]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv4/udp.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk,
138 int (*saddr_comp)(const struct sock *sk1,
139 const struct sock *sk2),
140 unsigned int log)
141 {
142 struct sock *sk2;
143 struct hlist_nulls_node *node;
144 kuid_t uid = sock_i_uid(sk);
145
146 sk_nulls_for_each(sk2, node, &hslot->head)
147 if (net_eq(sock_net(sk2), net) &&
148 sk2 != sk &&
149 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 (!sk2->sk_reuse || !sk->sk_reuse) &&
151 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 !uid_eq(uid, sock_i_uid(sk2))) &&
155 (*saddr_comp)(sk, sk2)) {
156 if (bitmap)
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 else
160 return 1;
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 (*saddr_comp)(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 spin_unlock(&hslot2->lock);
195 return res;
196 }
197
198 /**
199 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
200 *
201 * @sk: socket struct in question
202 * @snum: port number to look up
203 * @saddr_comp: AF-dependent comparison of bound local IP addresses
204 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205 * with NULL address
206 */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 int (*saddr_comp)(const struct sock *sk1,
209 const struct sock *sk2),
210 unsigned int hash2_nulladdr)
211 {
212 struct udp_hslot *hslot, *hslot2;
213 struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 int error = 1;
215 struct net *net = sock_net(sk);
216
217 if (!snum) {
218 int low, high, remaining;
219 unsigned int rand;
220 unsigned short first, last;
221 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222
223 inet_get_local_port_range(net, &low, &high);
224 remaining = (high - low) + 1;
225
226 rand = prandom_u32();
227 first = (((u64)rand * remaining) >> 32) + low;
228 /*
229 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 */
231 rand = (rand | 1) * (udptable->mask + 1);
232 last = first + udptable->mask + 1;
233 do {
234 hslot = udp_hashslot(udptable, net, first);
235 bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 spin_lock_bh(&hslot->lock);
237 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 saddr_comp, udptable->log);
239
240 snum = first;
241 /*
242 * Iterate on all possible values of snum for this hash.
243 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 * give us randomization and full range coverage.
245 */
246 do {
247 if (low <= snum && snum <= high &&
248 !test_bit(snum >> udptable->log, bitmap) &&
249 !inet_is_local_reserved_port(net, snum))
250 goto found;
251 snum += rand;
252 } while (snum != first);
253 spin_unlock_bh(&hslot->lock);
254 } while (++first != last);
255 goto fail;
256 } else {
257 hslot = udp_hashslot(udptable, net, snum);
258 spin_lock_bh(&hslot->lock);
259 if (hslot->count > 10) {
260 int exist;
261 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262
263 slot2 &= udptable->mask;
264 hash2_nulladdr &= udptable->mask;
265
266 hslot2 = udp_hashslot2(udptable, slot2);
267 if (hslot->count < hslot2->count)
268 goto scan_primary_hash;
269
270 exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 sk, saddr_comp);
272 if (!exist && (hash2_nulladdr != slot2)) {
273 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 sk, saddr_comp);
276 }
277 if (exist)
278 goto fail_unlock;
279 else
280 goto found;
281 }
282 scan_primary_hash:
283 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 saddr_comp, 0))
285 goto fail_unlock;
286 }
287 found:
288 inet_sk(sk)->inet_num = snum;
289 udp_sk(sk)->udp_port_hash = snum;
290 udp_sk(sk)->udp_portaddr_hash ^= snum;
291 if (sk_unhashed(sk)) {
292 sk_nulls_add_node_rcu(sk, &hslot->head);
293 hslot->count++;
294 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295
296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 spin_lock(&hslot2->lock);
298 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 &hslot2->head);
300 hslot2->count++;
301 spin_unlock(&hslot2->lock);
302 }
303 error = 0;
304 fail_unlock:
305 spin_unlock_bh(&hslot->lock);
306 fail:
307 return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314
315 return (!ipv6_only_sock(sk2) &&
316 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 unsigned int port)
322 {
323 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 unsigned int hash2_nulladdr =
329 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 unsigned int hash2_partial =
331 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332
333 /* precompute partial secondary hash */
334 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 unsigned short hnum,
340 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 int score = -1;
343
344 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 !ipv6_only_sock(sk)) {
346 struct inet_sock *inet = inet_sk(sk);
347
348 score = (sk->sk_family == PF_INET ? 2 : 1);
349 if (inet->inet_rcv_saddr) {
350 if (inet->inet_rcv_saddr != daddr)
351 return -1;
352 score += 4;
353 }
354 if (inet->inet_daddr) {
355 if (inet->inet_daddr != saddr)
356 return -1;
357 score += 4;
358 }
359 if (inet->inet_dport) {
360 if (inet->inet_dport != sport)
361 return -1;
362 score += 4;
363 }
364 if (sk->sk_bound_dev_if) {
365 if (sk->sk_bound_dev_if != dif)
366 return -1;
367 score += 4;
368 }
369 }
370 return score;
371 }
372
373 /*
374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375 */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 __be32 saddr, __be16 sport,
378 __be32 daddr, unsigned int hnum, int dif)
379 {
380 int score = -1;
381
382 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 struct inet_sock *inet = inet_sk(sk);
384
385 if (inet->inet_rcv_saddr != daddr)
386 return -1;
387 if (inet->inet_num != hnum)
388 return -1;
389
390 score = (sk->sk_family == PF_INET ? 2 : 1);
391 if (inet->inet_daddr) {
392 if (inet->inet_daddr != saddr)
393 return -1;
394 score += 4;
395 }
396 if (inet->inet_dport) {
397 if (inet->inet_dport != sport)
398 return -1;
399 score += 4;
400 }
401 if (sk->sk_bound_dev_if) {
402 if (sk->sk_bound_dev_if != dif)
403 return -1;
404 score += 4;
405 }
406 }
407 return score;
408 }
409
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 const __u16 lport, const __be32 faddr,
412 const __be16 fport)
413 {
414 static u32 udp_ehash_secret __read_mostly;
415
416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417
418 return __inet_ehashfn(laddr, lport, faddr, fport,
419 udp_ehash_secret + net_hash_mix(net));
420 }
421
422
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 __be32 saddr, __be16 sport,
426 __be32 daddr, unsigned int hnum, int dif,
427 struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 struct sock *sk, *result;
430 struct hlist_nulls_node *node;
431 int score, badness, matches = 0, reuseport = 0;
432 u32 hash = 0;
433
434 begin:
435 result = NULL;
436 badness = 0;
437 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 score = compute_score2(sk, net, saddr, sport,
439 daddr, hnum, dif);
440 if (score > badness) {
441 result = sk;
442 badness = score;
443 reuseport = sk->sk_reuseport;
444 if (reuseport) {
445 hash = udp_ehashfn(net, daddr, hnum,
446 saddr, sport);
447 matches = 1;
448 }
449 } else if (score == badness && reuseport) {
450 matches++;
451 if (((u64)hash * matches) >> 32 == 0)
452 result = sk;
453 hash = next_pseudo_random32(hash);
454 }
455 }
456 /*
457 * if the nulls value we got at the end of this lookup is
458 * not the expected one, we must restart lookup.
459 * We probably met an item that was moved to another chain.
460 */
461 if (get_nulls_value(node) != slot2)
462 goto begin;
463 if (result) {
464 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 result = NULL;
466 else if (unlikely(compute_score2(result, net, saddr, sport,
467 daddr, hnum, dif) < badness)) {
468 sock_put(result);
469 goto begin;
470 }
471 }
472 return result;
473 }
474
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476 * harder than this. -DaveM
477 */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 __be16 sport, __be32 daddr, __be16 dport,
480 int dif, struct udp_table *udptable)
481 {
482 struct sock *sk, *result;
483 struct hlist_nulls_node *node;
484 unsigned short hnum = ntohs(dport);
485 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 int score, badness, matches = 0, reuseport = 0;
488 u32 hash = 0;
489
490 rcu_read_lock();
491 if (hslot->count > 10) {
492 hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 slot2 = hash2 & udptable->mask;
494 hslot2 = &udptable->hash2[slot2];
495 if (hslot->count < hslot2->count)
496 goto begin;
497
498 result = udp4_lib_lookup2(net, saddr, sport,
499 daddr, hnum, dif,
500 hslot2, slot2);
501 if (!result) {
502 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 slot2 = hash2 & udptable->mask;
504 hslot2 = &udptable->hash2[slot2];
505 if (hslot->count < hslot2->count)
506 goto begin;
507
508 result = udp4_lib_lookup2(net, saddr, sport,
509 htonl(INADDR_ANY), hnum, dif,
510 hslot2, slot2);
511 }
512 rcu_read_unlock();
513 return result;
514 }
515 begin:
516 result = NULL;
517 badness = 0;
518 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 score = compute_score(sk, net, saddr, hnum, sport,
520 daddr, dport, dif);
521 if (score > badness) {
522 result = sk;
523 badness = score;
524 reuseport = sk->sk_reuseport;
525 if (reuseport) {
526 hash = udp_ehashfn(net, daddr, hnum,
527 saddr, sport);
528 matches = 1;
529 }
530 } else if (score == badness && reuseport) {
531 matches++;
532 if (((u64)hash * matches) >> 32 == 0)
533 result = sk;
534 hash = next_pseudo_random32(hash);
535 }
536 }
537 /*
538 * if the nulls value we got at the end of this lookup is
539 * not the expected one, we must restart lookup.
540 * We probably met an item that was moved to another chain.
541 */
542 if (get_nulls_value(node) != slot)
543 goto begin;
544
545 if (result) {
546 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 result = NULL;
548 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 daddr, dport, dif) < badness)) {
550 sock_put(result);
551 goto begin;
552 }
553 }
554 rcu_read_unlock();
555 return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 __be16 sport, __be16 dport,
561 struct udp_table *udptable)
562 {
563 const struct iphdr *iph = ip_hdr(skb);
564
565 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 iph->daddr, dport, inet_iif(skb),
567 udptable);
568 }
569
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 __be32 daddr, __be16 dport, int dif)
572 {
573 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 __be16 loc_port, __be32 loc_addr,
579 __be16 rmt_port, __be32 rmt_addr,
580 int dif, unsigned short hnum)
581 {
582 struct inet_sock *inet = inet_sk(sk);
583
584 if (!net_eq(sock_net(sk), net) ||
585 udp_sk(sk)->udp_port_hash != hnum ||
586 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 ipv6_only_sock(sk) ||
590 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 return false;
592 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 return false;
594 return true;
595 }
596
597 /*
598 * This routine is called by the ICMP module when it gets some
599 * sort of error condition. If err < 0 then the socket should
600 * be closed and the error returned to the user. If err > 0
601 * it's just the icmp type << 8 | icmp code.
602 * Header points to the ip header of the error packet. We move
603 * on past this. Then (as it used to claim before adjustment)
604 * header points to the first 8 bytes of the udp header. We need
605 * to find the appropriate port.
606 */
607
608 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
609 {
610 struct inet_sock *inet;
611 const struct iphdr *iph = (const struct iphdr *)skb->data;
612 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
613 const int type = icmp_hdr(skb)->type;
614 const int code = icmp_hdr(skb)->code;
615 struct sock *sk;
616 int harderr;
617 int err;
618 struct net *net = dev_net(skb->dev);
619
620 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
621 iph->saddr, uh->source, skb->dev->ifindex, udptable);
622 if (sk == NULL) {
623 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
624 return; /* No socket for error */
625 }
626
627 err = 0;
628 harderr = 0;
629 inet = inet_sk(sk);
630
631 switch (type) {
632 default:
633 case ICMP_TIME_EXCEEDED:
634 err = EHOSTUNREACH;
635 break;
636 case ICMP_SOURCE_QUENCH:
637 goto out;
638 case ICMP_PARAMETERPROB:
639 err = EPROTO;
640 harderr = 1;
641 break;
642 case ICMP_DEST_UNREACH:
643 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
644 ipv4_sk_update_pmtu(skb, sk, info);
645 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
646 err = EMSGSIZE;
647 harderr = 1;
648 break;
649 }
650 goto out;
651 }
652 err = EHOSTUNREACH;
653 if (code <= NR_ICMP_UNREACH) {
654 harderr = icmp_err_convert[code].fatal;
655 err = icmp_err_convert[code].errno;
656 }
657 break;
658 case ICMP_REDIRECT:
659 ipv4_sk_redirect(skb, sk);
660 goto out;
661 }
662
663 /*
664 * RFC1122: OK. Passes ICMP errors back to application, as per
665 * 4.1.3.3.
666 */
667 if (!inet->recverr) {
668 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
669 goto out;
670 } else
671 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
672
673 sk->sk_err = err;
674 sk->sk_error_report(sk);
675 out:
676 sock_put(sk);
677 }
678
679 void udp_err(struct sk_buff *skb, u32 info)
680 {
681 __udp4_lib_err(skb, info, &udp_table);
682 }
683
684 /*
685 * Throw away all pending data and cancel the corking. Socket is locked.
686 */
687 void udp_flush_pending_frames(struct sock *sk)
688 {
689 struct udp_sock *up = udp_sk(sk);
690
691 if (up->pending) {
692 up->len = 0;
693 up->pending = 0;
694 ip_flush_pending_frames(sk);
695 }
696 }
697 EXPORT_SYMBOL(udp_flush_pending_frames);
698
699 /**
700 * udp4_hwcsum - handle outgoing HW checksumming
701 * @skb: sk_buff containing the filled-in UDP header
702 * (checksum field must be zeroed out)
703 * @src: source IP address
704 * @dst: destination IP address
705 */
706 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
707 {
708 struct udphdr *uh = udp_hdr(skb);
709 int offset = skb_transport_offset(skb);
710 int len = skb->len - offset;
711 int hlen = len;
712 __wsum csum = 0;
713
714 if (!skb_has_frag_list(skb)) {
715 /*
716 * Only one fragment on the socket.
717 */
718 skb->csum_start = skb_transport_header(skb) - skb->head;
719 skb->csum_offset = offsetof(struct udphdr, check);
720 uh->check = ~csum_tcpudp_magic(src, dst, len,
721 IPPROTO_UDP, 0);
722 } else {
723 struct sk_buff *frags;
724
725 /*
726 * HW-checksum won't work as there are two or more
727 * fragments on the socket so that all csums of sk_buffs
728 * should be together
729 */
730 skb_walk_frags(skb, frags) {
731 csum = csum_add(csum, frags->csum);
732 hlen -= frags->len;
733 }
734
735 csum = skb_checksum(skb, offset, hlen, csum);
736 skb->ip_summed = CHECKSUM_NONE;
737
738 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
739 if (uh->check == 0)
740 uh->check = CSUM_MANGLED_0;
741 }
742 }
743 EXPORT_SYMBOL_GPL(udp4_hwcsum);
744
745 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
746 * for the simple case like when setting the checksum for a UDP tunnel.
747 */
748 void udp_set_csum(bool nocheck, struct sk_buff *skb,
749 __be32 saddr, __be32 daddr, int len)
750 {
751 struct udphdr *uh = udp_hdr(skb);
752
753 if (nocheck)
754 uh->check = 0;
755 else if (skb_is_gso(skb))
756 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
757 else if (skb_dst(skb) && skb_dst(skb)->dev &&
758 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
759
760 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
761
762 skb->ip_summed = CHECKSUM_PARTIAL;
763 skb->csum_start = skb_transport_header(skb) - skb->head;
764 skb->csum_offset = offsetof(struct udphdr, check);
765 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
766 } else {
767 __wsum csum;
768
769 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
770
771 uh->check = 0;
772 csum = skb_checksum(skb, 0, len, 0);
773 uh->check = udp_v4_check(len, saddr, daddr, csum);
774 if (uh->check == 0)
775 uh->check = CSUM_MANGLED_0;
776
777 skb->ip_summed = CHECKSUM_UNNECESSARY;
778 }
779 }
780 EXPORT_SYMBOL(udp_set_csum);
781
782 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
783 {
784 struct sock *sk = skb->sk;
785 struct inet_sock *inet = inet_sk(sk);
786 struct udphdr *uh;
787 int err = 0;
788 int is_udplite = IS_UDPLITE(sk);
789 int offset = skb_transport_offset(skb);
790 int len = skb->len - offset;
791 __wsum csum = 0;
792
793 /*
794 * Create a UDP header
795 */
796 uh = udp_hdr(skb);
797 uh->source = inet->inet_sport;
798 uh->dest = fl4->fl4_dport;
799 uh->len = htons(len);
800 uh->check = 0;
801
802 if (is_udplite) /* UDP-Lite */
803 csum = udplite_csum(skb);
804
805 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
806
807 skb->ip_summed = CHECKSUM_NONE;
808 goto send;
809
810 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
811
812 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
813 goto send;
814
815 } else
816 csum = udp_csum(skb);
817
818 /* add protocol-dependent pseudo-header */
819 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
820 sk->sk_protocol, csum);
821 if (uh->check == 0)
822 uh->check = CSUM_MANGLED_0;
823
824 send:
825 err = ip_send_skb(sock_net(sk), skb);
826 if (err) {
827 if (err == -ENOBUFS && !inet->recverr) {
828 UDP_INC_STATS_USER(sock_net(sk),
829 UDP_MIB_SNDBUFERRORS, is_udplite);
830 err = 0;
831 }
832 } else
833 UDP_INC_STATS_USER(sock_net(sk),
834 UDP_MIB_OUTDATAGRAMS, is_udplite);
835 return err;
836 }
837
838 /*
839 * Push out all pending data as one UDP datagram. Socket is locked.
840 */
841 int udp_push_pending_frames(struct sock *sk)
842 {
843 struct udp_sock *up = udp_sk(sk);
844 struct inet_sock *inet = inet_sk(sk);
845 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
846 struct sk_buff *skb;
847 int err = 0;
848
849 skb = ip_finish_skb(sk, fl4);
850 if (!skb)
851 goto out;
852
853 err = udp_send_skb(skb, fl4);
854
855 out:
856 up->len = 0;
857 up->pending = 0;
858 return err;
859 }
860 EXPORT_SYMBOL(udp_push_pending_frames);
861
862 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
863 size_t len)
864 {
865 struct inet_sock *inet = inet_sk(sk);
866 struct udp_sock *up = udp_sk(sk);
867 struct flowi4 fl4_stack;
868 struct flowi4 *fl4;
869 int ulen = len;
870 struct ipcm_cookie ipc;
871 struct rtable *rt = NULL;
872 int free = 0;
873 int connected = 0;
874 __be32 daddr, faddr, saddr;
875 __be16 dport;
876 u8 tos;
877 int err, is_udplite = IS_UDPLITE(sk);
878 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
879 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
880 struct sk_buff *skb;
881 struct ip_options_data opt_copy;
882
883 if (len > 0xFFFF)
884 return -EMSGSIZE;
885
886 /*
887 * Check the flags.
888 */
889
890 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
891 return -EOPNOTSUPP;
892
893 ipc.opt = NULL;
894 ipc.tx_flags = 0;
895 ipc.ttl = 0;
896 ipc.tos = -1;
897
898 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
899
900 fl4 = &inet->cork.fl.u.ip4;
901 if (up->pending) {
902 /*
903 * There are pending frames.
904 * The socket lock must be held while it's corked.
905 */
906 lock_sock(sk);
907 if (likely(up->pending)) {
908 if (unlikely(up->pending != AF_INET)) {
909 release_sock(sk);
910 return -EINVAL;
911 }
912 goto do_append_data;
913 }
914 release_sock(sk);
915 }
916 ulen += sizeof(struct udphdr);
917
918 /*
919 * Get and verify the address.
920 */
921 if (msg->msg_name) {
922 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
923 if (msg->msg_namelen < sizeof(*usin))
924 return -EINVAL;
925 if (usin->sin_family != AF_INET) {
926 if (usin->sin_family != AF_UNSPEC)
927 return -EAFNOSUPPORT;
928 }
929
930 daddr = usin->sin_addr.s_addr;
931 dport = usin->sin_port;
932 if (dport == 0)
933 return -EINVAL;
934 } else {
935 if (sk->sk_state != TCP_ESTABLISHED)
936 return -EDESTADDRREQ;
937 daddr = inet->inet_daddr;
938 dport = inet->inet_dport;
939 /* Open fast path for connected socket.
940 Route will not be used, if at least one option is set.
941 */
942 connected = 1;
943 }
944 ipc.addr = inet->inet_saddr;
945
946 ipc.oif = sk->sk_bound_dev_if;
947
948 sock_tx_timestamp(sk, &ipc.tx_flags);
949
950 if (msg->msg_controllen) {
951 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
952 sk->sk_family == AF_INET6);
953 if (err)
954 return err;
955 if (ipc.opt)
956 free = 1;
957 connected = 0;
958 }
959 if (!ipc.opt) {
960 struct ip_options_rcu *inet_opt;
961
962 rcu_read_lock();
963 inet_opt = rcu_dereference(inet->inet_opt);
964 if (inet_opt) {
965 memcpy(&opt_copy, inet_opt,
966 sizeof(*inet_opt) + inet_opt->opt.optlen);
967 ipc.opt = &opt_copy.opt;
968 }
969 rcu_read_unlock();
970 }
971
972 saddr = ipc.addr;
973 ipc.addr = faddr = daddr;
974
975 if (ipc.opt && ipc.opt->opt.srr) {
976 if (!daddr)
977 return -EINVAL;
978 faddr = ipc.opt->opt.faddr;
979 connected = 0;
980 }
981 tos = get_rttos(&ipc, inet);
982 if (sock_flag(sk, SOCK_LOCALROUTE) ||
983 (msg->msg_flags & MSG_DONTROUTE) ||
984 (ipc.opt && ipc.opt->opt.is_strictroute)) {
985 tos |= RTO_ONLINK;
986 connected = 0;
987 }
988
989 if (ipv4_is_multicast(daddr)) {
990 if (!ipc.oif)
991 ipc.oif = inet->mc_index;
992 if (!saddr)
993 saddr = inet->mc_addr;
994 connected = 0;
995 } else if (!ipc.oif)
996 ipc.oif = inet->uc_index;
997
998 if (connected)
999 rt = (struct rtable *)sk_dst_check(sk, 0);
1000
1001 if (rt == NULL) {
1002 struct net *net = sock_net(sk);
1003
1004 fl4 = &fl4_stack;
1005 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1006 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1007 inet_sk_flowi_flags(sk),
1008 faddr, saddr, dport, inet->inet_sport);
1009
1010 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1011 rt = ip_route_output_flow(net, fl4, sk);
1012 if (IS_ERR(rt)) {
1013 err = PTR_ERR(rt);
1014 rt = NULL;
1015 if (err == -ENETUNREACH)
1016 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1017 goto out;
1018 }
1019
1020 err = -EACCES;
1021 if ((rt->rt_flags & RTCF_BROADCAST) &&
1022 !sock_flag(sk, SOCK_BROADCAST))
1023 goto out;
1024 if (connected)
1025 sk_dst_set(sk, dst_clone(&rt->dst));
1026 }
1027
1028 if (msg->msg_flags&MSG_CONFIRM)
1029 goto do_confirm;
1030 back_from_confirm:
1031
1032 saddr = fl4->saddr;
1033 if (!ipc.addr)
1034 daddr = ipc.addr = fl4->daddr;
1035
1036 /* Lockless fast path for the non-corking case. */
1037 if (!corkreq) {
1038 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1039 sizeof(struct udphdr), &ipc, &rt,
1040 msg->msg_flags);
1041 err = PTR_ERR(skb);
1042 if (!IS_ERR_OR_NULL(skb))
1043 err = udp_send_skb(skb, fl4);
1044 goto out;
1045 }
1046
1047 lock_sock(sk);
1048 if (unlikely(up->pending)) {
1049 /* The socket is already corked while preparing it. */
1050 /* ... which is an evident application bug. --ANK */
1051 release_sock(sk);
1052
1053 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1054 err = -EINVAL;
1055 goto out;
1056 }
1057 /*
1058 * Now cork the socket to pend data.
1059 */
1060 fl4 = &inet->cork.fl.u.ip4;
1061 fl4->daddr = daddr;
1062 fl4->saddr = saddr;
1063 fl4->fl4_dport = dport;
1064 fl4->fl4_sport = inet->inet_sport;
1065 up->pending = AF_INET;
1066
1067 do_append_data:
1068 up->len += ulen;
1069 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1070 sizeof(struct udphdr), &ipc, &rt,
1071 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1072 if (err)
1073 udp_flush_pending_frames(sk);
1074 else if (!corkreq)
1075 err = udp_push_pending_frames(sk);
1076 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1077 up->pending = 0;
1078 release_sock(sk);
1079
1080 out:
1081 ip_rt_put(rt);
1082 if (free)
1083 kfree(ipc.opt);
1084 if (!err)
1085 return len;
1086 /*
1087 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1088 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1089 * we don't have a good statistic (IpOutDiscards but it can be too many
1090 * things). We could add another new stat but at least for now that
1091 * seems like overkill.
1092 */
1093 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1094 UDP_INC_STATS_USER(sock_net(sk),
1095 UDP_MIB_SNDBUFERRORS, is_udplite);
1096 }
1097 return err;
1098
1099 do_confirm:
1100 dst_confirm(&rt->dst);
1101 if (!(msg->msg_flags&MSG_PROBE) || len)
1102 goto back_from_confirm;
1103 err = 0;
1104 goto out;
1105 }
1106 EXPORT_SYMBOL(udp_sendmsg);
1107
1108 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1109 size_t size, int flags)
1110 {
1111 struct inet_sock *inet = inet_sk(sk);
1112 struct udp_sock *up = udp_sk(sk);
1113 int ret;
1114
1115 if (flags & MSG_SENDPAGE_NOTLAST)
1116 flags |= MSG_MORE;
1117
1118 if (!up->pending) {
1119 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1120
1121 /* Call udp_sendmsg to specify destination address which
1122 * sendpage interface can't pass.
1123 * This will succeed only when the socket is connected.
1124 */
1125 ret = udp_sendmsg(NULL, sk, &msg, 0);
1126 if (ret < 0)
1127 return ret;
1128 }
1129
1130 lock_sock(sk);
1131
1132 if (unlikely(!up->pending)) {
1133 release_sock(sk);
1134
1135 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1136 return -EINVAL;
1137 }
1138
1139 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1140 page, offset, size, flags);
1141 if (ret == -EOPNOTSUPP) {
1142 release_sock(sk);
1143 return sock_no_sendpage(sk->sk_socket, page, offset,
1144 size, flags);
1145 }
1146 if (ret < 0) {
1147 udp_flush_pending_frames(sk);
1148 goto out;
1149 }
1150
1151 up->len += size;
1152 if (!(up->corkflag || (flags&MSG_MORE)))
1153 ret = udp_push_pending_frames(sk);
1154 if (!ret)
1155 ret = size;
1156 out:
1157 release_sock(sk);
1158 return ret;
1159 }
1160
1161
1162 /**
1163 * first_packet_length - return length of first packet in receive queue
1164 * @sk: socket
1165 *
1166 * Drops all bad checksum frames, until a valid one is found.
1167 * Returns the length of found skb, or 0 if none is found.
1168 */
1169 static unsigned int first_packet_length(struct sock *sk)
1170 {
1171 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1172 struct sk_buff *skb;
1173 unsigned int res;
1174
1175 __skb_queue_head_init(&list_kill);
1176
1177 spin_lock_bh(&rcvq->lock);
1178 while ((skb = skb_peek(rcvq)) != NULL &&
1179 udp_lib_checksum_complete(skb)) {
1180 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1181 IS_UDPLITE(sk));
1182 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1183 IS_UDPLITE(sk));
1184 atomic_inc(&sk->sk_drops);
1185 __skb_unlink(skb, rcvq);
1186 __skb_queue_tail(&list_kill, skb);
1187 }
1188 res = skb ? skb->len : 0;
1189 spin_unlock_bh(&rcvq->lock);
1190
1191 if (!skb_queue_empty(&list_kill)) {
1192 bool slow = lock_sock_fast(sk);
1193
1194 __skb_queue_purge(&list_kill);
1195 sk_mem_reclaim_partial(sk);
1196 unlock_sock_fast(sk, slow);
1197 }
1198 return res;
1199 }
1200
1201 /*
1202 * IOCTL requests applicable to the UDP protocol
1203 */
1204
1205 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1206 {
1207 switch (cmd) {
1208 case SIOCOUTQ:
1209 {
1210 int amount = sk_wmem_alloc_get(sk);
1211
1212 return put_user(amount, (int __user *)arg);
1213 }
1214
1215 case SIOCINQ:
1216 {
1217 unsigned int amount = first_packet_length(sk);
1218
1219 if (amount)
1220 /*
1221 * We will only return the amount
1222 * of this packet since that is all
1223 * that will be read.
1224 */
1225 amount -= sizeof(struct udphdr);
1226
1227 return put_user(amount, (int __user *)arg);
1228 }
1229
1230 default:
1231 return -ENOIOCTLCMD;
1232 }
1233
1234 return 0;
1235 }
1236 EXPORT_SYMBOL(udp_ioctl);
1237
1238 /*
1239 * This should be easy, if there is something there we
1240 * return it, otherwise we block.
1241 */
1242
1243 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1244 size_t len, int noblock, int flags, int *addr_len)
1245 {
1246 struct inet_sock *inet = inet_sk(sk);
1247 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1248 struct sk_buff *skb;
1249 unsigned int ulen, copied;
1250 int peeked, off = 0;
1251 int err;
1252 int is_udplite = IS_UDPLITE(sk);
1253 bool slow;
1254
1255 if (flags & MSG_ERRQUEUE)
1256 return ip_recv_error(sk, msg, len, addr_len);
1257
1258 try_again:
1259 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1260 &peeked, &off, &err);
1261 if (!skb)
1262 goto out;
1263
1264 ulen = skb->len - sizeof(struct udphdr);
1265 copied = len;
1266 if (copied > ulen)
1267 copied = ulen;
1268 else if (copied < ulen)
1269 msg->msg_flags |= MSG_TRUNC;
1270
1271 /*
1272 * If checksum is needed at all, try to do it while copying the
1273 * data. If the data is truncated, or if we only want a partial
1274 * coverage checksum (UDP-Lite), do it before the copy.
1275 */
1276
1277 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1278 if (udp_lib_checksum_complete(skb))
1279 goto csum_copy_err;
1280 }
1281
1282 if (skb_csum_unnecessary(skb))
1283 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1284 msg->msg_iov, copied);
1285 else {
1286 err = skb_copy_and_csum_datagram_iovec(skb,
1287 sizeof(struct udphdr),
1288 msg->msg_iov);
1289
1290 if (err == -EINVAL)
1291 goto csum_copy_err;
1292 }
1293
1294 if (unlikely(err)) {
1295 trace_kfree_skb(skb, udp_recvmsg);
1296 if (!peeked) {
1297 atomic_inc(&sk->sk_drops);
1298 UDP_INC_STATS_USER(sock_net(sk),
1299 UDP_MIB_INERRORS, is_udplite);
1300 }
1301 goto out_free;
1302 }
1303
1304 if (!peeked)
1305 UDP_INC_STATS_USER(sock_net(sk),
1306 UDP_MIB_INDATAGRAMS, is_udplite);
1307
1308 sock_recv_ts_and_drops(msg, sk, skb);
1309
1310 /* Copy the address. */
1311 if (sin) {
1312 sin->sin_family = AF_INET;
1313 sin->sin_port = udp_hdr(skb)->source;
1314 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1315 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1316 *addr_len = sizeof(*sin);
1317 }
1318 if (inet->cmsg_flags)
1319 ip_cmsg_recv(msg, skb);
1320
1321 err = copied;
1322 if (flags & MSG_TRUNC)
1323 err = ulen;
1324
1325 out_free:
1326 skb_free_datagram_locked(sk, skb);
1327 out:
1328 return err;
1329
1330 csum_copy_err:
1331 slow = lock_sock_fast(sk);
1332 if (!skb_kill_datagram(sk, skb, flags)) {
1333 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1334 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1335 }
1336 unlock_sock_fast(sk, slow);
1337
1338 if (noblock)
1339 return -EAGAIN;
1340
1341 /* starting over for a new packet */
1342 msg->msg_flags &= ~MSG_TRUNC;
1343 goto try_again;
1344 }
1345
1346
1347 int udp_disconnect(struct sock *sk, int flags)
1348 {
1349 struct inet_sock *inet = inet_sk(sk);
1350 /*
1351 * 1003.1g - break association.
1352 */
1353
1354 sk->sk_state = TCP_CLOSE;
1355 inet->inet_daddr = 0;
1356 inet->inet_dport = 0;
1357 sock_rps_reset_rxhash(sk);
1358 sk->sk_bound_dev_if = 0;
1359 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1360 inet_reset_saddr(sk);
1361
1362 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1363 sk->sk_prot->unhash(sk);
1364 inet->inet_sport = 0;
1365 }
1366 sk_dst_reset(sk);
1367 return 0;
1368 }
1369 EXPORT_SYMBOL(udp_disconnect);
1370
1371 void udp_lib_unhash(struct sock *sk)
1372 {
1373 if (sk_hashed(sk)) {
1374 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1375 struct udp_hslot *hslot, *hslot2;
1376
1377 hslot = udp_hashslot(udptable, sock_net(sk),
1378 udp_sk(sk)->udp_port_hash);
1379 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1380
1381 spin_lock_bh(&hslot->lock);
1382 if (sk_nulls_del_node_init_rcu(sk)) {
1383 hslot->count--;
1384 inet_sk(sk)->inet_num = 0;
1385 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1386
1387 spin_lock(&hslot2->lock);
1388 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1389 hslot2->count--;
1390 spin_unlock(&hslot2->lock);
1391 }
1392 spin_unlock_bh(&hslot->lock);
1393 }
1394 }
1395 EXPORT_SYMBOL(udp_lib_unhash);
1396
1397 /*
1398 * inet_rcv_saddr was changed, we must rehash secondary hash
1399 */
1400 void udp_lib_rehash(struct sock *sk, u16 newhash)
1401 {
1402 if (sk_hashed(sk)) {
1403 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1404 struct udp_hslot *hslot, *hslot2, *nhslot2;
1405
1406 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1407 nhslot2 = udp_hashslot2(udptable, newhash);
1408 udp_sk(sk)->udp_portaddr_hash = newhash;
1409 if (hslot2 != nhslot2) {
1410 hslot = udp_hashslot(udptable, sock_net(sk),
1411 udp_sk(sk)->udp_port_hash);
1412 /* we must lock primary chain too */
1413 spin_lock_bh(&hslot->lock);
1414
1415 spin_lock(&hslot2->lock);
1416 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1417 hslot2->count--;
1418 spin_unlock(&hslot2->lock);
1419
1420 spin_lock(&nhslot2->lock);
1421 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1422 &nhslot2->head);
1423 nhslot2->count++;
1424 spin_unlock(&nhslot2->lock);
1425
1426 spin_unlock_bh(&hslot->lock);
1427 }
1428 }
1429 }
1430 EXPORT_SYMBOL(udp_lib_rehash);
1431
1432 static void udp_v4_rehash(struct sock *sk)
1433 {
1434 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1435 inet_sk(sk)->inet_rcv_saddr,
1436 inet_sk(sk)->inet_num);
1437 udp_lib_rehash(sk, new_hash);
1438 }
1439
1440 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1441 {
1442 int rc;
1443
1444 if (inet_sk(sk)->inet_daddr) {
1445 sock_rps_save_rxhash(sk, skb);
1446 sk_mark_napi_id(sk, skb);
1447 }
1448
1449 rc = sock_queue_rcv_skb(sk, skb);
1450 if (rc < 0) {
1451 int is_udplite = IS_UDPLITE(sk);
1452
1453 /* Note that an ENOMEM error is charged twice */
1454 if (rc == -ENOMEM)
1455 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1456 is_udplite);
1457 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1458 kfree_skb(skb);
1459 trace_udp_fail_queue_rcv_skb(rc, sk);
1460 return -1;
1461 }
1462
1463 return 0;
1464
1465 }
1466
1467 static struct static_key udp_encap_needed __read_mostly;
1468 void udp_encap_enable(void)
1469 {
1470 if (!static_key_enabled(&udp_encap_needed))
1471 static_key_slow_inc(&udp_encap_needed);
1472 }
1473 EXPORT_SYMBOL(udp_encap_enable);
1474
1475 /* returns:
1476 * -1: error
1477 * 0: success
1478 * >0: "udp encap" protocol resubmission
1479 *
1480 * Note that in the success and error cases, the skb is assumed to
1481 * have either been requeued or freed.
1482 */
1483 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1484 {
1485 struct udp_sock *up = udp_sk(sk);
1486 int rc;
1487 int is_udplite = IS_UDPLITE(sk);
1488
1489 /*
1490 * Charge it to the socket, dropping if the queue is full.
1491 */
1492 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1493 goto drop;
1494 nf_reset(skb);
1495
1496 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1497 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1498
1499 /*
1500 * This is an encapsulation socket so pass the skb to
1501 * the socket's udp_encap_rcv() hook. Otherwise, just
1502 * fall through and pass this up the UDP socket.
1503 * up->encap_rcv() returns the following value:
1504 * =0 if skb was successfully passed to the encap
1505 * handler or was discarded by it.
1506 * >0 if skb should be passed on to UDP.
1507 * <0 if skb should be resubmitted as proto -N
1508 */
1509
1510 /* if we're overly short, let UDP handle it */
1511 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1512 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1513 int ret;
1514
1515 /* Verify checksum before giving to encap */
1516 if (udp_lib_checksum_complete(skb))
1517 goto csum_error;
1518
1519 ret = encap_rcv(sk, skb);
1520 if (ret <= 0) {
1521 UDP_INC_STATS_BH(sock_net(sk),
1522 UDP_MIB_INDATAGRAMS,
1523 is_udplite);
1524 return -ret;
1525 }
1526 }
1527
1528 /* FALLTHROUGH -- it's a UDP Packet */
1529 }
1530
1531 /*
1532 * UDP-Lite specific tests, ignored on UDP sockets
1533 */
1534 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1535
1536 /*
1537 * MIB statistics other than incrementing the error count are
1538 * disabled for the following two types of errors: these depend
1539 * on the application settings, not on the functioning of the
1540 * protocol stack as such.
1541 *
1542 * RFC 3828 here recommends (sec 3.3): "There should also be a
1543 * way ... to ... at least let the receiving application block
1544 * delivery of packets with coverage values less than a value
1545 * provided by the application."
1546 */
1547 if (up->pcrlen == 0) { /* full coverage was set */
1548 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1549 UDP_SKB_CB(skb)->cscov, skb->len);
1550 goto drop;
1551 }
1552 /* The next case involves violating the min. coverage requested
1553 * by the receiver. This is subtle: if receiver wants x and x is
1554 * greater than the buffersize/MTU then receiver will complain
1555 * that it wants x while sender emits packets of smaller size y.
1556 * Therefore the above ...()->partial_cov statement is essential.
1557 */
1558 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1559 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1560 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1561 goto drop;
1562 }
1563 }
1564
1565 if (rcu_access_pointer(sk->sk_filter) &&
1566 udp_lib_checksum_complete(skb))
1567 goto csum_error;
1568
1569
1570 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
1571 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1572 is_udplite);
1573 goto drop;
1574 }
1575
1576 rc = 0;
1577
1578 ipv4_pktinfo_prepare(sk, skb);
1579 bh_lock_sock(sk);
1580 if (!sock_owned_by_user(sk))
1581 rc = __udp_queue_rcv_skb(sk, skb);
1582 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1583 bh_unlock_sock(sk);
1584 goto drop;
1585 }
1586 bh_unlock_sock(sk);
1587
1588 return rc;
1589
1590 csum_error:
1591 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1592 drop:
1593 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1594 atomic_inc(&sk->sk_drops);
1595 kfree_skb(skb);
1596 return -1;
1597 }
1598
1599
1600 static void flush_stack(struct sock **stack, unsigned int count,
1601 struct sk_buff *skb, unsigned int final)
1602 {
1603 unsigned int i;
1604 struct sk_buff *skb1 = NULL;
1605 struct sock *sk;
1606
1607 for (i = 0; i < count; i++) {
1608 sk = stack[i];
1609 if (likely(skb1 == NULL))
1610 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1611
1612 if (!skb1) {
1613 atomic_inc(&sk->sk_drops);
1614 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1615 IS_UDPLITE(sk));
1616 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1617 IS_UDPLITE(sk));
1618 }
1619
1620 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1621 skb1 = NULL;
1622
1623 sock_put(sk);
1624 }
1625 if (unlikely(skb1))
1626 kfree_skb(skb1);
1627 }
1628
1629 /* For TCP sockets, sk_rx_dst is protected by socket lock
1630 * For UDP, we use xchg() to guard against concurrent changes.
1631 */
1632 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1633 {
1634 struct dst_entry *old;
1635
1636 dst_hold(dst);
1637 old = xchg(&sk->sk_rx_dst, dst);
1638 dst_release(old);
1639 }
1640
1641 /*
1642 * Multicasts and broadcasts go to each listener.
1643 *
1644 * Note: called only from the BH handler context.
1645 */
1646 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1647 struct udphdr *uh,
1648 __be32 saddr, __be32 daddr,
1649 struct udp_table *udptable)
1650 {
1651 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1652 struct hlist_nulls_node *node;
1653 unsigned short hnum = ntohs(uh->dest);
1654 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1655 int dif = skb->dev->ifindex;
1656 unsigned int count = 0, offset = offsetof(typeof(*sk), sk_nulls_node);
1657 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1658
1659 if (use_hash2) {
1660 hash2_any = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1661 udp_table.mask;
1662 hash2 = udp4_portaddr_hash(net, daddr, hnum) & udp_table.mask;
1663 start_lookup:
1664 hslot = &udp_table.hash2[hash2];
1665 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1666 }
1667
1668 spin_lock(&hslot->lock);
1669 sk_nulls_for_each_entry_offset(sk, node, &hslot->head, offset) {
1670 if (__udp_is_mcast_sock(net, sk,
1671 uh->dest, daddr,
1672 uh->source, saddr,
1673 dif, hnum)) {
1674 if (unlikely(count == ARRAY_SIZE(stack))) {
1675 flush_stack(stack, count, skb, ~0);
1676 count = 0;
1677 }
1678 stack[count++] = sk;
1679 sock_hold(sk);
1680 }
1681 }
1682
1683 spin_unlock(&hslot->lock);
1684
1685 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
1686 if (use_hash2 && hash2 != hash2_any) {
1687 hash2 = hash2_any;
1688 goto start_lookup;
1689 }
1690
1691 /*
1692 * do the slow work with no lock held
1693 */
1694 if (count) {
1695 flush_stack(stack, count, skb, count - 1);
1696 } else {
1697 kfree_skb(skb);
1698 }
1699 return 0;
1700 }
1701
1702 /* Initialize UDP checksum. If exited with zero value (success),
1703 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1704 * Otherwise, csum completion requires chacksumming packet body,
1705 * including udp header and folding it to skb->csum.
1706 */
1707 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1708 int proto)
1709 {
1710 int err;
1711
1712 UDP_SKB_CB(skb)->partial_cov = 0;
1713 UDP_SKB_CB(skb)->cscov = skb->len;
1714
1715 if (proto == IPPROTO_UDPLITE) {
1716 err = udplite_checksum_init(skb, uh);
1717 if (err)
1718 return err;
1719 }
1720
1721 return skb_checksum_init_zero_check(skb, proto, uh->check,
1722 inet_compute_pseudo);
1723 }
1724
1725 /*
1726 * All we need to do is get the socket, and then do a checksum.
1727 */
1728
1729 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1730 int proto)
1731 {
1732 struct sock *sk;
1733 struct udphdr *uh;
1734 unsigned short ulen;
1735 struct rtable *rt = skb_rtable(skb);
1736 __be32 saddr, daddr;
1737 struct net *net = dev_net(skb->dev);
1738
1739 /*
1740 * Validate the packet.
1741 */
1742 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1743 goto drop; /* No space for header. */
1744
1745 uh = udp_hdr(skb);
1746 ulen = ntohs(uh->len);
1747 saddr = ip_hdr(skb)->saddr;
1748 daddr = ip_hdr(skb)->daddr;
1749
1750 if (ulen > skb->len)
1751 goto short_packet;
1752
1753 if (proto == IPPROTO_UDP) {
1754 /* UDP validates ulen. */
1755 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1756 goto short_packet;
1757 uh = udp_hdr(skb);
1758 }
1759
1760 if (udp4_csum_init(skb, uh, proto))
1761 goto csum_error;
1762
1763 sk = skb_steal_sock(skb);
1764 if (sk) {
1765 struct dst_entry *dst = skb_dst(skb);
1766 int ret;
1767
1768 if (unlikely(sk->sk_rx_dst != dst))
1769 udp_sk_rx_dst_set(sk, dst);
1770
1771 ret = udp_queue_rcv_skb(sk, skb);
1772 sock_put(sk);
1773 /* a return value > 0 means to resubmit the input, but
1774 * it wants the return to be -protocol, or 0
1775 */
1776 if (ret > 0)
1777 return -ret;
1778 return 0;
1779 } else {
1780 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1781 return __udp4_lib_mcast_deliver(net, skb, uh,
1782 saddr, daddr, udptable);
1783
1784 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1785 }
1786
1787 if (sk != NULL) {
1788 int ret;
1789
1790 ret = udp_queue_rcv_skb(sk, skb);
1791 sock_put(sk);
1792
1793 /* a return value > 0 means to resubmit the input, but
1794 * it wants the return to be -protocol, or 0
1795 */
1796 if (ret > 0)
1797 return -ret;
1798 return 0;
1799 }
1800
1801 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1802 goto drop;
1803 nf_reset(skb);
1804
1805 /* No socket. Drop packet silently, if checksum is wrong */
1806 if (udp_lib_checksum_complete(skb))
1807 goto csum_error;
1808
1809 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1810 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1811
1812 /*
1813 * Hmm. We got an UDP packet to a port to which we
1814 * don't wanna listen. Ignore it.
1815 */
1816 kfree_skb(skb);
1817 return 0;
1818
1819 short_packet:
1820 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1821 proto == IPPROTO_UDPLITE ? "Lite" : "",
1822 &saddr, ntohs(uh->source),
1823 ulen, skb->len,
1824 &daddr, ntohs(uh->dest));
1825 goto drop;
1826
1827 csum_error:
1828 /*
1829 * RFC1122: OK. Discards the bad packet silently (as far as
1830 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1831 */
1832 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1833 proto == IPPROTO_UDPLITE ? "Lite" : "",
1834 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1835 ulen);
1836 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1837 drop:
1838 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1839 kfree_skb(skb);
1840 return 0;
1841 }
1842
1843 /* We can only early demux multicast if there is a single matching socket.
1844 * If more than one socket found returns NULL
1845 */
1846 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1847 __be16 loc_port, __be32 loc_addr,
1848 __be16 rmt_port, __be32 rmt_addr,
1849 int dif)
1850 {
1851 struct sock *sk, *result;
1852 struct hlist_nulls_node *node;
1853 unsigned short hnum = ntohs(loc_port);
1854 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1855 struct udp_hslot *hslot = &udp_table.hash[slot];
1856
1857 /* Do not bother scanning a too big list */
1858 if (hslot->count > 10)
1859 return NULL;
1860
1861 rcu_read_lock();
1862 begin:
1863 count = 0;
1864 result = NULL;
1865 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1866 if (__udp_is_mcast_sock(net, sk,
1867 loc_port, loc_addr,
1868 rmt_port, rmt_addr,
1869 dif, hnum)) {
1870 result = sk;
1871 ++count;
1872 }
1873 }
1874 /*
1875 * if the nulls value we got at the end of this lookup is
1876 * not the expected one, we must restart lookup.
1877 * We probably met an item that was moved to another chain.
1878 */
1879 if (get_nulls_value(node) != slot)
1880 goto begin;
1881
1882 if (result) {
1883 if (count != 1 ||
1884 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1885 result = NULL;
1886 else if (unlikely(!__udp_is_mcast_sock(net, result,
1887 loc_port, loc_addr,
1888 rmt_port, rmt_addr,
1889 dif, hnum))) {
1890 sock_put(result);
1891 result = NULL;
1892 }
1893 }
1894 rcu_read_unlock();
1895 return result;
1896 }
1897
1898 /* For unicast we should only early demux connected sockets or we can
1899 * break forwarding setups. The chains here can be long so only check
1900 * if the first socket is an exact match and if not move on.
1901 */
1902 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1903 __be16 loc_port, __be32 loc_addr,
1904 __be16 rmt_port, __be32 rmt_addr,
1905 int dif)
1906 {
1907 struct sock *sk, *result;
1908 struct hlist_nulls_node *node;
1909 unsigned short hnum = ntohs(loc_port);
1910 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1911 unsigned int slot2 = hash2 & udp_table.mask;
1912 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1913 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1914 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1915
1916 rcu_read_lock();
1917 result = NULL;
1918 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1919 if (INET_MATCH(sk, net, acookie,
1920 rmt_addr, loc_addr, ports, dif))
1921 result = sk;
1922 /* Only check first socket in chain */
1923 break;
1924 }
1925
1926 if (result) {
1927 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1928 result = NULL;
1929 else if (unlikely(!INET_MATCH(sk, net, acookie,
1930 rmt_addr, loc_addr,
1931 ports, dif))) {
1932 sock_put(result);
1933 result = NULL;
1934 }
1935 }
1936 rcu_read_unlock();
1937 return result;
1938 }
1939
1940 void udp_v4_early_demux(struct sk_buff *skb)
1941 {
1942 struct net *net = dev_net(skb->dev);
1943 const struct iphdr *iph;
1944 const struct udphdr *uh;
1945 struct sock *sk;
1946 struct dst_entry *dst;
1947 int dif = skb->dev->ifindex;
1948
1949 /* validate the packet */
1950 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1951 return;
1952
1953 iph = ip_hdr(skb);
1954 uh = udp_hdr(skb);
1955
1956 if (skb->pkt_type == PACKET_BROADCAST ||
1957 skb->pkt_type == PACKET_MULTICAST)
1958 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1959 uh->source, iph->saddr, dif);
1960 else if (skb->pkt_type == PACKET_HOST)
1961 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1962 uh->source, iph->saddr, dif);
1963 else
1964 return;
1965
1966 if (!sk)
1967 return;
1968
1969 skb->sk = sk;
1970 skb->destructor = sock_edemux;
1971 dst = sk->sk_rx_dst;
1972
1973 if (dst)
1974 dst = dst_check(dst, 0);
1975 if (dst)
1976 skb_dst_set_noref(skb, dst);
1977 }
1978
1979 int udp_rcv(struct sk_buff *skb)
1980 {
1981 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1982 }
1983
1984 void udp_destroy_sock(struct sock *sk)
1985 {
1986 struct udp_sock *up = udp_sk(sk);
1987 bool slow = lock_sock_fast(sk);
1988 udp_flush_pending_frames(sk);
1989 unlock_sock_fast(sk, slow);
1990 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1991 void (*encap_destroy)(struct sock *sk);
1992 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1993 if (encap_destroy)
1994 encap_destroy(sk);
1995 }
1996 }
1997
1998 /*
1999 * Socket option code for UDP
2000 */
2001 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2002 char __user *optval, unsigned int optlen,
2003 int (*push_pending_frames)(struct sock *))
2004 {
2005 struct udp_sock *up = udp_sk(sk);
2006 int val, valbool;
2007 int err = 0;
2008 int is_udplite = IS_UDPLITE(sk);
2009
2010 if (optlen < sizeof(int))
2011 return -EINVAL;
2012
2013 if (get_user(val, (int __user *)optval))
2014 return -EFAULT;
2015
2016 valbool = val ? 1 : 0;
2017
2018 switch (optname) {
2019 case UDP_CORK:
2020 if (val != 0) {
2021 up->corkflag = 1;
2022 } else {
2023 up->corkflag = 0;
2024 lock_sock(sk);
2025 (*push_pending_frames)(sk);
2026 release_sock(sk);
2027 }
2028 break;
2029
2030 case UDP_ENCAP:
2031 switch (val) {
2032 case 0:
2033 case UDP_ENCAP_ESPINUDP:
2034 case UDP_ENCAP_ESPINUDP_NON_IKE:
2035 up->encap_rcv = xfrm4_udp_encap_rcv;
2036 /* FALLTHROUGH */
2037 case UDP_ENCAP_L2TPINUDP:
2038 up->encap_type = val;
2039 udp_encap_enable();
2040 break;
2041 default:
2042 err = -ENOPROTOOPT;
2043 break;
2044 }
2045 break;
2046
2047 case UDP_NO_CHECK6_TX:
2048 up->no_check6_tx = valbool;
2049 break;
2050
2051 case UDP_NO_CHECK6_RX:
2052 up->no_check6_rx = valbool;
2053 break;
2054
2055 /*
2056 * UDP-Lite's partial checksum coverage (RFC 3828).
2057 */
2058 /* The sender sets actual checksum coverage length via this option.
2059 * The case coverage > packet length is handled by send module. */
2060 case UDPLITE_SEND_CSCOV:
2061 if (!is_udplite) /* Disable the option on UDP sockets */
2062 return -ENOPROTOOPT;
2063 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2064 val = 8;
2065 else if (val > USHRT_MAX)
2066 val = USHRT_MAX;
2067 up->pcslen = val;
2068 up->pcflag |= UDPLITE_SEND_CC;
2069 break;
2070
2071 /* The receiver specifies a minimum checksum coverage value. To make
2072 * sense, this should be set to at least 8 (as done below). If zero is
2073 * used, this again means full checksum coverage. */
2074 case UDPLITE_RECV_CSCOV:
2075 if (!is_udplite) /* Disable the option on UDP sockets */
2076 return -ENOPROTOOPT;
2077 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2078 val = 8;
2079 else if (val > USHRT_MAX)
2080 val = USHRT_MAX;
2081 up->pcrlen = val;
2082 up->pcflag |= UDPLITE_RECV_CC;
2083 break;
2084
2085 default:
2086 err = -ENOPROTOOPT;
2087 break;
2088 }
2089
2090 return err;
2091 }
2092 EXPORT_SYMBOL(udp_lib_setsockopt);
2093
2094 int udp_setsockopt(struct sock *sk, int level, int optname,
2095 char __user *optval, unsigned int optlen)
2096 {
2097 if (level == SOL_UDP || level == SOL_UDPLITE)
2098 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2099 udp_push_pending_frames);
2100 return ip_setsockopt(sk, level, optname, optval, optlen);
2101 }
2102
2103 #ifdef CONFIG_COMPAT
2104 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2105 char __user *optval, unsigned int optlen)
2106 {
2107 if (level == SOL_UDP || level == SOL_UDPLITE)
2108 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2109 udp_push_pending_frames);
2110 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2111 }
2112 #endif
2113
2114 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2115 char __user *optval, int __user *optlen)
2116 {
2117 struct udp_sock *up = udp_sk(sk);
2118 int val, len;
2119
2120 if (get_user(len, optlen))
2121 return -EFAULT;
2122
2123 len = min_t(unsigned int, len, sizeof(int));
2124
2125 if (len < 0)
2126 return -EINVAL;
2127
2128 switch (optname) {
2129 case UDP_CORK:
2130 val = up->corkflag;
2131 break;
2132
2133 case UDP_ENCAP:
2134 val = up->encap_type;
2135 break;
2136
2137 case UDP_NO_CHECK6_TX:
2138 val = up->no_check6_tx;
2139 break;
2140
2141 case UDP_NO_CHECK6_RX:
2142 val = up->no_check6_rx;
2143 break;
2144
2145 /* The following two cannot be changed on UDP sockets, the return is
2146 * always 0 (which corresponds to the full checksum coverage of UDP). */
2147 case UDPLITE_SEND_CSCOV:
2148 val = up->pcslen;
2149 break;
2150
2151 case UDPLITE_RECV_CSCOV:
2152 val = up->pcrlen;
2153 break;
2154
2155 default:
2156 return -ENOPROTOOPT;
2157 }
2158
2159 if (put_user(len, optlen))
2160 return -EFAULT;
2161 if (copy_to_user(optval, &val, len))
2162 return -EFAULT;
2163 return 0;
2164 }
2165 EXPORT_SYMBOL(udp_lib_getsockopt);
2166
2167 int udp_getsockopt(struct sock *sk, int level, int optname,
2168 char __user *optval, int __user *optlen)
2169 {
2170 if (level == SOL_UDP || level == SOL_UDPLITE)
2171 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2172 return ip_getsockopt(sk, level, optname, optval, optlen);
2173 }
2174
2175 #ifdef CONFIG_COMPAT
2176 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2177 char __user *optval, int __user *optlen)
2178 {
2179 if (level == SOL_UDP || level == SOL_UDPLITE)
2180 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2181 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2182 }
2183 #endif
2184 /**
2185 * udp_poll - wait for a UDP event.
2186 * @file - file struct
2187 * @sock - socket
2188 * @wait - poll table
2189 *
2190 * This is same as datagram poll, except for the special case of
2191 * blocking sockets. If application is using a blocking fd
2192 * and a packet with checksum error is in the queue;
2193 * then it could get return from select indicating data available
2194 * but then block when reading it. Add special case code
2195 * to work around these arguably broken applications.
2196 */
2197 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2198 {
2199 unsigned int mask = datagram_poll(file, sock, wait);
2200 struct sock *sk = sock->sk;
2201
2202 sock_rps_record_flow(sk);
2203
2204 /* Check for false positives due to checksum errors */
2205 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2206 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2207 mask &= ~(POLLIN | POLLRDNORM);
2208
2209 return mask;
2210
2211 }
2212 EXPORT_SYMBOL(udp_poll);
2213
2214 struct proto udp_prot = {
2215 .name = "UDP",
2216 .owner = THIS_MODULE,
2217 .close = udp_lib_close,
2218 .connect = ip4_datagram_connect,
2219 .disconnect = udp_disconnect,
2220 .ioctl = udp_ioctl,
2221 .destroy = udp_destroy_sock,
2222 .setsockopt = udp_setsockopt,
2223 .getsockopt = udp_getsockopt,
2224 .sendmsg = udp_sendmsg,
2225 .recvmsg = udp_recvmsg,
2226 .sendpage = udp_sendpage,
2227 .backlog_rcv = __udp_queue_rcv_skb,
2228 .release_cb = ip4_datagram_release_cb,
2229 .hash = udp_lib_hash,
2230 .unhash = udp_lib_unhash,
2231 .rehash = udp_v4_rehash,
2232 .get_port = udp_v4_get_port,
2233 .memory_allocated = &udp_memory_allocated,
2234 .sysctl_mem = sysctl_udp_mem,
2235 .sysctl_wmem = &sysctl_udp_wmem_min,
2236 .sysctl_rmem = &sysctl_udp_rmem_min,
2237 .obj_size = sizeof(struct udp_sock),
2238 .slab_flags = SLAB_DESTROY_BY_RCU,
2239 .h.udp_table = &udp_table,
2240 #ifdef CONFIG_COMPAT
2241 .compat_setsockopt = compat_udp_setsockopt,
2242 .compat_getsockopt = compat_udp_getsockopt,
2243 #endif
2244 .clear_sk = sk_prot_clear_portaddr_nulls,
2245 };
2246 EXPORT_SYMBOL(udp_prot);
2247
2248 /* ------------------------------------------------------------------------ */
2249 #ifdef CONFIG_PROC_FS
2250
2251 static struct sock *udp_get_first(struct seq_file *seq, int start)
2252 {
2253 struct sock *sk;
2254 struct udp_iter_state *state = seq->private;
2255 struct net *net = seq_file_net(seq);
2256
2257 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2258 ++state->bucket) {
2259 struct hlist_nulls_node *node;
2260 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2261
2262 if (hlist_nulls_empty(&hslot->head))
2263 continue;
2264
2265 spin_lock_bh(&hslot->lock);
2266 sk_nulls_for_each(sk, node, &hslot->head) {
2267 if (!net_eq(sock_net(sk), net))
2268 continue;
2269 if (sk->sk_family == state->family)
2270 goto found;
2271 }
2272 spin_unlock_bh(&hslot->lock);
2273 }
2274 sk = NULL;
2275 found:
2276 return sk;
2277 }
2278
2279 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2280 {
2281 struct udp_iter_state *state = seq->private;
2282 struct net *net = seq_file_net(seq);
2283
2284 do {
2285 sk = sk_nulls_next(sk);
2286 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2287
2288 if (!sk) {
2289 if (state->bucket <= state->udp_table->mask)
2290 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2291 return udp_get_first(seq, state->bucket + 1);
2292 }
2293 return sk;
2294 }
2295
2296 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2297 {
2298 struct sock *sk = udp_get_first(seq, 0);
2299
2300 if (sk)
2301 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2302 --pos;
2303 return pos ? NULL : sk;
2304 }
2305
2306 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2307 {
2308 struct udp_iter_state *state = seq->private;
2309 state->bucket = MAX_UDP_PORTS;
2310
2311 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2312 }
2313
2314 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2315 {
2316 struct sock *sk;
2317
2318 if (v == SEQ_START_TOKEN)
2319 sk = udp_get_idx(seq, 0);
2320 else
2321 sk = udp_get_next(seq, v);
2322
2323 ++*pos;
2324 return sk;
2325 }
2326
2327 static void udp_seq_stop(struct seq_file *seq, void *v)
2328 {
2329 struct udp_iter_state *state = seq->private;
2330
2331 if (state->bucket <= state->udp_table->mask)
2332 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2333 }
2334
2335 int udp_seq_open(struct inode *inode, struct file *file)
2336 {
2337 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2338 struct udp_iter_state *s;
2339 int err;
2340
2341 err = seq_open_net(inode, file, &afinfo->seq_ops,
2342 sizeof(struct udp_iter_state));
2343 if (err < 0)
2344 return err;
2345
2346 s = ((struct seq_file *)file->private_data)->private;
2347 s->family = afinfo->family;
2348 s->udp_table = afinfo->udp_table;
2349 return err;
2350 }
2351 EXPORT_SYMBOL(udp_seq_open);
2352
2353 /* ------------------------------------------------------------------------ */
2354 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2355 {
2356 struct proc_dir_entry *p;
2357 int rc = 0;
2358
2359 afinfo->seq_ops.start = udp_seq_start;
2360 afinfo->seq_ops.next = udp_seq_next;
2361 afinfo->seq_ops.stop = udp_seq_stop;
2362
2363 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2364 afinfo->seq_fops, afinfo);
2365 if (!p)
2366 rc = -ENOMEM;
2367 return rc;
2368 }
2369 EXPORT_SYMBOL(udp_proc_register);
2370
2371 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2372 {
2373 remove_proc_entry(afinfo->name, net->proc_net);
2374 }
2375 EXPORT_SYMBOL(udp_proc_unregister);
2376
2377 /* ------------------------------------------------------------------------ */
2378 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2379 int bucket)
2380 {
2381 struct inet_sock *inet = inet_sk(sp);
2382 __be32 dest = inet->inet_daddr;
2383 __be32 src = inet->inet_rcv_saddr;
2384 __u16 destp = ntohs(inet->inet_dport);
2385 __u16 srcp = ntohs(inet->inet_sport);
2386
2387 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2388 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2389 bucket, src, srcp, dest, destp, sp->sk_state,
2390 sk_wmem_alloc_get(sp),
2391 sk_rmem_alloc_get(sp),
2392 0, 0L, 0,
2393 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2394 0, sock_i_ino(sp),
2395 atomic_read(&sp->sk_refcnt), sp,
2396 atomic_read(&sp->sk_drops));
2397 }
2398
2399 int udp4_seq_show(struct seq_file *seq, void *v)
2400 {
2401 seq_setwidth(seq, 127);
2402 if (v == SEQ_START_TOKEN)
2403 seq_puts(seq, " sl local_address rem_address st tx_queue "
2404 "rx_queue tr tm->when retrnsmt uid timeout "
2405 "inode ref pointer drops");
2406 else {
2407 struct udp_iter_state *state = seq->private;
2408
2409 udp4_format_sock(v, seq, state->bucket);
2410 }
2411 seq_pad(seq, '\n');
2412 return 0;
2413 }
2414
2415 static const struct file_operations udp_afinfo_seq_fops = {
2416 .owner = THIS_MODULE,
2417 .open = udp_seq_open,
2418 .read = seq_read,
2419 .llseek = seq_lseek,
2420 .release = seq_release_net
2421 };
2422
2423 /* ------------------------------------------------------------------------ */
2424 static struct udp_seq_afinfo udp4_seq_afinfo = {
2425 .name = "udp",
2426 .family = AF_INET,
2427 .udp_table = &udp_table,
2428 .seq_fops = &udp_afinfo_seq_fops,
2429 .seq_ops = {
2430 .show = udp4_seq_show,
2431 },
2432 };
2433
2434 static int __net_init udp4_proc_init_net(struct net *net)
2435 {
2436 return udp_proc_register(net, &udp4_seq_afinfo);
2437 }
2438
2439 static void __net_exit udp4_proc_exit_net(struct net *net)
2440 {
2441 udp_proc_unregister(net, &udp4_seq_afinfo);
2442 }
2443
2444 static struct pernet_operations udp4_net_ops = {
2445 .init = udp4_proc_init_net,
2446 .exit = udp4_proc_exit_net,
2447 };
2448
2449 int __init udp4_proc_init(void)
2450 {
2451 return register_pernet_subsys(&udp4_net_ops);
2452 }
2453
2454 void udp4_proc_exit(void)
2455 {
2456 unregister_pernet_subsys(&udp4_net_ops);
2457 }
2458 #endif /* CONFIG_PROC_FS */
2459
2460 static __initdata unsigned long uhash_entries;
2461 static int __init set_uhash_entries(char *str)
2462 {
2463 ssize_t ret;
2464
2465 if (!str)
2466 return 0;
2467
2468 ret = kstrtoul(str, 0, &uhash_entries);
2469 if (ret)
2470 return 0;
2471
2472 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2473 uhash_entries = UDP_HTABLE_SIZE_MIN;
2474 return 1;
2475 }
2476 __setup("uhash_entries=", set_uhash_entries);
2477
2478 void __init udp_table_init(struct udp_table *table, const char *name)
2479 {
2480 unsigned int i;
2481
2482 table->hash = alloc_large_system_hash(name,
2483 2 * sizeof(struct udp_hslot),
2484 uhash_entries,
2485 21, /* one slot per 2 MB */
2486 0,
2487 &table->log,
2488 &table->mask,
2489 UDP_HTABLE_SIZE_MIN,
2490 64 * 1024);
2491
2492 table->hash2 = table->hash + (table->mask + 1);
2493 for (i = 0; i <= table->mask; i++) {
2494 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2495 table->hash[i].count = 0;
2496 spin_lock_init(&table->hash[i].lock);
2497 }
2498 for (i = 0; i <= table->mask; i++) {
2499 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2500 table->hash2[i].count = 0;
2501 spin_lock_init(&table->hash2[i].lock);
2502 }
2503 }
2504
2505 void __init udp_init(void)
2506 {
2507 unsigned long limit;
2508
2509 udp_table_init(&udp_table, "UDP");
2510 limit = nr_free_buffer_pages() / 8;
2511 limit = max(limit, 128UL);
2512 sysctl_udp_mem[0] = limit / 4 * 3;
2513 sysctl_udp_mem[1] = limit;
2514 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2515
2516 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2517 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2518 }