]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/udp.c
UBUNTU: SAUCE: media: uvcvideo: Support realtek's UVC 1.5 device
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118
119 struct udp_table udp_table __read_mostly;
120 EXPORT_SYMBOL(udp_table);
121
122 long sysctl_udp_mem[3] __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_mem);
124
125 int sysctl_udp_rmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_rmem_min);
127
128 int sysctl_udp_wmem_min __read_mostly;
129 EXPORT_SYMBOL(sysctl_udp_wmem_min);
130
131 atomic_long_t udp_memory_allocated;
132 EXPORT_SYMBOL(udp_memory_allocated);
133
134 #define MAX_UDP_PORTS 65536
135 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
136
137 /* IPCB reference means this can not be used from early demux */
138 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
139 {
140 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
141 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
142 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
143 return true;
144 #endif
145 return false;
146 }
147
148 static int udp_lib_lport_inuse(struct net *net, __u16 num,
149 const struct udp_hslot *hslot,
150 unsigned long *bitmap,
151 struct sock *sk, unsigned int log)
152 {
153 struct sock *sk2;
154 kuid_t uid = sock_i_uid(sk);
155
156 sk_for_each(sk2, &hslot->head) {
157 if (net_eq(sock_net(sk2), net) &&
158 sk2 != sk &&
159 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
160 (!sk2->sk_reuse || !sk->sk_reuse) &&
161 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
162 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
163 inet_rcv_saddr_equal(sk, sk2, true)) {
164 if (sk2->sk_reuseport && sk->sk_reuseport &&
165 !rcu_access_pointer(sk->sk_reuseport_cb) &&
166 uid_eq(uid, sock_i_uid(sk2))) {
167 if (!bitmap)
168 return 0;
169 } else {
170 if (!bitmap)
171 return 1;
172 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
173 bitmap);
174 }
175 }
176 }
177 return 0;
178 }
179
180 /*
181 * Note: we still hold spinlock of primary hash chain, so no other writer
182 * can insert/delete a socket with local_port == num
183 */
184 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
185 struct udp_hslot *hslot2,
186 struct sock *sk)
187 {
188 struct sock *sk2;
189 kuid_t uid = sock_i_uid(sk);
190 int res = 0;
191
192 spin_lock(&hslot2->lock);
193 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
194 if (net_eq(sock_net(sk2), net) &&
195 sk2 != sk &&
196 (udp_sk(sk2)->udp_port_hash == num) &&
197 (!sk2->sk_reuse || !sk->sk_reuse) &&
198 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
199 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
200 inet_rcv_saddr_equal(sk, sk2, true)) {
201 if (sk2->sk_reuseport && sk->sk_reuseport &&
202 !rcu_access_pointer(sk->sk_reuseport_cb) &&
203 uid_eq(uid, sock_i_uid(sk2))) {
204 res = 0;
205 } else {
206 res = 1;
207 }
208 break;
209 }
210 }
211 spin_unlock(&hslot2->lock);
212 return res;
213 }
214
215 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
216 {
217 struct net *net = sock_net(sk);
218 kuid_t uid = sock_i_uid(sk);
219 struct sock *sk2;
220
221 sk_for_each(sk2, &hslot->head) {
222 if (net_eq(sock_net(sk2), net) &&
223 sk2 != sk &&
224 sk2->sk_family == sk->sk_family &&
225 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
226 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
227 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
228 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
229 inet_rcv_saddr_equal(sk, sk2, false)) {
230 return reuseport_add_sock(sk, sk2);
231 }
232 }
233
234 return reuseport_alloc(sk);
235 }
236
237 /**
238 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
239 *
240 * @sk: socket struct in question
241 * @snum: port number to look up
242 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
243 * with NULL address
244 */
245 int udp_lib_get_port(struct sock *sk, unsigned short snum,
246 unsigned int hash2_nulladdr)
247 {
248 struct udp_hslot *hslot, *hslot2;
249 struct udp_table *udptable = sk->sk_prot->h.udp_table;
250 int error = 1;
251 struct net *net = sock_net(sk);
252
253 if (!snum) {
254 int low, high, remaining;
255 unsigned int rand;
256 unsigned short first, last;
257 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
258
259 inet_get_local_port_range(net, &low, &high);
260 remaining = (high - low) + 1;
261
262 rand = prandom_u32();
263 first = reciprocal_scale(rand, remaining) + low;
264 /*
265 * force rand to be an odd multiple of UDP_HTABLE_SIZE
266 */
267 rand = (rand | 1) * (udptable->mask + 1);
268 last = first + udptable->mask + 1;
269 do {
270 hslot = udp_hashslot(udptable, net, first);
271 bitmap_zero(bitmap, PORTS_PER_CHAIN);
272 spin_lock_bh(&hslot->lock);
273 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
274 udptable->log);
275
276 snum = first;
277 /*
278 * Iterate on all possible values of snum for this hash.
279 * Using steps of an odd multiple of UDP_HTABLE_SIZE
280 * give us randomization and full range coverage.
281 */
282 do {
283 if (low <= snum && snum <= high &&
284 !test_bit(snum >> udptable->log, bitmap) &&
285 !inet_is_local_reserved_port(net, snum))
286 goto found;
287 snum += rand;
288 } while (snum != first);
289 spin_unlock_bh(&hslot->lock);
290 cond_resched();
291 } while (++first != last);
292 goto fail;
293 } else {
294 hslot = udp_hashslot(udptable, net, snum);
295 spin_lock_bh(&hslot->lock);
296 if (hslot->count > 10) {
297 int exist;
298 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
299
300 slot2 &= udptable->mask;
301 hash2_nulladdr &= udptable->mask;
302
303 hslot2 = udp_hashslot2(udptable, slot2);
304 if (hslot->count < hslot2->count)
305 goto scan_primary_hash;
306
307 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
308 if (!exist && (hash2_nulladdr != slot2)) {
309 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
310 exist = udp_lib_lport_inuse2(net, snum, hslot2,
311 sk);
312 }
313 if (exist)
314 goto fail_unlock;
315 else
316 goto found;
317 }
318 scan_primary_hash:
319 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
320 goto fail_unlock;
321 }
322 found:
323 inet_sk(sk)->inet_num = snum;
324 udp_sk(sk)->udp_port_hash = snum;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 if (sk_unhashed(sk)) {
327 if (sk->sk_reuseport &&
328 udp_reuseport_add_sock(sk, hslot)) {
329 inet_sk(sk)->inet_num = 0;
330 udp_sk(sk)->udp_port_hash = 0;
331 udp_sk(sk)->udp_portaddr_hash ^= snum;
332 goto fail_unlock;
333 }
334
335 sk_add_node_rcu(sk, &hslot->head);
336 hslot->count++;
337 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
338
339 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
340 spin_lock(&hslot2->lock);
341 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
342 sk->sk_family == AF_INET6)
343 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
344 &hslot2->head);
345 else
346 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
347 &hslot2->head);
348 hslot2->count++;
349 spin_unlock(&hslot2->lock);
350 }
351 sock_set_flag(sk, SOCK_RCU_FREE);
352 error = 0;
353 fail_unlock:
354 spin_unlock_bh(&hslot->lock);
355 fail:
356 return error;
357 }
358 EXPORT_SYMBOL(udp_lib_get_port);
359
360 static u32 udp4_portaddr_hash(const struct net *net, __be32 saddr,
361 unsigned int port)
362 {
363 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
364 }
365
366 int udp_v4_get_port(struct sock *sk, unsigned short snum)
367 {
368 unsigned int hash2_nulladdr =
369 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
370 unsigned int hash2_partial =
371 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
372
373 /* precompute partial secondary hash */
374 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
375 return udp_lib_get_port(sk, snum, hash2_nulladdr);
376 }
377
378 static int compute_score(struct sock *sk, struct net *net,
379 __be32 saddr, __be16 sport,
380 __be32 daddr, unsigned short hnum, int dif,
381 bool exact_dif)
382 {
383 int score;
384 struct inet_sock *inet;
385
386 if (!net_eq(sock_net(sk), net) ||
387 udp_sk(sk)->udp_port_hash != hnum ||
388 ipv6_only_sock(sk))
389 return -1;
390
391 score = (sk->sk_family == PF_INET) ? 2 : 1;
392 inet = inet_sk(sk);
393
394 if (inet->inet_rcv_saddr) {
395 if (inet->inet_rcv_saddr != daddr)
396 return -1;
397 score += 4;
398 }
399
400 if (inet->inet_daddr) {
401 if (inet->inet_daddr != saddr)
402 return -1;
403 score += 4;
404 }
405
406 if (inet->inet_dport) {
407 if (inet->inet_dport != sport)
408 return -1;
409 score += 4;
410 }
411
412 if (sk->sk_bound_dev_if || exact_dif) {
413 if (sk->sk_bound_dev_if != dif)
414 return -1;
415 score += 4;
416 }
417 if (sk->sk_incoming_cpu == raw_smp_processor_id())
418 score++;
419 return score;
420 }
421
422 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
423 const __u16 lport, const __be32 faddr,
424 const __be16 fport)
425 {
426 static u32 udp_ehash_secret __read_mostly;
427
428 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
429
430 return __inet_ehashfn(laddr, lport, faddr, fport,
431 udp_ehash_secret + net_hash_mix(net));
432 }
433
434 /* called with rcu_read_lock() */
435 static struct sock *udp4_lib_lookup2(struct net *net,
436 __be32 saddr, __be16 sport,
437 __be32 daddr, unsigned int hnum, int dif, bool exact_dif,
438 struct udp_hslot *hslot2,
439 struct sk_buff *skb)
440 {
441 struct sock *sk, *result;
442 int score, badness, matches = 0, reuseport = 0;
443 u32 hash = 0;
444
445 result = NULL;
446 badness = 0;
447 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
448 score = compute_score(sk, net, saddr, sport,
449 daddr, hnum, dif, exact_dif);
450 if (score > badness) {
451 reuseport = sk->sk_reuseport;
452 if (reuseport) {
453 hash = udp_ehashfn(net, daddr, hnum,
454 saddr, sport);
455 result = reuseport_select_sock(sk, hash, skb,
456 sizeof(struct udphdr));
457 if (result)
458 return result;
459 matches = 1;
460 }
461 badness = score;
462 result = sk;
463 } else if (score == badness && reuseport) {
464 matches++;
465 if (reciprocal_scale(hash, matches) == 0)
466 result = sk;
467 hash = next_pseudo_random32(hash);
468 }
469 }
470 return result;
471 }
472
473 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
474 * harder than this. -DaveM
475 */
476 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
477 __be16 sport, __be32 daddr, __be16 dport,
478 int dif, struct udp_table *udptable, struct sk_buff *skb)
479 {
480 struct sock *sk, *result;
481 unsigned short hnum = ntohs(dport);
482 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
483 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
484 bool exact_dif = udp_lib_exact_dif_match(net, skb);
485 int score, badness, matches = 0, reuseport = 0;
486 u32 hash = 0;
487
488 if (hslot->count > 10) {
489 hash2 = udp4_portaddr_hash(net, daddr, hnum);
490 slot2 = hash2 & udptable->mask;
491 hslot2 = &udptable->hash2[slot2];
492 if (hslot->count < hslot2->count)
493 goto begin;
494
495 result = udp4_lib_lookup2(net, saddr, sport,
496 daddr, hnum, dif,
497 exact_dif, hslot2, skb);
498 if (!result) {
499 unsigned int old_slot2 = slot2;
500 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
501 slot2 = hash2 & udptable->mask;
502 /* avoid searching the same slot again. */
503 if (unlikely(slot2 == old_slot2))
504 return result;
505
506 hslot2 = &udptable->hash2[slot2];
507 if (hslot->count < hslot2->count)
508 goto begin;
509
510 result = udp4_lib_lookup2(net, saddr, sport,
511 daddr, hnum, dif,
512 exact_dif, hslot2, skb);
513 }
514 return result;
515 }
516 begin:
517 result = NULL;
518 badness = 0;
519 sk_for_each_rcu(sk, &hslot->head) {
520 score = compute_score(sk, net, saddr, sport,
521 daddr, hnum, dif, exact_dif);
522 if (score > badness) {
523 reuseport = sk->sk_reuseport;
524 if (reuseport) {
525 hash = udp_ehashfn(net, daddr, hnum,
526 saddr, sport);
527 result = reuseport_select_sock(sk, hash, skb,
528 sizeof(struct udphdr));
529 if (result)
530 return result;
531 matches = 1;
532 }
533 result = sk;
534 badness = score;
535 } else if (score == badness && reuseport) {
536 matches++;
537 if (reciprocal_scale(hash, matches) == 0)
538 result = sk;
539 hash = next_pseudo_random32(hash);
540 }
541 }
542 return result;
543 }
544 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
545
546 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
547 __be16 sport, __be16 dport,
548 struct udp_table *udptable)
549 {
550 const struct iphdr *iph = ip_hdr(skb);
551
552 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553 iph->daddr, dport, inet_iif(skb),
554 udptable, skb);
555 }
556
557 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
558 __be16 sport, __be16 dport)
559 {
560 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
561 }
562 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
563
564 /* Must be called under rcu_read_lock().
565 * Does increment socket refcount.
566 */
567 #if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
568 IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
569 IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 __be32 daddr, __be16 dport, int dif)
572 {
573 struct sock *sk;
574
575 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
576 dif, &udp_table, NULL);
577 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
578 sk = NULL;
579 return sk;
580 }
581 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
582 #endif
583
584 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
585 __be16 loc_port, __be32 loc_addr,
586 __be16 rmt_port, __be32 rmt_addr,
587 int dif, unsigned short hnum)
588 {
589 struct inet_sock *inet = inet_sk(sk);
590
591 if (!net_eq(sock_net(sk), net) ||
592 udp_sk(sk)->udp_port_hash != hnum ||
593 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
594 (inet->inet_dport != rmt_port && inet->inet_dport) ||
595 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
596 ipv6_only_sock(sk) ||
597 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
598 return false;
599 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
600 return false;
601 return true;
602 }
603
604 /*
605 * This routine is called by the ICMP module when it gets some
606 * sort of error condition. If err < 0 then the socket should
607 * be closed and the error returned to the user. If err > 0
608 * it's just the icmp type << 8 | icmp code.
609 * Header points to the ip header of the error packet. We move
610 * on past this. Then (as it used to claim before adjustment)
611 * header points to the first 8 bytes of the udp header. We need
612 * to find the appropriate port.
613 */
614
615 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
616 {
617 struct inet_sock *inet;
618 const struct iphdr *iph = (const struct iphdr *)skb->data;
619 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
620 const int type = icmp_hdr(skb)->type;
621 const int code = icmp_hdr(skb)->code;
622 struct sock *sk;
623 int harderr;
624 int err;
625 struct net *net = dev_net(skb->dev);
626
627 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
628 iph->saddr, uh->source, skb->dev->ifindex, udptable,
629 NULL);
630 if (!sk) {
631 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
632 return; /* No socket for error */
633 }
634
635 err = 0;
636 harderr = 0;
637 inet = inet_sk(sk);
638
639 switch (type) {
640 default:
641 case ICMP_TIME_EXCEEDED:
642 err = EHOSTUNREACH;
643 break;
644 case ICMP_SOURCE_QUENCH:
645 goto out;
646 case ICMP_PARAMETERPROB:
647 err = EPROTO;
648 harderr = 1;
649 break;
650 case ICMP_DEST_UNREACH:
651 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
652 ipv4_sk_update_pmtu(skb, sk, info);
653 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
654 err = EMSGSIZE;
655 harderr = 1;
656 break;
657 }
658 goto out;
659 }
660 err = EHOSTUNREACH;
661 if (code <= NR_ICMP_UNREACH) {
662 harderr = icmp_err_convert[code].fatal;
663 err = icmp_err_convert[code].errno;
664 }
665 break;
666 case ICMP_REDIRECT:
667 ipv4_sk_redirect(skb, sk);
668 goto out;
669 }
670
671 /*
672 * RFC1122: OK. Passes ICMP errors back to application, as per
673 * 4.1.3.3.
674 */
675 if (!inet->recverr) {
676 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
677 goto out;
678 } else
679 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
680
681 sk->sk_err = err;
682 sk->sk_error_report(sk);
683 out:
684 return;
685 }
686
687 void udp_err(struct sk_buff *skb, u32 info)
688 {
689 __udp4_lib_err(skb, info, &udp_table);
690 }
691
692 /*
693 * Throw away all pending data and cancel the corking. Socket is locked.
694 */
695 void udp_flush_pending_frames(struct sock *sk)
696 {
697 struct udp_sock *up = udp_sk(sk);
698
699 if (up->pending) {
700 up->len = 0;
701 up->pending = 0;
702 ip_flush_pending_frames(sk);
703 }
704 }
705 EXPORT_SYMBOL(udp_flush_pending_frames);
706
707 /**
708 * udp4_hwcsum - handle outgoing HW checksumming
709 * @skb: sk_buff containing the filled-in UDP header
710 * (checksum field must be zeroed out)
711 * @src: source IP address
712 * @dst: destination IP address
713 */
714 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
715 {
716 struct udphdr *uh = udp_hdr(skb);
717 int offset = skb_transport_offset(skb);
718 int len = skb->len - offset;
719 int hlen = len;
720 __wsum csum = 0;
721
722 if (!skb_has_frag_list(skb)) {
723 /*
724 * Only one fragment on the socket.
725 */
726 skb->csum_start = skb_transport_header(skb) - skb->head;
727 skb->csum_offset = offsetof(struct udphdr, check);
728 uh->check = ~csum_tcpudp_magic(src, dst, len,
729 IPPROTO_UDP, 0);
730 } else {
731 struct sk_buff *frags;
732
733 /*
734 * HW-checksum won't work as there are two or more
735 * fragments on the socket so that all csums of sk_buffs
736 * should be together
737 */
738 skb_walk_frags(skb, frags) {
739 csum = csum_add(csum, frags->csum);
740 hlen -= frags->len;
741 }
742
743 csum = skb_checksum(skb, offset, hlen, csum);
744 skb->ip_summed = CHECKSUM_NONE;
745
746 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
747 if (uh->check == 0)
748 uh->check = CSUM_MANGLED_0;
749 }
750 }
751 EXPORT_SYMBOL_GPL(udp4_hwcsum);
752
753 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
754 * for the simple case like when setting the checksum for a UDP tunnel.
755 */
756 void udp_set_csum(bool nocheck, struct sk_buff *skb,
757 __be32 saddr, __be32 daddr, int len)
758 {
759 struct udphdr *uh = udp_hdr(skb);
760
761 if (nocheck) {
762 uh->check = 0;
763 } else if (skb_is_gso(skb)) {
764 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
765 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
766 uh->check = 0;
767 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
768 if (uh->check == 0)
769 uh->check = CSUM_MANGLED_0;
770 } else {
771 skb->ip_summed = CHECKSUM_PARTIAL;
772 skb->csum_start = skb_transport_header(skb) - skb->head;
773 skb->csum_offset = offsetof(struct udphdr, check);
774 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
775 }
776 }
777 EXPORT_SYMBOL(udp_set_csum);
778
779 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
780 {
781 struct sock *sk = skb->sk;
782 struct inet_sock *inet = inet_sk(sk);
783 struct udphdr *uh;
784 int err = 0;
785 int is_udplite = IS_UDPLITE(sk);
786 int offset = skb_transport_offset(skb);
787 int len = skb->len - offset;
788 __wsum csum = 0;
789
790 /*
791 * Create a UDP header
792 */
793 uh = udp_hdr(skb);
794 uh->source = inet->inet_sport;
795 uh->dest = fl4->fl4_dport;
796 uh->len = htons(len);
797 uh->check = 0;
798
799 if (is_udplite) /* UDP-Lite */
800 csum = udplite_csum(skb);
801
802 else if (sk->sk_no_check_tx && !skb_is_gso(skb)) { /* UDP csum off */
803
804 skb->ip_summed = CHECKSUM_NONE;
805 goto send;
806
807 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
808
809 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
810 goto send;
811
812 } else
813 csum = udp_csum(skb);
814
815 /* add protocol-dependent pseudo-header */
816 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
817 sk->sk_protocol, csum);
818 if (uh->check == 0)
819 uh->check = CSUM_MANGLED_0;
820
821 send:
822 err = ip_send_skb(sock_net(sk), skb);
823 if (err) {
824 if (err == -ENOBUFS && !inet->recverr) {
825 UDP_INC_STATS(sock_net(sk),
826 UDP_MIB_SNDBUFERRORS, is_udplite);
827 err = 0;
828 }
829 } else
830 UDP_INC_STATS(sock_net(sk),
831 UDP_MIB_OUTDATAGRAMS, is_udplite);
832 return err;
833 }
834
835 /*
836 * Push out all pending data as one UDP datagram. Socket is locked.
837 */
838 int udp_push_pending_frames(struct sock *sk)
839 {
840 struct udp_sock *up = udp_sk(sk);
841 struct inet_sock *inet = inet_sk(sk);
842 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
843 struct sk_buff *skb;
844 int err = 0;
845
846 skb = ip_finish_skb(sk, fl4);
847 if (!skb)
848 goto out;
849
850 err = udp_send_skb(skb, fl4);
851
852 out:
853 up->len = 0;
854 up->pending = 0;
855 return err;
856 }
857 EXPORT_SYMBOL(udp_push_pending_frames);
858
859 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
860 {
861 struct inet_sock *inet = inet_sk(sk);
862 struct udp_sock *up = udp_sk(sk);
863 struct flowi4 fl4_stack;
864 struct flowi4 *fl4;
865 int ulen = len;
866 struct ipcm_cookie ipc;
867 struct rtable *rt = NULL;
868 int free = 0;
869 int connected = 0;
870 __be32 daddr, faddr, saddr;
871 __be16 dport;
872 u8 tos;
873 int err, is_udplite = IS_UDPLITE(sk);
874 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
875 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
876 struct sk_buff *skb;
877 struct ip_options_data opt_copy;
878
879 if (len > 0xFFFF)
880 return -EMSGSIZE;
881
882 /*
883 * Check the flags.
884 */
885
886 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
887 return -EOPNOTSUPP;
888
889 ipc.opt = NULL;
890 ipc.tx_flags = 0;
891 ipc.ttl = 0;
892 ipc.tos = -1;
893
894 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
895
896 fl4 = &inet->cork.fl.u.ip4;
897 if (up->pending) {
898 /*
899 * There are pending frames.
900 * The socket lock must be held while it's corked.
901 */
902 lock_sock(sk);
903 if (likely(up->pending)) {
904 if (unlikely(up->pending != AF_INET)) {
905 release_sock(sk);
906 return -EINVAL;
907 }
908 goto do_append_data;
909 }
910 release_sock(sk);
911 }
912 ulen += sizeof(struct udphdr);
913
914 /*
915 * Get and verify the address.
916 */
917 if (msg->msg_name) {
918 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
919 if (msg->msg_namelen < sizeof(*usin))
920 return -EINVAL;
921 if (usin->sin_family != AF_INET) {
922 if (usin->sin_family != AF_UNSPEC)
923 return -EAFNOSUPPORT;
924 }
925
926 daddr = usin->sin_addr.s_addr;
927 dport = usin->sin_port;
928 if (dport == 0)
929 return -EINVAL;
930 } else {
931 if (sk->sk_state != TCP_ESTABLISHED)
932 return -EDESTADDRREQ;
933 daddr = inet->inet_daddr;
934 dport = inet->inet_dport;
935 /* Open fast path for connected socket.
936 Route will not be used, if at least one option is set.
937 */
938 connected = 1;
939 }
940
941 ipc.sockc.tsflags = sk->sk_tsflags;
942 ipc.addr = inet->inet_saddr;
943 ipc.oif = sk->sk_bound_dev_if;
944
945 if (msg->msg_controllen) {
946 err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
947 if (unlikely(err)) {
948 kfree(ipc.opt);
949 return err;
950 }
951 if (ipc.opt)
952 free = 1;
953 connected = 0;
954 }
955 if (!ipc.opt) {
956 struct ip_options_rcu *inet_opt;
957
958 rcu_read_lock();
959 inet_opt = rcu_dereference(inet->inet_opt);
960 if (inet_opt) {
961 memcpy(&opt_copy, inet_opt,
962 sizeof(*inet_opt) + inet_opt->opt.optlen);
963 ipc.opt = &opt_copy.opt;
964 }
965 rcu_read_unlock();
966 }
967
968 saddr = ipc.addr;
969 ipc.addr = faddr = daddr;
970
971 sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
972
973 if (ipc.opt && ipc.opt->opt.srr) {
974 if (!daddr)
975 return -EINVAL;
976 faddr = ipc.opt->opt.faddr;
977 connected = 0;
978 }
979 tos = get_rttos(&ipc, inet);
980 if (sock_flag(sk, SOCK_LOCALROUTE) ||
981 (msg->msg_flags & MSG_DONTROUTE) ||
982 (ipc.opt && ipc.opt->opt.is_strictroute)) {
983 tos |= RTO_ONLINK;
984 connected = 0;
985 }
986
987 if (ipv4_is_multicast(daddr)) {
988 if (!ipc.oif)
989 ipc.oif = inet->mc_index;
990 if (!saddr)
991 saddr = inet->mc_addr;
992 connected = 0;
993 } else if (!ipc.oif)
994 ipc.oif = inet->uc_index;
995
996 if (connected)
997 rt = (struct rtable *)sk_dst_check(sk, 0);
998
999 if (!rt) {
1000 struct net *net = sock_net(sk);
1001 __u8 flow_flags = inet_sk_flowi_flags(sk);
1002
1003 fl4 = &fl4_stack;
1004
1005 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1006 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1007 flow_flags,
1008 faddr, saddr, dport, inet->inet_sport,
1009 sk->sk_uid);
1010
1011 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1012 rt = ip_route_output_flow(net, fl4, sk);
1013 if (IS_ERR(rt)) {
1014 err = PTR_ERR(rt);
1015 rt = NULL;
1016 if (err == -ENETUNREACH)
1017 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1018 goto out;
1019 }
1020
1021 err = -EACCES;
1022 if ((rt->rt_flags & RTCF_BROADCAST) &&
1023 !sock_flag(sk, SOCK_BROADCAST))
1024 goto out;
1025 if (connected)
1026 sk_dst_set(sk, dst_clone(&rt->dst));
1027 }
1028
1029 if (msg->msg_flags&MSG_CONFIRM)
1030 goto do_confirm;
1031 back_from_confirm:
1032
1033 saddr = fl4->saddr;
1034 if (!ipc.addr)
1035 daddr = ipc.addr = fl4->daddr;
1036
1037 /* Lockless fast path for the non-corking case. */
1038 if (!corkreq) {
1039 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1040 sizeof(struct udphdr), &ipc, &rt,
1041 msg->msg_flags);
1042 err = PTR_ERR(skb);
1043 if (!IS_ERR_OR_NULL(skb))
1044 err = udp_send_skb(skb, fl4);
1045 goto out;
1046 }
1047
1048 lock_sock(sk);
1049 if (unlikely(up->pending)) {
1050 /* The socket is already corked while preparing it. */
1051 /* ... which is an evident application bug. --ANK */
1052 release_sock(sk);
1053
1054 net_dbg_ratelimited("cork app bug 2\n");
1055 err = -EINVAL;
1056 goto out;
1057 }
1058 /*
1059 * Now cork the socket to pend data.
1060 */
1061 fl4 = &inet->cork.fl.u.ip4;
1062 fl4->daddr = daddr;
1063 fl4->saddr = saddr;
1064 fl4->fl4_dport = dport;
1065 fl4->fl4_sport = inet->inet_sport;
1066 up->pending = AF_INET;
1067
1068 do_append_data:
1069 up->len += ulen;
1070 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1071 sizeof(struct udphdr), &ipc, &rt,
1072 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1073 if (err)
1074 udp_flush_pending_frames(sk);
1075 else if (!corkreq)
1076 err = udp_push_pending_frames(sk);
1077 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1078 up->pending = 0;
1079 release_sock(sk);
1080
1081 out:
1082 ip_rt_put(rt);
1083 if (free)
1084 kfree(ipc.opt);
1085 if (!err)
1086 return len;
1087 /*
1088 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1089 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1090 * we don't have a good statistic (IpOutDiscards but it can be too many
1091 * things). We could add another new stat but at least for now that
1092 * seems like overkill.
1093 */
1094 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1095 UDP_INC_STATS(sock_net(sk),
1096 UDP_MIB_SNDBUFERRORS, is_udplite);
1097 }
1098 return err;
1099
1100 do_confirm:
1101 if (msg->msg_flags & MSG_PROBE)
1102 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1103 if (!(msg->msg_flags&MSG_PROBE) || len)
1104 goto back_from_confirm;
1105 err = 0;
1106 goto out;
1107 }
1108 EXPORT_SYMBOL(udp_sendmsg);
1109
1110 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1111 size_t size, int flags)
1112 {
1113 struct inet_sock *inet = inet_sk(sk);
1114 struct udp_sock *up = udp_sk(sk);
1115 int ret;
1116
1117 if (flags & MSG_SENDPAGE_NOTLAST)
1118 flags |= MSG_MORE;
1119
1120 if (!up->pending) {
1121 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1122
1123 /* Call udp_sendmsg to specify destination address which
1124 * sendpage interface can't pass.
1125 * This will succeed only when the socket is connected.
1126 */
1127 ret = udp_sendmsg(sk, &msg, 0);
1128 if (ret < 0)
1129 return ret;
1130 }
1131
1132 lock_sock(sk);
1133
1134 if (unlikely(!up->pending)) {
1135 release_sock(sk);
1136
1137 net_dbg_ratelimited("udp cork app bug 3\n");
1138 return -EINVAL;
1139 }
1140
1141 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1142 page, offset, size, flags);
1143 if (ret == -EOPNOTSUPP) {
1144 release_sock(sk);
1145 return sock_no_sendpage(sk->sk_socket, page, offset,
1146 size, flags);
1147 }
1148 if (ret < 0) {
1149 udp_flush_pending_frames(sk);
1150 goto out;
1151 }
1152
1153 up->len += size;
1154 if (!(up->corkflag || (flags&MSG_MORE)))
1155 ret = udp_push_pending_frames(sk);
1156 if (!ret)
1157 ret = size;
1158 out:
1159 release_sock(sk);
1160 return ret;
1161 }
1162
1163 #define UDP_SKB_IS_STATELESS 0x80000000
1164
1165 static void udp_set_dev_scratch(struct sk_buff *skb)
1166 {
1167 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1168
1169 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1170 scratch->_tsize_state = skb->truesize;
1171 #if BITS_PER_LONG == 64
1172 scratch->len = skb->len;
1173 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1174 scratch->is_linear = !skb_is_nonlinear(skb);
1175 #endif
1176 if (likely(!skb->_skb_refdst && !skb_sec_path(skb)))
1177 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1178 }
1179
1180 static int udp_skb_truesize(struct sk_buff *skb)
1181 {
1182 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1183 }
1184
1185 static bool udp_skb_has_head_state(struct sk_buff *skb)
1186 {
1187 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1188 }
1189
1190 /* fully reclaim rmem/fwd memory allocated for skb */
1191 static void udp_rmem_release(struct sock *sk, int size, int partial,
1192 bool rx_queue_lock_held)
1193 {
1194 struct udp_sock *up = udp_sk(sk);
1195 struct sk_buff_head *sk_queue;
1196 int amt;
1197
1198 if (likely(partial)) {
1199 up->forward_deficit += size;
1200 size = up->forward_deficit;
1201 if (size < (sk->sk_rcvbuf >> 2) &&
1202 !skb_queue_empty(&up->reader_queue))
1203 return;
1204 } else {
1205 size += up->forward_deficit;
1206 }
1207 up->forward_deficit = 0;
1208
1209 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1210 * if the called don't held it already
1211 */
1212 sk_queue = &sk->sk_receive_queue;
1213 if (!rx_queue_lock_held)
1214 spin_lock(&sk_queue->lock);
1215
1216
1217 sk->sk_forward_alloc += size;
1218 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1219 sk->sk_forward_alloc -= amt;
1220
1221 if (amt)
1222 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1223
1224 atomic_sub(size, &sk->sk_rmem_alloc);
1225
1226 /* this can save us from acquiring the rx queue lock on next receive */
1227 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1228
1229 if (!rx_queue_lock_held)
1230 spin_unlock(&sk_queue->lock);
1231 }
1232
1233 /* Note: called with reader_queue.lock held.
1234 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1235 * This avoids a cache line miss while receive_queue lock is held.
1236 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1237 */
1238 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1239 {
1240 prefetch(&skb->data);
1241 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1242 }
1243 EXPORT_SYMBOL(udp_skb_destructor);
1244
1245 /* as above, but the caller held the rx queue lock, too */
1246 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1247 {
1248 prefetch(&skb->data);
1249 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1250 }
1251
1252 /* Idea of busylocks is to let producers grab an extra spinlock
1253 * to relieve pressure on the receive_queue spinlock shared by consumer.
1254 * Under flood, this means that only one producer can be in line
1255 * trying to acquire the receive_queue spinlock.
1256 * These busylock can be allocated on a per cpu manner, instead of a
1257 * per socket one (that would consume a cache line per socket)
1258 */
1259 static int udp_busylocks_log __read_mostly;
1260 static spinlock_t *udp_busylocks __read_mostly;
1261
1262 static spinlock_t *busylock_acquire(void *ptr)
1263 {
1264 spinlock_t *busy;
1265
1266 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1267 spin_lock(busy);
1268 return busy;
1269 }
1270
1271 static void busylock_release(spinlock_t *busy)
1272 {
1273 if (busy)
1274 spin_unlock(busy);
1275 }
1276
1277 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1278 {
1279 struct sk_buff_head *list = &sk->sk_receive_queue;
1280 int rmem, delta, amt, err = -ENOMEM;
1281 spinlock_t *busy = NULL;
1282 int size;
1283
1284 /* try to avoid the costly atomic add/sub pair when the receive
1285 * queue is full; always allow at least a packet
1286 */
1287 rmem = atomic_read(&sk->sk_rmem_alloc);
1288 if (rmem > sk->sk_rcvbuf)
1289 goto drop;
1290
1291 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1292 * having linear skbs :
1293 * - Reduce memory overhead and thus increase receive queue capacity
1294 * - Less cache line misses at copyout() time
1295 * - Less work at consume_skb() (less alien page frag freeing)
1296 */
1297 if (rmem > (sk->sk_rcvbuf >> 1)) {
1298 skb_condense(skb);
1299
1300 busy = busylock_acquire(sk);
1301 }
1302 size = skb->truesize;
1303 udp_set_dev_scratch(skb);
1304
1305 /* we drop only if the receive buf is full and the receive
1306 * queue contains some other skb
1307 */
1308 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1309 if (rmem > (size + sk->sk_rcvbuf))
1310 goto uncharge_drop;
1311
1312 spin_lock(&list->lock);
1313 if (size >= sk->sk_forward_alloc) {
1314 amt = sk_mem_pages(size);
1315 delta = amt << SK_MEM_QUANTUM_SHIFT;
1316 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1317 err = -ENOBUFS;
1318 spin_unlock(&list->lock);
1319 goto uncharge_drop;
1320 }
1321
1322 sk->sk_forward_alloc += delta;
1323 }
1324
1325 sk->sk_forward_alloc -= size;
1326
1327 /* no need to setup a destructor, we will explicitly release the
1328 * forward allocated memory on dequeue
1329 */
1330 sock_skb_set_dropcount(sk, skb);
1331
1332 __skb_queue_tail(list, skb);
1333 spin_unlock(&list->lock);
1334
1335 if (!sock_flag(sk, SOCK_DEAD))
1336 sk->sk_data_ready(sk);
1337
1338 busylock_release(busy);
1339 return 0;
1340
1341 uncharge_drop:
1342 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1343
1344 drop:
1345 atomic_inc(&sk->sk_drops);
1346 busylock_release(busy);
1347 return err;
1348 }
1349 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1350
1351 void udp_destruct_sock(struct sock *sk)
1352 {
1353 /* reclaim completely the forward allocated memory */
1354 struct udp_sock *up = udp_sk(sk);
1355 unsigned int total = 0;
1356 struct sk_buff *skb;
1357
1358 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1359 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1360 total += skb->truesize;
1361 kfree_skb(skb);
1362 }
1363 udp_rmem_release(sk, total, 0, true);
1364
1365 inet_sock_destruct(sk);
1366 }
1367 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1368
1369 int udp_init_sock(struct sock *sk)
1370 {
1371 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1372 sk->sk_destruct = udp_destruct_sock;
1373 return 0;
1374 }
1375 EXPORT_SYMBOL_GPL(udp_init_sock);
1376
1377 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1378 {
1379 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1380 bool slow = lock_sock_fast(sk);
1381
1382 sk_peek_offset_bwd(sk, len);
1383 unlock_sock_fast(sk, slow);
1384 }
1385
1386 if (!skb_unref(skb))
1387 return;
1388
1389 /* In the more common cases we cleared the head states previously,
1390 * see __udp_queue_rcv_skb().
1391 */
1392 if (unlikely(udp_skb_has_head_state(skb)))
1393 skb_release_head_state(skb);
1394 __consume_stateless_skb(skb);
1395 }
1396 EXPORT_SYMBOL_GPL(skb_consume_udp);
1397
1398 static struct sk_buff *__first_packet_length(struct sock *sk,
1399 struct sk_buff_head *rcvq,
1400 int *total)
1401 {
1402 struct sk_buff *skb;
1403
1404 while ((skb = skb_peek(rcvq)) != NULL) {
1405 if (udp_lib_checksum_complete(skb)) {
1406 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1407 IS_UDPLITE(sk));
1408 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1409 IS_UDPLITE(sk));
1410 atomic_inc(&sk->sk_drops);
1411 __skb_unlink(skb, rcvq);
1412 *total += skb->truesize;
1413 kfree_skb(skb);
1414 } else {
1415 /* the csum related bits could be changed, refresh
1416 * the scratch area
1417 */
1418 udp_set_dev_scratch(skb);
1419 break;
1420 }
1421 }
1422 return skb;
1423 }
1424
1425 /**
1426 * first_packet_length - return length of first packet in receive queue
1427 * @sk: socket
1428 *
1429 * Drops all bad checksum frames, until a valid one is found.
1430 * Returns the length of found skb, or -1 if none is found.
1431 */
1432 static int first_packet_length(struct sock *sk)
1433 {
1434 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1435 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1436 struct sk_buff *skb;
1437 int total = 0;
1438 int res;
1439
1440 spin_lock_bh(&rcvq->lock);
1441 skb = __first_packet_length(sk, rcvq, &total);
1442 if (!skb && !skb_queue_empty(sk_queue)) {
1443 spin_lock(&sk_queue->lock);
1444 skb_queue_splice_tail_init(sk_queue, rcvq);
1445 spin_unlock(&sk_queue->lock);
1446
1447 skb = __first_packet_length(sk, rcvq, &total);
1448 }
1449 res = skb ? skb->len : -1;
1450 if (total)
1451 udp_rmem_release(sk, total, 1, false);
1452 spin_unlock_bh(&rcvq->lock);
1453 return res;
1454 }
1455
1456 /*
1457 * IOCTL requests applicable to the UDP protocol
1458 */
1459
1460 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1461 {
1462 switch (cmd) {
1463 case SIOCOUTQ:
1464 {
1465 int amount = sk_wmem_alloc_get(sk);
1466
1467 return put_user(amount, (int __user *)arg);
1468 }
1469
1470 case SIOCINQ:
1471 {
1472 int amount = max_t(int, 0, first_packet_length(sk));
1473
1474 return put_user(amount, (int __user *)arg);
1475 }
1476
1477 default:
1478 return -ENOIOCTLCMD;
1479 }
1480
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(udp_ioctl);
1484
1485 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1486 int noblock, int *peeked, int *off, int *err)
1487 {
1488 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1489 struct sk_buff_head *queue;
1490 struct sk_buff *last;
1491 long timeo;
1492 int error;
1493
1494 queue = &udp_sk(sk)->reader_queue;
1495 flags |= noblock ? MSG_DONTWAIT : 0;
1496 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1497 do {
1498 struct sk_buff *skb;
1499
1500 error = sock_error(sk);
1501 if (error)
1502 break;
1503
1504 error = -EAGAIN;
1505 *peeked = 0;
1506 do {
1507 spin_lock_bh(&queue->lock);
1508 skb = __skb_try_recv_from_queue(sk, queue, flags,
1509 udp_skb_destructor,
1510 peeked, off, err,
1511 &last);
1512 if (skb) {
1513 spin_unlock_bh(&queue->lock);
1514 return skb;
1515 }
1516
1517 if (skb_queue_empty(sk_queue)) {
1518 spin_unlock_bh(&queue->lock);
1519 goto busy_check;
1520 }
1521
1522 /* refill the reader queue and walk it again
1523 * keep both queues locked to avoid re-acquiring
1524 * the sk_receive_queue lock if fwd memory scheduling
1525 * is needed.
1526 */
1527 spin_lock(&sk_queue->lock);
1528 skb_queue_splice_tail_init(sk_queue, queue);
1529
1530 skb = __skb_try_recv_from_queue(sk, queue, flags,
1531 udp_skb_dtor_locked,
1532 peeked, off, err,
1533 &last);
1534 spin_unlock(&sk_queue->lock);
1535 spin_unlock_bh(&queue->lock);
1536 if (skb)
1537 return skb;
1538
1539 busy_check:
1540 if (!sk_can_busy_loop(sk))
1541 break;
1542
1543 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1544 } while (!skb_queue_empty(sk_queue));
1545
1546 /* sk_queue is empty, reader_queue may contain peeked packets */
1547 } while (timeo &&
1548 !__skb_wait_for_more_packets(sk, &error, &timeo,
1549 (struct sk_buff *)sk_queue));
1550
1551 *err = error;
1552 return NULL;
1553 }
1554 EXPORT_SYMBOL_GPL(__skb_recv_udp);
1555
1556 /*
1557 * This should be easy, if there is something there we
1558 * return it, otherwise we block.
1559 */
1560
1561 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1562 int flags, int *addr_len)
1563 {
1564 struct inet_sock *inet = inet_sk(sk);
1565 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1566 struct sk_buff *skb;
1567 unsigned int ulen, copied;
1568 int peeked, peeking, off;
1569 int err;
1570 int is_udplite = IS_UDPLITE(sk);
1571 bool checksum_valid = false;
1572
1573 if (flags & MSG_ERRQUEUE)
1574 return ip_recv_error(sk, msg, len, addr_len);
1575
1576 try_again:
1577 peeking = flags & MSG_PEEK;
1578 off = sk_peek_offset(sk, flags);
1579 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1580 if (!skb)
1581 return err;
1582
1583 ulen = udp_skb_len(skb);
1584 copied = len;
1585 if (copied > ulen - off)
1586 copied = ulen - off;
1587 else if (copied < ulen)
1588 msg->msg_flags |= MSG_TRUNC;
1589
1590 /*
1591 * If checksum is needed at all, try to do it while copying the
1592 * data. If the data is truncated, or if we only want a partial
1593 * coverage checksum (UDP-Lite), do it before the copy.
1594 */
1595
1596 if (copied < ulen || peeking ||
1597 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1598 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1599 !__udp_lib_checksum_complete(skb);
1600 if (!checksum_valid)
1601 goto csum_copy_err;
1602 }
1603
1604 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1605 if (udp_skb_is_linear(skb))
1606 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1607 else
1608 err = skb_copy_datagram_msg(skb, off, msg, copied);
1609 } else {
1610 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1611
1612 if (err == -EINVAL)
1613 goto csum_copy_err;
1614 }
1615
1616 if (unlikely(err)) {
1617 if (!peeked) {
1618 atomic_inc(&sk->sk_drops);
1619 UDP_INC_STATS(sock_net(sk),
1620 UDP_MIB_INERRORS, is_udplite);
1621 }
1622 kfree_skb(skb);
1623 return err;
1624 }
1625
1626 if (!peeked)
1627 UDP_INC_STATS(sock_net(sk),
1628 UDP_MIB_INDATAGRAMS, is_udplite);
1629
1630 sock_recv_ts_and_drops(msg, sk, skb);
1631
1632 /* Copy the address. */
1633 if (sin) {
1634 sin->sin_family = AF_INET;
1635 sin->sin_port = udp_hdr(skb)->source;
1636 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1637 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1638 *addr_len = sizeof(*sin);
1639 }
1640 if (inet->cmsg_flags)
1641 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1642
1643 err = copied;
1644 if (flags & MSG_TRUNC)
1645 err = ulen;
1646
1647 skb_consume_udp(sk, skb, peeking ? -err : err);
1648 return err;
1649
1650 csum_copy_err:
1651 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1652 udp_skb_destructor)) {
1653 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1654 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1655 }
1656 kfree_skb(skb);
1657
1658 /* starting over for a new packet, but check if we need to yield */
1659 cond_resched();
1660 msg->msg_flags &= ~MSG_TRUNC;
1661 goto try_again;
1662 }
1663
1664 int __udp_disconnect(struct sock *sk, int flags)
1665 {
1666 struct inet_sock *inet = inet_sk(sk);
1667 /*
1668 * 1003.1g - break association.
1669 */
1670
1671 sk->sk_state = TCP_CLOSE;
1672 inet->inet_daddr = 0;
1673 inet->inet_dport = 0;
1674 sock_rps_reset_rxhash(sk);
1675 sk->sk_bound_dev_if = 0;
1676 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1677 inet_reset_saddr(sk);
1678
1679 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1680 sk->sk_prot->unhash(sk);
1681 inet->inet_sport = 0;
1682 }
1683 sk_dst_reset(sk);
1684 return 0;
1685 }
1686 EXPORT_SYMBOL(__udp_disconnect);
1687
1688 int udp_disconnect(struct sock *sk, int flags)
1689 {
1690 lock_sock(sk);
1691 __udp_disconnect(sk, flags);
1692 release_sock(sk);
1693 return 0;
1694 }
1695 EXPORT_SYMBOL(udp_disconnect);
1696
1697 void udp_lib_unhash(struct sock *sk)
1698 {
1699 if (sk_hashed(sk)) {
1700 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1701 struct udp_hslot *hslot, *hslot2;
1702
1703 hslot = udp_hashslot(udptable, sock_net(sk),
1704 udp_sk(sk)->udp_port_hash);
1705 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1706
1707 spin_lock_bh(&hslot->lock);
1708 if (rcu_access_pointer(sk->sk_reuseport_cb))
1709 reuseport_detach_sock(sk);
1710 if (sk_del_node_init_rcu(sk)) {
1711 hslot->count--;
1712 inet_sk(sk)->inet_num = 0;
1713 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1714
1715 spin_lock(&hslot2->lock);
1716 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1717 hslot2->count--;
1718 spin_unlock(&hslot2->lock);
1719 }
1720 spin_unlock_bh(&hslot->lock);
1721 }
1722 }
1723 EXPORT_SYMBOL(udp_lib_unhash);
1724
1725 /*
1726 * inet_rcv_saddr was changed, we must rehash secondary hash
1727 */
1728 void udp_lib_rehash(struct sock *sk, u16 newhash)
1729 {
1730 if (sk_hashed(sk)) {
1731 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1732 struct udp_hslot *hslot, *hslot2, *nhslot2;
1733
1734 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1735 nhslot2 = udp_hashslot2(udptable, newhash);
1736 udp_sk(sk)->udp_portaddr_hash = newhash;
1737
1738 if (hslot2 != nhslot2 ||
1739 rcu_access_pointer(sk->sk_reuseport_cb)) {
1740 hslot = udp_hashslot(udptable, sock_net(sk),
1741 udp_sk(sk)->udp_port_hash);
1742 /* we must lock primary chain too */
1743 spin_lock_bh(&hslot->lock);
1744 if (rcu_access_pointer(sk->sk_reuseport_cb))
1745 reuseport_detach_sock(sk);
1746
1747 if (hslot2 != nhslot2) {
1748 spin_lock(&hslot2->lock);
1749 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1750 hslot2->count--;
1751 spin_unlock(&hslot2->lock);
1752
1753 spin_lock(&nhslot2->lock);
1754 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1755 &nhslot2->head);
1756 nhslot2->count++;
1757 spin_unlock(&nhslot2->lock);
1758 }
1759
1760 spin_unlock_bh(&hslot->lock);
1761 }
1762 }
1763 }
1764 EXPORT_SYMBOL(udp_lib_rehash);
1765
1766 static void udp_v4_rehash(struct sock *sk)
1767 {
1768 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1769 inet_sk(sk)->inet_rcv_saddr,
1770 inet_sk(sk)->inet_num);
1771 udp_lib_rehash(sk, new_hash);
1772 }
1773
1774 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1775 {
1776 int rc;
1777
1778 if (inet_sk(sk)->inet_daddr) {
1779 sock_rps_save_rxhash(sk, skb);
1780 sk_mark_napi_id(sk, skb);
1781 sk_incoming_cpu_update(sk);
1782 } else {
1783 sk_mark_napi_id_once(sk, skb);
1784 }
1785
1786 /* At recvmsg() time we may access skb->dst or skb->sp depending on
1787 * the IP options and the cmsg flags, elsewhere can we clear all
1788 * pending head states while they are hot in the cache
1789 */
1790 if (likely(IPCB(skb)->opt.optlen == 0 && !skb_sec_path(skb)))
1791 skb_release_head_state(skb);
1792
1793 rc = __udp_enqueue_schedule_skb(sk, skb);
1794 if (rc < 0) {
1795 int is_udplite = IS_UDPLITE(sk);
1796
1797 /* Note that an ENOMEM error is charged twice */
1798 if (rc == -ENOMEM)
1799 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1800 is_udplite);
1801 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1802 kfree_skb(skb);
1803 trace_udp_fail_queue_rcv_skb(rc, sk);
1804 return -1;
1805 }
1806
1807 return 0;
1808 }
1809
1810 static struct static_key udp_encap_needed __read_mostly;
1811 void udp_encap_enable(void)
1812 {
1813 if (!static_key_enabled(&udp_encap_needed))
1814 static_key_slow_inc(&udp_encap_needed);
1815 }
1816 EXPORT_SYMBOL(udp_encap_enable);
1817
1818 /* returns:
1819 * -1: error
1820 * 0: success
1821 * >0: "udp encap" protocol resubmission
1822 *
1823 * Note that in the success and error cases, the skb is assumed to
1824 * have either been requeued or freed.
1825 */
1826 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1827 {
1828 struct udp_sock *up = udp_sk(sk);
1829 int is_udplite = IS_UDPLITE(sk);
1830
1831 /*
1832 * Charge it to the socket, dropping if the queue is full.
1833 */
1834 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1835 goto drop;
1836 nf_reset(skb);
1837
1838 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1839 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1840
1841 /*
1842 * This is an encapsulation socket so pass the skb to
1843 * the socket's udp_encap_rcv() hook. Otherwise, just
1844 * fall through and pass this up the UDP socket.
1845 * up->encap_rcv() returns the following value:
1846 * =0 if skb was successfully passed to the encap
1847 * handler or was discarded by it.
1848 * >0 if skb should be passed on to UDP.
1849 * <0 if skb should be resubmitted as proto -N
1850 */
1851
1852 /* if we're overly short, let UDP handle it */
1853 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1854 if (encap_rcv) {
1855 int ret;
1856
1857 /* Verify checksum before giving to encap */
1858 if (udp_lib_checksum_complete(skb))
1859 goto csum_error;
1860
1861 ret = encap_rcv(sk, skb);
1862 if (ret <= 0) {
1863 __UDP_INC_STATS(sock_net(sk),
1864 UDP_MIB_INDATAGRAMS,
1865 is_udplite);
1866 return -ret;
1867 }
1868 }
1869
1870 /* FALLTHROUGH -- it's a UDP Packet */
1871 }
1872
1873 /*
1874 * UDP-Lite specific tests, ignored on UDP sockets
1875 */
1876 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1877
1878 /*
1879 * MIB statistics other than incrementing the error count are
1880 * disabled for the following two types of errors: these depend
1881 * on the application settings, not on the functioning of the
1882 * protocol stack as such.
1883 *
1884 * RFC 3828 here recommends (sec 3.3): "There should also be a
1885 * way ... to ... at least let the receiving application block
1886 * delivery of packets with coverage values less than a value
1887 * provided by the application."
1888 */
1889 if (up->pcrlen == 0) { /* full coverage was set */
1890 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1891 UDP_SKB_CB(skb)->cscov, skb->len);
1892 goto drop;
1893 }
1894 /* The next case involves violating the min. coverage requested
1895 * by the receiver. This is subtle: if receiver wants x and x is
1896 * greater than the buffersize/MTU then receiver will complain
1897 * that it wants x while sender emits packets of smaller size y.
1898 * Therefore the above ...()->partial_cov statement is essential.
1899 */
1900 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1901 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1902 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1903 goto drop;
1904 }
1905 }
1906
1907 prefetch(&sk->sk_rmem_alloc);
1908 if (rcu_access_pointer(sk->sk_filter) &&
1909 udp_lib_checksum_complete(skb))
1910 goto csum_error;
1911
1912 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1913 goto drop;
1914
1915 udp_csum_pull_header(skb);
1916
1917 ipv4_pktinfo_prepare(sk, skb);
1918 return __udp_queue_rcv_skb(sk, skb);
1919
1920 csum_error:
1921 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1922 drop:
1923 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1924 atomic_inc(&sk->sk_drops);
1925 kfree_skb(skb);
1926 return -1;
1927 }
1928
1929 /* For TCP sockets, sk_rx_dst is protected by socket lock
1930 * For UDP, we use xchg() to guard against concurrent changes.
1931 */
1932 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1933 {
1934 struct dst_entry *old;
1935
1936 if (dst_hold_safe(dst)) {
1937 old = xchg(&sk->sk_rx_dst, dst);
1938 dst_release(old);
1939 return old != dst;
1940 }
1941 return false;
1942 }
1943 EXPORT_SYMBOL(udp_sk_rx_dst_set);
1944
1945 /*
1946 * Multicasts and broadcasts go to each listener.
1947 *
1948 * Note: called only from the BH handler context.
1949 */
1950 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1951 struct udphdr *uh,
1952 __be32 saddr, __be32 daddr,
1953 struct udp_table *udptable,
1954 int proto)
1955 {
1956 struct sock *sk, *first = NULL;
1957 unsigned short hnum = ntohs(uh->dest);
1958 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1959 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1960 unsigned int offset = offsetof(typeof(*sk), sk_node);
1961 int dif = skb->dev->ifindex;
1962 struct hlist_node *node;
1963 struct sk_buff *nskb;
1964
1965 if (use_hash2) {
1966 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1967 udptable->mask;
1968 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1969 start_lookup:
1970 hslot = &udptable->hash2[hash2];
1971 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1972 }
1973
1974 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1975 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1976 uh->source, saddr, dif, hnum))
1977 continue;
1978
1979 if (!first) {
1980 first = sk;
1981 continue;
1982 }
1983 nskb = skb_clone(skb, GFP_ATOMIC);
1984
1985 if (unlikely(!nskb)) {
1986 atomic_inc(&sk->sk_drops);
1987 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1988 IS_UDPLITE(sk));
1989 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
1990 IS_UDPLITE(sk));
1991 continue;
1992 }
1993 if (udp_queue_rcv_skb(sk, nskb) > 0)
1994 consume_skb(nskb);
1995 }
1996
1997 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1998 if (use_hash2 && hash2 != hash2_any) {
1999 hash2 = hash2_any;
2000 goto start_lookup;
2001 }
2002
2003 if (first) {
2004 if (udp_queue_rcv_skb(first, skb) > 0)
2005 consume_skb(skb);
2006 } else {
2007 kfree_skb(skb);
2008 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2009 proto == IPPROTO_UDPLITE);
2010 }
2011 return 0;
2012 }
2013
2014 /* Initialize UDP checksum. If exited with zero value (success),
2015 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2016 * Otherwise, csum completion requires chacksumming packet body,
2017 * including udp header and folding it to skb->csum.
2018 */
2019 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2020 int proto)
2021 {
2022 int err;
2023
2024 UDP_SKB_CB(skb)->partial_cov = 0;
2025 UDP_SKB_CB(skb)->cscov = skb->len;
2026
2027 if (proto == IPPROTO_UDPLITE) {
2028 err = udplite_checksum_init(skb, uh);
2029 if (err)
2030 return err;
2031 }
2032
2033 /* Note, we are only interested in != 0 or == 0, thus the
2034 * force to int.
2035 */
2036 return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2037 inet_compute_pseudo);
2038 }
2039
2040 /*
2041 * All we need to do is get the socket, and then do a checksum.
2042 */
2043
2044 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2045 int proto)
2046 {
2047 struct sock *sk;
2048 struct udphdr *uh;
2049 unsigned short ulen;
2050 struct rtable *rt = skb_rtable(skb);
2051 __be32 saddr, daddr;
2052 struct net *net = dev_net(skb->dev);
2053
2054 /*
2055 * Validate the packet.
2056 */
2057 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2058 goto drop; /* No space for header. */
2059
2060 uh = udp_hdr(skb);
2061 ulen = ntohs(uh->len);
2062 saddr = ip_hdr(skb)->saddr;
2063 daddr = ip_hdr(skb)->daddr;
2064
2065 if (ulen > skb->len)
2066 goto short_packet;
2067
2068 if (proto == IPPROTO_UDP) {
2069 /* UDP validates ulen. */
2070 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2071 goto short_packet;
2072 uh = udp_hdr(skb);
2073 }
2074
2075 if (udp4_csum_init(skb, uh, proto))
2076 goto csum_error;
2077
2078 sk = skb_steal_sock(skb);
2079 if (sk) {
2080 struct dst_entry *dst = skb_dst(skb);
2081 int ret;
2082
2083 if (unlikely(sk->sk_rx_dst != dst))
2084 udp_sk_rx_dst_set(sk, dst);
2085
2086 ret = udp_queue_rcv_skb(sk, skb);
2087 sock_put(sk);
2088 /* a return value > 0 means to resubmit the input, but
2089 * it wants the return to be -protocol, or 0
2090 */
2091 if (ret > 0)
2092 return -ret;
2093 return 0;
2094 }
2095
2096 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2097 return __udp4_lib_mcast_deliver(net, skb, uh,
2098 saddr, daddr, udptable, proto);
2099
2100 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2101 if (sk) {
2102 int ret;
2103
2104 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2105 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2106 inet_compute_pseudo);
2107
2108 ret = udp_queue_rcv_skb(sk, skb);
2109
2110 /* a return value > 0 means to resubmit the input, but
2111 * it wants the return to be -protocol, or 0
2112 */
2113 if (ret > 0)
2114 return -ret;
2115 return 0;
2116 }
2117
2118 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2119 goto drop;
2120 nf_reset(skb);
2121
2122 /* No socket. Drop packet silently, if checksum is wrong */
2123 if (udp_lib_checksum_complete(skb))
2124 goto csum_error;
2125
2126 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2127 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2128
2129 /*
2130 * Hmm. We got an UDP packet to a port to which we
2131 * don't wanna listen. Ignore it.
2132 */
2133 kfree_skb(skb);
2134 return 0;
2135
2136 short_packet:
2137 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2138 proto == IPPROTO_UDPLITE ? "Lite" : "",
2139 &saddr, ntohs(uh->source),
2140 ulen, skb->len,
2141 &daddr, ntohs(uh->dest));
2142 goto drop;
2143
2144 csum_error:
2145 /*
2146 * RFC1122: OK. Discards the bad packet silently (as far as
2147 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2148 */
2149 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2150 proto == IPPROTO_UDPLITE ? "Lite" : "",
2151 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2152 ulen);
2153 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2154 drop:
2155 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2156 kfree_skb(skb);
2157 return 0;
2158 }
2159
2160 /* We can only early demux multicast if there is a single matching socket.
2161 * If more than one socket found returns NULL
2162 */
2163 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2164 __be16 loc_port, __be32 loc_addr,
2165 __be16 rmt_port, __be32 rmt_addr,
2166 int dif)
2167 {
2168 struct sock *sk, *result;
2169 unsigned short hnum = ntohs(loc_port);
2170 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2171 struct udp_hslot *hslot = &udp_table.hash[slot];
2172
2173 /* Do not bother scanning a too big list */
2174 if (hslot->count > 10)
2175 return NULL;
2176
2177 result = NULL;
2178 sk_for_each_rcu(sk, &hslot->head) {
2179 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2180 rmt_port, rmt_addr, dif, hnum)) {
2181 if (result)
2182 return NULL;
2183 result = sk;
2184 }
2185 }
2186
2187 return result;
2188 }
2189
2190 /* For unicast we should only early demux connected sockets or we can
2191 * break forwarding setups. The chains here can be long so only check
2192 * if the first socket is an exact match and if not move on.
2193 */
2194 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2195 __be16 loc_port, __be32 loc_addr,
2196 __be16 rmt_port, __be32 rmt_addr,
2197 int dif)
2198 {
2199 unsigned short hnum = ntohs(loc_port);
2200 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
2201 unsigned int slot2 = hash2 & udp_table.mask;
2202 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2203 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2204 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2205 struct sock *sk;
2206
2207 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2208 if (INET_MATCH(sk, net, acookie, rmt_addr,
2209 loc_addr, ports, dif))
2210 return sk;
2211 /* Only check first socket in chain */
2212 break;
2213 }
2214 return NULL;
2215 }
2216
2217 int udp_v4_early_demux(struct sk_buff *skb)
2218 {
2219 struct net *net = dev_net(skb->dev);
2220 struct in_device *in_dev = NULL;
2221 const struct iphdr *iph;
2222 const struct udphdr *uh;
2223 struct sock *sk = NULL;
2224 struct dst_entry *dst;
2225 int dif = skb->dev->ifindex;
2226 int ours;
2227
2228 /* validate the packet */
2229 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2230 return 0;
2231
2232 iph = ip_hdr(skb);
2233 uh = udp_hdr(skb);
2234
2235 if (skb->pkt_type == PACKET_MULTICAST) {
2236 in_dev = __in_dev_get_rcu(skb->dev);
2237
2238 if (!in_dev)
2239 return 0;
2240
2241 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2242 iph->protocol);
2243 if (!ours)
2244 return 0;
2245
2246 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2247 uh->source, iph->saddr, dif);
2248 } else if (skb->pkt_type == PACKET_HOST) {
2249 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2250 uh->source, iph->saddr, dif);
2251 }
2252
2253 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2254 return 0;
2255
2256 skb->sk = sk;
2257 skb->destructor = sock_efree;
2258 dst = READ_ONCE(sk->sk_rx_dst);
2259
2260 if (dst)
2261 dst = dst_check(dst, 0);
2262 if (dst) {
2263 u32 itag = 0;
2264
2265 /* set noref for now.
2266 * any place which wants to hold dst has to call
2267 * dst_hold_safe()
2268 */
2269 skb_dst_set_noref(skb, dst);
2270
2271 /* for unconnected multicast sockets we need to validate
2272 * the source on each packet
2273 */
2274 if (!inet_sk(sk)->inet_daddr && in_dev)
2275 return ip_mc_validate_source(skb, iph->daddr,
2276 iph->saddr, iph->tos,
2277 skb->dev, in_dev, &itag);
2278 }
2279 return 0;
2280 }
2281
2282 int udp_rcv(struct sk_buff *skb)
2283 {
2284 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2285 }
2286
2287 void udp_destroy_sock(struct sock *sk)
2288 {
2289 struct udp_sock *up = udp_sk(sk);
2290 bool slow = lock_sock_fast(sk);
2291 udp_flush_pending_frames(sk);
2292 unlock_sock_fast(sk, slow);
2293 if (static_key_false(&udp_encap_needed) && up->encap_type) {
2294 void (*encap_destroy)(struct sock *sk);
2295 encap_destroy = ACCESS_ONCE(up->encap_destroy);
2296 if (encap_destroy)
2297 encap_destroy(sk);
2298 }
2299 }
2300
2301 /*
2302 * Socket option code for UDP
2303 */
2304 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2305 char __user *optval, unsigned int optlen,
2306 int (*push_pending_frames)(struct sock *))
2307 {
2308 struct udp_sock *up = udp_sk(sk);
2309 int val, valbool;
2310 int err = 0;
2311 int is_udplite = IS_UDPLITE(sk);
2312
2313 if (optlen < sizeof(int))
2314 return -EINVAL;
2315
2316 if (get_user(val, (int __user *)optval))
2317 return -EFAULT;
2318
2319 valbool = val ? 1 : 0;
2320
2321 switch (optname) {
2322 case UDP_CORK:
2323 if (val != 0) {
2324 up->corkflag = 1;
2325 } else {
2326 up->corkflag = 0;
2327 lock_sock(sk);
2328 push_pending_frames(sk);
2329 release_sock(sk);
2330 }
2331 break;
2332
2333 case UDP_ENCAP:
2334 switch (val) {
2335 case 0:
2336 case UDP_ENCAP_ESPINUDP:
2337 case UDP_ENCAP_ESPINUDP_NON_IKE:
2338 up->encap_rcv = xfrm4_udp_encap_rcv;
2339 /* FALLTHROUGH */
2340 case UDP_ENCAP_L2TPINUDP:
2341 up->encap_type = val;
2342 udp_encap_enable();
2343 break;
2344 default:
2345 err = -ENOPROTOOPT;
2346 break;
2347 }
2348 break;
2349
2350 case UDP_NO_CHECK6_TX:
2351 up->no_check6_tx = valbool;
2352 break;
2353
2354 case UDP_NO_CHECK6_RX:
2355 up->no_check6_rx = valbool;
2356 break;
2357
2358 /*
2359 * UDP-Lite's partial checksum coverage (RFC 3828).
2360 */
2361 /* The sender sets actual checksum coverage length via this option.
2362 * The case coverage > packet length is handled by send module. */
2363 case UDPLITE_SEND_CSCOV:
2364 if (!is_udplite) /* Disable the option on UDP sockets */
2365 return -ENOPROTOOPT;
2366 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2367 val = 8;
2368 else if (val > USHRT_MAX)
2369 val = USHRT_MAX;
2370 up->pcslen = val;
2371 up->pcflag |= UDPLITE_SEND_CC;
2372 break;
2373
2374 /* The receiver specifies a minimum checksum coverage value. To make
2375 * sense, this should be set to at least 8 (as done below). If zero is
2376 * used, this again means full checksum coverage. */
2377 case UDPLITE_RECV_CSCOV:
2378 if (!is_udplite) /* Disable the option on UDP sockets */
2379 return -ENOPROTOOPT;
2380 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2381 val = 8;
2382 else if (val > USHRT_MAX)
2383 val = USHRT_MAX;
2384 up->pcrlen = val;
2385 up->pcflag |= UDPLITE_RECV_CC;
2386 break;
2387
2388 default:
2389 err = -ENOPROTOOPT;
2390 break;
2391 }
2392
2393 return err;
2394 }
2395 EXPORT_SYMBOL(udp_lib_setsockopt);
2396
2397 int udp_setsockopt(struct sock *sk, int level, int optname,
2398 char __user *optval, unsigned int optlen)
2399 {
2400 if (level == SOL_UDP || level == SOL_UDPLITE)
2401 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2402 udp_push_pending_frames);
2403 return ip_setsockopt(sk, level, optname, optval, optlen);
2404 }
2405
2406 #ifdef CONFIG_COMPAT
2407 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2408 char __user *optval, unsigned int optlen)
2409 {
2410 if (level == SOL_UDP || level == SOL_UDPLITE)
2411 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2412 udp_push_pending_frames);
2413 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2414 }
2415 #endif
2416
2417 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2418 char __user *optval, int __user *optlen)
2419 {
2420 struct udp_sock *up = udp_sk(sk);
2421 int val, len;
2422
2423 if (get_user(len, optlen))
2424 return -EFAULT;
2425
2426 len = min_t(unsigned int, len, sizeof(int));
2427
2428 if (len < 0)
2429 return -EINVAL;
2430
2431 switch (optname) {
2432 case UDP_CORK:
2433 val = up->corkflag;
2434 break;
2435
2436 case UDP_ENCAP:
2437 val = up->encap_type;
2438 break;
2439
2440 case UDP_NO_CHECK6_TX:
2441 val = up->no_check6_tx;
2442 break;
2443
2444 case UDP_NO_CHECK6_RX:
2445 val = up->no_check6_rx;
2446 break;
2447
2448 /* The following two cannot be changed on UDP sockets, the return is
2449 * always 0 (which corresponds to the full checksum coverage of UDP). */
2450 case UDPLITE_SEND_CSCOV:
2451 val = up->pcslen;
2452 break;
2453
2454 case UDPLITE_RECV_CSCOV:
2455 val = up->pcrlen;
2456 break;
2457
2458 default:
2459 return -ENOPROTOOPT;
2460 }
2461
2462 if (put_user(len, optlen))
2463 return -EFAULT;
2464 if (copy_to_user(optval, &val, len))
2465 return -EFAULT;
2466 return 0;
2467 }
2468 EXPORT_SYMBOL(udp_lib_getsockopt);
2469
2470 int udp_getsockopt(struct sock *sk, int level, int optname,
2471 char __user *optval, int __user *optlen)
2472 {
2473 if (level == SOL_UDP || level == SOL_UDPLITE)
2474 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2475 return ip_getsockopt(sk, level, optname, optval, optlen);
2476 }
2477
2478 #ifdef CONFIG_COMPAT
2479 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2480 char __user *optval, int __user *optlen)
2481 {
2482 if (level == SOL_UDP || level == SOL_UDPLITE)
2483 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2484 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2485 }
2486 #endif
2487 /**
2488 * udp_poll - wait for a UDP event.
2489 * @file - file struct
2490 * @sock - socket
2491 * @wait - poll table
2492 *
2493 * This is same as datagram poll, except for the special case of
2494 * blocking sockets. If application is using a blocking fd
2495 * and a packet with checksum error is in the queue;
2496 * then it could get return from select indicating data available
2497 * but then block when reading it. Add special case code
2498 * to work around these arguably broken applications.
2499 */
2500 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2501 {
2502 unsigned int mask = datagram_poll(file, sock, wait);
2503 struct sock *sk = sock->sk;
2504
2505 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2506 mask |= POLLIN | POLLRDNORM;
2507
2508 sock_rps_record_flow(sk);
2509
2510 /* Check for false positives due to checksum errors */
2511 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2512 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2513 mask &= ~(POLLIN | POLLRDNORM);
2514
2515 return mask;
2516
2517 }
2518 EXPORT_SYMBOL(udp_poll);
2519
2520 int udp_abort(struct sock *sk, int err)
2521 {
2522 lock_sock(sk);
2523
2524 sk->sk_err = err;
2525 sk->sk_error_report(sk);
2526 __udp_disconnect(sk, 0);
2527
2528 release_sock(sk);
2529
2530 return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(udp_abort);
2533
2534 struct proto udp_prot = {
2535 .name = "UDP",
2536 .owner = THIS_MODULE,
2537 .close = udp_lib_close,
2538 .connect = ip4_datagram_connect,
2539 .disconnect = udp_disconnect,
2540 .ioctl = udp_ioctl,
2541 .init = udp_init_sock,
2542 .destroy = udp_destroy_sock,
2543 .setsockopt = udp_setsockopt,
2544 .getsockopt = udp_getsockopt,
2545 .sendmsg = udp_sendmsg,
2546 .recvmsg = udp_recvmsg,
2547 .sendpage = udp_sendpage,
2548 .release_cb = ip4_datagram_release_cb,
2549 .hash = udp_lib_hash,
2550 .unhash = udp_lib_unhash,
2551 .rehash = udp_v4_rehash,
2552 .get_port = udp_v4_get_port,
2553 .memory_allocated = &udp_memory_allocated,
2554 .sysctl_mem = sysctl_udp_mem,
2555 .sysctl_wmem = &sysctl_udp_wmem_min,
2556 .sysctl_rmem = &sysctl_udp_rmem_min,
2557 .obj_size = sizeof(struct udp_sock),
2558 .h.udp_table = &udp_table,
2559 #ifdef CONFIG_COMPAT
2560 .compat_setsockopt = compat_udp_setsockopt,
2561 .compat_getsockopt = compat_udp_getsockopt,
2562 #endif
2563 .diag_destroy = udp_abort,
2564 };
2565 EXPORT_SYMBOL(udp_prot);
2566
2567 /* ------------------------------------------------------------------------ */
2568 #ifdef CONFIG_PROC_FS
2569
2570 static struct sock *udp_get_first(struct seq_file *seq, int start)
2571 {
2572 struct sock *sk;
2573 struct udp_iter_state *state = seq->private;
2574 struct net *net = seq_file_net(seq);
2575
2576 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2577 ++state->bucket) {
2578 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2579
2580 if (hlist_empty(&hslot->head))
2581 continue;
2582
2583 spin_lock_bh(&hslot->lock);
2584 sk_for_each(sk, &hslot->head) {
2585 if (!net_eq(sock_net(sk), net))
2586 continue;
2587 if (sk->sk_family == state->family)
2588 goto found;
2589 }
2590 spin_unlock_bh(&hslot->lock);
2591 }
2592 sk = NULL;
2593 found:
2594 return sk;
2595 }
2596
2597 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2598 {
2599 struct udp_iter_state *state = seq->private;
2600 struct net *net = seq_file_net(seq);
2601
2602 do {
2603 sk = sk_next(sk);
2604 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2605
2606 if (!sk) {
2607 if (state->bucket <= state->udp_table->mask)
2608 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2609 return udp_get_first(seq, state->bucket + 1);
2610 }
2611 return sk;
2612 }
2613
2614 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2615 {
2616 struct sock *sk = udp_get_first(seq, 0);
2617
2618 if (sk)
2619 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2620 --pos;
2621 return pos ? NULL : sk;
2622 }
2623
2624 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2625 {
2626 struct udp_iter_state *state = seq->private;
2627 state->bucket = MAX_UDP_PORTS;
2628
2629 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2630 }
2631
2632 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2633 {
2634 struct sock *sk;
2635
2636 if (v == SEQ_START_TOKEN)
2637 sk = udp_get_idx(seq, 0);
2638 else
2639 sk = udp_get_next(seq, v);
2640
2641 ++*pos;
2642 return sk;
2643 }
2644
2645 static void udp_seq_stop(struct seq_file *seq, void *v)
2646 {
2647 struct udp_iter_state *state = seq->private;
2648
2649 if (state->bucket <= state->udp_table->mask)
2650 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2651 }
2652
2653 int udp_seq_open(struct inode *inode, struct file *file)
2654 {
2655 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2656 struct udp_iter_state *s;
2657 int err;
2658
2659 err = seq_open_net(inode, file, &afinfo->seq_ops,
2660 sizeof(struct udp_iter_state));
2661 if (err < 0)
2662 return err;
2663
2664 s = ((struct seq_file *)file->private_data)->private;
2665 s->family = afinfo->family;
2666 s->udp_table = afinfo->udp_table;
2667 return err;
2668 }
2669 EXPORT_SYMBOL(udp_seq_open);
2670
2671 /* ------------------------------------------------------------------------ */
2672 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2673 {
2674 struct proc_dir_entry *p;
2675 int rc = 0;
2676
2677 afinfo->seq_ops.start = udp_seq_start;
2678 afinfo->seq_ops.next = udp_seq_next;
2679 afinfo->seq_ops.stop = udp_seq_stop;
2680
2681 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2682 afinfo->seq_fops, afinfo);
2683 if (!p)
2684 rc = -ENOMEM;
2685 return rc;
2686 }
2687 EXPORT_SYMBOL(udp_proc_register);
2688
2689 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2690 {
2691 remove_proc_entry(afinfo->name, net->proc_net);
2692 }
2693 EXPORT_SYMBOL(udp_proc_unregister);
2694
2695 /* ------------------------------------------------------------------------ */
2696 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2697 int bucket)
2698 {
2699 struct inet_sock *inet = inet_sk(sp);
2700 __be32 dest = inet->inet_daddr;
2701 __be32 src = inet->inet_rcv_saddr;
2702 __u16 destp = ntohs(inet->inet_dport);
2703 __u16 srcp = ntohs(inet->inet_sport);
2704
2705 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2706 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2707 bucket, src, srcp, dest, destp, sp->sk_state,
2708 sk_wmem_alloc_get(sp),
2709 sk_rmem_alloc_get(sp),
2710 0, 0L, 0,
2711 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2712 0, sock_i_ino(sp),
2713 refcount_read(&sp->sk_refcnt), sp,
2714 atomic_read(&sp->sk_drops));
2715 }
2716
2717 int udp4_seq_show(struct seq_file *seq, void *v)
2718 {
2719 seq_setwidth(seq, 127);
2720 if (v == SEQ_START_TOKEN)
2721 seq_puts(seq, " sl local_address rem_address st tx_queue "
2722 "rx_queue tr tm->when retrnsmt uid timeout "
2723 "inode ref pointer drops");
2724 else {
2725 struct udp_iter_state *state = seq->private;
2726
2727 udp4_format_sock(v, seq, state->bucket);
2728 }
2729 seq_pad(seq, '\n');
2730 return 0;
2731 }
2732
2733 static const struct file_operations udp_afinfo_seq_fops = {
2734 .owner = THIS_MODULE,
2735 .open = udp_seq_open,
2736 .read = seq_read,
2737 .llseek = seq_lseek,
2738 .release = seq_release_net
2739 };
2740
2741 /* ------------------------------------------------------------------------ */
2742 static struct udp_seq_afinfo udp4_seq_afinfo = {
2743 .name = "udp",
2744 .family = AF_INET,
2745 .udp_table = &udp_table,
2746 .seq_fops = &udp_afinfo_seq_fops,
2747 .seq_ops = {
2748 .show = udp4_seq_show,
2749 },
2750 };
2751
2752 static int __net_init udp4_proc_init_net(struct net *net)
2753 {
2754 return udp_proc_register(net, &udp4_seq_afinfo);
2755 }
2756
2757 static void __net_exit udp4_proc_exit_net(struct net *net)
2758 {
2759 udp_proc_unregister(net, &udp4_seq_afinfo);
2760 }
2761
2762 static struct pernet_operations udp4_net_ops = {
2763 .init = udp4_proc_init_net,
2764 .exit = udp4_proc_exit_net,
2765 };
2766
2767 int __init udp4_proc_init(void)
2768 {
2769 return register_pernet_subsys(&udp4_net_ops);
2770 }
2771
2772 void udp4_proc_exit(void)
2773 {
2774 unregister_pernet_subsys(&udp4_net_ops);
2775 }
2776 #endif /* CONFIG_PROC_FS */
2777
2778 static __initdata unsigned long uhash_entries;
2779 static int __init set_uhash_entries(char *str)
2780 {
2781 ssize_t ret;
2782
2783 if (!str)
2784 return 0;
2785
2786 ret = kstrtoul(str, 0, &uhash_entries);
2787 if (ret)
2788 return 0;
2789
2790 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2791 uhash_entries = UDP_HTABLE_SIZE_MIN;
2792 return 1;
2793 }
2794 __setup("uhash_entries=", set_uhash_entries);
2795
2796 void __init udp_table_init(struct udp_table *table, const char *name)
2797 {
2798 unsigned int i;
2799
2800 table->hash = alloc_large_system_hash(name,
2801 2 * sizeof(struct udp_hslot),
2802 uhash_entries,
2803 21, /* one slot per 2 MB */
2804 0,
2805 &table->log,
2806 &table->mask,
2807 UDP_HTABLE_SIZE_MIN,
2808 64 * 1024);
2809
2810 table->hash2 = table->hash + (table->mask + 1);
2811 for (i = 0; i <= table->mask; i++) {
2812 INIT_HLIST_HEAD(&table->hash[i].head);
2813 table->hash[i].count = 0;
2814 spin_lock_init(&table->hash[i].lock);
2815 }
2816 for (i = 0; i <= table->mask; i++) {
2817 INIT_HLIST_HEAD(&table->hash2[i].head);
2818 table->hash2[i].count = 0;
2819 spin_lock_init(&table->hash2[i].lock);
2820 }
2821 }
2822
2823 u32 udp_flow_hashrnd(void)
2824 {
2825 static u32 hashrnd __read_mostly;
2826
2827 net_get_random_once(&hashrnd, sizeof(hashrnd));
2828
2829 return hashrnd;
2830 }
2831 EXPORT_SYMBOL(udp_flow_hashrnd);
2832
2833 void __init udp_init(void)
2834 {
2835 unsigned long limit;
2836 unsigned int i;
2837
2838 udp_table_init(&udp_table, "UDP");
2839 limit = nr_free_buffer_pages() / 8;
2840 limit = max(limit, 128UL);
2841 sysctl_udp_mem[0] = limit / 4 * 3;
2842 sysctl_udp_mem[1] = limit;
2843 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2844
2845 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2846 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2847
2848 /* 16 spinlocks per cpu */
2849 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2850 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2851 GFP_KERNEL);
2852 if (!udp_busylocks)
2853 panic("UDP: failed to alloc udp_busylocks\n");
2854 for (i = 0; i < (1U << udp_busylocks_log); i++)
2855 spin_lock_init(udp_busylocks + i);
2856 }