]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv4/udp.c
Merge tag 'kconfig-cleanups' of git://git.kernel.org/pub/scm/linux/kernel/git/robh...
[mirror_ubuntu-artful-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk,
138 int (*saddr_comp)(const struct sock *sk1,
139 const struct sock *sk2),
140 unsigned int log)
141 {
142 struct sock *sk2;
143 struct hlist_nulls_node *node;
144 kuid_t uid = sock_i_uid(sk);
145
146 sk_nulls_for_each(sk2, node, &hslot->head)
147 if (net_eq(sock_net(sk2), net) &&
148 sk2 != sk &&
149 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 (!sk2->sk_reuse || !sk->sk_reuse) &&
151 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 !uid_eq(uid, sock_i_uid(sk2))) &&
155 (*saddr_comp)(sk, sk2)) {
156 if (bitmap)
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 else
160 return 1;
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 (*saddr_comp)(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 spin_unlock(&hslot2->lock);
195 return res;
196 }
197
198 /**
199 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
200 *
201 * @sk: socket struct in question
202 * @snum: port number to look up
203 * @saddr_comp: AF-dependent comparison of bound local IP addresses
204 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205 * with NULL address
206 */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 int (*saddr_comp)(const struct sock *sk1,
209 const struct sock *sk2),
210 unsigned int hash2_nulladdr)
211 {
212 struct udp_hslot *hslot, *hslot2;
213 struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 int error = 1;
215 struct net *net = sock_net(sk);
216
217 if (!snum) {
218 int low, high, remaining;
219 unsigned int rand;
220 unsigned short first, last;
221 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222
223 inet_get_local_port_range(net, &low, &high);
224 remaining = (high - low) + 1;
225
226 rand = prandom_u32();
227 first = (((u64)rand * remaining) >> 32) + low;
228 /*
229 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 */
231 rand = (rand | 1) * (udptable->mask + 1);
232 last = first + udptable->mask + 1;
233 do {
234 hslot = udp_hashslot(udptable, net, first);
235 bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 spin_lock_bh(&hslot->lock);
237 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 saddr_comp, udptable->log);
239
240 snum = first;
241 /*
242 * Iterate on all possible values of snum for this hash.
243 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 * give us randomization and full range coverage.
245 */
246 do {
247 if (low <= snum && snum <= high &&
248 !test_bit(snum >> udptable->log, bitmap) &&
249 !inet_is_reserved_local_port(snum))
250 goto found;
251 snum += rand;
252 } while (snum != first);
253 spin_unlock_bh(&hslot->lock);
254 } while (++first != last);
255 goto fail;
256 } else {
257 hslot = udp_hashslot(udptable, net, snum);
258 spin_lock_bh(&hslot->lock);
259 if (hslot->count > 10) {
260 int exist;
261 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262
263 slot2 &= udptable->mask;
264 hash2_nulladdr &= udptable->mask;
265
266 hslot2 = udp_hashslot2(udptable, slot2);
267 if (hslot->count < hslot2->count)
268 goto scan_primary_hash;
269
270 exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 sk, saddr_comp);
272 if (!exist && (hash2_nulladdr != slot2)) {
273 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 sk, saddr_comp);
276 }
277 if (exist)
278 goto fail_unlock;
279 else
280 goto found;
281 }
282 scan_primary_hash:
283 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 saddr_comp, 0))
285 goto fail_unlock;
286 }
287 found:
288 inet_sk(sk)->inet_num = snum;
289 udp_sk(sk)->udp_port_hash = snum;
290 udp_sk(sk)->udp_portaddr_hash ^= snum;
291 if (sk_unhashed(sk)) {
292 sk_nulls_add_node_rcu(sk, &hslot->head);
293 hslot->count++;
294 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295
296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 spin_lock(&hslot2->lock);
298 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 &hslot2->head);
300 hslot2->count++;
301 spin_unlock(&hslot2->lock);
302 }
303 error = 0;
304 fail_unlock:
305 spin_unlock_bh(&hslot->lock);
306 fail:
307 return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314
315 return (!ipv6_only_sock(sk2) &&
316 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 unsigned int port)
322 {
323 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 unsigned int hash2_nulladdr =
329 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 unsigned int hash2_partial =
331 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332
333 /* precompute partial secondary hash */
334 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 unsigned short hnum,
340 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 int score = -1;
343
344 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 !ipv6_only_sock(sk)) {
346 struct inet_sock *inet = inet_sk(sk);
347
348 score = (sk->sk_family == PF_INET ? 2 : 1);
349 if (inet->inet_rcv_saddr) {
350 if (inet->inet_rcv_saddr != daddr)
351 return -1;
352 score += 4;
353 }
354 if (inet->inet_daddr) {
355 if (inet->inet_daddr != saddr)
356 return -1;
357 score += 4;
358 }
359 if (inet->inet_dport) {
360 if (inet->inet_dport != sport)
361 return -1;
362 score += 4;
363 }
364 if (sk->sk_bound_dev_if) {
365 if (sk->sk_bound_dev_if != dif)
366 return -1;
367 score += 4;
368 }
369 }
370 return score;
371 }
372
373 /*
374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375 */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 __be32 saddr, __be16 sport,
378 __be32 daddr, unsigned int hnum, int dif)
379 {
380 int score = -1;
381
382 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 struct inet_sock *inet = inet_sk(sk);
384
385 if (inet->inet_rcv_saddr != daddr)
386 return -1;
387 if (inet->inet_num != hnum)
388 return -1;
389
390 score = (sk->sk_family == PF_INET ? 2 : 1);
391 if (inet->inet_daddr) {
392 if (inet->inet_daddr != saddr)
393 return -1;
394 score += 4;
395 }
396 if (inet->inet_dport) {
397 if (inet->inet_dport != sport)
398 return -1;
399 score += 4;
400 }
401 if (sk->sk_bound_dev_if) {
402 if (sk->sk_bound_dev_if != dif)
403 return -1;
404 score += 4;
405 }
406 }
407 return score;
408 }
409
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 const __u16 lport, const __be32 faddr,
412 const __be16 fport)
413 {
414 static u32 udp_ehash_secret __read_mostly;
415
416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417
418 return __inet_ehashfn(laddr, lport, faddr, fport,
419 udp_ehash_secret + net_hash_mix(net));
420 }
421
422
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 __be32 saddr, __be16 sport,
426 __be32 daddr, unsigned int hnum, int dif,
427 struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 struct sock *sk, *result;
430 struct hlist_nulls_node *node;
431 int score, badness, matches = 0, reuseport = 0;
432 u32 hash = 0;
433
434 begin:
435 result = NULL;
436 badness = 0;
437 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 score = compute_score2(sk, net, saddr, sport,
439 daddr, hnum, dif);
440 if (score > badness) {
441 result = sk;
442 badness = score;
443 reuseport = sk->sk_reuseport;
444 if (reuseport) {
445 hash = udp_ehashfn(net, daddr, hnum,
446 saddr, sport);
447 matches = 1;
448 }
449 } else if (score == badness && reuseport) {
450 matches++;
451 if (((u64)hash * matches) >> 32 == 0)
452 result = sk;
453 hash = next_pseudo_random32(hash);
454 }
455 }
456 /*
457 * if the nulls value we got at the end of this lookup is
458 * not the expected one, we must restart lookup.
459 * We probably met an item that was moved to another chain.
460 */
461 if (get_nulls_value(node) != slot2)
462 goto begin;
463 if (result) {
464 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 result = NULL;
466 else if (unlikely(compute_score2(result, net, saddr, sport,
467 daddr, hnum, dif) < badness)) {
468 sock_put(result);
469 goto begin;
470 }
471 }
472 return result;
473 }
474
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476 * harder than this. -DaveM
477 */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 __be16 sport, __be32 daddr, __be16 dport,
480 int dif, struct udp_table *udptable)
481 {
482 struct sock *sk, *result;
483 struct hlist_nulls_node *node;
484 unsigned short hnum = ntohs(dport);
485 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 int score, badness, matches = 0, reuseport = 0;
488 u32 hash = 0;
489
490 rcu_read_lock();
491 if (hslot->count > 10) {
492 hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 slot2 = hash2 & udptable->mask;
494 hslot2 = &udptable->hash2[slot2];
495 if (hslot->count < hslot2->count)
496 goto begin;
497
498 result = udp4_lib_lookup2(net, saddr, sport,
499 daddr, hnum, dif,
500 hslot2, slot2);
501 if (!result) {
502 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 slot2 = hash2 & udptable->mask;
504 hslot2 = &udptable->hash2[slot2];
505 if (hslot->count < hslot2->count)
506 goto begin;
507
508 result = udp4_lib_lookup2(net, saddr, sport,
509 htonl(INADDR_ANY), hnum, dif,
510 hslot2, slot2);
511 }
512 rcu_read_unlock();
513 return result;
514 }
515 begin:
516 result = NULL;
517 badness = 0;
518 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 score = compute_score(sk, net, saddr, hnum, sport,
520 daddr, dport, dif);
521 if (score > badness) {
522 result = sk;
523 badness = score;
524 reuseport = sk->sk_reuseport;
525 if (reuseport) {
526 hash = udp_ehashfn(net, daddr, hnum,
527 saddr, sport);
528 matches = 1;
529 }
530 } else if (score == badness && reuseport) {
531 matches++;
532 if (((u64)hash * matches) >> 32 == 0)
533 result = sk;
534 hash = next_pseudo_random32(hash);
535 }
536 }
537 /*
538 * if the nulls value we got at the end of this lookup is
539 * not the expected one, we must restart lookup.
540 * We probably met an item that was moved to another chain.
541 */
542 if (get_nulls_value(node) != slot)
543 goto begin;
544
545 if (result) {
546 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 result = NULL;
548 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 daddr, dport, dif) < badness)) {
550 sock_put(result);
551 goto begin;
552 }
553 }
554 rcu_read_unlock();
555 return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 __be16 sport, __be16 dport,
561 struct udp_table *udptable)
562 {
563 const struct iphdr *iph = ip_hdr(skb);
564
565 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 iph->daddr, dport, inet_iif(skb),
567 udptable);
568 }
569
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 __be32 daddr, __be16 dport, int dif)
572 {
573 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 __be16 loc_port, __be32 loc_addr,
579 __be16 rmt_port, __be32 rmt_addr,
580 int dif, unsigned short hnum)
581 {
582 struct inet_sock *inet = inet_sk(sk);
583
584 if (!net_eq(sock_net(sk), net) ||
585 udp_sk(sk)->udp_port_hash != hnum ||
586 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 ipv6_only_sock(sk) ||
590 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 return false;
592 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 return false;
594 return true;
595 }
596
597 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
598 __be16 loc_port, __be32 loc_addr,
599 __be16 rmt_port, __be32 rmt_addr,
600 int dif)
601 {
602 struct hlist_nulls_node *node;
603 struct sock *s = sk;
604 unsigned short hnum = ntohs(loc_port);
605
606 sk_nulls_for_each_from(s, node) {
607 if (__udp_is_mcast_sock(net, s,
608 loc_port, loc_addr,
609 rmt_port, rmt_addr,
610 dif, hnum))
611 goto found;
612 }
613 s = NULL;
614 found:
615 return s;
616 }
617
618 /*
619 * This routine is called by the ICMP module when it gets some
620 * sort of error condition. If err < 0 then the socket should
621 * be closed and the error returned to the user. If err > 0
622 * it's just the icmp type << 8 | icmp code.
623 * Header points to the ip header of the error packet. We move
624 * on past this. Then (as it used to claim before adjustment)
625 * header points to the first 8 bytes of the udp header. We need
626 * to find the appropriate port.
627 */
628
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 struct inet_sock *inet;
632 const struct iphdr *iph = (const struct iphdr *)skb->data;
633 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 const int type = icmp_hdr(skb)->type;
635 const int code = icmp_hdr(skb)->code;
636 struct sock *sk;
637 int harderr;
638 int err;
639 struct net *net = dev_net(skb->dev);
640
641 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 iph->saddr, uh->source, skb->dev->ifindex, udptable);
643 if (sk == NULL) {
644 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
645 return; /* No socket for error */
646 }
647
648 err = 0;
649 harderr = 0;
650 inet = inet_sk(sk);
651
652 switch (type) {
653 default:
654 case ICMP_TIME_EXCEEDED:
655 err = EHOSTUNREACH;
656 break;
657 case ICMP_SOURCE_QUENCH:
658 goto out;
659 case ICMP_PARAMETERPROB:
660 err = EPROTO;
661 harderr = 1;
662 break;
663 case ICMP_DEST_UNREACH:
664 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
665 ipv4_sk_update_pmtu(skb, sk, info);
666 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
667 err = EMSGSIZE;
668 harderr = 1;
669 break;
670 }
671 goto out;
672 }
673 err = EHOSTUNREACH;
674 if (code <= NR_ICMP_UNREACH) {
675 harderr = icmp_err_convert[code].fatal;
676 err = icmp_err_convert[code].errno;
677 }
678 break;
679 case ICMP_REDIRECT:
680 ipv4_sk_redirect(skb, sk);
681 goto out;
682 }
683
684 /*
685 * RFC1122: OK. Passes ICMP errors back to application, as per
686 * 4.1.3.3.
687 */
688 if (!inet->recverr) {
689 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
690 goto out;
691 } else
692 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
693
694 sk->sk_err = err;
695 sk->sk_error_report(sk);
696 out:
697 sock_put(sk);
698 }
699
700 void udp_err(struct sk_buff *skb, u32 info)
701 {
702 __udp4_lib_err(skb, info, &udp_table);
703 }
704
705 /*
706 * Throw away all pending data and cancel the corking. Socket is locked.
707 */
708 void udp_flush_pending_frames(struct sock *sk)
709 {
710 struct udp_sock *up = udp_sk(sk);
711
712 if (up->pending) {
713 up->len = 0;
714 up->pending = 0;
715 ip_flush_pending_frames(sk);
716 }
717 }
718 EXPORT_SYMBOL(udp_flush_pending_frames);
719
720 /**
721 * udp4_hwcsum - handle outgoing HW checksumming
722 * @skb: sk_buff containing the filled-in UDP header
723 * (checksum field must be zeroed out)
724 * @src: source IP address
725 * @dst: destination IP address
726 */
727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
728 {
729 struct udphdr *uh = udp_hdr(skb);
730 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
731 int offset = skb_transport_offset(skb);
732 int len = skb->len - offset;
733 int hlen = len;
734 __wsum csum = 0;
735
736 if (!frags) {
737 /*
738 * Only one fragment on the socket.
739 */
740 skb->csum_start = skb_transport_header(skb) - skb->head;
741 skb->csum_offset = offsetof(struct udphdr, check);
742 uh->check = ~csum_tcpudp_magic(src, dst, len,
743 IPPROTO_UDP, 0);
744 } else {
745 /*
746 * HW-checksum won't work as there are two or more
747 * fragments on the socket so that all csums of sk_buffs
748 * should be together
749 */
750 do {
751 csum = csum_add(csum, frags->csum);
752 hlen -= frags->len;
753 } while ((frags = frags->next));
754
755 csum = skb_checksum(skb, offset, hlen, csum);
756 skb->ip_summed = CHECKSUM_NONE;
757
758 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
759 if (uh->check == 0)
760 uh->check = CSUM_MANGLED_0;
761 }
762 }
763 EXPORT_SYMBOL_GPL(udp4_hwcsum);
764
765 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
766 {
767 struct sock *sk = skb->sk;
768 struct inet_sock *inet = inet_sk(sk);
769 struct udphdr *uh;
770 int err = 0;
771 int is_udplite = IS_UDPLITE(sk);
772 int offset = skb_transport_offset(skb);
773 int len = skb->len - offset;
774 __wsum csum = 0;
775
776 /*
777 * Create a UDP header
778 */
779 uh = udp_hdr(skb);
780 uh->source = inet->inet_sport;
781 uh->dest = fl4->fl4_dport;
782 uh->len = htons(len);
783 uh->check = 0;
784
785 if (is_udplite) /* UDP-Lite */
786 csum = udplite_csum(skb);
787
788 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
789
790 skb->ip_summed = CHECKSUM_NONE;
791 goto send;
792
793 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
794
795 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
796 goto send;
797
798 } else
799 csum = udp_csum(skb);
800
801 /* add protocol-dependent pseudo-header */
802 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
803 sk->sk_protocol, csum);
804 if (uh->check == 0)
805 uh->check = CSUM_MANGLED_0;
806
807 send:
808 err = ip_send_skb(sock_net(sk), skb);
809 if (err) {
810 if (err == -ENOBUFS && !inet->recverr) {
811 UDP_INC_STATS_USER(sock_net(sk),
812 UDP_MIB_SNDBUFERRORS, is_udplite);
813 err = 0;
814 }
815 } else
816 UDP_INC_STATS_USER(sock_net(sk),
817 UDP_MIB_OUTDATAGRAMS, is_udplite);
818 return err;
819 }
820
821 /*
822 * Push out all pending data as one UDP datagram. Socket is locked.
823 */
824 int udp_push_pending_frames(struct sock *sk)
825 {
826 struct udp_sock *up = udp_sk(sk);
827 struct inet_sock *inet = inet_sk(sk);
828 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
829 struct sk_buff *skb;
830 int err = 0;
831
832 skb = ip_finish_skb(sk, fl4);
833 if (!skb)
834 goto out;
835
836 err = udp_send_skb(skb, fl4);
837
838 out:
839 up->len = 0;
840 up->pending = 0;
841 return err;
842 }
843 EXPORT_SYMBOL(udp_push_pending_frames);
844
845 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
846 size_t len)
847 {
848 struct inet_sock *inet = inet_sk(sk);
849 struct udp_sock *up = udp_sk(sk);
850 struct flowi4 fl4_stack;
851 struct flowi4 *fl4;
852 int ulen = len;
853 struct ipcm_cookie ipc;
854 struct rtable *rt = NULL;
855 int free = 0;
856 int connected = 0;
857 __be32 daddr, faddr, saddr;
858 __be16 dport;
859 u8 tos;
860 int err, is_udplite = IS_UDPLITE(sk);
861 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
862 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
863 struct sk_buff *skb;
864 struct ip_options_data opt_copy;
865
866 if (len > 0xFFFF)
867 return -EMSGSIZE;
868
869 /*
870 * Check the flags.
871 */
872
873 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
874 return -EOPNOTSUPP;
875
876 ipc.opt = NULL;
877 ipc.tx_flags = 0;
878 ipc.ttl = 0;
879 ipc.tos = -1;
880
881 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
882
883 fl4 = &inet->cork.fl.u.ip4;
884 if (up->pending) {
885 /*
886 * There are pending frames.
887 * The socket lock must be held while it's corked.
888 */
889 lock_sock(sk);
890 if (likely(up->pending)) {
891 if (unlikely(up->pending != AF_INET)) {
892 release_sock(sk);
893 return -EINVAL;
894 }
895 goto do_append_data;
896 }
897 release_sock(sk);
898 }
899 ulen += sizeof(struct udphdr);
900
901 /*
902 * Get and verify the address.
903 */
904 if (msg->msg_name) {
905 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
906 if (msg->msg_namelen < sizeof(*usin))
907 return -EINVAL;
908 if (usin->sin_family != AF_INET) {
909 if (usin->sin_family != AF_UNSPEC)
910 return -EAFNOSUPPORT;
911 }
912
913 daddr = usin->sin_addr.s_addr;
914 dport = usin->sin_port;
915 if (dport == 0)
916 return -EINVAL;
917 } else {
918 if (sk->sk_state != TCP_ESTABLISHED)
919 return -EDESTADDRREQ;
920 daddr = inet->inet_daddr;
921 dport = inet->inet_dport;
922 /* Open fast path for connected socket.
923 Route will not be used, if at least one option is set.
924 */
925 connected = 1;
926 }
927 ipc.addr = inet->inet_saddr;
928
929 ipc.oif = sk->sk_bound_dev_if;
930
931 sock_tx_timestamp(sk, &ipc.tx_flags);
932
933 if (msg->msg_controllen) {
934 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
935 sk->sk_family == AF_INET6);
936 if (err)
937 return err;
938 if (ipc.opt)
939 free = 1;
940 connected = 0;
941 }
942 if (!ipc.opt) {
943 struct ip_options_rcu *inet_opt;
944
945 rcu_read_lock();
946 inet_opt = rcu_dereference(inet->inet_opt);
947 if (inet_opt) {
948 memcpy(&opt_copy, inet_opt,
949 sizeof(*inet_opt) + inet_opt->opt.optlen);
950 ipc.opt = &opt_copy.opt;
951 }
952 rcu_read_unlock();
953 }
954
955 saddr = ipc.addr;
956 ipc.addr = faddr = daddr;
957
958 if (ipc.opt && ipc.opt->opt.srr) {
959 if (!daddr)
960 return -EINVAL;
961 faddr = ipc.opt->opt.faddr;
962 connected = 0;
963 }
964 tos = get_rttos(&ipc, inet);
965 if (sock_flag(sk, SOCK_LOCALROUTE) ||
966 (msg->msg_flags & MSG_DONTROUTE) ||
967 (ipc.opt && ipc.opt->opt.is_strictroute)) {
968 tos |= RTO_ONLINK;
969 connected = 0;
970 }
971
972 if (ipv4_is_multicast(daddr)) {
973 if (!ipc.oif)
974 ipc.oif = inet->mc_index;
975 if (!saddr)
976 saddr = inet->mc_addr;
977 connected = 0;
978 } else if (!ipc.oif)
979 ipc.oif = inet->uc_index;
980
981 if (connected)
982 rt = (struct rtable *)sk_dst_check(sk, 0);
983
984 if (rt == NULL) {
985 struct net *net = sock_net(sk);
986
987 fl4 = &fl4_stack;
988 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
989 RT_SCOPE_UNIVERSE, sk->sk_protocol,
990 inet_sk_flowi_flags(sk),
991 faddr, saddr, dport, inet->inet_sport);
992
993 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
994 rt = ip_route_output_flow(net, fl4, sk);
995 if (IS_ERR(rt)) {
996 err = PTR_ERR(rt);
997 rt = NULL;
998 if (err == -ENETUNREACH)
999 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1000 goto out;
1001 }
1002
1003 err = -EACCES;
1004 if ((rt->rt_flags & RTCF_BROADCAST) &&
1005 !sock_flag(sk, SOCK_BROADCAST))
1006 goto out;
1007 if (connected)
1008 sk_dst_set(sk, dst_clone(&rt->dst));
1009 }
1010
1011 if (msg->msg_flags&MSG_CONFIRM)
1012 goto do_confirm;
1013 back_from_confirm:
1014
1015 saddr = fl4->saddr;
1016 if (!ipc.addr)
1017 daddr = ipc.addr = fl4->daddr;
1018
1019 /* Lockless fast path for the non-corking case. */
1020 if (!corkreq) {
1021 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1022 sizeof(struct udphdr), &ipc, &rt,
1023 msg->msg_flags);
1024 err = PTR_ERR(skb);
1025 if (!IS_ERR_OR_NULL(skb))
1026 err = udp_send_skb(skb, fl4);
1027 goto out;
1028 }
1029
1030 lock_sock(sk);
1031 if (unlikely(up->pending)) {
1032 /* The socket is already corked while preparing it. */
1033 /* ... which is an evident application bug. --ANK */
1034 release_sock(sk);
1035
1036 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1037 err = -EINVAL;
1038 goto out;
1039 }
1040 /*
1041 * Now cork the socket to pend data.
1042 */
1043 fl4 = &inet->cork.fl.u.ip4;
1044 fl4->daddr = daddr;
1045 fl4->saddr = saddr;
1046 fl4->fl4_dport = dport;
1047 fl4->fl4_sport = inet->inet_sport;
1048 up->pending = AF_INET;
1049
1050 do_append_data:
1051 up->len += ulen;
1052 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1053 sizeof(struct udphdr), &ipc, &rt,
1054 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1055 if (err)
1056 udp_flush_pending_frames(sk);
1057 else if (!corkreq)
1058 err = udp_push_pending_frames(sk);
1059 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1060 up->pending = 0;
1061 release_sock(sk);
1062
1063 out:
1064 ip_rt_put(rt);
1065 if (free)
1066 kfree(ipc.opt);
1067 if (!err)
1068 return len;
1069 /*
1070 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1071 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1072 * we don't have a good statistic (IpOutDiscards but it can be too many
1073 * things). We could add another new stat but at least for now that
1074 * seems like overkill.
1075 */
1076 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1077 UDP_INC_STATS_USER(sock_net(sk),
1078 UDP_MIB_SNDBUFERRORS, is_udplite);
1079 }
1080 return err;
1081
1082 do_confirm:
1083 dst_confirm(&rt->dst);
1084 if (!(msg->msg_flags&MSG_PROBE) || len)
1085 goto back_from_confirm;
1086 err = 0;
1087 goto out;
1088 }
1089 EXPORT_SYMBOL(udp_sendmsg);
1090
1091 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1092 size_t size, int flags)
1093 {
1094 struct inet_sock *inet = inet_sk(sk);
1095 struct udp_sock *up = udp_sk(sk);
1096 int ret;
1097
1098 if (flags & MSG_SENDPAGE_NOTLAST)
1099 flags |= MSG_MORE;
1100
1101 if (!up->pending) {
1102 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1103
1104 /* Call udp_sendmsg to specify destination address which
1105 * sendpage interface can't pass.
1106 * This will succeed only when the socket is connected.
1107 */
1108 ret = udp_sendmsg(NULL, sk, &msg, 0);
1109 if (ret < 0)
1110 return ret;
1111 }
1112
1113 lock_sock(sk);
1114
1115 if (unlikely(!up->pending)) {
1116 release_sock(sk);
1117
1118 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1119 return -EINVAL;
1120 }
1121
1122 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1123 page, offset, size, flags);
1124 if (ret == -EOPNOTSUPP) {
1125 release_sock(sk);
1126 return sock_no_sendpage(sk->sk_socket, page, offset,
1127 size, flags);
1128 }
1129 if (ret < 0) {
1130 udp_flush_pending_frames(sk);
1131 goto out;
1132 }
1133
1134 up->len += size;
1135 if (!(up->corkflag || (flags&MSG_MORE)))
1136 ret = udp_push_pending_frames(sk);
1137 if (!ret)
1138 ret = size;
1139 out:
1140 release_sock(sk);
1141 return ret;
1142 }
1143
1144
1145 /**
1146 * first_packet_length - return length of first packet in receive queue
1147 * @sk: socket
1148 *
1149 * Drops all bad checksum frames, until a valid one is found.
1150 * Returns the length of found skb, or 0 if none is found.
1151 */
1152 static unsigned int first_packet_length(struct sock *sk)
1153 {
1154 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1155 struct sk_buff *skb;
1156 unsigned int res;
1157
1158 __skb_queue_head_init(&list_kill);
1159
1160 spin_lock_bh(&rcvq->lock);
1161 while ((skb = skb_peek(rcvq)) != NULL &&
1162 udp_lib_checksum_complete(skb)) {
1163 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1164 IS_UDPLITE(sk));
1165 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1166 IS_UDPLITE(sk));
1167 atomic_inc(&sk->sk_drops);
1168 __skb_unlink(skb, rcvq);
1169 __skb_queue_tail(&list_kill, skb);
1170 }
1171 res = skb ? skb->len : 0;
1172 spin_unlock_bh(&rcvq->lock);
1173
1174 if (!skb_queue_empty(&list_kill)) {
1175 bool slow = lock_sock_fast(sk);
1176
1177 __skb_queue_purge(&list_kill);
1178 sk_mem_reclaim_partial(sk);
1179 unlock_sock_fast(sk, slow);
1180 }
1181 return res;
1182 }
1183
1184 /*
1185 * IOCTL requests applicable to the UDP protocol
1186 */
1187
1188 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1189 {
1190 switch (cmd) {
1191 case SIOCOUTQ:
1192 {
1193 int amount = sk_wmem_alloc_get(sk);
1194
1195 return put_user(amount, (int __user *)arg);
1196 }
1197
1198 case SIOCINQ:
1199 {
1200 unsigned int amount = first_packet_length(sk);
1201
1202 if (amount)
1203 /*
1204 * We will only return the amount
1205 * of this packet since that is all
1206 * that will be read.
1207 */
1208 amount -= sizeof(struct udphdr);
1209
1210 return put_user(amount, (int __user *)arg);
1211 }
1212
1213 default:
1214 return -ENOIOCTLCMD;
1215 }
1216
1217 return 0;
1218 }
1219 EXPORT_SYMBOL(udp_ioctl);
1220
1221 /*
1222 * This should be easy, if there is something there we
1223 * return it, otherwise we block.
1224 */
1225
1226 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1227 size_t len, int noblock, int flags, int *addr_len)
1228 {
1229 struct inet_sock *inet = inet_sk(sk);
1230 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1231 struct sk_buff *skb;
1232 unsigned int ulen, copied;
1233 int peeked, off = 0;
1234 int err;
1235 int is_udplite = IS_UDPLITE(sk);
1236 bool slow;
1237
1238 if (flags & MSG_ERRQUEUE)
1239 return ip_recv_error(sk, msg, len, addr_len);
1240
1241 try_again:
1242 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1243 &peeked, &off, &err);
1244 if (!skb)
1245 goto out;
1246
1247 ulen = skb->len - sizeof(struct udphdr);
1248 copied = len;
1249 if (copied > ulen)
1250 copied = ulen;
1251 else if (copied < ulen)
1252 msg->msg_flags |= MSG_TRUNC;
1253
1254 /*
1255 * If checksum is needed at all, try to do it while copying the
1256 * data. If the data is truncated, or if we only want a partial
1257 * coverage checksum (UDP-Lite), do it before the copy.
1258 */
1259
1260 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1261 if (udp_lib_checksum_complete(skb))
1262 goto csum_copy_err;
1263 }
1264
1265 if (skb_csum_unnecessary(skb))
1266 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1267 msg->msg_iov, copied);
1268 else {
1269 err = skb_copy_and_csum_datagram_iovec(skb,
1270 sizeof(struct udphdr),
1271 msg->msg_iov);
1272
1273 if (err == -EINVAL)
1274 goto csum_copy_err;
1275 }
1276
1277 if (unlikely(err)) {
1278 trace_kfree_skb(skb, udp_recvmsg);
1279 if (!peeked) {
1280 atomic_inc(&sk->sk_drops);
1281 UDP_INC_STATS_USER(sock_net(sk),
1282 UDP_MIB_INERRORS, is_udplite);
1283 }
1284 goto out_free;
1285 }
1286
1287 if (!peeked)
1288 UDP_INC_STATS_USER(sock_net(sk),
1289 UDP_MIB_INDATAGRAMS, is_udplite);
1290
1291 sock_recv_ts_and_drops(msg, sk, skb);
1292
1293 /* Copy the address. */
1294 if (sin) {
1295 sin->sin_family = AF_INET;
1296 sin->sin_port = udp_hdr(skb)->source;
1297 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1298 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1299 *addr_len = sizeof(*sin);
1300 }
1301 if (inet->cmsg_flags)
1302 ip_cmsg_recv(msg, skb);
1303
1304 err = copied;
1305 if (flags & MSG_TRUNC)
1306 err = ulen;
1307
1308 out_free:
1309 skb_free_datagram_locked(sk, skb);
1310 out:
1311 return err;
1312
1313 csum_copy_err:
1314 slow = lock_sock_fast(sk);
1315 if (!skb_kill_datagram(sk, skb, flags)) {
1316 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1317 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1318 }
1319 unlock_sock_fast(sk, slow);
1320
1321 if (noblock)
1322 return -EAGAIN;
1323
1324 /* starting over for a new packet */
1325 msg->msg_flags &= ~MSG_TRUNC;
1326 goto try_again;
1327 }
1328
1329
1330 int udp_disconnect(struct sock *sk, int flags)
1331 {
1332 struct inet_sock *inet = inet_sk(sk);
1333 /*
1334 * 1003.1g - break association.
1335 */
1336
1337 sk->sk_state = TCP_CLOSE;
1338 inet->inet_daddr = 0;
1339 inet->inet_dport = 0;
1340 sock_rps_reset_rxhash(sk);
1341 sk->sk_bound_dev_if = 0;
1342 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1343 inet_reset_saddr(sk);
1344
1345 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1346 sk->sk_prot->unhash(sk);
1347 inet->inet_sport = 0;
1348 }
1349 sk_dst_reset(sk);
1350 return 0;
1351 }
1352 EXPORT_SYMBOL(udp_disconnect);
1353
1354 void udp_lib_unhash(struct sock *sk)
1355 {
1356 if (sk_hashed(sk)) {
1357 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1358 struct udp_hslot *hslot, *hslot2;
1359
1360 hslot = udp_hashslot(udptable, sock_net(sk),
1361 udp_sk(sk)->udp_port_hash);
1362 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1363
1364 spin_lock_bh(&hslot->lock);
1365 if (sk_nulls_del_node_init_rcu(sk)) {
1366 hslot->count--;
1367 inet_sk(sk)->inet_num = 0;
1368 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1369
1370 spin_lock(&hslot2->lock);
1371 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1372 hslot2->count--;
1373 spin_unlock(&hslot2->lock);
1374 }
1375 spin_unlock_bh(&hslot->lock);
1376 }
1377 }
1378 EXPORT_SYMBOL(udp_lib_unhash);
1379
1380 /*
1381 * inet_rcv_saddr was changed, we must rehash secondary hash
1382 */
1383 void udp_lib_rehash(struct sock *sk, u16 newhash)
1384 {
1385 if (sk_hashed(sk)) {
1386 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1387 struct udp_hslot *hslot, *hslot2, *nhslot2;
1388
1389 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1390 nhslot2 = udp_hashslot2(udptable, newhash);
1391 udp_sk(sk)->udp_portaddr_hash = newhash;
1392 if (hslot2 != nhslot2) {
1393 hslot = udp_hashslot(udptable, sock_net(sk),
1394 udp_sk(sk)->udp_port_hash);
1395 /* we must lock primary chain too */
1396 spin_lock_bh(&hslot->lock);
1397
1398 spin_lock(&hslot2->lock);
1399 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1400 hslot2->count--;
1401 spin_unlock(&hslot2->lock);
1402
1403 spin_lock(&nhslot2->lock);
1404 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1405 &nhslot2->head);
1406 nhslot2->count++;
1407 spin_unlock(&nhslot2->lock);
1408
1409 spin_unlock_bh(&hslot->lock);
1410 }
1411 }
1412 }
1413 EXPORT_SYMBOL(udp_lib_rehash);
1414
1415 static void udp_v4_rehash(struct sock *sk)
1416 {
1417 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1418 inet_sk(sk)->inet_rcv_saddr,
1419 inet_sk(sk)->inet_num);
1420 udp_lib_rehash(sk, new_hash);
1421 }
1422
1423 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1424 {
1425 int rc;
1426
1427 if (inet_sk(sk)->inet_daddr) {
1428 sock_rps_save_rxhash(sk, skb);
1429 sk_mark_napi_id(sk, skb);
1430 }
1431
1432 rc = sock_queue_rcv_skb(sk, skb);
1433 if (rc < 0) {
1434 int is_udplite = IS_UDPLITE(sk);
1435
1436 /* Note that an ENOMEM error is charged twice */
1437 if (rc == -ENOMEM)
1438 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1439 is_udplite);
1440 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1441 kfree_skb(skb);
1442 trace_udp_fail_queue_rcv_skb(rc, sk);
1443 return -1;
1444 }
1445
1446 return 0;
1447
1448 }
1449
1450 static struct static_key udp_encap_needed __read_mostly;
1451 void udp_encap_enable(void)
1452 {
1453 if (!static_key_enabled(&udp_encap_needed))
1454 static_key_slow_inc(&udp_encap_needed);
1455 }
1456 EXPORT_SYMBOL(udp_encap_enable);
1457
1458 /* returns:
1459 * -1: error
1460 * 0: success
1461 * >0: "udp encap" protocol resubmission
1462 *
1463 * Note that in the success and error cases, the skb is assumed to
1464 * have either been requeued or freed.
1465 */
1466 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1467 {
1468 struct udp_sock *up = udp_sk(sk);
1469 int rc;
1470 int is_udplite = IS_UDPLITE(sk);
1471
1472 /*
1473 * Charge it to the socket, dropping if the queue is full.
1474 */
1475 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1476 goto drop;
1477 nf_reset(skb);
1478
1479 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1480 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1481
1482 /*
1483 * This is an encapsulation socket so pass the skb to
1484 * the socket's udp_encap_rcv() hook. Otherwise, just
1485 * fall through and pass this up the UDP socket.
1486 * up->encap_rcv() returns the following value:
1487 * =0 if skb was successfully passed to the encap
1488 * handler or was discarded by it.
1489 * >0 if skb should be passed on to UDP.
1490 * <0 if skb should be resubmitted as proto -N
1491 */
1492
1493 /* if we're overly short, let UDP handle it */
1494 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1495 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1496 int ret;
1497
1498 ret = encap_rcv(sk, skb);
1499 if (ret <= 0) {
1500 UDP_INC_STATS_BH(sock_net(sk),
1501 UDP_MIB_INDATAGRAMS,
1502 is_udplite);
1503 return -ret;
1504 }
1505 }
1506
1507 /* FALLTHROUGH -- it's a UDP Packet */
1508 }
1509
1510 /*
1511 * UDP-Lite specific tests, ignored on UDP sockets
1512 */
1513 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1514
1515 /*
1516 * MIB statistics other than incrementing the error count are
1517 * disabled for the following two types of errors: these depend
1518 * on the application settings, not on the functioning of the
1519 * protocol stack as such.
1520 *
1521 * RFC 3828 here recommends (sec 3.3): "There should also be a
1522 * way ... to ... at least let the receiving application block
1523 * delivery of packets with coverage values less than a value
1524 * provided by the application."
1525 */
1526 if (up->pcrlen == 0) { /* full coverage was set */
1527 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1528 UDP_SKB_CB(skb)->cscov, skb->len);
1529 goto drop;
1530 }
1531 /* The next case involves violating the min. coverage requested
1532 * by the receiver. This is subtle: if receiver wants x and x is
1533 * greater than the buffersize/MTU then receiver will complain
1534 * that it wants x while sender emits packets of smaller size y.
1535 * Therefore the above ...()->partial_cov statement is essential.
1536 */
1537 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1538 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1539 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1540 goto drop;
1541 }
1542 }
1543
1544 if (rcu_access_pointer(sk->sk_filter) &&
1545 udp_lib_checksum_complete(skb))
1546 goto csum_error;
1547
1548
1549 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1550 goto drop;
1551
1552 rc = 0;
1553
1554 ipv4_pktinfo_prepare(sk, skb);
1555 bh_lock_sock(sk);
1556 if (!sock_owned_by_user(sk))
1557 rc = __udp_queue_rcv_skb(sk, skb);
1558 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1559 bh_unlock_sock(sk);
1560 goto drop;
1561 }
1562 bh_unlock_sock(sk);
1563
1564 return rc;
1565
1566 csum_error:
1567 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1568 drop:
1569 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1570 atomic_inc(&sk->sk_drops);
1571 kfree_skb(skb);
1572 return -1;
1573 }
1574
1575
1576 static void flush_stack(struct sock **stack, unsigned int count,
1577 struct sk_buff *skb, unsigned int final)
1578 {
1579 unsigned int i;
1580 struct sk_buff *skb1 = NULL;
1581 struct sock *sk;
1582
1583 for (i = 0; i < count; i++) {
1584 sk = stack[i];
1585 if (likely(skb1 == NULL))
1586 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1587
1588 if (!skb1) {
1589 atomic_inc(&sk->sk_drops);
1590 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1591 IS_UDPLITE(sk));
1592 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1593 IS_UDPLITE(sk));
1594 }
1595
1596 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1597 skb1 = NULL;
1598 }
1599 if (unlikely(skb1))
1600 kfree_skb(skb1);
1601 }
1602
1603 /* For TCP sockets, sk_rx_dst is protected by socket lock
1604 * For UDP, we use xchg() to guard against concurrent changes.
1605 */
1606 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1607 {
1608 struct dst_entry *old;
1609
1610 dst_hold(dst);
1611 old = xchg(&sk->sk_rx_dst, dst);
1612 dst_release(old);
1613 }
1614
1615 /*
1616 * Multicasts and broadcasts go to each listener.
1617 *
1618 * Note: called only from the BH handler context.
1619 */
1620 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1621 struct udphdr *uh,
1622 __be32 saddr, __be32 daddr,
1623 struct udp_table *udptable)
1624 {
1625 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1626 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1627 int dif;
1628 unsigned int i, count = 0;
1629
1630 spin_lock(&hslot->lock);
1631 sk = sk_nulls_head(&hslot->head);
1632 dif = skb->dev->ifindex;
1633 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1634 while (sk) {
1635 stack[count++] = sk;
1636 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1637 daddr, uh->source, saddr, dif);
1638 if (unlikely(count == ARRAY_SIZE(stack))) {
1639 if (!sk)
1640 break;
1641 flush_stack(stack, count, skb, ~0);
1642 count = 0;
1643 }
1644 }
1645 /*
1646 * before releasing chain lock, we must take a reference on sockets
1647 */
1648 for (i = 0; i < count; i++)
1649 sock_hold(stack[i]);
1650
1651 spin_unlock(&hslot->lock);
1652
1653 /*
1654 * do the slow work with no lock held
1655 */
1656 if (count) {
1657 flush_stack(stack, count, skb, count - 1);
1658
1659 for (i = 0; i < count; i++)
1660 sock_put(stack[i]);
1661 } else {
1662 kfree_skb(skb);
1663 }
1664 return 0;
1665 }
1666
1667 /* Initialize UDP checksum. If exited with zero value (success),
1668 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1669 * Otherwise, csum completion requires chacksumming packet body,
1670 * including udp header and folding it to skb->csum.
1671 */
1672 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1673 int proto)
1674 {
1675 const struct iphdr *iph;
1676 int err;
1677
1678 UDP_SKB_CB(skb)->partial_cov = 0;
1679 UDP_SKB_CB(skb)->cscov = skb->len;
1680
1681 if (proto == IPPROTO_UDPLITE) {
1682 err = udplite_checksum_init(skb, uh);
1683 if (err)
1684 return err;
1685 }
1686
1687 iph = ip_hdr(skb);
1688 if (uh->check == 0) {
1689 skb->ip_summed = CHECKSUM_UNNECESSARY;
1690 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1691 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1692 proto, skb->csum))
1693 skb->ip_summed = CHECKSUM_UNNECESSARY;
1694 }
1695 if (!skb_csum_unnecessary(skb))
1696 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1697 skb->len, proto, 0);
1698 /* Probably, we should checksum udp header (it should be in cache
1699 * in any case) and data in tiny packets (< rx copybreak).
1700 */
1701
1702 return 0;
1703 }
1704
1705 /*
1706 * All we need to do is get the socket, and then do a checksum.
1707 */
1708
1709 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1710 int proto)
1711 {
1712 struct sock *sk;
1713 struct udphdr *uh;
1714 unsigned short ulen;
1715 struct rtable *rt = skb_rtable(skb);
1716 __be32 saddr, daddr;
1717 struct net *net = dev_net(skb->dev);
1718
1719 /*
1720 * Validate the packet.
1721 */
1722 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1723 goto drop; /* No space for header. */
1724
1725 uh = udp_hdr(skb);
1726 ulen = ntohs(uh->len);
1727 saddr = ip_hdr(skb)->saddr;
1728 daddr = ip_hdr(skb)->daddr;
1729
1730 if (ulen > skb->len)
1731 goto short_packet;
1732
1733 if (proto == IPPROTO_UDP) {
1734 /* UDP validates ulen. */
1735 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1736 goto short_packet;
1737 uh = udp_hdr(skb);
1738 }
1739
1740 if (udp4_csum_init(skb, uh, proto))
1741 goto csum_error;
1742
1743 sk = skb_steal_sock(skb);
1744 if (sk) {
1745 struct dst_entry *dst = skb_dst(skb);
1746 int ret;
1747
1748 if (unlikely(sk->sk_rx_dst != dst))
1749 udp_sk_rx_dst_set(sk, dst);
1750
1751 ret = udp_queue_rcv_skb(sk, skb);
1752 sock_put(sk);
1753 /* a return value > 0 means to resubmit the input, but
1754 * it wants the return to be -protocol, or 0
1755 */
1756 if (ret > 0)
1757 return -ret;
1758 return 0;
1759 } else {
1760 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1761 return __udp4_lib_mcast_deliver(net, skb, uh,
1762 saddr, daddr, udptable);
1763
1764 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1765 }
1766
1767 if (sk != NULL) {
1768 int ret;
1769
1770 ret = udp_queue_rcv_skb(sk, skb);
1771 sock_put(sk);
1772
1773 /* a return value > 0 means to resubmit the input, but
1774 * it wants the return to be -protocol, or 0
1775 */
1776 if (ret > 0)
1777 return -ret;
1778 return 0;
1779 }
1780
1781 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1782 goto drop;
1783 nf_reset(skb);
1784
1785 /* No socket. Drop packet silently, if checksum is wrong */
1786 if (udp_lib_checksum_complete(skb))
1787 goto csum_error;
1788
1789 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1790 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1791
1792 /*
1793 * Hmm. We got an UDP packet to a port to which we
1794 * don't wanna listen. Ignore it.
1795 */
1796 kfree_skb(skb);
1797 return 0;
1798
1799 short_packet:
1800 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1801 proto == IPPROTO_UDPLITE ? "Lite" : "",
1802 &saddr, ntohs(uh->source),
1803 ulen, skb->len,
1804 &daddr, ntohs(uh->dest));
1805 goto drop;
1806
1807 csum_error:
1808 /*
1809 * RFC1122: OK. Discards the bad packet silently (as far as
1810 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1811 */
1812 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1813 proto == IPPROTO_UDPLITE ? "Lite" : "",
1814 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1815 ulen);
1816 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1817 drop:
1818 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1819 kfree_skb(skb);
1820 return 0;
1821 }
1822
1823 /* We can only early demux multicast if there is a single matching socket.
1824 * If more than one socket found returns NULL
1825 */
1826 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1827 __be16 loc_port, __be32 loc_addr,
1828 __be16 rmt_port, __be32 rmt_addr,
1829 int dif)
1830 {
1831 struct sock *sk, *result;
1832 struct hlist_nulls_node *node;
1833 unsigned short hnum = ntohs(loc_port);
1834 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1835 struct udp_hslot *hslot = &udp_table.hash[slot];
1836
1837 rcu_read_lock();
1838 begin:
1839 count = 0;
1840 result = NULL;
1841 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1842 if (__udp_is_mcast_sock(net, sk,
1843 loc_port, loc_addr,
1844 rmt_port, rmt_addr,
1845 dif, hnum)) {
1846 result = sk;
1847 ++count;
1848 }
1849 }
1850 /*
1851 * if the nulls value we got at the end of this lookup is
1852 * not the expected one, we must restart lookup.
1853 * We probably met an item that was moved to another chain.
1854 */
1855 if (get_nulls_value(node) != slot)
1856 goto begin;
1857
1858 if (result) {
1859 if (count != 1 ||
1860 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1861 result = NULL;
1862 else if (unlikely(!__udp_is_mcast_sock(net, result,
1863 loc_port, loc_addr,
1864 rmt_port, rmt_addr,
1865 dif, hnum))) {
1866 sock_put(result);
1867 result = NULL;
1868 }
1869 }
1870 rcu_read_unlock();
1871 return result;
1872 }
1873
1874 /* For unicast we should only early demux connected sockets or we can
1875 * break forwarding setups. The chains here can be long so only check
1876 * if the first socket is an exact match and if not move on.
1877 */
1878 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1879 __be16 loc_port, __be32 loc_addr,
1880 __be16 rmt_port, __be32 rmt_addr,
1881 int dif)
1882 {
1883 struct sock *sk, *result;
1884 struct hlist_nulls_node *node;
1885 unsigned short hnum = ntohs(loc_port);
1886 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1887 unsigned int slot2 = hash2 & udp_table.mask;
1888 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1889 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr)
1890 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1891
1892 rcu_read_lock();
1893 result = NULL;
1894 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1895 if (INET_MATCH(sk, net, acookie,
1896 rmt_addr, loc_addr, ports, dif))
1897 result = sk;
1898 /* Only check first socket in chain */
1899 break;
1900 }
1901
1902 if (result) {
1903 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1904 result = NULL;
1905 else if (unlikely(!INET_MATCH(sk, net, acookie,
1906 rmt_addr, loc_addr,
1907 ports, dif))) {
1908 sock_put(result);
1909 result = NULL;
1910 }
1911 }
1912 rcu_read_unlock();
1913 return result;
1914 }
1915
1916 void udp_v4_early_demux(struct sk_buff *skb)
1917 {
1918 struct net *net = dev_net(skb->dev);
1919 const struct iphdr *iph;
1920 const struct udphdr *uh;
1921 struct sock *sk;
1922 struct dst_entry *dst;
1923 int dif = skb->dev->ifindex;
1924
1925 /* validate the packet */
1926 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1927 return;
1928
1929 iph = ip_hdr(skb);
1930 uh = udp_hdr(skb);
1931
1932 if (skb->pkt_type == PACKET_BROADCAST ||
1933 skb->pkt_type == PACKET_MULTICAST)
1934 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1935 uh->source, iph->saddr, dif);
1936 else if (skb->pkt_type == PACKET_HOST)
1937 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1938 uh->source, iph->saddr, dif);
1939 else
1940 return;
1941
1942 if (!sk)
1943 return;
1944
1945 skb->sk = sk;
1946 skb->destructor = sock_edemux;
1947 dst = sk->sk_rx_dst;
1948
1949 if (dst)
1950 dst = dst_check(dst, 0);
1951 if (dst)
1952 skb_dst_set_noref(skb, dst);
1953 }
1954
1955 int udp_rcv(struct sk_buff *skb)
1956 {
1957 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1958 }
1959
1960 void udp_destroy_sock(struct sock *sk)
1961 {
1962 struct udp_sock *up = udp_sk(sk);
1963 bool slow = lock_sock_fast(sk);
1964 udp_flush_pending_frames(sk);
1965 unlock_sock_fast(sk, slow);
1966 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1967 void (*encap_destroy)(struct sock *sk);
1968 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1969 if (encap_destroy)
1970 encap_destroy(sk);
1971 }
1972 }
1973
1974 /*
1975 * Socket option code for UDP
1976 */
1977 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1978 char __user *optval, unsigned int optlen,
1979 int (*push_pending_frames)(struct sock *))
1980 {
1981 struct udp_sock *up = udp_sk(sk);
1982 int val;
1983 int err = 0;
1984 int is_udplite = IS_UDPLITE(sk);
1985
1986 if (optlen < sizeof(int))
1987 return -EINVAL;
1988
1989 if (get_user(val, (int __user *)optval))
1990 return -EFAULT;
1991
1992 switch (optname) {
1993 case UDP_CORK:
1994 if (val != 0) {
1995 up->corkflag = 1;
1996 } else {
1997 up->corkflag = 0;
1998 lock_sock(sk);
1999 (*push_pending_frames)(sk);
2000 release_sock(sk);
2001 }
2002 break;
2003
2004 case UDP_ENCAP:
2005 switch (val) {
2006 case 0:
2007 case UDP_ENCAP_ESPINUDP:
2008 case UDP_ENCAP_ESPINUDP_NON_IKE:
2009 up->encap_rcv = xfrm4_udp_encap_rcv;
2010 /* FALLTHROUGH */
2011 case UDP_ENCAP_L2TPINUDP:
2012 up->encap_type = val;
2013 udp_encap_enable();
2014 break;
2015 default:
2016 err = -ENOPROTOOPT;
2017 break;
2018 }
2019 break;
2020
2021 /*
2022 * UDP-Lite's partial checksum coverage (RFC 3828).
2023 */
2024 /* The sender sets actual checksum coverage length via this option.
2025 * The case coverage > packet length is handled by send module. */
2026 case UDPLITE_SEND_CSCOV:
2027 if (!is_udplite) /* Disable the option on UDP sockets */
2028 return -ENOPROTOOPT;
2029 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2030 val = 8;
2031 else if (val > USHRT_MAX)
2032 val = USHRT_MAX;
2033 up->pcslen = val;
2034 up->pcflag |= UDPLITE_SEND_CC;
2035 break;
2036
2037 /* The receiver specifies a minimum checksum coverage value. To make
2038 * sense, this should be set to at least 8 (as done below). If zero is
2039 * used, this again means full checksum coverage. */
2040 case UDPLITE_RECV_CSCOV:
2041 if (!is_udplite) /* Disable the option on UDP sockets */
2042 return -ENOPROTOOPT;
2043 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2044 val = 8;
2045 else if (val > USHRT_MAX)
2046 val = USHRT_MAX;
2047 up->pcrlen = val;
2048 up->pcflag |= UDPLITE_RECV_CC;
2049 break;
2050
2051 default:
2052 err = -ENOPROTOOPT;
2053 break;
2054 }
2055
2056 return err;
2057 }
2058 EXPORT_SYMBOL(udp_lib_setsockopt);
2059
2060 int udp_setsockopt(struct sock *sk, int level, int optname,
2061 char __user *optval, unsigned int optlen)
2062 {
2063 if (level == SOL_UDP || level == SOL_UDPLITE)
2064 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2065 udp_push_pending_frames);
2066 return ip_setsockopt(sk, level, optname, optval, optlen);
2067 }
2068
2069 #ifdef CONFIG_COMPAT
2070 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2071 char __user *optval, unsigned int optlen)
2072 {
2073 if (level == SOL_UDP || level == SOL_UDPLITE)
2074 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2075 udp_push_pending_frames);
2076 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2077 }
2078 #endif
2079
2080 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2081 char __user *optval, int __user *optlen)
2082 {
2083 struct udp_sock *up = udp_sk(sk);
2084 int val, len;
2085
2086 if (get_user(len, optlen))
2087 return -EFAULT;
2088
2089 len = min_t(unsigned int, len, sizeof(int));
2090
2091 if (len < 0)
2092 return -EINVAL;
2093
2094 switch (optname) {
2095 case UDP_CORK:
2096 val = up->corkflag;
2097 break;
2098
2099 case UDP_ENCAP:
2100 val = up->encap_type;
2101 break;
2102
2103 /* The following two cannot be changed on UDP sockets, the return is
2104 * always 0 (which corresponds to the full checksum coverage of UDP). */
2105 case UDPLITE_SEND_CSCOV:
2106 val = up->pcslen;
2107 break;
2108
2109 case UDPLITE_RECV_CSCOV:
2110 val = up->pcrlen;
2111 break;
2112
2113 default:
2114 return -ENOPROTOOPT;
2115 }
2116
2117 if (put_user(len, optlen))
2118 return -EFAULT;
2119 if (copy_to_user(optval, &val, len))
2120 return -EFAULT;
2121 return 0;
2122 }
2123 EXPORT_SYMBOL(udp_lib_getsockopt);
2124
2125 int udp_getsockopt(struct sock *sk, int level, int optname,
2126 char __user *optval, int __user *optlen)
2127 {
2128 if (level == SOL_UDP || level == SOL_UDPLITE)
2129 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2130 return ip_getsockopt(sk, level, optname, optval, optlen);
2131 }
2132
2133 #ifdef CONFIG_COMPAT
2134 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2135 char __user *optval, int __user *optlen)
2136 {
2137 if (level == SOL_UDP || level == SOL_UDPLITE)
2138 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2139 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2140 }
2141 #endif
2142 /**
2143 * udp_poll - wait for a UDP event.
2144 * @file - file struct
2145 * @sock - socket
2146 * @wait - poll table
2147 *
2148 * This is same as datagram poll, except for the special case of
2149 * blocking sockets. If application is using a blocking fd
2150 * and a packet with checksum error is in the queue;
2151 * then it could get return from select indicating data available
2152 * but then block when reading it. Add special case code
2153 * to work around these arguably broken applications.
2154 */
2155 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2156 {
2157 unsigned int mask = datagram_poll(file, sock, wait);
2158 struct sock *sk = sock->sk;
2159
2160 sock_rps_record_flow(sk);
2161
2162 /* Check for false positives due to checksum errors */
2163 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2164 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2165 mask &= ~(POLLIN | POLLRDNORM);
2166
2167 return mask;
2168
2169 }
2170 EXPORT_SYMBOL(udp_poll);
2171
2172 struct proto udp_prot = {
2173 .name = "UDP",
2174 .owner = THIS_MODULE,
2175 .close = udp_lib_close,
2176 .connect = ip4_datagram_connect,
2177 .disconnect = udp_disconnect,
2178 .ioctl = udp_ioctl,
2179 .destroy = udp_destroy_sock,
2180 .setsockopt = udp_setsockopt,
2181 .getsockopt = udp_getsockopt,
2182 .sendmsg = udp_sendmsg,
2183 .recvmsg = udp_recvmsg,
2184 .sendpage = udp_sendpage,
2185 .backlog_rcv = __udp_queue_rcv_skb,
2186 .release_cb = ip4_datagram_release_cb,
2187 .hash = udp_lib_hash,
2188 .unhash = udp_lib_unhash,
2189 .rehash = udp_v4_rehash,
2190 .get_port = udp_v4_get_port,
2191 .memory_allocated = &udp_memory_allocated,
2192 .sysctl_mem = sysctl_udp_mem,
2193 .sysctl_wmem = &sysctl_udp_wmem_min,
2194 .sysctl_rmem = &sysctl_udp_rmem_min,
2195 .obj_size = sizeof(struct udp_sock),
2196 .slab_flags = SLAB_DESTROY_BY_RCU,
2197 .h.udp_table = &udp_table,
2198 #ifdef CONFIG_COMPAT
2199 .compat_setsockopt = compat_udp_setsockopt,
2200 .compat_getsockopt = compat_udp_getsockopt,
2201 #endif
2202 .clear_sk = sk_prot_clear_portaddr_nulls,
2203 };
2204 EXPORT_SYMBOL(udp_prot);
2205
2206 /* ------------------------------------------------------------------------ */
2207 #ifdef CONFIG_PROC_FS
2208
2209 static struct sock *udp_get_first(struct seq_file *seq, int start)
2210 {
2211 struct sock *sk;
2212 struct udp_iter_state *state = seq->private;
2213 struct net *net = seq_file_net(seq);
2214
2215 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2216 ++state->bucket) {
2217 struct hlist_nulls_node *node;
2218 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2219
2220 if (hlist_nulls_empty(&hslot->head))
2221 continue;
2222
2223 spin_lock_bh(&hslot->lock);
2224 sk_nulls_for_each(sk, node, &hslot->head) {
2225 if (!net_eq(sock_net(sk), net))
2226 continue;
2227 if (sk->sk_family == state->family)
2228 goto found;
2229 }
2230 spin_unlock_bh(&hslot->lock);
2231 }
2232 sk = NULL;
2233 found:
2234 return sk;
2235 }
2236
2237 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2238 {
2239 struct udp_iter_state *state = seq->private;
2240 struct net *net = seq_file_net(seq);
2241
2242 do {
2243 sk = sk_nulls_next(sk);
2244 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2245
2246 if (!sk) {
2247 if (state->bucket <= state->udp_table->mask)
2248 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2249 return udp_get_first(seq, state->bucket + 1);
2250 }
2251 return sk;
2252 }
2253
2254 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2255 {
2256 struct sock *sk = udp_get_first(seq, 0);
2257
2258 if (sk)
2259 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2260 --pos;
2261 return pos ? NULL : sk;
2262 }
2263
2264 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2265 {
2266 struct udp_iter_state *state = seq->private;
2267 state->bucket = MAX_UDP_PORTS;
2268
2269 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2270 }
2271
2272 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2273 {
2274 struct sock *sk;
2275
2276 if (v == SEQ_START_TOKEN)
2277 sk = udp_get_idx(seq, 0);
2278 else
2279 sk = udp_get_next(seq, v);
2280
2281 ++*pos;
2282 return sk;
2283 }
2284
2285 static void udp_seq_stop(struct seq_file *seq, void *v)
2286 {
2287 struct udp_iter_state *state = seq->private;
2288
2289 if (state->bucket <= state->udp_table->mask)
2290 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291 }
2292
2293 int udp_seq_open(struct inode *inode, struct file *file)
2294 {
2295 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2296 struct udp_iter_state *s;
2297 int err;
2298
2299 err = seq_open_net(inode, file, &afinfo->seq_ops,
2300 sizeof(struct udp_iter_state));
2301 if (err < 0)
2302 return err;
2303
2304 s = ((struct seq_file *)file->private_data)->private;
2305 s->family = afinfo->family;
2306 s->udp_table = afinfo->udp_table;
2307 return err;
2308 }
2309 EXPORT_SYMBOL(udp_seq_open);
2310
2311 /* ------------------------------------------------------------------------ */
2312 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2313 {
2314 struct proc_dir_entry *p;
2315 int rc = 0;
2316
2317 afinfo->seq_ops.start = udp_seq_start;
2318 afinfo->seq_ops.next = udp_seq_next;
2319 afinfo->seq_ops.stop = udp_seq_stop;
2320
2321 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2322 afinfo->seq_fops, afinfo);
2323 if (!p)
2324 rc = -ENOMEM;
2325 return rc;
2326 }
2327 EXPORT_SYMBOL(udp_proc_register);
2328
2329 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2330 {
2331 remove_proc_entry(afinfo->name, net->proc_net);
2332 }
2333 EXPORT_SYMBOL(udp_proc_unregister);
2334
2335 /* ------------------------------------------------------------------------ */
2336 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2337 int bucket)
2338 {
2339 struct inet_sock *inet = inet_sk(sp);
2340 __be32 dest = inet->inet_daddr;
2341 __be32 src = inet->inet_rcv_saddr;
2342 __u16 destp = ntohs(inet->inet_dport);
2343 __u16 srcp = ntohs(inet->inet_sport);
2344
2345 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2346 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2347 bucket, src, srcp, dest, destp, sp->sk_state,
2348 sk_wmem_alloc_get(sp),
2349 sk_rmem_alloc_get(sp),
2350 0, 0L, 0,
2351 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2352 0, sock_i_ino(sp),
2353 atomic_read(&sp->sk_refcnt), sp,
2354 atomic_read(&sp->sk_drops));
2355 }
2356
2357 int udp4_seq_show(struct seq_file *seq, void *v)
2358 {
2359 seq_setwidth(seq, 127);
2360 if (v == SEQ_START_TOKEN)
2361 seq_puts(seq, " sl local_address rem_address st tx_queue "
2362 "rx_queue tr tm->when retrnsmt uid timeout "
2363 "inode ref pointer drops");
2364 else {
2365 struct udp_iter_state *state = seq->private;
2366
2367 udp4_format_sock(v, seq, state->bucket);
2368 }
2369 seq_pad(seq, '\n');
2370 return 0;
2371 }
2372
2373 static const struct file_operations udp_afinfo_seq_fops = {
2374 .owner = THIS_MODULE,
2375 .open = udp_seq_open,
2376 .read = seq_read,
2377 .llseek = seq_lseek,
2378 .release = seq_release_net
2379 };
2380
2381 /* ------------------------------------------------------------------------ */
2382 static struct udp_seq_afinfo udp4_seq_afinfo = {
2383 .name = "udp",
2384 .family = AF_INET,
2385 .udp_table = &udp_table,
2386 .seq_fops = &udp_afinfo_seq_fops,
2387 .seq_ops = {
2388 .show = udp4_seq_show,
2389 },
2390 };
2391
2392 static int __net_init udp4_proc_init_net(struct net *net)
2393 {
2394 return udp_proc_register(net, &udp4_seq_afinfo);
2395 }
2396
2397 static void __net_exit udp4_proc_exit_net(struct net *net)
2398 {
2399 udp_proc_unregister(net, &udp4_seq_afinfo);
2400 }
2401
2402 static struct pernet_operations udp4_net_ops = {
2403 .init = udp4_proc_init_net,
2404 .exit = udp4_proc_exit_net,
2405 };
2406
2407 int __init udp4_proc_init(void)
2408 {
2409 return register_pernet_subsys(&udp4_net_ops);
2410 }
2411
2412 void udp4_proc_exit(void)
2413 {
2414 unregister_pernet_subsys(&udp4_net_ops);
2415 }
2416 #endif /* CONFIG_PROC_FS */
2417
2418 static __initdata unsigned long uhash_entries;
2419 static int __init set_uhash_entries(char *str)
2420 {
2421 ssize_t ret;
2422
2423 if (!str)
2424 return 0;
2425
2426 ret = kstrtoul(str, 0, &uhash_entries);
2427 if (ret)
2428 return 0;
2429
2430 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2431 uhash_entries = UDP_HTABLE_SIZE_MIN;
2432 return 1;
2433 }
2434 __setup("uhash_entries=", set_uhash_entries);
2435
2436 void __init udp_table_init(struct udp_table *table, const char *name)
2437 {
2438 unsigned int i;
2439
2440 table->hash = alloc_large_system_hash(name,
2441 2 * sizeof(struct udp_hslot),
2442 uhash_entries,
2443 21, /* one slot per 2 MB */
2444 0,
2445 &table->log,
2446 &table->mask,
2447 UDP_HTABLE_SIZE_MIN,
2448 64 * 1024);
2449
2450 table->hash2 = table->hash + (table->mask + 1);
2451 for (i = 0; i <= table->mask; i++) {
2452 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2453 table->hash[i].count = 0;
2454 spin_lock_init(&table->hash[i].lock);
2455 }
2456 for (i = 0; i <= table->mask; i++) {
2457 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2458 table->hash2[i].count = 0;
2459 spin_lock_init(&table->hash2[i].lock);
2460 }
2461 }
2462
2463 void __init udp_init(void)
2464 {
2465 unsigned long limit;
2466
2467 udp_table_init(&udp_table, "UDP");
2468 limit = nr_free_buffer_pages() / 8;
2469 limit = max(limit, 128UL);
2470 sysctl_udp_mem[0] = limit / 4 * 3;
2471 sysctl_udp_mem[1] = limit;
2472 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2473
2474 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2475 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2476 }
2477
2478 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2479 netdev_features_t features)
2480 {
2481 struct sk_buff *segs = ERR_PTR(-EINVAL);
2482 u16 mac_offset = skb->mac_header;
2483 int mac_len = skb->mac_len;
2484 int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2485 __be16 protocol = skb->protocol;
2486 netdev_features_t enc_features;
2487 int outer_hlen;
2488
2489 if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2490 goto out;
2491
2492 skb->encapsulation = 0;
2493 __skb_pull(skb, tnl_hlen);
2494 skb_reset_mac_header(skb);
2495 skb_set_network_header(skb, skb_inner_network_offset(skb));
2496 skb->mac_len = skb_inner_network_offset(skb);
2497 skb->protocol = htons(ETH_P_TEB);
2498
2499 /* segment inner packet. */
2500 enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2501 segs = skb_mac_gso_segment(skb, enc_features);
2502 if (!segs || IS_ERR(segs)) {
2503 skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset,
2504 mac_len);
2505 goto out;
2506 }
2507
2508 outer_hlen = skb_tnl_header_len(skb);
2509 skb = segs;
2510 do {
2511 struct udphdr *uh;
2512 int udp_offset = outer_hlen - tnl_hlen;
2513
2514 skb_reset_inner_headers(skb);
2515 skb->encapsulation = 1;
2516
2517 skb->mac_len = mac_len;
2518
2519 skb_push(skb, outer_hlen);
2520 skb_reset_mac_header(skb);
2521 skb_set_network_header(skb, mac_len);
2522 skb_set_transport_header(skb, udp_offset);
2523 uh = udp_hdr(skb);
2524 uh->len = htons(skb->len - udp_offset);
2525
2526 /* csum segment if tunnel sets skb with csum. */
2527 if (protocol == htons(ETH_P_IP) && unlikely(uh->check)) {
2528 struct iphdr *iph = ip_hdr(skb);
2529
2530 uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2531 skb->len - udp_offset,
2532 IPPROTO_UDP, 0);
2533 uh->check = csum_fold(skb_checksum(skb, udp_offset,
2534 skb->len - udp_offset, 0));
2535 if (uh->check == 0)
2536 uh->check = CSUM_MANGLED_0;
2537
2538 } else if (protocol == htons(ETH_P_IPV6)) {
2539 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2540 u32 len = skb->len - udp_offset;
2541
2542 uh->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2543 len, IPPROTO_UDP, 0);
2544 uh->check = csum_fold(skb_checksum(skb, udp_offset, len, 0));
2545 if (uh->check == 0)
2546 uh->check = CSUM_MANGLED_0;
2547 skb->ip_summed = CHECKSUM_NONE;
2548 }
2549
2550 skb->protocol = protocol;
2551 } while ((skb = skb->next));
2552 out:
2553 return segs;
2554 }