UDP header
799 */
800 uh = udp_hdr(skb);
801 uh->source = inet->inet_sport;
802 uh->dest = fl4->fl4_dport;
803 uh->len = htons(len);
804 uh->check = 0;
805
806 if (is_udplite) /* UDP-Lite */
807 csum = udplite_csum(skb);
808
809 else if (sk->sk_no_check_tx) { /* UDP csum off */
810
811 skb->ip_summed = CHECKSUM_NONE;
812 goto send;
813
814 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
815
816 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
817 goto send;
818
819 } else
820 csum = udp_csum(skb);
821
822 /* add protocol-dependent pseudo-header */
823 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
824 sk->sk_protocol, csum);
825 if (uh->check == 0)
826 uh->check = CSUM_MANGLED_0;
827
828 send:
829 err = ip_send_skb(sock_net(sk), skb);
830 if (err) {
831 if (err == -ENOBUFS && !inet->recverr) {
832 UDP_INC_STATS(sock_net(sk),
833 UDP_MIB_SNDBUFERRORS, is_udplite);
834 err = 0;
835 }
836 } else
837 UDP_INC_STATS(sock_net(sk),
838 UDP_MIB_OUTDATAGRAMS, is_udplite);
839 return err;
840 }
841
842 /*
843 * Push out all pending data as one UDP datagram. Socket is locked.
844 */
845 int udp_push_pending_frames(struct sock *sk)
846 {
847 struct udp_sock *up = udp_sk(sk);
848 struct inet_sock *inet = inet_sk(sk);
849 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
850 struct sk_buff *skb;
851 int err = 0;
852
853 skb = ip_finish_skb(sk, fl4);
854 if (!skb)
855 goto out;
856
857 err = udp_send_skb(skb, fl4);
858
859 out:
860 up->len = 0;
861 up->pending = 0;
862 return err;
863 }
864 EXPORT_SYMBOL(udp_push_pending_frames);
865
866 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
867 {
868 struct inet_sock *inet = inet_sk(sk);
869 struct udp_sock *up = udp_sk(sk);
870 struct flowi4 fl4_stack;
871 struct flowi4 *fl4;
872 int ulen = len;
873 struct ipcm_cookie ipc;
874 struct rtable *rt = NULL;
875 int free = 0;
876 int connected = 0;
877 __be32 daddr, faddr, saddr;
878 __be16 dport;
879 u8 tos;
880 int err, is_udplite = IS_UDPLITE(sk);
881 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
882 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
883 struct sk_buff *skb;
884 struct ip_options_data opt_copy;
885
886 if (len > 0xFFFF)
887 return -EMSGSIZE;
888
889 /*
890 * Check the flags.
891 */
892
893 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
894 return -EOPNOTSUPP;
895
896 ipc.opt = NULL;
897 ipc.tx_flags = 0;
898 ipc.ttl = 0;
899 ipc.tos = -1;
900
901 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
902
903 fl4 = &inet->cork.fl.u.ip4;
904 if (up->pending) {
905 /*
906 * There are pending frames.
907 * The socket lock must be held while it's corked.
908 */
909 lock_sock(sk);
910 if (likely(up->pending)) {
911 if (unlikely(up->pending != AF_INET)) {
912 release_sock(sk);
913 return -EINVAL;
914 }
915 goto do_append_data;
916 }
917 release_sock(sk);
918 }
919 ulen += sizeof(struct udphdr);
920
921 /*
922 * Get and verify the address.
923 */
924 if (msg->msg_name) {
925 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
926 if (msg->msg_namelen < sizeof(*usin))
927 return -EINVAL;
928 if (usin->sin_family != AF_INET) {
929 if (usin->sin_family != AF_UNSPEC)
930 return -EAFNOSUPPORT;
931 }
932
933 daddr = usin->sin_addr.s_addr;
934 dport = usin->sin_port;
935 if (dport == 0)
936 return -EINVAL;
937 } else {
938 if (sk->sk_state != TCP_ESTABLISHED)
939 return -EDESTADDRREQ;
940 daddr = inet->inet_daddr;
941 dport = inet->inet_dport;
942 /* Open fast path for connected socket.
943 Route will not be used, if at least one option is set.
944 */
945 connected = 1;
946 }
947
948 ipc.sockc.tsflags = sk->sk_tsflags;
949 ipc.addr = inet->inet_saddr;
950 ipc.oif = sk->sk_bound_dev_if;
951
952 if (msg->msg_controllen) {
953 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
954 if (unlikely(err)) {
955 kfree(ipc.opt);
956 return err;
957 }
958 if (ipc.opt)
959 free = 1;
960 connected = 0;
961 }
962 if (!ipc.opt) {
963 struct ip_options_rcu *inet_opt;
964
965 rcu_read_lock();
966 inet_opt = rcu_dereference(inet->inet_opt);
967 if (inet_opt) {
968 memcpy(&opt_copy, inet_opt,
969 sizeof(*inet_opt) + inet_opt->opt.optlen);
970 ipc.opt = &opt_copy.opt;
971 }
972 rcu_read_unlock();
973 }
974
975 saddr = ipc.addr;
976 ipc.addr = faddr = daddr;
977
978 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
979
980 if (ipc.opt && ipc.opt->opt.srr) {
981 if (!daddr)
982 return -EINVAL;
983 faddr = ipc.opt->opt.faddr;
984 connected = 0;
985 }
986 tos = get_rttos(&ipc, inet);
987 if (sock_flag(sk, SOCK_LOCALROUTE) ||
988 (msg->msg_flags & MSG_DONTROUTE) ||
989 (ipc.opt && ipc.opt->opt.is_strictroute)) {
990 tos |= RTO_ONLINK;
991 connected = 0;
992 }
993
994 if (ipv4_is_multicast(daddr)) {
995 if (!ipc.oif)
996 ipc.oif = inet->mc_index;
997 if (!saddr)
998 saddr = inet->mc_addr;
999 connected = 0;
1000 } else if (!ipc.oif)
1001 ipc.oif = inet->uc_index;
1002
1003 if (connected)
1004 rt = (struct rtable *)sk_dst_check(sk, 0);
1005
1006 if (!rt) {
1007 struct net *net = sock_net(sk);
1008 __u8 flow_flags = inet_sk_flowi_flags(sk);
1009
1010 fl4 = &fl4_stack;
1011
1012 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1013 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1014 flow_flags,
1015 faddr, saddr, dport, inet->inet_sport,
1016 sk->sk_uid);
1017
1018 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1019 rt = ip_route_output_flow(net, fl4, sk);
1020 if (IS_ERR(rt)) {
1021 err = PTR_ERR(rt);
1022 rt = NULL;
1023 if (err == -ENETUNREACH)
1024 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1025 goto out;
1026 }
1027
1028 err = -EACCES;
1029 if ((rt->rt_flags & RTCF_BROADCAST) &&
1030 !sock_flag(sk, SOCK_BROADCAST))
1031 goto out;
1032 if (connected)
1033 sk_dst_set(sk, dst_clone(&rt->dst));
1034 }
1035
1036 if (msg->msg_flags&MSG_CONFIRM)
1037 goto do_confirm;
1038 back_from_confirm:
1039
1040 saddr = fl4->saddr;
1041 if (!ipc.addr)
1042 daddr = ipc.addr = fl4->daddr;
1043
1044 /* Lockless fast path for the non-corking case. */
1045 if (!corkreq) {
1046 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1047 sizeof(struct udphdr), &ipc, &rt,
1048 msg->msg_flags);
1049 err = PTR_ERR(skb);
1050 if (!IS_ERR_OR_NULL(skb))
1051 err = udp_send_skb(skb, fl4);
1052 goto out;
1053 }
1054
1055 lock_sock(sk);
1056 if (unlikely(up->pending)) {
1057 /* The socket is already corked while preparing it. */
1058 /* ... which is an evident application bug. --ANK */
1059 release_sock(sk);
1060
1061 net_dbg_ratelimited("socket already corked\n");
1062 err = -EINVAL;
1063 goto out;
1064 }
1065 /*
1066 * Now cork the socket to pend data.
1067 */
1068 fl4 = &inet->cork.fl.u.ip4;
1069 fl4->daddr = daddr;
1070 fl4->saddr = saddr;
1071 fl4->fl4_dport = dport;
1072 fl4->fl4_sport = inet->inet_sport;
1073 up->pending = AF_INET;
1074
1075 do_append_data:
1076 up->len += ulen;
1077 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1078 sizeof(struct udphdr), &ipc, &rt,
1079 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1080 if (err)
1081 udp_flush_pending_frames(sk);
1082 else if (!corkreq)
1083 err = udp_push_pending_frames(sk);
1084 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1085 up->pending = 0;
1086 release_sock(sk);
1087
1088 out:
1089 ip_rt_put(rt);
1090 if (free)
1091 kfree(ipc.opt);
1092 if (!err)
1093 return len;
1094 /*
1095 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1096 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1097 * we don't have a good statistic (IpOutDiscards but it can be too many
1098 * things). We could add another new stat but at least for now that
1099 * seems like overkill.
1100 */
1101 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1102 UDP_INC_STATS(sock_net(sk),
1103 UDP_MIB_SNDBUFERRORS, is_udplite);
1104 }
1105 return err;
1106
1107 do_confirm:
1108 if (msg->msg_flags & MSG_PROBE)
1109 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1110 if (!(msg->msg_flags&MSG_PROBE) || len)
1111 goto back_from_confirm;
1112 err = 0;
1113 goto out;
1114 }
1115 EXPORT_SYMBOL(udp_sendmsg);
1116
1117 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1118 size_t size, int flags)
1119 {
1120 struct inet_sock *inet = inet_sk(sk);
1121 struct udp_sock *up = udp_sk(sk);
1122 int ret;
1123
1124 if (flags & MSG_SENDPAGE_NOTLAST)
1125 flags |= MSG_MORE;
1126
1127 if (!up->pending) {
1128 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1129
1130 /* Call udp_sendmsg to specify destination address which
1131 * sendpage interface can't pass.
1132 * This will succeed only when the socket is connected.
1133 */
1134 ret = udp_sendmsg(sk, &msg, 0);
1135 if (ret < 0)
1136 return ret;
1137 }
1138
1139 lock_sock(sk);
1140
1141 if (unlikely(!up->pending)) {
1142 release_sock(sk);
1143
1144 net_dbg_ratelimited("cork failed\n");
1145 return -EINVAL;
1146 }
1147
1148 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1149 page, offset, size, flags);
1150 if (ret == -EOPNOTSUPP) {
1151 release_sock(sk);
1152 return sock_no_sendpage(sk->sk_socket, page, offset,
1153 size, flags);
1154 }
1155 if (ret < 0) {
1156 udp_flush_pending_frames(sk);
1157 goto out;
1158 }
1159
1160 up->len += size;
1161 if (!(up->corkflag || (flags&MSG_MORE)))
1162 ret = udp_push_pending_frames(sk);
1163 if (!ret)
1164 ret = size;
1165 out:
1166 release_sock(sk);
1167 return ret;
1168 }
1169
1170 #define UDP_SKB_IS_STATELESS 0x80000000
1171
1172 static void udp_set_dev_scratch(struct sk_buff *skb)
1173 {
1174 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1175
1176 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1177 scratch->_tsize_state = skb->truesize;
1178 #if BITS_PER_LONG == 64
1179 scratch->len = skb->len;
1180 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1181 scratch->is_linear = !skb_is_nonlinear(skb);
1182 #endif
1183 /* all head states execept sp (dst, sk, nf) are always cleared by
1184 * udp_rcv() and we need to preserve secpath, if present, to eventually
1185 * process IP_CMSG_PASSSEC at recvmsg() time
1186 */
1187 if (likely(!skb_sec_path(skb)))
1188 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1189 }
1190
1191 static int udp_skb_truesize(struct sk_buff *skb)
1192 {
1193 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1194 }
1195
1196 static bool udp_skb_has_head_state(struct sk_buff *skb)
1197 {
1198 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1199 }
1200
1201 /* fully reclaim rmem/fwd memory allocated for skb */
1202 static void udp_rmem_release(struct sock *sk, int size, int partial,
1203 bool rx_queue_lock_held)
1204 {
1205 struct udp_sock *up = udp_sk(sk);
1206 struct sk_buff_head *sk_queue;
1207 int amt;
1208
1209 if (likely(partial)) {
1210 up->forward_deficit += size;
1211 size = up->forward_deficit;
1212 if (size < (sk->sk_rcvbuf >> 2) &&
1213 !skb_queue_empty(&up->reader_queue))
1214 return;
1215 } else {
1216 size += up->forward_deficit;
1217 }
1218 up->forward_deficit = 0;
1219
1220 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1221 * if the called don't held it already
1222 */
1223 sk_queue = &sk->sk_receive_queue;
1224 if (!rx_queue_lock_held)
1225 spin_lock(&sk_queue->lock);
1226
1227
1228 sk->sk_forward_alloc += size;
1229 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1230 sk->sk_forward_alloc -= amt;
1231
1232 if (amt)
1233 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1234
1235 atomic_sub(size, &sk->sk_rmem_alloc);
1236
1237 /* this can save us from acquiring the rx queue lock on next receive */
1238 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1239
1240 if (!rx_queue_lock_held)
1241 spin_unlock(&sk_queue->lock);
1242 }
1243
1244 /* Note: called with reader_queue.lock held.
1245 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1246 * This avoids a cache line miss while receive_queue lock is held.
1247 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1248 */
1249 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1250 {
1251 prefetch(&skb->data);
1252 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1253 }
1254 EXPORT_SYMBOL(udp_skb_destructor);
1255
1256 /* as above, but the caller held the rx queue lock, too */
1257 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1258 {
1259 prefetch(&skb->data);
1260 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1261 }
1262
1263 /* Idea of busylocks is to let producers grab an extra spinlock
1264 * to relieve pressure on the receive_queue spinlock shared by consumer.
1265 * Under flood, this means that only one producer can be in line
1266 * trying to acquire the receive_queue spinlock.
1267 * These busylock can be allocated on a per cpu manner, instead of a
1268 * per socket one (that would consume a cache line per socket)
1269 */
1270 static int udp_busylocks_log __read_mostly;
1271 static spinlock_t *udp_busylocks __read_mostly;
1272
1273 static spinlock_t *busylock_acquire(void *ptr)
1274 {
1275 spinlock_t *busy;
1276
1277 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1278 spin_lock(busy);
1279 return busy;
1280 }
1281
1282 static void busylock_release(spinlock_t *busy)
1283 {
1284 if (busy)
1285 spin_unlock(busy);
1286 }
1287
1288 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1289 {
1290 struct sk_buff_head *list = &sk->sk_receive_queue;
1291 int rmem, delta, amt, err = -ENOMEM;
1292 spinlock_t *busy = NULL;
1293 int size;
1294
1295 /* try to avoid the costly atomic add/sub pair when the receive
1296 * queue is full; always allow at least a packet
1297 */
1298 rmem = atomic_read(&sk->sk_rmem_alloc);
1299 if (rmem > sk->sk_rcvbuf)
1300 goto drop;
1301
1302 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1303 * having linear skbs :
1304 * - Reduce memory overhead and thus increase receive queue capacity
1305 * - Less cache line misses at copyout() time
1306 * - Less work at consume_skb() (less alien page frag freeing)
1307 */
1308 if (rmem > (sk->sk_rcvbuf >> 1)) {
1309 skb_condense(skb);
1310
1311 busy = busylock_acquire(sk);
1312 }
1313 size = skb->truesize;
1314 udp_set_dev_scratch(skb);
1315
1316 /* we drop only if the receive buf is full and the receive
1317 * queue contains some other skb
1318 */
1319 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1320 if (rmem > (size + sk->sk_rcvbuf))
1321 goto uncharge_drop;
1322
1323 spin_lock(&list->lock);
1324 if (size >= sk->sk_forward_alloc) {
1325 amt = sk_mem_pages(size);
1326 delta = amt << SK_MEM_QUANTUM_SHIFT;
1327 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1328 err = -ENOBUFS;
1329 spin_unlock(&list->lock);
1330 goto uncharge_drop;
1331 }
1332
1333 sk->sk_forward_alloc += delta;
1334 }
1335
1336 sk->sk_forward_alloc -= size;
1337
1338 /* no need to setup a destructor, we will explicitly release the
1339 * forward allocated memory on dequeue
1340 */
1341 sock_skb_set_dropcount(sk, skb);
1342
1343 __skb_queue_tail(list, skb);
1344 spin_unlock(&list->lock);
1345
1346 if (!sock_flag(sk, SOCK_DEAD))
1347 sk->sk_data_ready(sk);
1348
1349 busylock_release(busy);
1350 return 0;
1351
1352 uncharge_drop:
1353 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1354
1355 drop:
1356 atomic_inc(&sk->sk_drops);
1357 busylock_release(busy);
1358 return err;
1359 }
1360 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1361
1362 void udp_destruct_sock(struct sock *sk)
1363 {
1364 /* reclaim completely the forward allocated memory */
1365 struct udp_sock *up = udp_sk(sk);
1366 unsigned int total = 0;
1367 struct sk_buff *skb;
1368
1369 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1370 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1371 total += skb->truesize;
1372 kfree_skb(skb);
1373 }
1374 udp_rmem_release(sk, total, 0, true);
1375
1376 inet_sock_destruct(sk);
1377 }
1378 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1379
1380 int udp_init_sock(struct sock *sk)
1381 {
1382 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1383 sk->sk_destruct = udp_destruct_sock;
1384 return 0;
1385 }
1386 EXPORT_SYMBOL_GPL(udp_init_sock);
1387
1388 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1389 {
1390 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1391 bool slow = lock_sock_fast(sk);
1392
1393 sk_peek_offset_bwd(sk, len);
1394 unlock_sock_fast(sk, slow);
1395 }
1396
1397 if (!skb_unref(skb))
1398 return;
1399
1400 /* In the more common cases we cleared the head states previously,
1401 * see __udp_queue_rcv_skb().
1402 */
1403 if (unlikely(udp_skb_has_head_state(skb)))
1404 skb_release_head_state(skb);
1405 __consume_stateless_skb(skb);
1406 }
1407 EXPORT_SYMBOL_GPL(skb_consume_udp);
1408
1409 static struct sk_buff *__first_packet_length(struct sock *sk,
1410 struct sk_buff_head *rcvq,
1411 int *total)
1412 {
1413 struct sk_buff *skb;
1414
1415 while ((skb = skb_peek(rcvq)) != NULL) {
1416 if (udp_lib_checksum_complete(skb)) {
1417 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1418 IS_UDPLITE(sk));
1419 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1420 IS_UDPLITE(sk));
1421 atomic_inc(&sk->sk_drops);
1422 __skb_unlink(skb, rcvq);
1423 *total += skb->truesize;
1424 kfree_skb(skb);
1425 } else {
1426 /* the csum related bits could be changed, refresh
1427 * the scratch area
1428 */
1429 udp_set_dev_scratch(skb);
1430 break;
1431 }
1432 }
1433 return skb;
1434 }
1435
1436 /**
1437 * first_packet_length - return length of first packet in receive queue
1438 * @sk: socket
1439 *
1440 * Drops all bad checksum frames, until a valid one is found.
1441 * Returns the length of found skb, or -1 if none is found.
1442 */
1443 static int first_packet_length(struct sock *sk)
1444 {
1445 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1446 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1447 struct sk_buff *skb;
1448 int total = 0;
1449 int res;
1450
1451 spin_lock_bh(&rcvq->lock);
1452 skb = __first_packet_length(sk, rcvq, &total);
1453 if (!skb && !skb_queue_empty(sk_queue)) {
1454 spin_lock(&sk_queue->lock);
1455 skb_queue_splice_tail_init(sk_queue, rcvq);
1456 spin_unlock(&sk_queue->lock);
1457
1458 skb = __first_packet_length(sk, rcvq, &total);
1459 }
1460 res = skb ? skb->len : -1;
1461 if (total)
1462 udp_rmem_release(sk, total, 1, false);
1463 spin_unlock_bh(&rcvq->lock);
1464 return res;
1465 }
1466
1467 /*
1468 * IOCTL requests applicable to the UDP protocol
1469 */
1470
1471 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1472 {
1473 switch (cmd) {
1474 case SIOCOUTQ:
1475 {
1476 int amount = sk_wmem_alloc_get(sk);
1477
1478 return put_user(amount, (int __user *)arg);
1479 }
1480
1481 case SIOCINQ:
1482 {
1483 int amount = max_t(int, 0, first_packet_length(sk));
1484
1485 return put_user(amount, (int __user *)arg);
1486 }
1487
1488 default:
1489 return -ENOIOCTLCMD;
1490 }
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL(udp_ioctl);
1495
1496 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1497 int noblock, int *peeked, int *off, int *err)
1498 {
1499 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1500 struct sk_buff_head *queue;
1501 struct sk_buff *last;
1502 long timeo;
1503 int error;
1504
1505 queue = &udp_sk(sk)->reader_queue;
1506 flags |= noblock ? MSG_DONTWAIT : 0;
1507 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1508 do {
1509 struct sk_buff *skb;
1510
1511 error = sock_error(sk);
1512 if (error)
1513 break;
1514
1515 error = -EAGAIN;
1516 *peeked = 0;
1517 do {
1518 spin_lock_bh(&queue->lock);
1519 skb = __skb_try_recv_from_queue(sk, queue, flags,
1520 udp_skb_destructor,
1521 peeked, off, err,
1522 &last);
1523 if (skb) {
1524 spin_unlock_bh(&queue->lock);
1525 return skb;
1526 }
1527
1528 if (skb_queue_empty(sk_queue)) {
1529 spin_unlock_bh(&queue->lock);
1530 goto busy_check;
1531 }
1532
1533 /* refill the reader queue and walk it again
1534 * keep both queues locked to avoid re-acquiring
1535 * the sk_receive_queue lock if fwd memory scheduling
1536 * is needed.
1537 */
1538 spin_lock(&sk_queue->lock);
1539 skb_queue_splice_tail_init(sk_queue, queue);
1540
1541 skb = __skb_try_recv_from_queue(sk, queue, flags,
1542 udp_skb_dtor_locked,
1543 peeked, off, err,
1544 &last);
1545 spin_unlock(&sk_queue->lock);
1546 spin_unlock_bh(&queue->lock);
1547 if (skb)
1548 return skb;
1549
1550 busy_check:
1551 if (!sk_can_busy_loop(sk))
1552 break;
1553
1554 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1555 } while (!skb_queue_empty(sk_queue));
1556
1557 /* sk_queue is empty, reader_queue may contain peeked packets */
1558 } while (timeo &&
1559 !__skb_wait_for_more_packets(sk, &error, &timeo,
1560 (struct sk_buff *)sk_queue));
1561
1562 *err = error;
1563 return NULL;
1564 }
1565 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1566
1567 /*
1568 * This should be easy, if there is something there we
1569 * return it, otherwise we block.
1570 */
1571
1572 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1573 int flags, int *addr_len)
1574 {
1575 struct inet_sock *inet = inet_sk(sk);
1576 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1577 struct sk_buff *skb;
1578 unsigned int ulen, copied;
1579 int peeked, peeking, off;
1580 int err;
1581 int is_udplite = IS_UDPLITE(sk);
1582 bool checksum_valid = false;
1583
1584 if (flags & MSG_ERRQUEUE)
1585 return ip_recv_error(sk, msg, len, addr_len);
1586
1587 try_again:
1588 peeking = flags & MSG_PEEK;
1589 off = sk_peek_offset(sk, flags);
1590 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1591 if (!skb)
1592 return err;
1593
1594 ulen = udp_skb_len(skb);
1595 copied = len;
1596 if (copied > ulen - off)
1597 copied = ulen - off;
1598 else if (copied < ulen)
1599 msg->msg_flags |= MSG_TRUNC;
1600
1601 /*
1602 * If checksum is needed at all, try to do it while copying the
1603 * data. If the data is truncated, or if we only want a partial
1604 * coverage checksum (UDP-Lite), do it before the copy.
1605 */
1606
1607 if (copied < ulen || peeking ||
1608 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1609 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1610 !__udp_lib_checksum_complete(skb);
1611 if (!checksum_valid)
1612 goto csum_copy_err;
1613 }
1614
1615 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1616 if (udp_skb_is_linear(skb))
1617 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1618 else
1619 err = skb_copy_datagram_msg(skb, off, msg, copied);
1620 } else {
1621 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1622
1623 if (err == -EINVAL)
1624 goto csum_copy_err;
1625 }
1626
1627 if (unlikely(err)) {
1628 if (!peeked) {
1629 atomic_inc(&sk->sk_drops);
1630 UDP_INC_STATS(sock_net(sk),
1631 UDP_MIB_INERRORS, is_udplite);
1632 }
1633 kfree_skb(skb);
1634 return err;
1635 }
1636
1637 if (!peeked)
1638 UDP_INC_STATS(sock_net(sk),
1639 UDP_MIB_INDATAGRAMS, is_udplite);
1640
1641 sock_recv_ts_and_drops(msg, sk, skb);
1642
1643 /* Copy the address. */
1644 if (sin) {
1645 sin->sin_family = AF_INET;
1646 sin->sin_port = udp_hdr(skb)->source;
1647 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1648 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1649 *addr_len = sizeof(*sin);
1650 }
1651 if (inet->cmsg_flags)
1652 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1653
1654 err = copied;
1655 if (flags & MSG_TRUNC)
1656 err = ulen;
1657
1658 skb_consume_udp(sk, skb, peeking ? -err : err);
1659 return err;
1660
1661 csum_copy_err:
1662 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1663 udp_skb_destructor)) {
1664 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1665 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1666 }
1667 kfree_skb(skb);
1668
1669 /* starting over for a new packet, but check if we need to yield */
1670 cond_resched();
1671 msg->msg_flags &= ~MSG_TRUNC;
1672 goto try_again;
1673 }
1674
1675 int __udp_disconnect(struct sock *sk, int flags)
1676 {
1677 struct inet_sock *inet = inet_sk(sk);
1678 /*
1679 * 1003.1g - break association.
1680 */
1681
1682 sk->sk_state = TCP_CLOSE;
1683 inet->inet_daddr = 0;
1684 inet->inet_dport = 0;
1685 sock_rps_reset_rxhash(sk);
1686 sk->sk_bound_dev_if = 0;
1687 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1688 inet_reset_saddr(sk);
1689
1690 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1691 sk->sk_prot->unhash(sk);
1692 inet->inet_sport = 0;
1693 }
1694 sk_dst_reset(sk);
1695 return 0;
1696 }
1697 EXPORT_SYMBOL(__udp_disconnect);
1698
1699 int udp_disconnect(struct sock *sk, int flags)
1700 {
1701 lock_sock(sk);
1702 __udp_disconnect(sk, flags);
1703 release_sock(sk);
1704 return 0;
1705 }
1706 EXPORT_SYMBOL(udp_disconnect);
1707
1708 void udp_lib_unhash(struct sock *sk)
1709 {
1710 if (sk_hashed(sk)) {
1711 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1712 struct udp_hslot *hslot, *hslot2;
1713
1714 hslot = udp_hashslot(udptable, sock_net(sk),
1715 udp_sk(sk)->udp_port_hash);
1716 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1717
1718 spin_lock_bh(&hslot->lock);
1719 if (rcu_access_pointer(sk->sk_reuseport_cb))
1720 reuseport_detach_sock(sk);
1721 if (sk_del_node_init_rcu(sk)) {
1722 hslot->count--;
1723 inet_sk(sk)->inet_num = 0;
1724 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1725
1726 spin_lock(&hslot2->lock);
1727 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1728 hslot2->count--;
1729 spin_unlock(&hslot2->lock);
1730 }
1731 spin_unlock_bh(&hslot->lock);
1732 }
1733 }
1734 EXPORT_SYMBOL(udp_lib_unhash);
1735
1736 /*
1737 * inet_rcv_saddr was changed, we must rehash secondary hash
1738 */
1739 void udp_lib_rehash(struct sock *sk, u16 newhash)
1740 {
1741 if (sk_hashed(sk)) {
1742 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1743 struct udp_hslot *hslot, *hslot2, *nhslot2;
1744
1745 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1746 nhslot2 = udp_hashslot2(udptable, newhash);
1747 udp_sk(sk)->udp_portaddr_hash = newhash;
1748
1749 if (hslot2 != nhslot2 ||
1750 rcu_access_pointer(sk->sk_reuseport_cb)) {
1751 hslot = udp_hashslot(udptable, sock_net(sk),
1752 udp_sk(sk)->udp_port_hash);
1753 /* we must lock primary chain too */
1754 spin_lock_bh(&hslot->lock);
1755 if (rcu_access_pointer(sk->sk_reuseport_cb))
1756 reuseport_detach_sock(sk);
1757
1758 if (hslot2 != nhslot2) {
1759 spin_lock(&hslot2->lock);
1760 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1761 hslot2->count--;
1762 spin_unlock(&hslot2->lock);
1763
1764 spin_lock(&nhslot2->lock);
1765 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1766 &nhslot2->head);
1767 nhslot2->count++;
1768 spin_unlock(&nhslot2->lock);
1769 }
1770
1771 spin_unlock_bh(&hslot->lock);
1772 }
1773 }
1774 }
1775 EXPORT_SYMBOL(udp_lib_rehash);
1776
1777 static void udp_v4_rehash(struct sock *sk)
1778 {
1779 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1780 inet_sk(sk)->inet_rcv_saddr,
1781 inet_sk(sk)->inet_num);
1782 udp_lib_rehash(sk, new_hash);
1783 }
1784
1785 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1786 {
1787 int rc;
1788
1789 if (inet_sk(sk)->inet_daddr) {
1790 sock_rps_save_rxhash(sk, skb);
1791 sk_mark_napi_id(sk, skb);
1792 sk_incoming_cpu_update(sk);
1793 } else {
1794 sk_mark_napi_id_once(sk, skb);
1795 }
1796
1797 rc = __udp_enqueue_schedule_skb(sk, skb);
1798 if (rc < 0) {
1799 int is_udplite = IS_UDPLITE(sk);
1800
1801 /* Note that an ENOMEM error is charged twice */
1802 if (rc == -ENOMEM)
1803 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1804 is_udplite);
1805 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1806 kfree_skb(skb);
1807 trace_udp_fail_queue_rcv_skb(rc, sk);
1808 return -1;
1809 }
1810
1811 return 0;
1812 }
1813
1814 static struct static_key udp_encap_needed __read_mostly;
1815 void udp_encap_enable(void)
1816 {
1817 static_key_enable(&udp_encap_needed);
1818 }
1819 EXPORT_SYMBOL(udp_encap_enable);
1820
1821 /* returns:
1822 * -1: error
1823 * 0: success
1824 * >0: "udp encap" protocol resubmission
1825 *
1826 * Note that in the success and error cases, the skb is assumed to
1827 * have either been requeued or freed.
1828 */
1829 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1830 {
1831 struct udp_sock *up = udp_sk(sk);
1832 int is_udplite = IS_UDPLITE(sk);
1833
1834 /*
1835 * Charge it to the socket, dropping if the queue is full.
1836 */
1837 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1838 goto drop;
1839 nf_reset(skb);
1840
1841 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1842 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1843
1844 /*
1845 * This is an encapsulation socket so pass the skb to
1846 * the socket's udp_encap_rcv() hook. Otherwise, just
1847 * fall through and pass this up the UDP socket.
1848 * up->encap_rcv() returns the following value:
1849 * =0 if skb was successfully passed to the encap
1850 * handler or was discarded by it.
1851 * >0 if skb should be passed on to UDP.
1852 * <0 if skb should be resubmitted as proto -N
1853 */
1854
1855 /* if we're overly short, let UDP handle it */
1856 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1857 if (encap_rcv) {
1858 int ret;
1859
1860 /* Verify checksum before giving to encap */
1861 if (udp_lib_checksum_complete(skb))
1862 goto csum_error;
1863
1864 ret = encap_rcv(sk, skb);
1865 if (ret <= 0) {
1866 __UDP_INC_STATS(sock_net(sk),
1867 UDP_MIB_INDATAGRAMS,
1868 is_udplite);
1869 return -ret;
1870 }
1871 }
1872
1873 /* FALLTHROUGH -- it's a UDP Packet */
1874 }
1875
1876 /*
1877 * UDP-Lite specific tests, ignored on UDP sockets
1878 */
1879 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1880
1881 /*
1882 * MIB statistics other than incrementing the error count are
1883 * disabled for the following two types of errors: these depend
1884 * on the application settings, not on the functioning of the
1885 * protocol stack as such.
1886 *
1887 * RFC 3828 here recommends (sec 3.3): "There should also be a
1888 * way ... to ... at least let the receiving application block
1889 * delivery of packets with coverage values less than a value
1890 * provided by the application."
1891 */
1892 if (up->pcrlen == 0) { /* full coverage was set */
1893 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1894 UDP_SKB_CB(skb)->cscov, skb->len);
1895 goto drop;
1896 }
1897 /* The next case involves violating the min. coverage requested
1898 * by the receiver. This is subtle: if receiver wants x and x is
1899 * greater than the buffersize/MTU then receiver will complain
1900 * that it wants x while sender emits packets of smaller size y.
1901 * Therefore the above ...()->partial_cov statement is essential.
1902 */
1903 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1904 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1905 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1906 goto drop;
1907 }
1908 }
1909
1910 prefetch(&sk->sk_rmem_alloc);
1911 if (rcu_access_pointer(sk->sk_filter) &&
1912 udp_lib_checksum_complete(skb))
1913 goto csum_error;
1914
1915 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1916 goto drop;
1917
1918 udp_csum_pull_header(skb);
1919
1920 ipv4_pktinfo_prepare(sk, skb);
1921 return __udp_queue_rcv_skb(sk, skb);
1922
1923 csum_error:
1924 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1925 drop:
1926 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1927 atomic_inc(&sk->sk_drops);
1928 kfree_skb(skb);
1929 return -1;
1930 }
1931
1932 /* For TCP sockets, sk_rx_dst is protected by socket lock
1933 * For UDP, we use xchg() to guard against concurrent changes.
1934 */
1935 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1936 {
1937 struct dst_entry *old;
1938
1939 if (dst_hold_safe(dst)) {
1940 old = xchg(&sk->sk_rx_dst, dst);
1941 dst_release(old);
1942 return old != dst;
1943 }
1944 return false;
1945 }
1946 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1947
1948 /*
1949 * Multicasts and broadcasts go to each listener.
1950 *
1951 * Note: called only from the BH handler context.
1952 */
1953 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1954 struct udphdr *uh,
1955 __be32 saddr, __be32 daddr,
1956 struct udp_table *udptable,
1957 int proto)
1958 {
1959 struct sock *sk, *first = NULL;
1960 unsigned short hnum = ntohs(uh->dest);
1961 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1962 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1963 unsigned int offset = offsetof(typeof(*sk), sk_node);
1964 int dif = skb->dev->ifindex;
1965 int sdif = inet_sdif(skb);
1966 struct hlist_node *node;
1967 struct sk_buff *nskb;
1968
1969 if (use_hash2) {
1970 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1971 udptable->mask;
1972 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1973 start_lookup:
1974 hslot = &udptable->hash2[hash2];
1975 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1976 }
1977
1978 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1979 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1980 uh->source, saddr, dif, sdif, hnum))
1981 continue;
1982
1983 if (!first) {
1984 first = sk;
1985 continue;
1986 }
1987 nskb = skb_clone(skb, GFP_ATOMIC);
1988
1989 if (unlikely(!nskb)) {
1990 atomic_inc(&sk->sk_drops);
1991 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1992 IS_UDPLITE(sk));
1993 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1994 IS_UDPLITE(sk));
1995 continue;
1996 }
1997 if (udp_queue_rcv_skb(sk, nskb) > 0)
1998 consume_skb(nskb);
1999 }
2000
2001 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2002 if (use_hash2 && hash2 != hash2_any) {
2003 hash2 = hash2_any;
2004 goto start_lookup;
2005 }
2006
2007 if (first) {
2008 if (udp_queue_rcv_skb(first, skb) > 0)
2009 consume_skb(skb);
2010 } else {
2011 kfree_skb(skb);
2012 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2013 proto == IPPROTO_UDPLITE);
2014 }
2015 return 0;
2016 }
2017
2018 /* Initialize UDP checksum. If exited with zero value (success),
2019 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2020 * Otherwise, csum completion requires chacksumming packet body,
2021 * including udp header and folding it to skb->csum.
2022 */
2023 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2024 int proto)
2025 {
2026 int err;
2027
2028 UDP_SKB_CB(skb)->partial_cov = 0;
2029 UDP_SKB_CB(skb)->cscov = skb->len;
2030
2031 if (proto == IPPROTO_UDPLITE) {
2032 err = udplite_checksum_init(skb, uh);
2033 if (err)
2034 return err;
2035 }
2036
2037 /* Note, we are only interested in != 0 or == 0, thus the
2038 * force to int.
2039 */
2040 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2041 inet_compute_pseudo);
2042 }
2043
2044 /*
2045 * All we need to do is get the socket, and then do a checksum.
2046 */
2047
2048 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2049 int proto)
2050 {
2051 struct sock *sk;
2052 struct udphdr *uh;
2053 unsigned short ulen;
2054 struct rtable *rt = skb_rtable(skb);
2055 __be32 saddr, daddr;
2056 struct net *net = dev_net(skb->dev);
2057
2058 /*
2059 * Validate the packet.
2060 */
2061 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2062 goto drop; /* No space for header. */
2063
2064 uh = udp_hdr(skb);
2065 ulen = ntohs(uh->len);
2066 saddr = ip_hdr(skb)->saddr;
2067 daddr = ip_hdr(skb)->daddr;
2068
2069 if (ulen > skb->len)
2070 goto short_packet;
2071
2072 if (proto == IPPROTO_UDP) {
2073 /* UDP validates ulen. */
2074 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2075 goto short_packet;
2076 uh = udp_hdr(skb);
2077 }
2078
2079 if (udp4_csum_init(skb, uh, proto))
2080 goto csum_error;
2081
2082 sk = skb_steal_sock(skb);
2083 if (sk) {
2084 struct dst_entry *dst = skb_dst(skb);
2085 int ret;
2086
2087 if (unlikely(sk->sk_rx_dst != dst))
2088 udp_sk_rx_dst_set(sk, dst);
2089
2090 ret = udp_queue_rcv_skb(sk, skb);
2091 sock_put(sk);
2092 /* a return value > 0 means to resubmit the input, but
2093 * it wants the return to be -protocol, or 0
2094 */
2095 if (ret > 0)
2096 return -ret;
2097 return 0;
2098 }
2099
2100 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2101 return __udp4_lib_mcast_deliver(net, skb, uh,
2102 saddr, daddr, udptable, proto);
2103
2104 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2105 if (sk) {
2106 int ret;
2107
2108 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2109 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2110 inet_compute_pseudo);
2111
2112 ret = udp_queue_rcv_skb(sk, skb);
2113
2114 /* a return value > 0 means to resubmit the input, but
2115 * it wants the return to be -protocol, or 0
2116 */
2117 if (ret > 0)
2118 return -ret;
2119 return 0;
2120 }
2121
2122 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2123 goto drop;
2124 nf_reset(skb);
2125
2126 /* No socket. Drop packet silently, if checksum is wrong */
2127 if (udp_lib_checksum_complete(skb))
2128 goto csum_error;
2129
2130 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2131 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2132
2133 /*
2134 * Hmm. We got an UDP packet to a port to which we
2135 * don't wanna listen. Ignore it.
2136 */
2137 kfree_skb(skb);
2138 return 0;
2139
2140 short_packet:
2141 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2142 proto == IPPROTO_UDPLITE ? "Lite" : "",
2143 &saddr, ntohs(uh->source),
2144 ulen, skb->len,
2145 &daddr, ntohs(uh->dest));
2146 goto drop;
2147
2148 csum_error:
2149 /*
2150 * RFC1122: OK. Discards the bad packet silently (as far as
2151 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2152 */
2153 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2154 proto == IPPROTO_UDPLITE ? "Lite" : "",
2155 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2156 ulen);
2157 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2158 drop:
2159 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2160 kfree_skb(skb);
2161 return 0;
2162 }
2163
2164 /* We can only early demux multicast if there is a single matching socket.
2165 * If more than one socket found returns NULL
2166 */
2167 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2168 __be16 loc_port, __be32 loc_addr,
2169 __be16 rmt_port, __be32 rmt_addr,
2170 int dif, int sdif)
2171 {
2172 struct sock *sk, *result;
2173 unsigned short hnum = ntohs(loc_port);
2174 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2175 struct udp_hslot *hslot = &udp_table.hash[slot];
2176
2177 /* Do not bother scanning a too big list */
2178 if (hslot->count > 10)
2179 return NULL;
2180
2181 result = NULL;
2182 sk_for_each_rcu(sk, &hslot->head) {
2183 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2184 rmt_port, rmt_addr, dif, sdif, hnum)) {
2185 if (result)
2186 return NULL;
2187 result = sk;
2188 }
2189 }
2190
2191 return result;
2192 }
2193
2194 /* For unicast we should only early demux connected sockets or we can
2195 * break forwarding setups. The chains here can be long so only check
2196 * if the first socket is an exact match and if not move on.
2197 */
2198 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2199 __be16 loc_port, __be32 loc_addr,
2200 __be16 rmt_port, __be32 rmt_addr,
2201 int dif, int sdif)
2202 {
2203 unsigned short hnum = ntohs(loc_port);
2204 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2205 unsigned int slot2 = hash2 & udp_table.mask;
2206 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2207 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2208 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2209 struct sock *sk;
2210
2211 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2212 if (INET_MATCH(sk, net, acookie, rmt_addr,
2213 loc_addr, ports, dif, sdif))
2214 return sk;
2215 /* Only check first socket in chain */
2216 break;
2217 }
2218 return NULL;
2219 }
2220
2221 int udp_v4_early_demux(struct sk_buff *skb)
2222 {
2223 struct net *net = dev_net(skb->dev);
2224 struct in_device *in_dev = NULL;
2225 const struct iphdr *iph;
2226 const struct udphdr *uh;
2227 struct sock *sk = NULL;
2228 struct dst_entry *dst;
2229 int dif = skb->dev->ifindex;
2230 int sdif = inet_sdif(skb);
2231 int ours;
2232
2233 /* validate the packet */
2234 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2235 return 0;
2236
2237 iph = ip_hdr(skb);
2238 uh = udp_hdr(skb);
2239
2240 if (skb->pkt_type == PACKET_MULTICAST) {
2241 in_dev = __in_dev_get_rcu(skb->dev);
2242
2243 if (!in_dev)
2244 return 0;
2245
2246 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2247 iph->protocol);
2248 if (!ours)
2249 return 0;
2250
2251 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2252 uh->source, iph->saddr,
2253 dif, sdif);
2254 } else if (skb->pkt_type == PACKET_HOST) {
2255 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2256 uh->source, iph->saddr, dif, sdif);
2257 }
2258
2259 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2260 return 0;
2261
2262 skb->sk = sk;
2263 skb->destructor = sock_efree;
2264 dst = READ_ONCE(sk->sk_rx_dst);
2265
2266 if (dst)
2267 dst = dst_check(dst, 0);
2268 if (dst) {
2269 u32 itag = 0;
2270
2271 /* set noref for now.
2272 * any place which wants to hold dst has to call
2273 * dst_hold_safe()
2274 */
2275 skb_dst_set_noref(skb, dst);
2276
2277 /* for unconnected multicast sockets we need to validate
2278 * the source on each packet
2279 */
2280 if (!inet_sk(sk)->inet_daddr && in_dev)
2281 return ip_mc_validate_source(skb, iph->daddr,
2282 iph->saddr, iph->tos,
2283 skb->dev, in_dev, &itag);
2284 }
2285 return 0;
2286 }
2287
2288 int udp_rcv(struct sk_buff *skb)
2289 {
2290 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2291 }
2292
2293 void udp_destroy_sock(struct sock *sk)
2294 {
2295 struct udp_sock *up = udp_sk(sk);
2296 bool slow = lock_sock_fast(sk);
2297 udp_flush_pending_frames(sk);
2298 unlock_sock_fast(sk, slow);
2299 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2300 void (*encap_destroy)(struct sock *sk);
2301 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2302 if (encap_destroy)
2303 encap_destroy(sk);
2304 }
2305 }
2306
2307 /*
2308 * Socket option code for UDP
2309 */
2310 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2311 char __user *optval, unsigned int optlen,
2312 int (*push_pending_frames)(struct sock *))
2313 {
2314 struct udp_sock *up = udp_sk(sk);
2315 int val, valbool;
2316 int err = 0;
2317 int is_udplite = IS_UDPLITE(sk);
2318
2319 if (optlen < sizeof(int))
2320 return -EINVAL;
2321
2322 if (get_user(val, (int __user *)optval))
2323 return -EFAULT;
2324
2325 valbool = val ? 1 : 0;
2326
2327 switch (optname) {
2328 case UDP_CORK:
2329 if (val != 0) {
2330 up->corkflag = 1;
2331 } else {
2332 up->corkflag = 0;
2333 lock_sock(sk);
2334 push_pending_frames(sk);
2335 release_sock(sk);
2336 }
2337 break;
2338
2339 case UDP_ENCAP:
2340 switch (val) {
2341 case 0:
2342 case UDP_ENCAP_ESPINUDP:
2343 case UDP_ENCAP_ESPINUDP_NON_IKE:
2344 up->encap_rcv = xfrm4_udp_encap_rcv;
2345 /* FALLTHROUGH */
2346 case UDP_ENCAP_L2TPINUDP:
2347 up->encap_type = val;
2348 udp_encap_enable();
2349 break;
2350 default:
2351 err = -ENOPROTOOPT;
2352 break;
2353 }
2354 break;
2355
2356 case UDP_NO_CHECK6_TX:
2357 up->no_check6_tx = valbool;
2358 break;
2359
2360 case UDP_NO_CHECK6_RX:
2361 up->no_check6_rx = valbool;
2362 break;
2363
2364 /*
2365 * UDP-Lite's partial checksum coverage (RFC 3828).
2366 */
2367 /* The sender sets actual checksum coverage length via this option.
2368 * The case coverage > packet length is handled by send module. */
2369 case UDPLITE_SEND_CSCOV:
2370 if (!is_udplite) /* Disable the option on UDP sockets */
2371 return -ENOPROTOOPT;
2372 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2373 val = 8;
2374 else if (val > USHRT_MAX)
2375 val = USHRT_MAX;
2376 up->pcslen = val;
2377 up->pcflag |= UDPLITE_SEND_CC;
2378 break;
2379
2380 /* The receiver specifies a minimum checksum coverage value. To make
2381 * sense, this should be set to at least 8 (as done below). If zero is
2382 * used, this again means full checksum coverage. */
2383 case UDPLITE_RECV_CSCOV:
2384 if (!is_udplite) /* Disable the option on UDP sockets */
2385 return -ENOPROTOOPT;
2386 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2387 val = 8;
2388 else if (val > USHRT_MAX)
2389 val = USHRT_MAX;
2390 up->pcrlen = val;
2391 up->pcflag |= UDPLITE_RECV_CC;
2392 break;
2393
2394 default:
2395 err = -ENOPROTOOPT;
2396 break;
2397 }
2398
2399 return err;
2400 }
2401 EXPORT_SYMBOL(udp_lib_setsockopt);
2402
2403 int udp_setsockopt(struct sock *sk, int level, int optname,
2404 char __user *optval, unsigned int optlen)
2405 {
2406 if (level == SOL_UDP || level == SOL_UDPLITE)
2407 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2408 udp_push_pending_frames);
2409 return ip_setsockopt(sk, level, optname, optval, optlen);
2410 }
2411
2412 #ifdef CONFIG_COMPAT
2413 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2414 char __user *optval, unsigned int optlen)
2415 {
2416 if (level == SOL_UDP || level == SOL_UDPLITE)
2417 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2418 udp_push_pending_frames);
2419 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2420 }
2421 #endif
2422
2423 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2424 char __user *optval, int __user *optlen)
2425 {
2426 struct udp_sock *up = udp_sk(sk);
2427 int val, len;
2428
2429 if (get_user(len, optlen))
2430 return -EFAULT;
2431
2432 len = min_t(unsigned int, len, sizeof(int));
2433
2434 if (len < 0)
2435 return -EINVAL;
2436
2437 switch (optname) {
2438 case UDP_CORK:
2439 val = up->corkflag;
2440 break;
2441
2442 case UDP_ENCAP:
2443 val = up->encap_type;
2444 break;
2445
2446 case UDP_NO_CHECK6_TX:
2447 val = up->no_check6_tx;
2448 break;
2449
2450 case UDP_NO_CHECK6_RX:
2451 val = up->no_check6_rx;
2452 break;
2453
2454 /* The following two cannot be changed on UDP sockets, the return is
2455 * always 0 (which corresponds to the full checksum coverage of UDP). */
2456 case UDPLITE_SEND_CSCOV:
2457 val = up->pcslen;
2458 break;
2459
2460 case UDPLITE_RECV_CSCOV:
2461 val = up->pcrlen;
2462 break;
2463
2464 default:
2465 return -ENOPROTOOPT;
2466 }
2467
2468 if (put_user(len, optlen))
2469 return -EFAULT;
2470 if (copy_to_user(optval, &val, len))
2471 return -EFAULT;
2472 return 0;
2473 }
2474 EXPORT_SYMBOL(udp_lib_getsockopt);
2475
2476 int udp_getsockopt(struct sock *sk, int level, int optname,
2477 char __user *optval, int __user *optlen)
2478 {
2479 if (level == SOL_UDP || level == SOL_UDPLITE)
2480 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2481 return ip_getsockopt(sk, level, optname, optval, optlen);
2482 }
2483
2484 #ifdef CONFIG_COMPAT
2485 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2486 char __user *optval, int __user *optlen)
2487 {
2488 if (level == SOL_UDP || level == SOL_UDPLITE)
2489 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2490 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2491 }
2492 #endif
2493 /**
2494 * udp_poll - wait for a UDP event.
2495 * @file - file struct
2496 * @sock - socket
2497 * @wait - poll table
2498 *
2499 * This is same as datagram poll, except for the special case of
2500 * blocking sockets. If application is using a blocking fd
2501 * and a packet with checksum error is in the queue;
2502 * then it could get return from select indicating data available
2503 * but then block when reading it. Add special case code
2504 * to work around these arguably broken applications.
2505 */
2506 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2507 {
2508 unsigned int mask = datagram_poll(file, sock, wait);
2509 struct sock *sk = sock->sk;
2510
2511 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2512 mask |= POLLIN | POLLRDNORM;
2513
2514 sock_rps_record_flow(sk);
2515
2516 /* Check for false positives due to checksum errors */
2517 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2518 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2519 mask &= ~(POLLIN | POLLRDNORM);
2520
2521 return mask;
2522
2523 }
2524 EXPORT_SYMBOL(udp_poll);
2525
2526 int udp_abort(struct sock *sk, int err)
2527 {
2528 lock_sock(sk);
2529
2530 sk->sk_err = err;
2531 sk->sk_error_report(sk);
2532 __udp_disconnect(sk, 0);
2533
2534 release_sock(sk);
2535
2536 return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(udp_abort);
2539
2540 struct proto udp_prot = {
2541 .name = "UDP",
2542 .owner = THIS_MODULE,
2543 .close = udp_lib_close,
2544 .connect = ip4_datagram_connect,
2545 .disconnect = udp_disconnect,
2546 .ioctl = udp_ioctl,
2547 .init = udp_init_sock,
2548 .destroy = udp_destroy_sock,
2549 .setsockopt = udp_setsockopt,
2550 .getsockopt = udp_getsockopt,
2551 .sendmsg = udp_sendmsg,
2552 .recvmsg = udp_recvmsg,
2553 .sendpage = udp_sendpage,
2554 .release_cb = ip4_datagram_release_cb,
2555 .hash = udp_lib_hash,
2556 .unhash = udp_lib_unhash,
2557 .rehash = udp_v4_rehash,
2558 .get_port = udp_v4_get_port,
2559 .memory_allocated = &udp_memory_allocated,
2560 .sysctl_mem = sysctl_udp_mem,
2561 .sysctl_wmem = &sysctl_udp_wmem_min,
2562 .sysctl_rmem = &sysctl_udp_rmem_min,
2563 .obj_size = sizeof(struct udp_sock),
2564 .h.udp_table = &udp_table,
2565 #ifdef CONFIG_COMPAT
2566 .compat_setsockopt = compat_udp_setsockopt,
2567 .compat_getsockopt = compat_udp_getsockopt,
2568 #endif
2569 .diag_destroy = udp_abort,
2570 };
2571 EXPORT_SYMBOL(udp_prot);
2572
2573 /* ------------------------------------------------------------------------ */
2574 #ifdef CONFIG_PROC_FS
2575
2576 static struct sock *udp_get_first(struct seq_file *seq, int start)
2577 {
2578 struct sock *sk;
2579 struct udp_iter_state *state = seq->private;
2580 struct net *net = seq_file_net(seq);
2581
2582 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2583 ++state->bucket) {
2584 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2585
2586 if (hlist_empty(&hslot->head))
2587 continue;
2588
2589 spin_lock_bh(&hslot->lock);
2590 sk_for_each(sk, &hslot->head) {
2591 if (!net_eq(sock_net(sk), net))
2592 continue;
2593 if (sk->sk_family == state->family)
2594 goto found;
2595 }
2596 spin_unlock_bh(&hslot->lock);
2597 }
2598 sk = NULL;
2599 found:
2600 return sk;
2601 }
2602
2603 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2604 {
2605 struct udp_iter_state *state = seq->private;
2606 struct net *net = seq_file_net(seq);
2607
2608 do {
2609 sk = sk_next(sk);
2610 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2611
2612 if (!sk) {
2613 if (state->bucket <= state->udp_table->mask)
2614 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2615 return udp_get_first(seq, state->bucket + 1);
2616 }
2617 return sk;
2618 }
2619
2620 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2621 {
2622 struct sock *sk = udp_get_first(seq, 0);
2623
2624 if (sk)
2625 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2626 --pos;
2627 return pos ? NULL : sk;
2628 }
2629
2630 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2631 {
2632 struct udp_iter_state *state = seq->private;
2633 state->bucket = MAX_UDP_PORTS;
2634
2635 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2636 }
2637
2638 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2639 {
2640 struct sock *sk;
2641
2642 if (v == SEQ_START_TOKEN)
2643 sk = udp_get_idx(seq, 0);
2644 else
2645 sk = udp_get_next(seq, v);
2646
2647 ++*pos;
2648 return sk;
2649 }
2650
2651 static void udp_seq_stop(struct seq_file *seq, void *v)
2652 {
2653 struct udp_iter_state *state = seq->private;
2654
2655 if (state->bucket <= state->udp_table->mask)
2656 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2657 }
2658
2659 int udp_seq_open(struct inode *inode, struct file *file)
2660 {
2661 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2662 struct udp_iter_state *s;
2663 int err;
2664
2665 err = seq_open_net(inode, file, &afinfo->seq_ops,
2666 sizeof(struct udp_iter_state));
2667 if (err < 0)
2668 return err;
2669
2670 s = ((struct seq_file *)file->private_data)->private;
2671 s->family = afinfo->family;
2672 s->udp_table = afinfo->udp_table;
2673 return err;
2674 }
2675 EXPORT_SYMBOL(udp_seq_open);
2676
2677 /* ------------------------------------------------------------------------ */
2678 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2679 {
2680 struct proc_dir_entry *p;
2681 int rc = 0;
2682
2683 afinfo->seq_ops.start = udp_seq_start;
2684 afinfo->seq_ops.next = udp_seq_next;
2685 afinfo->seq_ops.stop = udp_seq_stop;
2686
2687 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2688 afinfo->seq_fops, afinfo);
2689 if (!p)
2690 rc = -ENOMEM;
2691 return rc;
2692 }
2693 EXPORT_SYMBOL(udp_proc_register);
2694
2695 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2696 {
2697 remove_proc_entry(afinfo->name, net->proc_net);
2698 }
2699 EXPORT_SYMBOL(udp_proc_unregister);
2700
2701 /* ------------------------------------------------------------------------ */
2702 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2703 int bucket)
2704 {
2705 struct inet_sock *inet = inet_sk(sp);
2706 __be32 dest = inet->inet_daddr;
2707 __be32 src = inet->inet_rcv_saddr;
2708 __u16 destp = ntohs(inet->inet_dport);
2709 __u16 srcp = ntohs(inet->inet_sport);
2710
2711 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2712 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2713 bucket, src, srcp, dest, destp, sp->sk_state,
2714 sk_wmem_alloc_get(sp),
2715 sk_rmem_alloc_get(sp),
2716 0, 0L, 0,
2717 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2718 0, sock_i_ino(sp),
2719 refcount_read(&sp->sk_refcnt), sp,
2720 atomic_read(&sp->sk_drops));
2721 }
2722
2723 int udp4_seq_show(struct seq_file *seq, void *v)
2724 {
2725 seq_setwidth(seq, 127);
2726 if (v == SEQ_START_TOKEN)
2727 seq_puts(seq, " sl local_address rem_address st tx_queue "
2728 "rx_queue tr tm->when retrnsmt uid timeout "
2729 "inode ref pointer drops");
2730 else {
2731 struct udp_iter_state *state = seq->private;
2732
2733 udp4_format_sock(v, seq, state->bucket);
2734 }
2735 seq_pad(seq, '\n');
2736 return 0;
2737 }
2738
2739 static const struct file_operations udp_afinfo_seq_fops = {
2740 .owner = THIS_MODULE,
2741 .open = udp_seq_open,
2742 .read = seq_read,
2743 .llseek = seq_lseek,
2744 .release = seq_release_net
2745 };
2746
2747 /* ------------------------------------------------------------------------ */
2748 static struct udp_seq_afinfo udp4_seq_afinfo = {
2749 .name = "udp",
2750 .family = AF_INET,
2751 .udp_table = &udp_table,
2752 .seq_fops = &udp_afinfo_seq_fops,
2753 .seq_ops = {
2754 .show = udp4_seq_show,
2755 },
2756 };
2757
2758 static int __net_init udp4_proc_init_net(struct net *net)
2759 {
2760 return udp_proc_register(net, &udp4_seq_afinfo);
2761 }
2762
2763 static void __net_exit udp4_proc_exit_net(struct net *net)
2764 {
2765 udp_proc_unregister(net, &udp4_seq_afinfo);
2766 }
2767
2768 static struct pernet_operations udp4_net_ops = {
2769 .init = udp4_proc_init_net,
2770 .exit = udp4_proc_exit_net,
2771 };
2772
2773 int __init udp4_proc_init(void)
2774 {
2775 return register_pernet_subsys(&udp4_net_ops);
2776 }
2777
2778 void udp4_proc_exit(void)
2779 {
2780 unregister_pernet_subsys(&udp4_net_ops);
2781 }
2782 #endif /* CONFIG_PROC_FS */
2783
2784 static __initdata unsigned long uhash_entries;
2785 static int __init set_uhash_entries(char *str)
2786 {
2787 ssize_t ret;
2788
2789 if (!str)
2790 return 0;
2791
2792 ret = kstrtoul(str, 0, &uhash_entries);
2793 if (ret)
2794 return 0;
2795
2796 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2797 uhash_entries = UDP_HTABLE_SIZE_MIN;
2798 return 1;
2799 }
2800 __setup("uhash_entries=", set_uhash_entries);
2801
2802 void __init udp_table_init(struct udp_table *table, const char *name)
2803 {
2804 unsigned int i;
2805
2806 table->hash = alloc_large_system_hash(name,
2807 2 * sizeof(struct udp_hslot),
2808 uhash_entries,
2809 21, /* one slot per 2 MB */
2810 0,
2811 &table->log,
2812 &table->mask,
2813 UDP_HTABLE_SIZE_MIN,
2814 64 * 1024);
2815
2816 table->hash2 = table->hash + (table->mask + 1);
2817 for (i = 0; i <= table->mask; i++) {
2818 INIT_HLIST_HEAD(&table->hash[i].head);
2819 table->hash[i].count = 0;
2820 spin_lock_init(&table->hash[i].lock);
2821 }
2822 for (i = 0; i <= table->mask; i++) {
2823 INIT_HLIST_HEAD(&table->hash2[i].head);
2824 table->hash2[i].count = 0;
2825 spin_lock_init(&table->hash2[i].lock);
2826 }
2827 }
2828
2829 u32 udp_flow_hashrnd(void)
2830 {
2831 static u32 hashrnd __read_mostly;
2832
2833 net_get_random_once(&hashrnd, sizeof(hashrnd));
2834
2835 return hashrnd;
2836 }
2837 EXPORT_SYMBOL(udp_flow_hashrnd);
2838
2839 void __init udp_init(void)
2840 {
2841 unsigned long limit;
2842 unsigned int i;
2843
2844 udp_table_init(&udp_table, "UDP");
2845 limit = nr_free_buffer_pages() / 8;
2846 limit = max(limit, 128UL);
2847 sysctl_udp_mem[0] = limit / 4 * 3;
2848 sysctl_udp_mem[1] = limit;
2849 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2850
2851 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2852 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2853
2854 /* 16 spinlocks per cpu */
2855 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2856 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2857 GFP_KERNEL);
2858 if (!udp_busylocks)
2859 panic("UDP: failed to alloc udp_busylocks\n");
2860 for (i = 0; i < (1U << udp_busylocks_log); i++)
2861 spin_lock_init(udp_busylocks + i);
2862 }