]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv4/udp.c
udp: add support for UDP_GRO cmsg
[mirror_ubuntu-jammy-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <linux/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/memblock.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/inetdevice.h>
94 #include <linux/in.h>
95 #include <linux/errno.h>
96 #include <linux/timer.h>
97 #include <linux/mm.h>
98 #include <linux/inet.h>
99 #include <linux/netdevice.h>
100 #include <linux/slab.h>
101 #include <net/tcp_states.h>
102 #include <linux/skbuff.h>
103 #include <linux/proc_fs.h>
104 #include <linux/seq_file.h>
105 #include <net/net_namespace.h>
106 #include <net/icmp.h>
107 #include <net/inet_hashtables.h>
108 #include <net/route.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <trace/events/udp.h>
112 #include <linux/static_key.h>
113 #include <trace/events/skb.h>
114 #include <net/busy_poll.h>
115 #include "udp_impl.h"
116 #include <net/sock_reuseport.h>
117 #include <net/addrconf.h>
118 #include <net/udp_tunnel.h>
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
132 /* IPCB reference means this can not be used from early demux */
133 static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
134 {
135 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
136 if (!net->ipv4.sysctl_udp_l3mdev_accept &&
137 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
138 return true;
139 #endif
140 return false;
141 }
142
143 static int udp_lib_lport_inuse(struct net *net, __u16 num,
144 const struct udp_hslot *hslot,
145 unsigned long *bitmap,
146 struct sock *sk, unsigned int log)
147 {
148 struct sock *sk2;
149 kuid_t uid = sock_i_uid(sk);
150
151 sk_for_each(sk2, &hslot->head) {
152 if (net_eq(sock_net(sk2), net) &&
153 sk2 != sk &&
154 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
155 (!sk2->sk_reuse || !sk->sk_reuse) &&
156 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
157 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
158 inet_rcv_saddr_equal(sk, sk2, true)) {
159 if (sk2->sk_reuseport && sk->sk_reuseport &&
160 !rcu_access_pointer(sk->sk_reuseport_cb) &&
161 uid_eq(uid, sock_i_uid(sk2))) {
162 if (!bitmap)
163 return 0;
164 } else {
165 if (!bitmap)
166 return 1;
167 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
168 bitmap);
169 }
170 }
171 }
172 return 0;
173 }
174
175 /*
176 * Note: we still hold spinlock of primary hash chain, so no other writer
177 * can insert/delete a socket with local_port == num
178 */
179 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
180 struct udp_hslot *hslot2,
181 struct sock *sk)
182 {
183 struct sock *sk2;
184 kuid_t uid = sock_i_uid(sk);
185 int res = 0;
186
187 spin_lock(&hslot2->lock);
188 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
189 if (net_eq(sock_net(sk2), net) &&
190 sk2 != sk &&
191 (udp_sk(sk2)->udp_port_hash == num) &&
192 (!sk2->sk_reuse || !sk->sk_reuse) &&
193 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
194 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
195 inet_rcv_saddr_equal(sk, sk2, true)) {
196 if (sk2->sk_reuseport && sk->sk_reuseport &&
197 !rcu_access_pointer(sk->sk_reuseport_cb) &&
198 uid_eq(uid, sock_i_uid(sk2))) {
199 res = 0;
200 } else {
201 res = 1;
202 }
203 break;
204 }
205 }
206 spin_unlock(&hslot2->lock);
207 return res;
208 }
209
210 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
211 {
212 struct net *net = sock_net(sk);
213 kuid_t uid = sock_i_uid(sk);
214 struct sock *sk2;
215
216 sk_for_each(sk2, &hslot->head) {
217 if (net_eq(sock_net(sk2), net) &&
218 sk2 != sk &&
219 sk2->sk_family == sk->sk_family &&
220 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
221 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
222 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
223 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
224 inet_rcv_saddr_equal(sk, sk2, false)) {
225 return reuseport_add_sock(sk, sk2,
226 inet_rcv_saddr_any(sk));
227 }
228 }
229
230 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
231 }
232
233 /**
234 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
235 *
236 * @sk: socket struct in question
237 * @snum: port number to look up
238 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
239 * with NULL address
240 */
241 int udp_lib_get_port(struct sock *sk, unsigned short snum,
242 unsigned int hash2_nulladdr)
243 {
244 struct udp_hslot *hslot, *hslot2;
245 struct udp_table *udptable = sk->sk_prot->h.udp_table;
246 int error = 1;
247 struct net *net = sock_net(sk);
248
249 if (!snum) {
250 int low, high, remaining;
251 unsigned int rand;
252 unsigned short first, last;
253 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
254
255 inet_get_local_port_range(net, &low, &high);
256 remaining = (high - low) + 1;
257
258 rand = prandom_u32();
259 first = reciprocal_scale(rand, remaining) + low;
260 /*
261 * force rand to be an odd multiple of UDP_HTABLE_SIZE
262 */
263 rand = (rand | 1) * (udptable->mask + 1);
264 last = first + udptable->mask + 1;
265 do {
266 hslot = udp_hashslot(udptable, net, first);
267 bitmap_zero(bitmap, PORTS_PER_CHAIN);
268 spin_lock_bh(&hslot->lock);
269 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
270 udptable->log);
271
272 snum = first;
273 /*
274 * Iterate on all possible values of snum for this hash.
275 * Using steps of an odd multiple of UDP_HTABLE_SIZE
276 * give us randomization and full range coverage.
277 */
278 do {
279 if (low <= snum && snum <= high &&
280 !test_bit(snum >> udptable->log, bitmap) &&
281 !inet_is_local_reserved_port(net, snum))
282 goto found;
283 snum += rand;
284 } while (snum != first);
285 spin_unlock_bh(&hslot->lock);
286 cond_resched();
287 } while (++first != last);
288 goto fail;
289 } else {
290 hslot = udp_hashslot(udptable, net, snum);
291 spin_lock_bh(&hslot->lock);
292 if (hslot->count > 10) {
293 int exist;
294 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295
296 slot2 &= udptable->mask;
297 hash2_nulladdr &= udptable->mask;
298
299 hslot2 = udp_hashslot2(udptable, slot2);
300 if (hslot->count < hslot2->count)
301 goto scan_primary_hash;
302
303 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
304 if (!exist && (hash2_nulladdr != slot2)) {
305 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
306 exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 sk);
308 }
309 if (exist)
310 goto fail_unlock;
311 else
312 goto found;
313 }
314 scan_primary_hash:
315 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
316 goto fail_unlock;
317 }
318 found:
319 inet_sk(sk)->inet_num = snum;
320 udp_sk(sk)->udp_port_hash = snum;
321 udp_sk(sk)->udp_portaddr_hash ^= snum;
322 if (sk_unhashed(sk)) {
323 if (sk->sk_reuseport &&
324 udp_reuseport_add_sock(sk, hslot)) {
325 inet_sk(sk)->inet_num = 0;
326 udp_sk(sk)->udp_port_hash = 0;
327 udp_sk(sk)->udp_portaddr_hash ^= snum;
328 goto fail_unlock;
329 }
330
331 sk_add_node_rcu(sk, &hslot->head);
332 hslot->count++;
333 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
334
335 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
336 spin_lock(&hslot2->lock);
337 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
338 sk->sk_family == AF_INET6)
339 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
340 &hslot2->head);
341 else
342 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
343 &hslot2->head);
344 hslot2->count++;
345 spin_unlock(&hslot2->lock);
346 }
347 sock_set_flag(sk, SOCK_RCU_FREE);
348 error = 0;
349 fail_unlock:
350 spin_unlock_bh(&hslot->lock);
351 fail:
352 return error;
353 }
354 EXPORT_SYMBOL(udp_lib_get_port);
355
356 int udp_v4_get_port(struct sock *sk, unsigned short snum)
357 {
358 unsigned int hash2_nulladdr =
359 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
360 unsigned int hash2_partial =
361 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
362
363 /* precompute partial secondary hash */
364 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
365 return udp_lib_get_port(sk, snum, hash2_nulladdr);
366 }
367
368 static int compute_score(struct sock *sk, struct net *net,
369 __be32 saddr, __be16 sport,
370 __be32 daddr, unsigned short hnum,
371 int dif, int sdif, bool exact_dif)
372 {
373 int score;
374 struct inet_sock *inet;
375 bool dev_match;
376
377 if (!net_eq(sock_net(sk), net) ||
378 udp_sk(sk)->udp_port_hash != hnum ||
379 ipv6_only_sock(sk))
380 return -1;
381
382 score = (sk->sk_family == PF_INET) ? 2 : 1;
383 inet = inet_sk(sk);
384
385 if (inet->inet_rcv_saddr) {
386 if (inet->inet_rcv_saddr != daddr)
387 return -1;
388 score += 4;
389 }
390
391 if (inet->inet_daddr) {
392 if (inet->inet_daddr != saddr)
393 return -1;
394 score += 4;
395 }
396
397 if (inet->inet_dport) {
398 if (inet->inet_dport != sport)
399 return -1;
400 score += 4;
401 }
402
403 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
404 dif, sdif);
405 if (!dev_match)
406 return -1;
407 score += 4;
408
409 if (sk->sk_incoming_cpu == raw_smp_processor_id())
410 score++;
411 return score;
412 }
413
414 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
415 const __u16 lport, const __be32 faddr,
416 const __be16 fport)
417 {
418 static u32 udp_ehash_secret __read_mostly;
419
420 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
421
422 return __inet_ehashfn(laddr, lport, faddr, fport,
423 udp_ehash_secret + net_hash_mix(net));
424 }
425
426 /* called with rcu_read_lock() */
427 static struct sock *udp4_lib_lookup2(struct net *net,
428 __be32 saddr, __be16 sport,
429 __be32 daddr, unsigned int hnum,
430 int dif, int sdif, bool exact_dif,
431 struct udp_hslot *hslot2,
432 struct sk_buff *skb)
433 {
434 struct sock *sk, *result;
435 int score, badness;
436 u32 hash = 0;
437
438 result = NULL;
439 badness = 0;
440 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
441 score = compute_score(sk, net, saddr, sport,
442 daddr, hnum, dif, sdif, exact_dif);
443 if (score > badness) {
444 if (sk->sk_reuseport) {
445 hash = udp_ehashfn(net, daddr, hnum,
446 saddr, sport);
447 result = reuseport_select_sock(sk, hash, skb,
448 sizeof(struct udphdr));
449 if (result)
450 return result;
451 }
452 badness = score;
453 result = sk;
454 }
455 }
456 return result;
457 }
458
459 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
460 * harder than this. -DaveM
461 */
462 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
463 __be16 sport, __be32 daddr, __be16 dport, int dif,
464 int sdif, struct udp_table *udptable, struct sk_buff *skb)
465 {
466 struct sock *sk, *result;
467 unsigned short hnum = ntohs(dport);
468 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
469 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
470 bool exact_dif = udp_lib_exact_dif_match(net, skb);
471 int score, badness;
472 u32 hash = 0;
473
474 if (hslot->count > 10) {
475 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
476 slot2 = hash2 & udptable->mask;
477 hslot2 = &udptable->hash2[slot2];
478 if (hslot->count < hslot2->count)
479 goto begin;
480
481 result = udp4_lib_lookup2(net, saddr, sport,
482 daddr, hnum, dif, sdif,
483 exact_dif, hslot2, skb);
484 if (!result) {
485 unsigned int old_slot2 = slot2;
486 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
487 slot2 = hash2 & udptable->mask;
488 /* avoid searching the same slot again. */
489 if (unlikely(slot2 == old_slot2))
490 return result;
491
492 hslot2 = &udptable->hash2[slot2];
493 if (hslot->count < hslot2->count)
494 goto begin;
495
496 result = udp4_lib_lookup2(net, saddr, sport,
497 daddr, hnum, dif, sdif,
498 exact_dif, hslot2, skb);
499 }
500 if (unlikely(IS_ERR(result)))
501 return NULL;
502 return result;
503 }
504 begin:
505 result = NULL;
506 badness = 0;
507 sk_for_each_rcu(sk, &hslot->head) {
508 score = compute_score(sk, net, saddr, sport,
509 daddr, hnum, dif, sdif, exact_dif);
510 if (score > badness) {
511 if (sk->sk_reuseport) {
512 hash = udp_ehashfn(net, daddr, hnum,
513 saddr, sport);
514 result = reuseport_select_sock(sk, hash, skb,
515 sizeof(struct udphdr));
516 if (unlikely(IS_ERR(result)))
517 return NULL;
518 if (result)
519 return result;
520 }
521 result = sk;
522 badness = score;
523 }
524 }
525 return result;
526 }
527 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
528
529 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
530 __be16 sport, __be16 dport,
531 struct udp_table *udptable)
532 {
533 const struct iphdr *iph = ip_hdr(skb);
534
535 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
536 iph->daddr, dport, inet_iif(skb),
537 inet_sdif(skb), udptable, skb);
538 }
539
540 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
541 __be16 sport, __be16 dport)
542 {
543 return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
544 }
545 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
546
547 /* Must be called under rcu_read_lock().
548 * Does increment socket refcount.
549 */
550 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
551 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
552 __be32 daddr, __be16 dport, int dif)
553 {
554 struct sock *sk;
555
556 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
557 dif, 0, &udp_table, NULL);
558 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
559 sk = NULL;
560 return sk;
561 }
562 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
563 #endif
564
565 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
566 __be16 loc_port, __be32 loc_addr,
567 __be16 rmt_port, __be32 rmt_addr,
568 int dif, int sdif, unsigned short hnum)
569 {
570 struct inet_sock *inet = inet_sk(sk);
571
572 if (!net_eq(sock_net(sk), net) ||
573 udp_sk(sk)->udp_port_hash != hnum ||
574 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
575 (inet->inet_dport != rmt_port && inet->inet_dport) ||
576 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
577 ipv6_only_sock(sk) ||
578 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
579 sk->sk_bound_dev_if != sdif))
580 return false;
581 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582 return false;
583 return true;
584 }
585
586 /*
587 * This routine is called by the ICMP module when it gets some
588 * sort of error condition. If err < 0 then the socket should
589 * be closed and the error returned to the user. If err > 0
590 * it's just the icmp type << 8 | icmp code.
591 * Header points to the ip header of the error packet. We move
592 * on past this. Then (as it used to claim before adjustment)
593 * header points to the first 8 bytes of the udp header. We need
594 * to find the appropriate port.
595 */
596
597 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
598 {
599 struct inet_sock *inet;
600 const struct iphdr *iph = (const struct iphdr *)skb->data;
601 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
602 const int type = icmp_hdr(skb)->type;
603 const int code = icmp_hdr(skb)->code;
604 struct sock *sk;
605 int harderr;
606 int err;
607 struct net *net = dev_net(skb->dev);
608
609 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
610 iph->saddr, uh->source, skb->dev->ifindex,
611 inet_sdif(skb), udptable, NULL);
612 if (!sk) {
613 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
614 return; /* No socket for error */
615 }
616
617 err = 0;
618 harderr = 0;
619 inet = inet_sk(sk);
620
621 switch (type) {
622 default:
623 case ICMP_TIME_EXCEEDED:
624 err = EHOSTUNREACH;
625 break;
626 case ICMP_SOURCE_QUENCH:
627 goto out;
628 case ICMP_PARAMETERPROB:
629 err = EPROTO;
630 harderr = 1;
631 break;
632 case ICMP_DEST_UNREACH:
633 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
634 ipv4_sk_update_pmtu(skb, sk, info);
635 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
636 err = EMSGSIZE;
637 harderr = 1;
638 break;
639 }
640 goto out;
641 }
642 err = EHOSTUNREACH;
643 if (code <= NR_ICMP_UNREACH) {
644 harderr = icmp_err_convert[code].fatal;
645 err = icmp_err_convert[code].errno;
646 }
647 break;
648 case ICMP_REDIRECT:
649 ipv4_sk_redirect(skb, sk);
650 goto out;
651 }
652
653 /*
654 * RFC1122: OK. Passes ICMP errors back to application, as per
655 * 4.1.3.3.
656 */
657 if (!inet->recverr) {
658 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
659 goto out;
660 } else
661 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
662
663 sk->sk_err = err;
664 sk->sk_error_report(sk);
665 out:
666 return;
667 }
668
669 void udp_err(struct sk_buff *skb, u32 info)
670 {
671 __udp4_lib_err(skb, info, &udp_table);
672 }
673
674 /*
675 * Throw away all pending data and cancel the corking. Socket is locked.
676 */
677 void udp_flush_pending_frames(struct sock *sk)
678 {
679 struct udp_sock *up = udp_sk(sk);
680
681 if (up->pending) {
682 up->len = 0;
683 up->pending = 0;
684 ip_flush_pending_frames(sk);
685 }
686 }
687 EXPORT_SYMBOL(udp_flush_pending_frames);
688
689 /**
690 * udp4_hwcsum - handle outgoing HW checksumming
691 * @skb: sk_buff containing the filled-in UDP header
692 * (checksum field must be zeroed out)
693 * @src: source IP address
694 * @dst: destination IP address
695 */
696 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
697 {
698 struct udphdr *uh = udp_hdr(skb);
699 int offset = skb_transport_offset(skb);
700 int len = skb->len - offset;
701 int hlen = len;
702 __wsum csum = 0;
703
704 if (!skb_has_frag_list(skb)) {
705 /*
706 * Only one fragment on the socket.
707 */
708 skb->csum_start = skb_transport_header(skb) - skb->head;
709 skb->csum_offset = offsetof(struct udphdr, check);
710 uh->check = ~csum_tcpudp_magic(src, dst, len,
711 IPPROTO_UDP, 0);
712 } else {
713 struct sk_buff *frags;
714
715 /*
716 * HW-checksum won't work as there are two or more
717 * fragments on the socket so that all csums of sk_buffs
718 * should be together
719 */
720 skb_walk_frags(skb, frags) {
721 csum = csum_add(csum, frags->csum);
722 hlen -= frags->len;
723 }
724
725 csum = skb_checksum(skb, offset, hlen, csum);
726 skb->ip_summed = CHECKSUM_NONE;
727
728 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
729 if (uh->check == 0)
730 uh->check = CSUM_MANGLED_0;
731 }
732 }
733 EXPORT_SYMBOL_GPL(udp4_hwcsum);
734
735 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
736 * for the simple case like when setting the checksum for a UDP tunnel.
737 */
738 void udp_set_csum(bool nocheck, struct sk_buff *skb,
739 __be32 saddr, __be32 daddr, int len)
740 {
741 struct udphdr *uh = udp_hdr(skb);
742
743 if (nocheck) {
744 uh->check = 0;
745 } else if (skb_is_gso(skb)) {
746 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
747 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
748 uh->check = 0;
749 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
750 if (uh->check == 0)
751 uh->check = CSUM_MANGLED_0;
752 } else {
753 skb->ip_summed = CHECKSUM_PARTIAL;
754 skb->csum_start = skb_transport_header(skb) - skb->head;
755 skb->csum_offset = offsetof(struct udphdr, check);
756 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
757 }
758 }
759 EXPORT_SYMBOL(udp_set_csum);
760
761 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
762 struct inet_cork *cork)
763 {
764 struct sock *sk = skb->sk;
765 struct inet_sock *inet = inet_sk(sk);
766 struct udphdr *uh;
767 int err = 0;
768 int is_udplite = IS_UDPLITE(sk);
769 int offset = skb_transport_offset(skb);
770 int len = skb->len - offset;
771 __wsum csum = 0;
772
773 /*
774 * Create a UDP header
775 */
776 uh = udp_hdr(skb);
777 uh->source = inet->inet_sport;
778 uh->dest = fl4->fl4_dport;
779 uh->len = htons(len);
780 uh->check = 0;
781
782 if (cork->gso_size) {
783 const int hlen = skb_network_header_len(skb) +
784 sizeof(struct udphdr);
785
786 if (hlen + cork->gso_size > cork->fragsize)
787 return -EINVAL;
788 if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS)
789 return -EINVAL;
790 if (sk->sk_no_check_tx)
791 return -EINVAL;
792 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
793 dst_xfrm(skb_dst(skb)))
794 return -EIO;
795
796 skb_shinfo(skb)->gso_size = cork->gso_size;
797 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
798 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(len - sizeof(uh),
799 cork->gso_size);
800 goto csum_partial;
801 }
802
803 if (is_udplite) /* UDP-Lite */
804 csum = udplite_csum(skb);
805
806 else if (sk->sk_no_check_tx) { /* UDP csum off */
807
808 skb->ip_summed = CHECKSUM_NONE;
809 goto send;
810
811 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
812 csum_partial:
813
814 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
815 goto send;
816
817 } else
818 csum = udp_csum(skb);
819
820 /* add protocol-dependent pseudo-header */
821 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
822 sk->sk_protocol, csum);
823 if (uh->check == 0)
824 uh->check = CSUM_MANGLED_0;
825
826 send:
827 err = ip_send_skb(sock_net(sk), skb);
828 if (err) {
829 if (err == -ENOBUFS && !inet->recverr) {
830 UDP_INC_STATS(sock_net(sk),
831 UDP_MIB_SNDBUFERRORS, is_udplite);
832 err = 0;
833 }
834 } else
835 UDP_INC_STATS(sock_net(sk),
836 UDP_MIB_OUTDATAGRAMS, is_udplite);
837 return err;
838 }
839
840 /*
841 * Push out all pending data as one UDP datagram. Socket is locked.
842 */
843 int udp_push_pending_frames(struct sock *sk)
844 {
845 struct udp_sock *up = udp_sk(sk);
846 struct inet_sock *inet = inet_sk(sk);
847 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
848 struct sk_buff *skb;
849 int err = 0;
850
851 skb = ip_finish_skb(sk, fl4);
852 if (!skb)
853 goto out;
854
855 err = udp_send_skb(skb, fl4, &inet->cork.base);
856
857 out:
858 up->len = 0;
859 up->pending = 0;
860 return err;
861 }
862 EXPORT_SYMBOL(udp_push_pending_frames);
863
864 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
865 {
866 switch (cmsg->cmsg_type) {
867 case UDP_SEGMENT:
868 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
869 return -EINVAL;
870 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
871 return 0;
872 default:
873 return -EINVAL;
874 }
875 }
876
877 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
878 {
879 struct cmsghdr *cmsg;
880 bool need_ip = false;
881 int err;
882
883 for_each_cmsghdr(cmsg, msg) {
884 if (!CMSG_OK(msg, cmsg))
885 return -EINVAL;
886
887 if (cmsg->cmsg_level != SOL_UDP) {
888 need_ip = true;
889 continue;
890 }
891
892 err = __udp_cmsg_send(cmsg, gso_size);
893 if (err)
894 return err;
895 }
896
897 return need_ip;
898 }
899 EXPORT_SYMBOL_GPL(udp_cmsg_send);
900
901 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
902 {
903 struct inet_sock *inet = inet_sk(sk);
904 struct udp_sock *up = udp_sk(sk);
905 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
906 struct flowi4 fl4_stack;
907 struct flowi4 *fl4;
908 int ulen = len;
909 struct ipcm_cookie ipc;
910 struct rtable *rt = NULL;
911 int free = 0;
912 int connected = 0;
913 __be32 daddr, faddr, saddr;
914 __be16 dport;
915 u8 tos;
916 int err, is_udplite = IS_UDPLITE(sk);
917 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
918 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
919 struct sk_buff *skb;
920 struct ip_options_data opt_copy;
921
922 if (len > 0xFFFF)
923 return -EMSGSIZE;
924
925 /*
926 * Check the flags.
927 */
928
929 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
930 return -EOPNOTSUPP;
931
932 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
933
934 fl4 = &inet->cork.fl.u.ip4;
935 if (up->pending) {
936 /*
937 * There are pending frames.
938 * The socket lock must be held while it's corked.
939 */
940 lock_sock(sk);
941 if (likely(up->pending)) {
942 if (unlikely(up->pending != AF_INET)) {
943 release_sock(sk);
944 return -EINVAL;
945 }
946 goto do_append_data;
947 }
948 release_sock(sk);
949 }
950 ulen += sizeof(struct udphdr);
951
952 /*
953 * Get and verify the address.
954 */
955 if (usin) {
956 if (msg->msg_namelen < sizeof(*usin))
957 return -EINVAL;
958 if (usin->sin_family != AF_INET) {
959 if (usin->sin_family != AF_UNSPEC)
960 return -EAFNOSUPPORT;
961 }
962
963 daddr = usin->sin_addr.s_addr;
964 dport = usin->sin_port;
965 if (dport == 0)
966 return -EINVAL;
967 } else {
968 if (sk->sk_state != TCP_ESTABLISHED)
969 return -EDESTADDRREQ;
970 daddr = inet->inet_daddr;
971 dport = inet->inet_dport;
972 /* Open fast path for connected socket.
973 Route will not be used, if at least one option is set.
974 */
975 connected = 1;
976 }
977
978 ipcm_init_sk(&ipc, inet);
979 ipc.gso_size = up->gso_size;
980
981 if (msg->msg_controllen) {
982 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
983 if (err > 0)
984 err = ip_cmsg_send(sk, msg, &ipc,
985 sk->sk_family == AF_INET6);
986 if (unlikely(err < 0)) {
987 kfree(ipc.opt);
988 return err;
989 }
990 if (ipc.opt)
991 free = 1;
992 connected = 0;
993 }
994 if (!ipc.opt) {
995 struct ip_options_rcu *inet_opt;
996
997 rcu_read_lock();
998 inet_opt = rcu_dereference(inet->inet_opt);
999 if (inet_opt) {
1000 memcpy(&opt_copy, inet_opt,
1001 sizeof(*inet_opt) + inet_opt->opt.optlen);
1002 ipc.opt = &opt_copy.opt;
1003 }
1004 rcu_read_unlock();
1005 }
1006
1007 if (cgroup_bpf_enabled && !connected) {
1008 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1009 (struct sockaddr *)usin, &ipc.addr);
1010 if (err)
1011 goto out_free;
1012 if (usin) {
1013 if (usin->sin_port == 0) {
1014 /* BPF program set invalid port. Reject it. */
1015 err = -EINVAL;
1016 goto out_free;
1017 }
1018 daddr = usin->sin_addr.s_addr;
1019 dport = usin->sin_port;
1020 }
1021 }
1022
1023 saddr = ipc.addr;
1024 ipc.addr = faddr = daddr;
1025
1026 if (ipc.opt && ipc.opt->opt.srr) {
1027 if (!daddr) {
1028 err = -EINVAL;
1029 goto out_free;
1030 }
1031 faddr = ipc.opt->opt.faddr;
1032 connected = 0;
1033 }
1034 tos = get_rttos(&ipc, inet);
1035 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1036 (msg->msg_flags & MSG_DONTROUTE) ||
1037 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1038 tos |= RTO_ONLINK;
1039 connected = 0;
1040 }
1041
1042 if (ipv4_is_multicast(daddr)) {
1043 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1044 ipc.oif = inet->mc_index;
1045 if (!saddr)
1046 saddr = inet->mc_addr;
1047 connected = 0;
1048 } else if (!ipc.oif) {
1049 ipc.oif = inet->uc_index;
1050 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1051 /* oif is set, packet is to local broadcast and
1052 * and uc_index is set. oif is most likely set
1053 * by sk_bound_dev_if. If uc_index != oif check if the
1054 * oif is an L3 master and uc_index is an L3 slave.
1055 * If so, we want to allow the send using the uc_index.
1056 */
1057 if (ipc.oif != inet->uc_index &&
1058 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1059 inet->uc_index)) {
1060 ipc.oif = inet->uc_index;
1061 }
1062 }
1063
1064 if (connected)
1065 rt = (struct rtable *)sk_dst_check(sk, 0);
1066
1067 if (!rt) {
1068 struct net *net = sock_net(sk);
1069 __u8 flow_flags = inet_sk_flowi_flags(sk);
1070
1071 fl4 = &fl4_stack;
1072
1073 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1074 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1075 flow_flags,
1076 faddr, saddr, dport, inet->inet_sport,
1077 sk->sk_uid);
1078
1079 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1080 rt = ip_route_output_flow(net, fl4, sk);
1081 if (IS_ERR(rt)) {
1082 err = PTR_ERR(rt);
1083 rt = NULL;
1084 if (err == -ENETUNREACH)
1085 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1086 goto out;
1087 }
1088
1089 err = -EACCES;
1090 if ((rt->rt_flags & RTCF_BROADCAST) &&
1091 !sock_flag(sk, SOCK_BROADCAST))
1092 goto out;
1093 if (connected)
1094 sk_dst_set(sk, dst_clone(&rt->dst));
1095 }
1096
1097 if (msg->msg_flags&MSG_CONFIRM)
1098 goto do_confirm;
1099 back_from_confirm:
1100
1101 saddr = fl4->saddr;
1102 if (!ipc.addr)
1103 daddr = ipc.addr = fl4->daddr;
1104
1105 /* Lockless fast path for the non-corking case. */
1106 if (!corkreq) {
1107 struct inet_cork cork;
1108
1109 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1110 sizeof(struct udphdr), &ipc, &rt,
1111 &cork, msg->msg_flags);
1112 err = PTR_ERR(skb);
1113 if (!IS_ERR_OR_NULL(skb))
1114 err = udp_send_skb(skb, fl4, &cork);
1115 goto out;
1116 }
1117
1118 lock_sock(sk);
1119 if (unlikely(up->pending)) {
1120 /* The socket is already corked while preparing it. */
1121 /* ... which is an evident application bug. --ANK */
1122 release_sock(sk);
1123
1124 net_dbg_ratelimited("socket already corked\n");
1125 err = -EINVAL;
1126 goto out;
1127 }
1128 /*
1129 * Now cork the socket to pend data.
1130 */
1131 fl4 = &inet->cork.fl.u.ip4;
1132 fl4->daddr = daddr;
1133 fl4->saddr = saddr;
1134 fl4->fl4_dport = dport;
1135 fl4->fl4_sport = inet->inet_sport;
1136 up->pending = AF_INET;
1137
1138 do_append_data:
1139 up->len += ulen;
1140 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1141 sizeof(struct udphdr), &ipc, &rt,
1142 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1143 if (err)
1144 udp_flush_pending_frames(sk);
1145 else if (!corkreq)
1146 err = udp_push_pending_frames(sk);
1147 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1148 up->pending = 0;
1149 release_sock(sk);
1150
1151 out:
1152 ip_rt_put(rt);
1153 out_free:
1154 if (free)
1155 kfree(ipc.opt);
1156 if (!err)
1157 return len;
1158 /*
1159 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1160 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1161 * we don't have a good statistic (IpOutDiscards but it can be too many
1162 * things). We could add another new stat but at least for now that
1163 * seems like overkill.
1164 */
1165 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1166 UDP_INC_STATS(sock_net(sk),
1167 UDP_MIB_SNDBUFERRORS, is_udplite);
1168 }
1169 return err;
1170
1171 do_confirm:
1172 if (msg->msg_flags & MSG_PROBE)
1173 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1174 if (!(msg->msg_flags&MSG_PROBE) || len)
1175 goto back_from_confirm;
1176 err = 0;
1177 goto out;
1178 }
1179 EXPORT_SYMBOL(udp_sendmsg);
1180
1181 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1182 size_t size, int flags)
1183 {
1184 struct inet_sock *inet = inet_sk(sk);
1185 struct udp_sock *up = udp_sk(sk);
1186 int ret;
1187
1188 if (flags & MSG_SENDPAGE_NOTLAST)
1189 flags |= MSG_MORE;
1190
1191 if (!up->pending) {
1192 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1193
1194 /* Call udp_sendmsg to specify destination address which
1195 * sendpage interface can't pass.
1196 * This will succeed only when the socket is connected.
1197 */
1198 ret = udp_sendmsg(sk, &msg, 0);
1199 if (ret < 0)
1200 return ret;
1201 }
1202
1203 lock_sock(sk);
1204
1205 if (unlikely(!up->pending)) {
1206 release_sock(sk);
1207
1208 net_dbg_ratelimited("cork failed\n");
1209 return -EINVAL;
1210 }
1211
1212 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1213 page, offset, size, flags);
1214 if (ret == -EOPNOTSUPP) {
1215 release_sock(sk);
1216 return sock_no_sendpage(sk->sk_socket, page, offset,
1217 size, flags);
1218 }
1219 if (ret < 0) {
1220 udp_flush_pending_frames(sk);
1221 goto out;
1222 }
1223
1224 up->len += size;
1225 if (!(up->corkflag || (flags&MSG_MORE)))
1226 ret = udp_push_pending_frames(sk);
1227 if (!ret)
1228 ret = size;
1229 out:
1230 release_sock(sk);
1231 return ret;
1232 }
1233
1234 #define UDP_SKB_IS_STATELESS 0x80000000
1235
1236 static void udp_set_dev_scratch(struct sk_buff *skb)
1237 {
1238 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1239
1240 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1241 scratch->_tsize_state = skb->truesize;
1242 #if BITS_PER_LONG == 64
1243 scratch->len = skb->len;
1244 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1245 scratch->is_linear = !skb_is_nonlinear(skb);
1246 #endif
1247 /* all head states execept sp (dst, sk, nf) are always cleared by
1248 * udp_rcv() and we need to preserve secpath, if present, to eventually
1249 * process IP_CMSG_PASSSEC at recvmsg() time
1250 */
1251 if (likely(!skb_sec_path(skb)))
1252 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1253 }
1254
1255 static int udp_skb_truesize(struct sk_buff *skb)
1256 {
1257 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1258 }
1259
1260 static bool udp_skb_has_head_state(struct sk_buff *skb)
1261 {
1262 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1263 }
1264
1265 /* fully reclaim rmem/fwd memory allocated for skb */
1266 static void udp_rmem_release(struct sock *sk, int size, int partial,
1267 bool rx_queue_lock_held)
1268 {
1269 struct udp_sock *up = udp_sk(sk);
1270 struct sk_buff_head *sk_queue;
1271 int amt;
1272
1273 if (likely(partial)) {
1274 up->forward_deficit += size;
1275 size = up->forward_deficit;
1276 if (size < (sk->sk_rcvbuf >> 2))
1277 return;
1278 } else {
1279 size += up->forward_deficit;
1280 }
1281 up->forward_deficit = 0;
1282
1283 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1284 * if the called don't held it already
1285 */
1286 sk_queue = &sk->sk_receive_queue;
1287 if (!rx_queue_lock_held)
1288 spin_lock(&sk_queue->lock);
1289
1290
1291 sk->sk_forward_alloc += size;
1292 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1293 sk->sk_forward_alloc -= amt;
1294
1295 if (amt)
1296 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1297
1298 atomic_sub(size, &sk->sk_rmem_alloc);
1299
1300 /* this can save us from acquiring the rx queue lock on next receive */
1301 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1302
1303 if (!rx_queue_lock_held)
1304 spin_unlock(&sk_queue->lock);
1305 }
1306
1307 /* Note: called with reader_queue.lock held.
1308 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1309 * This avoids a cache line miss while receive_queue lock is held.
1310 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1311 */
1312 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1313 {
1314 prefetch(&skb->data);
1315 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1316 }
1317 EXPORT_SYMBOL(udp_skb_destructor);
1318
1319 /* as above, but the caller held the rx queue lock, too */
1320 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1321 {
1322 prefetch(&skb->data);
1323 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1324 }
1325
1326 /* Idea of busylocks is to let producers grab an extra spinlock
1327 * to relieve pressure on the receive_queue spinlock shared by consumer.
1328 * Under flood, this means that only one producer can be in line
1329 * trying to acquire the receive_queue spinlock.
1330 * These busylock can be allocated on a per cpu manner, instead of a
1331 * per socket one (that would consume a cache line per socket)
1332 */
1333 static int udp_busylocks_log __read_mostly;
1334 static spinlock_t *udp_busylocks __read_mostly;
1335
1336 static spinlock_t *busylock_acquire(void *ptr)
1337 {
1338 spinlock_t *busy;
1339
1340 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1341 spin_lock(busy);
1342 return busy;
1343 }
1344
1345 static void busylock_release(spinlock_t *busy)
1346 {
1347 if (busy)
1348 spin_unlock(busy);
1349 }
1350
1351 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1352 {
1353 struct sk_buff_head *list = &sk->sk_receive_queue;
1354 int rmem, delta, amt, err = -ENOMEM;
1355 spinlock_t *busy = NULL;
1356 int size;
1357
1358 /* try to avoid the costly atomic add/sub pair when the receive
1359 * queue is full; always allow at least a packet
1360 */
1361 rmem = atomic_read(&sk->sk_rmem_alloc);
1362 if (rmem > sk->sk_rcvbuf)
1363 goto drop;
1364
1365 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1366 * having linear skbs :
1367 * - Reduce memory overhead and thus increase receive queue capacity
1368 * - Less cache line misses at copyout() time
1369 * - Less work at consume_skb() (less alien page frag freeing)
1370 */
1371 if (rmem > (sk->sk_rcvbuf >> 1)) {
1372 skb_condense(skb);
1373
1374 busy = busylock_acquire(sk);
1375 }
1376 size = skb->truesize;
1377 udp_set_dev_scratch(skb);
1378
1379 /* we drop only if the receive buf is full and the receive
1380 * queue contains some other skb
1381 */
1382 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1383 if (rmem > (size + sk->sk_rcvbuf))
1384 goto uncharge_drop;
1385
1386 spin_lock(&list->lock);
1387 if (size >= sk->sk_forward_alloc) {
1388 amt = sk_mem_pages(size);
1389 delta = amt << SK_MEM_QUANTUM_SHIFT;
1390 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1391 err = -ENOBUFS;
1392 spin_unlock(&list->lock);
1393 goto uncharge_drop;
1394 }
1395
1396 sk->sk_forward_alloc += delta;
1397 }
1398
1399 sk->sk_forward_alloc -= size;
1400
1401 /* no need to setup a destructor, we will explicitly release the
1402 * forward allocated memory on dequeue
1403 */
1404 sock_skb_set_dropcount(sk, skb);
1405
1406 __skb_queue_tail(list, skb);
1407 spin_unlock(&list->lock);
1408
1409 if (!sock_flag(sk, SOCK_DEAD))
1410 sk->sk_data_ready(sk);
1411
1412 busylock_release(busy);
1413 return 0;
1414
1415 uncharge_drop:
1416 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1417
1418 drop:
1419 atomic_inc(&sk->sk_drops);
1420 busylock_release(busy);
1421 return err;
1422 }
1423 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1424
1425 void udp_destruct_sock(struct sock *sk)
1426 {
1427 /* reclaim completely the forward allocated memory */
1428 struct udp_sock *up = udp_sk(sk);
1429 unsigned int total = 0;
1430 struct sk_buff *skb;
1431
1432 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1433 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1434 total += skb->truesize;
1435 kfree_skb(skb);
1436 }
1437 udp_rmem_release(sk, total, 0, true);
1438
1439 inet_sock_destruct(sk);
1440 }
1441 EXPORT_SYMBOL_GPL(udp_destruct_sock);
1442
1443 int udp_init_sock(struct sock *sk)
1444 {
1445 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1446 sk->sk_destruct = udp_destruct_sock;
1447 return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(udp_init_sock);
1450
1451 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1452 {
1453 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1454 bool slow = lock_sock_fast(sk);
1455
1456 sk_peek_offset_bwd(sk, len);
1457 unlock_sock_fast(sk, slow);
1458 }
1459
1460 if (!skb_unref(skb))
1461 return;
1462
1463 /* In the more common cases we cleared the head states previously,
1464 * see __udp_queue_rcv_skb().
1465 */
1466 if (unlikely(udp_skb_has_head_state(skb)))
1467 skb_release_head_state(skb);
1468 __consume_stateless_skb(skb);
1469 }
1470 EXPORT_SYMBOL_GPL(skb_consume_udp);
1471
1472 static struct sk_buff *__first_packet_length(struct sock *sk,
1473 struct sk_buff_head *rcvq,
1474 int *total)
1475 {
1476 struct sk_buff *skb;
1477
1478 while ((skb = skb_peek(rcvq)) != NULL) {
1479 if (udp_lib_checksum_complete(skb)) {
1480 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1481 IS_UDPLITE(sk));
1482 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1483 IS_UDPLITE(sk));
1484 atomic_inc(&sk->sk_drops);
1485 __skb_unlink(skb, rcvq);
1486 *total += skb->truesize;
1487 kfree_skb(skb);
1488 } else {
1489 /* the csum related bits could be changed, refresh
1490 * the scratch area
1491 */
1492 udp_set_dev_scratch(skb);
1493 break;
1494 }
1495 }
1496 return skb;
1497 }
1498
1499 /**
1500 * first_packet_length - return length of first packet in receive queue
1501 * @sk: socket
1502 *
1503 * Drops all bad checksum frames, until a valid one is found.
1504 * Returns the length of found skb, or -1 if none is found.
1505 */
1506 static int first_packet_length(struct sock *sk)
1507 {
1508 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1509 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1510 struct sk_buff *skb;
1511 int total = 0;
1512 int res;
1513
1514 spin_lock_bh(&rcvq->lock);
1515 skb = __first_packet_length(sk, rcvq, &total);
1516 if (!skb && !skb_queue_empty(sk_queue)) {
1517 spin_lock(&sk_queue->lock);
1518 skb_queue_splice_tail_init(sk_queue, rcvq);
1519 spin_unlock(&sk_queue->lock);
1520
1521 skb = __first_packet_length(sk, rcvq, &total);
1522 }
1523 res = skb ? skb->len : -1;
1524 if (total)
1525 udp_rmem_release(sk, total, 1, false);
1526 spin_unlock_bh(&rcvq->lock);
1527 return res;
1528 }
1529
1530 /*
1531 * IOCTL requests applicable to the UDP protocol
1532 */
1533
1534 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1535 {
1536 switch (cmd) {
1537 case SIOCOUTQ:
1538 {
1539 int amount = sk_wmem_alloc_get(sk);
1540
1541 return put_user(amount, (int __user *)arg);
1542 }
1543
1544 case SIOCINQ:
1545 {
1546 int amount = max_t(int, 0, first_packet_length(sk));
1547
1548 return put_user(amount, (int __user *)arg);
1549 }
1550
1551 default:
1552 return -ENOIOCTLCMD;
1553 }
1554
1555 return 0;
1556 }
1557 EXPORT_SYMBOL(udp_ioctl);
1558
1559 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1560 int noblock, int *peeked, int *off, int *err)
1561 {
1562 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1563 struct sk_buff_head *queue;
1564 struct sk_buff *last;
1565 long timeo;
1566 int error;
1567
1568 queue = &udp_sk(sk)->reader_queue;
1569 flags |= noblock ? MSG_DONTWAIT : 0;
1570 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1571 do {
1572 struct sk_buff *skb;
1573
1574 error = sock_error(sk);
1575 if (error)
1576 break;
1577
1578 error = -EAGAIN;
1579 *peeked = 0;
1580 do {
1581 spin_lock_bh(&queue->lock);
1582 skb = __skb_try_recv_from_queue(sk, queue, flags,
1583 udp_skb_destructor,
1584 peeked, off, err,
1585 &last);
1586 if (skb) {
1587 spin_unlock_bh(&queue->lock);
1588 return skb;
1589 }
1590
1591 if (skb_queue_empty(sk_queue)) {
1592 spin_unlock_bh(&queue->lock);
1593 goto busy_check;
1594 }
1595
1596 /* refill the reader queue and walk it again
1597 * keep both queues locked to avoid re-acquiring
1598 * the sk_receive_queue lock if fwd memory scheduling
1599 * is needed.
1600 */
1601 spin_lock(&sk_queue->lock);
1602 skb_queue_splice_tail_init(sk_queue, queue);
1603
1604 skb = __skb_try_recv_from_queue(sk, queue, flags,
1605 udp_skb_dtor_locked,
1606 peeked, off, err,
1607 &last);
1608 spin_unlock(&sk_queue->lock);
1609 spin_unlock_bh(&queue->lock);
1610 if (skb)
1611 return skb;
1612
1613 busy_check:
1614 if (!sk_can_busy_loop(sk))
1615 break;
1616
1617 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1618 } while (!skb_queue_empty(sk_queue));
1619
1620 /* sk_queue is empty, reader_queue may contain peeked packets */
1621 } while (timeo &&
1622 !__skb_wait_for_more_packets(sk, &error, &timeo,
1623 (struct sk_buff *)sk_queue));
1624
1625 *err = error;
1626 return NULL;
1627 }
1628 EXPORT_SYMBOL(__skb_recv_udp);
1629
1630 /*
1631 * This should be easy, if there is something there we
1632 * return it, otherwise we block.
1633 */
1634
1635 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1636 int flags, int *addr_len)
1637 {
1638 struct inet_sock *inet = inet_sk(sk);
1639 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1640 struct sk_buff *skb;
1641 unsigned int ulen, copied;
1642 int peeked, peeking, off;
1643 int err;
1644 int is_udplite = IS_UDPLITE(sk);
1645 bool checksum_valid = false;
1646
1647 if (flags & MSG_ERRQUEUE)
1648 return ip_recv_error(sk, msg, len, addr_len);
1649
1650 try_again:
1651 peeking = flags & MSG_PEEK;
1652 off = sk_peek_offset(sk, flags);
1653 skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1654 if (!skb)
1655 return err;
1656
1657 ulen = udp_skb_len(skb);
1658 copied = len;
1659 if (copied > ulen - off)
1660 copied = ulen - off;
1661 else if (copied < ulen)
1662 msg->msg_flags |= MSG_TRUNC;
1663
1664 /*
1665 * If checksum is needed at all, try to do it while copying the
1666 * data. If the data is truncated, or if we only want a partial
1667 * coverage checksum (UDP-Lite), do it before the copy.
1668 */
1669
1670 if (copied < ulen || peeking ||
1671 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1672 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1673 !__udp_lib_checksum_complete(skb);
1674 if (!checksum_valid)
1675 goto csum_copy_err;
1676 }
1677
1678 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1679 if (udp_skb_is_linear(skb))
1680 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1681 else
1682 err = skb_copy_datagram_msg(skb, off, msg, copied);
1683 } else {
1684 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1685
1686 if (err == -EINVAL)
1687 goto csum_copy_err;
1688 }
1689
1690 if (unlikely(err)) {
1691 if (!peeked) {
1692 atomic_inc(&sk->sk_drops);
1693 UDP_INC_STATS(sock_net(sk),
1694 UDP_MIB_INERRORS, is_udplite);
1695 }
1696 kfree_skb(skb);
1697 return err;
1698 }
1699
1700 if (!peeked)
1701 UDP_INC_STATS(sock_net(sk),
1702 UDP_MIB_INDATAGRAMS, is_udplite);
1703
1704 sock_recv_ts_and_drops(msg, sk, skb);
1705
1706 /* Copy the address. */
1707 if (sin) {
1708 sin->sin_family = AF_INET;
1709 sin->sin_port = udp_hdr(skb)->source;
1710 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1711 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1712 *addr_len = sizeof(*sin);
1713 }
1714
1715 if (udp_sk(sk)->gro_enabled)
1716 udp_cmsg_recv(msg, sk, skb);
1717
1718 if (inet->cmsg_flags)
1719 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1720
1721 err = copied;
1722 if (flags & MSG_TRUNC)
1723 err = ulen;
1724
1725 skb_consume_udp(sk, skb, peeking ? -err : err);
1726 return err;
1727
1728 csum_copy_err:
1729 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1730 udp_skb_destructor)) {
1731 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1732 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1733 }
1734 kfree_skb(skb);
1735
1736 /* starting over for a new packet, but check if we need to yield */
1737 cond_resched();
1738 msg->msg_flags &= ~MSG_TRUNC;
1739 goto try_again;
1740 }
1741
1742 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1743 {
1744 /* This check is replicated from __ip4_datagram_connect() and
1745 * intended to prevent BPF program called below from accessing bytes
1746 * that are out of the bound specified by user in addr_len.
1747 */
1748 if (addr_len < sizeof(struct sockaddr_in))
1749 return -EINVAL;
1750
1751 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1752 }
1753 EXPORT_SYMBOL(udp_pre_connect);
1754
1755 int __udp_disconnect(struct sock *sk, int flags)
1756 {
1757 struct inet_sock *inet = inet_sk(sk);
1758 /*
1759 * 1003.1g - break association.
1760 */
1761
1762 sk->sk_state = TCP_CLOSE;
1763 inet->inet_daddr = 0;
1764 inet->inet_dport = 0;
1765 sock_rps_reset_rxhash(sk);
1766 sk->sk_bound_dev_if = 0;
1767 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1768 inet_reset_saddr(sk);
1769
1770 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1771 sk->sk_prot->unhash(sk);
1772 inet->inet_sport = 0;
1773 }
1774 sk_dst_reset(sk);
1775 return 0;
1776 }
1777 EXPORT_SYMBOL(__udp_disconnect);
1778
1779 int udp_disconnect(struct sock *sk, int flags)
1780 {
1781 lock_sock(sk);
1782 __udp_disconnect(sk, flags);
1783 release_sock(sk);
1784 return 0;
1785 }
1786 EXPORT_SYMBOL(udp_disconnect);
1787
1788 void udp_lib_unhash(struct sock *sk)
1789 {
1790 if (sk_hashed(sk)) {
1791 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1792 struct udp_hslot *hslot, *hslot2;
1793
1794 hslot = udp_hashslot(udptable, sock_net(sk),
1795 udp_sk(sk)->udp_port_hash);
1796 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1797
1798 spin_lock_bh(&hslot->lock);
1799 if (rcu_access_pointer(sk->sk_reuseport_cb))
1800 reuseport_detach_sock(sk);
1801 if (sk_del_node_init_rcu(sk)) {
1802 hslot->count--;
1803 inet_sk(sk)->inet_num = 0;
1804 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1805
1806 spin_lock(&hslot2->lock);
1807 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1808 hslot2->count--;
1809 spin_unlock(&hslot2->lock);
1810 }
1811 spin_unlock_bh(&hslot->lock);
1812 }
1813 }
1814 EXPORT_SYMBOL(udp_lib_unhash);
1815
1816 /*
1817 * inet_rcv_saddr was changed, we must rehash secondary hash
1818 */
1819 void udp_lib_rehash(struct sock *sk, u16 newhash)
1820 {
1821 if (sk_hashed(sk)) {
1822 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1823 struct udp_hslot *hslot, *hslot2, *nhslot2;
1824
1825 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1826 nhslot2 = udp_hashslot2(udptable, newhash);
1827 udp_sk(sk)->udp_portaddr_hash = newhash;
1828
1829 if (hslot2 != nhslot2 ||
1830 rcu_access_pointer(sk->sk_reuseport_cb)) {
1831 hslot = udp_hashslot(udptable, sock_net(sk),
1832 udp_sk(sk)->udp_port_hash);
1833 /* we must lock primary chain too */
1834 spin_lock_bh(&hslot->lock);
1835 if (rcu_access_pointer(sk->sk_reuseport_cb))
1836 reuseport_detach_sock(sk);
1837
1838 if (hslot2 != nhslot2) {
1839 spin_lock(&hslot2->lock);
1840 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1841 hslot2->count--;
1842 spin_unlock(&hslot2->lock);
1843
1844 spin_lock(&nhslot2->lock);
1845 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1846 &nhslot2->head);
1847 nhslot2->count++;
1848 spin_unlock(&nhslot2->lock);
1849 }
1850
1851 spin_unlock_bh(&hslot->lock);
1852 }
1853 }
1854 }
1855 EXPORT_SYMBOL(udp_lib_rehash);
1856
1857 static void udp_v4_rehash(struct sock *sk)
1858 {
1859 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1860 inet_sk(sk)->inet_rcv_saddr,
1861 inet_sk(sk)->inet_num);
1862 udp_lib_rehash(sk, new_hash);
1863 }
1864
1865 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1866 {
1867 int rc;
1868
1869 if (inet_sk(sk)->inet_daddr) {
1870 sock_rps_save_rxhash(sk, skb);
1871 sk_mark_napi_id(sk, skb);
1872 sk_incoming_cpu_update(sk);
1873 } else {
1874 sk_mark_napi_id_once(sk, skb);
1875 }
1876
1877 rc = __udp_enqueue_schedule_skb(sk, skb);
1878 if (rc < 0) {
1879 int is_udplite = IS_UDPLITE(sk);
1880
1881 /* Note that an ENOMEM error is charged twice */
1882 if (rc == -ENOMEM)
1883 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1884 is_udplite);
1885 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1886 kfree_skb(skb);
1887 trace_udp_fail_queue_rcv_skb(rc, sk);
1888 return -1;
1889 }
1890
1891 return 0;
1892 }
1893
1894 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
1895 void udp_encap_enable(void)
1896 {
1897 static_branch_enable(&udp_encap_needed_key);
1898 }
1899 EXPORT_SYMBOL(udp_encap_enable);
1900
1901 /* returns:
1902 * -1: error
1903 * 0: success
1904 * >0: "udp encap" protocol resubmission
1905 *
1906 * Note that in the success and error cases, the skb is assumed to
1907 * have either been requeued or freed.
1908 */
1909 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1910 {
1911 struct udp_sock *up = udp_sk(sk);
1912 int is_udplite = IS_UDPLITE(sk);
1913
1914 /*
1915 * Charge it to the socket, dropping if the queue is full.
1916 */
1917 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1918 goto drop;
1919 nf_reset(skb);
1920
1921 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
1922 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1923
1924 /*
1925 * This is an encapsulation socket so pass the skb to
1926 * the socket's udp_encap_rcv() hook. Otherwise, just
1927 * fall through and pass this up the UDP socket.
1928 * up->encap_rcv() returns the following value:
1929 * =0 if skb was successfully passed to the encap
1930 * handler or was discarded by it.
1931 * >0 if skb should be passed on to UDP.
1932 * <0 if skb should be resubmitted as proto -N
1933 */
1934
1935 /* if we're overly short, let UDP handle it */
1936 encap_rcv = READ_ONCE(up->encap_rcv);
1937 if (encap_rcv) {
1938 int ret;
1939
1940 /* Verify checksum before giving to encap */
1941 if (udp_lib_checksum_complete(skb))
1942 goto csum_error;
1943
1944 ret = encap_rcv(sk, skb);
1945 if (ret <= 0) {
1946 __UDP_INC_STATS(sock_net(sk),
1947 UDP_MIB_INDATAGRAMS,
1948 is_udplite);
1949 return -ret;
1950 }
1951 }
1952
1953 /* FALLTHROUGH -- it's a UDP Packet */
1954 }
1955
1956 /*
1957 * UDP-Lite specific tests, ignored on UDP sockets
1958 */
1959 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1960
1961 /*
1962 * MIB statistics other than incrementing the error count are
1963 * disabled for the following two types of errors: these depend
1964 * on the application settings, not on the functioning of the
1965 * protocol stack as such.
1966 *
1967 * RFC 3828 here recommends (sec 3.3): "There should also be a
1968 * way ... to ... at least let the receiving application block
1969 * delivery of packets with coverage values less than a value
1970 * provided by the application."
1971 */
1972 if (up->pcrlen == 0) { /* full coverage was set */
1973 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1974 UDP_SKB_CB(skb)->cscov, skb->len);
1975 goto drop;
1976 }
1977 /* The next case involves violating the min. coverage requested
1978 * by the receiver. This is subtle: if receiver wants x and x is
1979 * greater than the buffersize/MTU then receiver will complain
1980 * that it wants x while sender emits packets of smaller size y.
1981 * Therefore the above ...()->partial_cov statement is essential.
1982 */
1983 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1984 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1985 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1986 goto drop;
1987 }
1988 }
1989
1990 prefetch(&sk->sk_rmem_alloc);
1991 if (rcu_access_pointer(sk->sk_filter) &&
1992 udp_lib_checksum_complete(skb))
1993 goto csum_error;
1994
1995 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
1996 goto drop;
1997
1998 udp_csum_pull_header(skb);
1999
2000 ipv4_pktinfo_prepare(sk, skb);
2001 return __udp_queue_rcv_skb(sk, skb);
2002
2003 csum_error:
2004 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2005 drop:
2006 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2007 atomic_inc(&sk->sk_drops);
2008 kfree_skb(skb);
2009 return -1;
2010 }
2011
2012 /* For TCP sockets, sk_rx_dst is protected by socket lock
2013 * For UDP, we use xchg() to guard against concurrent changes.
2014 */
2015 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2016 {
2017 struct dst_entry *old;
2018
2019 if (dst_hold_safe(dst)) {
2020 old = xchg(&sk->sk_rx_dst, dst);
2021 dst_release(old);
2022 return old != dst;
2023 }
2024 return false;
2025 }
2026 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2027
2028 /*
2029 * Multicasts and broadcasts go to each listener.
2030 *
2031 * Note: called only from the BH handler context.
2032 */
2033 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2034 struct udphdr *uh,
2035 __be32 saddr, __be32 daddr,
2036 struct udp_table *udptable,
2037 int proto)
2038 {
2039 struct sock *sk, *first = NULL;
2040 unsigned short hnum = ntohs(uh->dest);
2041 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2042 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2043 unsigned int offset = offsetof(typeof(*sk), sk_node);
2044 int dif = skb->dev->ifindex;
2045 int sdif = inet_sdif(skb);
2046 struct hlist_node *node;
2047 struct sk_buff *nskb;
2048
2049 if (use_hash2) {
2050 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2051 udptable->mask;
2052 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2053 start_lookup:
2054 hslot = &udptable->hash2[hash2];
2055 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2056 }
2057
2058 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2059 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2060 uh->source, saddr, dif, sdif, hnum))
2061 continue;
2062
2063 if (!first) {
2064 first = sk;
2065 continue;
2066 }
2067 nskb = skb_clone(skb, GFP_ATOMIC);
2068
2069 if (unlikely(!nskb)) {
2070 atomic_inc(&sk->sk_drops);
2071 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2072 IS_UDPLITE(sk));
2073 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2074 IS_UDPLITE(sk));
2075 continue;
2076 }
2077 if (udp_queue_rcv_skb(sk, nskb) > 0)
2078 consume_skb(nskb);
2079 }
2080
2081 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2082 if (use_hash2 && hash2 != hash2_any) {
2083 hash2 = hash2_any;
2084 goto start_lookup;
2085 }
2086
2087 if (first) {
2088 if (udp_queue_rcv_skb(first, skb) > 0)
2089 consume_skb(skb);
2090 } else {
2091 kfree_skb(skb);
2092 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2093 proto == IPPROTO_UDPLITE);
2094 }
2095 return 0;
2096 }
2097
2098 /* Initialize UDP checksum. If exited with zero value (success),
2099 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2100 * Otherwise, csum completion requires chacksumming packet body,
2101 * including udp header and folding it to skb->csum.
2102 */
2103 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2104 int proto)
2105 {
2106 int err;
2107
2108 UDP_SKB_CB(skb)->partial_cov = 0;
2109 UDP_SKB_CB(skb)->cscov = skb->len;
2110
2111 if (proto == IPPROTO_UDPLITE) {
2112 err = udplite_checksum_init(skb, uh);
2113 if (err)
2114 return err;
2115
2116 if (UDP_SKB_CB(skb)->partial_cov) {
2117 skb->csum = inet_compute_pseudo(skb, proto);
2118 return 0;
2119 }
2120 }
2121
2122 /* Note, we are only interested in != 0 or == 0, thus the
2123 * force to int.
2124 */
2125 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2126 inet_compute_pseudo);
2127 if (err)
2128 return err;
2129
2130 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2131 /* If SW calculated the value, we know it's bad */
2132 if (skb->csum_complete_sw)
2133 return 1;
2134
2135 /* HW says the value is bad. Let's validate that.
2136 * skb->csum is no longer the full packet checksum,
2137 * so don't treat it as such.
2138 */
2139 skb_checksum_complete_unset(skb);
2140 }
2141
2142 return 0;
2143 }
2144
2145 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2146 * return code conversion for ip layer consumption
2147 */
2148 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2149 struct udphdr *uh)
2150 {
2151 int ret;
2152
2153 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2154 skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2155 inet_compute_pseudo);
2156
2157 ret = udp_queue_rcv_skb(sk, skb);
2158
2159 /* a return value > 0 means to resubmit the input, but
2160 * it wants the return to be -protocol, or 0
2161 */
2162 if (ret > 0)
2163 return -ret;
2164 return 0;
2165 }
2166
2167 /*
2168 * All we need to do is get the socket, and then do a checksum.
2169 */
2170
2171 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2172 int proto)
2173 {
2174 struct sock *sk;
2175 struct udphdr *uh;
2176 unsigned short ulen;
2177 struct rtable *rt = skb_rtable(skb);
2178 __be32 saddr, daddr;
2179 struct net *net = dev_net(skb->dev);
2180
2181 /*
2182 * Validate the packet.
2183 */
2184 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2185 goto drop; /* No space for header. */
2186
2187 uh = udp_hdr(skb);
2188 ulen = ntohs(uh->len);
2189 saddr = ip_hdr(skb)->saddr;
2190 daddr = ip_hdr(skb)->daddr;
2191
2192 if (ulen > skb->len)
2193 goto short_packet;
2194
2195 if (proto == IPPROTO_UDP) {
2196 /* UDP validates ulen. */
2197 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2198 goto short_packet;
2199 uh = udp_hdr(skb);
2200 }
2201
2202 if (udp4_csum_init(skb, uh, proto))
2203 goto csum_error;
2204
2205 sk = skb_steal_sock(skb);
2206 if (sk) {
2207 struct dst_entry *dst = skb_dst(skb);
2208 int ret;
2209
2210 if (unlikely(sk->sk_rx_dst != dst))
2211 udp_sk_rx_dst_set(sk, dst);
2212
2213 ret = udp_unicast_rcv_skb(sk, skb, uh);
2214 sock_put(sk);
2215 return ret;
2216 }
2217
2218 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2219 return __udp4_lib_mcast_deliver(net, skb, uh,
2220 saddr, daddr, udptable, proto);
2221
2222 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2223 if (sk)
2224 return udp_unicast_rcv_skb(sk, skb, uh);
2225
2226 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2227 goto drop;
2228 nf_reset(skb);
2229
2230 /* No socket. Drop packet silently, if checksum is wrong */
2231 if (udp_lib_checksum_complete(skb))
2232 goto csum_error;
2233
2234 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2235 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2236
2237 /*
2238 * Hmm. We got an UDP packet to a port to which we
2239 * don't wanna listen. Ignore it.
2240 */
2241 kfree_skb(skb);
2242 return 0;
2243
2244 short_packet:
2245 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2246 proto == IPPROTO_UDPLITE ? "Lite" : "",
2247 &saddr, ntohs(uh->source),
2248 ulen, skb->len,
2249 &daddr, ntohs(uh->dest));
2250 goto drop;
2251
2252 csum_error:
2253 /*
2254 * RFC1122: OK. Discards the bad packet silently (as far as
2255 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2256 */
2257 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2258 proto == IPPROTO_UDPLITE ? "Lite" : "",
2259 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2260 ulen);
2261 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2262 drop:
2263 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2264 kfree_skb(skb);
2265 return 0;
2266 }
2267
2268 /* We can only early demux multicast if there is a single matching socket.
2269 * If more than one socket found returns NULL
2270 */
2271 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2272 __be16 loc_port, __be32 loc_addr,
2273 __be16 rmt_port, __be32 rmt_addr,
2274 int dif, int sdif)
2275 {
2276 struct sock *sk, *result;
2277 unsigned short hnum = ntohs(loc_port);
2278 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2279 struct udp_hslot *hslot = &udp_table.hash[slot];
2280
2281 /* Do not bother scanning a too big list */
2282 if (hslot->count > 10)
2283 return NULL;
2284
2285 result = NULL;
2286 sk_for_each_rcu(sk, &hslot->head) {
2287 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2288 rmt_port, rmt_addr, dif, sdif, hnum)) {
2289 if (result)
2290 return NULL;
2291 result = sk;
2292 }
2293 }
2294
2295 return result;
2296 }
2297
2298 /* For unicast we should only early demux connected sockets or we can
2299 * break forwarding setups. The chains here can be long so only check
2300 * if the first socket is an exact match and if not move on.
2301 */
2302 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2303 __be16 loc_port, __be32 loc_addr,
2304 __be16 rmt_port, __be32 rmt_addr,
2305 int dif, int sdif)
2306 {
2307 unsigned short hnum = ntohs(loc_port);
2308 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2309 unsigned int slot2 = hash2 & udp_table.mask;
2310 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2311 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2312 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2313 struct sock *sk;
2314
2315 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2316 if (INET_MATCH(sk, net, acookie, rmt_addr,
2317 loc_addr, ports, dif, sdif))
2318 return sk;
2319 /* Only check first socket in chain */
2320 break;
2321 }
2322 return NULL;
2323 }
2324
2325 int udp_v4_early_demux(struct sk_buff *skb)
2326 {
2327 struct net *net = dev_net(skb->dev);
2328 struct in_device *in_dev = NULL;
2329 const struct iphdr *iph;
2330 const struct udphdr *uh;
2331 struct sock *sk = NULL;
2332 struct dst_entry *dst;
2333 int dif = skb->dev->ifindex;
2334 int sdif = inet_sdif(skb);
2335 int ours;
2336
2337 /* validate the packet */
2338 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2339 return 0;
2340
2341 iph = ip_hdr(skb);
2342 uh = udp_hdr(skb);
2343
2344 if (skb->pkt_type == PACKET_MULTICAST) {
2345 in_dev = __in_dev_get_rcu(skb->dev);
2346
2347 if (!in_dev)
2348 return 0;
2349
2350 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2351 iph->protocol);
2352 if (!ours)
2353 return 0;
2354
2355 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2356 uh->source, iph->saddr,
2357 dif, sdif);
2358 } else if (skb->pkt_type == PACKET_HOST) {
2359 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2360 uh->source, iph->saddr, dif, sdif);
2361 }
2362
2363 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2364 return 0;
2365
2366 skb->sk = sk;
2367 skb->destructor = sock_efree;
2368 dst = READ_ONCE(sk->sk_rx_dst);
2369
2370 if (dst)
2371 dst = dst_check(dst, 0);
2372 if (dst) {
2373 u32 itag = 0;
2374
2375 /* set noref for now.
2376 * any place which wants to hold dst has to call
2377 * dst_hold_safe()
2378 */
2379 skb_dst_set_noref(skb, dst);
2380
2381 /* for unconnected multicast sockets we need to validate
2382 * the source on each packet
2383 */
2384 if (!inet_sk(sk)->inet_daddr && in_dev)
2385 return ip_mc_validate_source(skb, iph->daddr,
2386 iph->saddr, iph->tos,
2387 skb->dev, in_dev, &itag);
2388 }
2389 return 0;
2390 }
2391
2392 int udp_rcv(struct sk_buff *skb)
2393 {
2394 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2395 }
2396
2397 void udp_destroy_sock(struct sock *sk)
2398 {
2399 struct udp_sock *up = udp_sk(sk);
2400 bool slow = lock_sock_fast(sk);
2401 udp_flush_pending_frames(sk);
2402 unlock_sock_fast(sk, slow);
2403 if (static_branch_unlikely(&udp_encap_needed_key)) {
2404 if (up->encap_type) {
2405 void (*encap_destroy)(struct sock *sk);
2406 encap_destroy = READ_ONCE(up->encap_destroy);
2407 if (encap_destroy)
2408 encap_destroy(sk);
2409 }
2410 if (up->encap_enabled)
2411 static_branch_disable(&udp_encap_needed_key);
2412 }
2413 }
2414
2415 /*
2416 * Socket option code for UDP
2417 */
2418 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2419 char __user *optval, unsigned int optlen,
2420 int (*push_pending_frames)(struct sock *))
2421 {
2422 struct udp_sock *up = udp_sk(sk);
2423 int val, valbool;
2424 int err = 0;
2425 int is_udplite = IS_UDPLITE(sk);
2426
2427 if (optlen < sizeof(int))
2428 return -EINVAL;
2429
2430 if (get_user(val, (int __user *)optval))
2431 return -EFAULT;
2432
2433 valbool = val ? 1 : 0;
2434
2435 switch (optname) {
2436 case UDP_CORK:
2437 if (val != 0) {
2438 up->corkflag = 1;
2439 } else {
2440 up->corkflag = 0;
2441 lock_sock(sk);
2442 push_pending_frames(sk);
2443 release_sock(sk);
2444 }
2445 break;
2446
2447 case UDP_ENCAP:
2448 switch (val) {
2449 case 0:
2450 case UDP_ENCAP_ESPINUDP:
2451 case UDP_ENCAP_ESPINUDP_NON_IKE:
2452 up->encap_rcv = xfrm4_udp_encap_rcv;
2453 /* FALLTHROUGH */
2454 case UDP_ENCAP_L2TPINUDP:
2455 up->encap_type = val;
2456 lock_sock(sk);
2457 udp_tunnel_encap_enable(sk->sk_socket);
2458 release_sock(sk);
2459 break;
2460 default:
2461 err = -ENOPROTOOPT;
2462 break;
2463 }
2464 break;
2465
2466 case UDP_NO_CHECK6_TX:
2467 up->no_check6_tx = valbool;
2468 break;
2469
2470 case UDP_NO_CHECK6_RX:
2471 up->no_check6_rx = valbool;
2472 break;
2473
2474 case UDP_SEGMENT:
2475 if (val < 0 || val > USHRT_MAX)
2476 return -EINVAL;
2477 up->gso_size = val;
2478 break;
2479
2480 case UDP_GRO:
2481 lock_sock(sk);
2482 if (valbool)
2483 udp_tunnel_encap_enable(sk->sk_socket);
2484 up->gro_enabled = valbool;
2485 release_sock(sk);
2486 break;
2487
2488 /*
2489 * UDP-Lite's partial checksum coverage (RFC 3828).
2490 */
2491 /* The sender sets actual checksum coverage length via this option.
2492 * The case coverage > packet length is handled by send module. */
2493 case UDPLITE_SEND_CSCOV:
2494 if (!is_udplite) /* Disable the option on UDP sockets */
2495 return -ENOPROTOOPT;
2496 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2497 val = 8;
2498 else if (val > USHRT_MAX)
2499 val = USHRT_MAX;
2500 up->pcslen = val;
2501 up->pcflag |= UDPLITE_SEND_CC;
2502 break;
2503
2504 /* The receiver specifies a minimum checksum coverage value. To make
2505 * sense, this should be set to at least 8 (as done below). If zero is
2506 * used, this again means full checksum coverage. */
2507 case UDPLITE_RECV_CSCOV:
2508 if (!is_udplite) /* Disable the option on UDP sockets */
2509 return -ENOPROTOOPT;
2510 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2511 val = 8;
2512 else if (val > USHRT_MAX)
2513 val = USHRT_MAX;
2514 up->pcrlen = val;
2515 up->pcflag |= UDPLITE_RECV_CC;
2516 break;
2517
2518 default:
2519 err = -ENOPROTOOPT;
2520 break;
2521 }
2522
2523 return err;
2524 }
2525 EXPORT_SYMBOL(udp_lib_setsockopt);
2526
2527 int udp_setsockopt(struct sock *sk, int level, int optname,
2528 char __user *optval, unsigned int optlen)
2529 {
2530 if (level == SOL_UDP || level == SOL_UDPLITE)
2531 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2532 udp_push_pending_frames);
2533 return ip_setsockopt(sk, level, optname, optval, optlen);
2534 }
2535
2536 #ifdef CONFIG_COMPAT
2537 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2538 char __user *optval, unsigned int optlen)
2539 {
2540 if (level == SOL_UDP || level == SOL_UDPLITE)
2541 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2542 udp_push_pending_frames);
2543 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2544 }
2545 #endif
2546
2547 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2548 char __user *optval, int __user *optlen)
2549 {
2550 struct udp_sock *up = udp_sk(sk);
2551 int val, len;
2552
2553 if (get_user(len, optlen))
2554 return -EFAULT;
2555
2556 len = min_t(unsigned int, len, sizeof(int));
2557
2558 if (len < 0)
2559 return -EINVAL;
2560
2561 switch (optname) {
2562 case UDP_CORK:
2563 val = up->corkflag;
2564 break;
2565
2566 case UDP_ENCAP:
2567 val = up->encap_type;
2568 break;
2569
2570 case UDP_NO_CHECK6_TX:
2571 val = up->no_check6_tx;
2572 break;
2573
2574 case UDP_NO_CHECK6_RX:
2575 val = up->no_check6_rx;
2576 break;
2577
2578 case UDP_SEGMENT:
2579 val = up->gso_size;
2580 break;
2581
2582 /* The following two cannot be changed on UDP sockets, the return is
2583 * always 0 (which corresponds to the full checksum coverage of UDP). */
2584 case UDPLITE_SEND_CSCOV:
2585 val = up->pcslen;
2586 break;
2587
2588 case UDPLITE_RECV_CSCOV:
2589 val = up->pcrlen;
2590 break;
2591
2592 default:
2593 return -ENOPROTOOPT;
2594 }
2595
2596 if (put_user(len, optlen))
2597 return -EFAULT;
2598 if (copy_to_user(optval, &val, len))
2599 return -EFAULT;
2600 return 0;
2601 }
2602 EXPORT_SYMBOL(udp_lib_getsockopt);
2603
2604 int udp_getsockopt(struct sock *sk, int level, int optname,
2605 char __user *optval, int __user *optlen)
2606 {
2607 if (level == SOL_UDP || level == SOL_UDPLITE)
2608 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2609 return ip_getsockopt(sk, level, optname, optval, optlen);
2610 }
2611
2612 #ifdef CONFIG_COMPAT
2613 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2614 char __user *optval, int __user *optlen)
2615 {
2616 if (level == SOL_UDP || level == SOL_UDPLITE)
2617 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2618 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2619 }
2620 #endif
2621 /**
2622 * udp_poll - wait for a UDP event.
2623 * @file - file struct
2624 * @sock - socket
2625 * @wait - poll table
2626 *
2627 * This is same as datagram poll, except for the special case of
2628 * blocking sockets. If application is using a blocking fd
2629 * and a packet with checksum error is in the queue;
2630 * then it could get return from select indicating data available
2631 * but then block when reading it. Add special case code
2632 * to work around these arguably broken applications.
2633 */
2634 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2635 {
2636 __poll_t mask = datagram_poll(file, sock, wait);
2637 struct sock *sk = sock->sk;
2638
2639 if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2640 mask |= EPOLLIN | EPOLLRDNORM;
2641
2642 /* Check for false positives due to checksum errors */
2643 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2644 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2645 mask &= ~(EPOLLIN | EPOLLRDNORM);
2646
2647 return mask;
2648
2649 }
2650 EXPORT_SYMBOL(udp_poll);
2651
2652 int udp_abort(struct sock *sk, int err)
2653 {
2654 lock_sock(sk);
2655
2656 sk->sk_err = err;
2657 sk->sk_error_report(sk);
2658 __udp_disconnect(sk, 0);
2659
2660 release_sock(sk);
2661
2662 return 0;
2663 }
2664 EXPORT_SYMBOL_GPL(udp_abort);
2665
2666 struct proto udp_prot = {
2667 .name = "UDP",
2668 .owner = THIS_MODULE,
2669 .close = udp_lib_close,
2670 .pre_connect = udp_pre_connect,
2671 .connect = ip4_datagram_connect,
2672 .disconnect = udp_disconnect,
2673 .ioctl = udp_ioctl,
2674 .init = udp_init_sock,
2675 .destroy = udp_destroy_sock,
2676 .setsockopt = udp_setsockopt,
2677 .getsockopt = udp_getsockopt,
2678 .sendmsg = udp_sendmsg,
2679 .recvmsg = udp_recvmsg,
2680 .sendpage = udp_sendpage,
2681 .release_cb = ip4_datagram_release_cb,
2682 .hash = udp_lib_hash,
2683 .unhash = udp_lib_unhash,
2684 .rehash = udp_v4_rehash,
2685 .get_port = udp_v4_get_port,
2686 .memory_allocated = &udp_memory_allocated,
2687 .sysctl_mem = sysctl_udp_mem,
2688 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2689 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2690 .obj_size = sizeof(struct udp_sock),
2691 .h.udp_table = &udp_table,
2692 #ifdef CONFIG_COMPAT
2693 .compat_setsockopt = compat_udp_setsockopt,
2694 .compat_getsockopt = compat_udp_getsockopt,
2695 #endif
2696 .diag_destroy = udp_abort,
2697 };
2698 EXPORT_SYMBOL(udp_prot);
2699
2700 /* ------------------------------------------------------------------------ */
2701 #ifdef CONFIG_PROC_FS
2702
2703 static struct sock *udp_get_first(struct seq_file *seq, int start)
2704 {
2705 struct sock *sk;
2706 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2707 struct udp_iter_state *state = seq->private;
2708 struct net *net = seq_file_net(seq);
2709
2710 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2711 ++state->bucket) {
2712 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2713
2714 if (hlist_empty(&hslot->head))
2715 continue;
2716
2717 spin_lock_bh(&hslot->lock);
2718 sk_for_each(sk, &hslot->head) {
2719 if (!net_eq(sock_net(sk), net))
2720 continue;
2721 if (sk->sk_family == afinfo->family)
2722 goto found;
2723 }
2724 spin_unlock_bh(&hslot->lock);
2725 }
2726 sk = NULL;
2727 found:
2728 return sk;
2729 }
2730
2731 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2732 {
2733 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2734 struct udp_iter_state *state = seq->private;
2735 struct net *net = seq_file_net(seq);
2736
2737 do {
2738 sk = sk_next(sk);
2739 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != afinfo->family));
2740
2741 if (!sk) {
2742 if (state->bucket <= afinfo->udp_table->mask)
2743 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2744 return udp_get_first(seq, state->bucket + 1);
2745 }
2746 return sk;
2747 }
2748
2749 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2750 {
2751 struct sock *sk = udp_get_first(seq, 0);
2752
2753 if (sk)
2754 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2755 --pos;
2756 return pos ? NULL : sk;
2757 }
2758
2759 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2760 {
2761 struct udp_iter_state *state = seq->private;
2762 state->bucket = MAX_UDP_PORTS;
2763
2764 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2765 }
2766 EXPORT_SYMBOL(udp_seq_start);
2767
2768 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2769 {
2770 struct sock *sk;
2771
2772 if (v == SEQ_START_TOKEN)
2773 sk = udp_get_idx(seq, 0);
2774 else
2775 sk = udp_get_next(seq, v);
2776
2777 ++*pos;
2778 return sk;
2779 }
2780 EXPORT_SYMBOL(udp_seq_next);
2781
2782 void udp_seq_stop(struct seq_file *seq, void *v)
2783 {
2784 struct udp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file));
2785 struct udp_iter_state *state = seq->private;
2786
2787 if (state->bucket <= afinfo->udp_table->mask)
2788 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2789 }
2790 EXPORT_SYMBOL(udp_seq_stop);
2791
2792 /* ------------------------------------------------------------------------ */
2793 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2794 int bucket)
2795 {
2796 struct inet_sock *inet = inet_sk(sp);
2797 __be32 dest = inet->inet_daddr;
2798 __be32 src = inet->inet_rcv_saddr;
2799 __u16 destp = ntohs(inet->inet_dport);
2800 __u16 srcp = ntohs(inet->inet_sport);
2801
2802 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2803 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2804 bucket, src, srcp, dest, destp, sp->sk_state,
2805 sk_wmem_alloc_get(sp),
2806 udp_rqueue_get(sp),
2807 0, 0L, 0,
2808 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2809 0, sock_i_ino(sp),
2810 refcount_read(&sp->sk_refcnt), sp,
2811 atomic_read(&sp->sk_drops));
2812 }
2813
2814 int udp4_seq_show(struct seq_file *seq, void *v)
2815 {
2816 seq_setwidth(seq, 127);
2817 if (v == SEQ_START_TOKEN)
2818 seq_puts(seq, " sl local_address rem_address st tx_queue "
2819 "rx_queue tr tm->when retrnsmt uid timeout "
2820 "inode ref pointer drops");
2821 else {
2822 struct udp_iter_state *state = seq->private;
2823
2824 udp4_format_sock(v, seq, state->bucket);
2825 }
2826 seq_pad(seq, '\n');
2827 return 0;
2828 }
2829
2830 const struct seq_operations udp_seq_ops = {
2831 .start = udp_seq_start,
2832 .next = udp_seq_next,
2833 .stop = udp_seq_stop,
2834 .show = udp4_seq_show,
2835 };
2836 EXPORT_SYMBOL(udp_seq_ops);
2837
2838 static struct udp_seq_afinfo udp4_seq_afinfo = {
2839 .family = AF_INET,
2840 .udp_table = &udp_table,
2841 };
2842
2843 static int __net_init udp4_proc_init_net(struct net *net)
2844 {
2845 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
2846 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
2847 return -ENOMEM;
2848 return 0;
2849 }
2850
2851 static void __net_exit udp4_proc_exit_net(struct net *net)
2852 {
2853 remove_proc_entry("udp", net->proc_net);
2854 }
2855
2856 static struct pernet_operations udp4_net_ops = {
2857 .init = udp4_proc_init_net,
2858 .exit = udp4_proc_exit_net,
2859 };
2860
2861 int __init udp4_proc_init(void)
2862 {
2863 return register_pernet_subsys(&udp4_net_ops);
2864 }
2865
2866 void udp4_proc_exit(void)
2867 {
2868 unregister_pernet_subsys(&udp4_net_ops);
2869 }
2870 #endif /* CONFIG_PROC_FS */
2871
2872 static __initdata unsigned long uhash_entries;
2873 static int __init set_uhash_entries(char *str)
2874 {
2875 ssize_t ret;
2876
2877 if (!str)
2878 return 0;
2879
2880 ret = kstrtoul(str, 0, &uhash_entries);
2881 if (ret)
2882 return 0;
2883
2884 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2885 uhash_entries = UDP_HTABLE_SIZE_MIN;
2886 return 1;
2887 }
2888 __setup("uhash_entries=", set_uhash_entries);
2889
2890 void __init udp_table_init(struct udp_table *table, const char *name)
2891 {
2892 unsigned int i;
2893
2894 table->hash = alloc_large_system_hash(name,
2895 2 * sizeof(struct udp_hslot),
2896 uhash_entries,
2897 21, /* one slot per 2 MB */
2898 0,
2899 &table->log,
2900 &table->mask,
2901 UDP_HTABLE_SIZE_MIN,
2902 64 * 1024);
2903
2904 table->hash2 = table->hash + (table->mask + 1);
2905 for (i = 0; i <= table->mask; i++) {
2906 INIT_HLIST_HEAD(&table->hash[i].head);
2907 table->hash[i].count = 0;
2908 spin_lock_init(&table->hash[i].lock);
2909 }
2910 for (i = 0; i <= table->mask; i++) {
2911 INIT_HLIST_HEAD(&table->hash2[i].head);
2912 table->hash2[i].count = 0;
2913 spin_lock_init(&table->hash2[i].lock);
2914 }
2915 }
2916
2917 u32 udp_flow_hashrnd(void)
2918 {
2919 static u32 hashrnd __read_mostly;
2920
2921 net_get_random_once(&hashrnd, sizeof(hashrnd));
2922
2923 return hashrnd;
2924 }
2925 EXPORT_SYMBOL(udp_flow_hashrnd);
2926
2927 static void __udp_sysctl_init(struct net *net)
2928 {
2929 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2930 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2931
2932 #ifdef CONFIG_NET_L3_MASTER_DEV
2933 net->ipv4.sysctl_udp_l3mdev_accept = 0;
2934 #endif
2935 }
2936
2937 static int __net_init udp_sysctl_init(struct net *net)
2938 {
2939 __udp_sysctl_init(net);
2940 return 0;
2941 }
2942
2943 static struct pernet_operations __net_initdata udp_sysctl_ops = {
2944 .init = udp_sysctl_init,
2945 };
2946
2947 void __init udp_init(void)
2948 {
2949 unsigned long limit;
2950 unsigned int i;
2951
2952 udp_table_init(&udp_table, "UDP");
2953 limit = nr_free_buffer_pages() / 8;
2954 limit = max(limit, 128UL);
2955 sysctl_udp_mem[0] = limit / 4 * 3;
2956 sysctl_udp_mem[1] = limit;
2957 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2958
2959 __udp_sysctl_init(&init_net);
2960
2961 /* 16 spinlocks per cpu */
2962 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2963 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2964 GFP_KERNEL);
2965 if (!udp_busylocks)
2966 panic("UDP: failed to alloc udp_busylocks\n");
2967 for (i = 0; i < (1U << udp_busylocks_log); i++)
2968 spin_lock_init(udp_busylocks + i);
2969
2970 if (register_pernet_subsys(&udp_sysctl_ops))
2971 panic("UDP: failed to init sysctl parameters.\n");
2972 }