]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv6/ip6_fib.c
[NETNS][IPV6] ip6_fib - fib6_clean_all handle several network namespaces
[mirror_ubuntu-artful-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 /*
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
21 * Ville Nuorvala: Fixed routing subtrees.
22 */
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31
32 #ifdef CONFIG_PROC_FS
33 #include <linux/proc_fs.h>
34 #endif
35
36 #include <net/ipv6.h>
37 #include <net/ndisc.h>
38 #include <net/addrconf.h>
39
40 #include <net/ip6_fib.h>
41 #include <net/ip6_route.h>
42
43 #define RT6_DEBUG 2
44
45 #if RT6_DEBUG >= 3
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #else
48 #define RT6_TRACE(x...) do { ; } while (0)
49 #endif
50
51 struct rt6_statistics rt6_stats;
52
53 static struct kmem_cache * fib6_node_kmem __read_mostly;
54
55 enum fib_walk_state_t
56 {
57 #ifdef CONFIG_IPV6_SUBTREES
58 FWS_S,
59 #endif
60 FWS_L,
61 FWS_R,
62 FWS_C,
63 FWS_U
64 };
65
66 struct fib6_cleaner_t
67 {
68 struct fib6_walker_t w;
69 int (*func)(struct rt6_info *, void *arg);
70 void *arg;
71 };
72
73 static DEFINE_RWLOCK(fib6_walker_lock);
74
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #else
78 #define FWS_INIT FWS_L
79 #endif
80
81 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
82 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn);
83 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
84 static int fib6_walk(struct fib6_walker_t *w);
85 static int fib6_walk_continue(struct fib6_walker_t *w);
86
87 /*
88 * A routing update causes an increase of the serial number on the
89 * affected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
92 */
93
94 static __u32 rt_sernum;
95
96 static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
97
98 static struct fib6_walker_t fib6_walker_list = {
99 .prev = &fib6_walker_list,
100 .next = &fib6_walker_list,
101 };
102
103 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104
105 static inline void fib6_walker_link(struct fib6_walker_t *w)
106 {
107 write_lock_bh(&fib6_walker_lock);
108 w->next = fib6_walker_list.next;
109 w->prev = &fib6_walker_list;
110 w->next->prev = w;
111 w->prev->next = w;
112 write_unlock_bh(&fib6_walker_lock);
113 }
114
115 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
116 {
117 write_lock_bh(&fib6_walker_lock);
118 w->next->prev = w->prev;
119 w->prev->next = w->next;
120 w->prev = w->next = w;
121 write_unlock_bh(&fib6_walker_lock);
122 }
123 static __inline__ u32 fib6_new_sernum(void)
124 {
125 u32 n = ++rt_sernum;
126 if ((__s32)n <= 0)
127 rt_sernum = n = 1;
128 return n;
129 }
130
131 /*
132 * Auxiliary address test functions for the radix tree.
133 *
134 * These assume a 32bit processor (although it will work on
135 * 64bit processors)
136 */
137
138 /*
139 * test bit
140 */
141
142 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
143 {
144 __be32 *addr = token;
145
146 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
147 }
148
149 static __inline__ struct fib6_node * node_alloc(void)
150 {
151 struct fib6_node *fn;
152
153 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154
155 return fn;
156 }
157
158 static __inline__ void node_free(struct fib6_node * fn)
159 {
160 kmem_cache_free(fib6_node_kmem, fn);
161 }
162
163 static __inline__ void rt6_release(struct rt6_info *rt)
164 {
165 if (atomic_dec_and_test(&rt->rt6i_ref))
166 dst_free(&rt->u.dst);
167 }
168
169 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
170 #define FIB_TABLE_HASHSZ 256
171 #else
172 #define FIB_TABLE_HASHSZ 1
173 #endif
174
175 static void fib6_link_table(struct net *net, struct fib6_table *tb)
176 {
177 unsigned int h;
178
179 /*
180 * Initialize table lock at a single place to give lockdep a key,
181 * tables aren't visible prior to being linked to the list.
182 */
183 rwlock_init(&tb->tb6_lock);
184
185 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
186
187 /*
188 * No protection necessary, this is the only list mutatation
189 * operation, tables never disappear once they exist.
190 */
191 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
192 }
193
194 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
195
196 static struct fib6_table *fib6_alloc_table(u32 id)
197 {
198 struct fib6_table *table;
199
200 table = kzalloc(sizeof(*table), GFP_ATOMIC);
201 if (table != NULL) {
202 table->tb6_id = id;
203 table->tb6_root.leaf = &ip6_null_entry;
204 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
205 }
206
207 return table;
208 }
209
210 struct fib6_table *fib6_new_table(struct net *net, u32 id)
211 {
212 struct fib6_table *tb;
213
214 if (id == 0)
215 id = RT6_TABLE_MAIN;
216 tb = fib6_get_table(net, id);
217 if (tb)
218 return tb;
219
220 tb = fib6_alloc_table(id);
221 if (tb != NULL)
222 fib6_link_table(net, tb);
223
224 return tb;
225 }
226
227 struct fib6_table *fib6_get_table(struct net *net, u32 id)
228 {
229 struct fib6_table *tb;
230 struct hlist_head *head;
231 struct hlist_node *node;
232 unsigned int h;
233
234 if (id == 0)
235 id = RT6_TABLE_MAIN;
236 h = id & (FIB_TABLE_HASHSZ - 1);
237 rcu_read_lock();
238 head = &net->ipv6.fib_table_hash[h];
239 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
240 if (tb->tb6_id == id) {
241 rcu_read_unlock();
242 return tb;
243 }
244 }
245 rcu_read_unlock();
246
247 return NULL;
248 }
249
250 static void fib6_tables_init(struct net *net)
251 {
252 fib6_link_table(net, net->ipv6.fib6_main_tbl);
253 fib6_link_table(net, net->ipv6.fib6_local_tbl);
254 }
255 #else
256
257 struct fib6_table *fib6_new_table(struct net *net, u32 id)
258 {
259 return fib6_get_table(net, id);
260 }
261
262 struct fib6_table *fib6_get_table(struct net *net, u32 id)
263 {
264 return net->ipv6.fib6_main_tbl;
265 }
266
267 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
268 int flags, pol_lookup_t lookup)
269 {
270 return (struct dst_entry *) lookup(net->ipv6.fib6_main_tbl, fl, flags);
271 }
272
273 static void fib6_tables_init(struct net *net)
274 {
275 fib6_link_table(net, net->ipv6.fib6_main_tbl);
276 }
277
278 #endif
279
280 static int fib6_dump_node(struct fib6_walker_t *w)
281 {
282 int res;
283 struct rt6_info *rt;
284
285 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
286 res = rt6_dump_route(rt, w->args);
287 if (res < 0) {
288 /* Frame is full, suspend walking */
289 w->leaf = rt;
290 return 1;
291 }
292 BUG_TRAP(res!=0);
293 }
294 w->leaf = NULL;
295 return 0;
296 }
297
298 static void fib6_dump_end(struct netlink_callback *cb)
299 {
300 struct fib6_walker_t *w = (void*)cb->args[2];
301
302 if (w) {
303 cb->args[2] = 0;
304 kfree(w);
305 }
306 cb->done = (void*)cb->args[3];
307 cb->args[1] = 3;
308 }
309
310 static int fib6_dump_done(struct netlink_callback *cb)
311 {
312 fib6_dump_end(cb);
313 return cb->done ? cb->done(cb) : 0;
314 }
315
316 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
317 struct netlink_callback *cb)
318 {
319 struct fib6_walker_t *w;
320 int res;
321
322 w = (void *)cb->args[2];
323 w->root = &table->tb6_root;
324
325 if (cb->args[4] == 0) {
326 read_lock_bh(&table->tb6_lock);
327 res = fib6_walk(w);
328 read_unlock_bh(&table->tb6_lock);
329 if (res > 0)
330 cb->args[4] = 1;
331 } else {
332 read_lock_bh(&table->tb6_lock);
333 res = fib6_walk_continue(w);
334 read_unlock_bh(&table->tb6_lock);
335 if (res != 0) {
336 if (res < 0)
337 fib6_walker_unlink(w);
338 goto end;
339 }
340 fib6_walker_unlink(w);
341 cb->args[4] = 0;
342 }
343 end:
344 return res;
345 }
346
347 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
348 {
349 struct net *net = skb->sk->sk_net;
350 unsigned int h, s_h;
351 unsigned int e = 0, s_e;
352 struct rt6_rtnl_dump_arg arg;
353 struct fib6_walker_t *w;
354 struct fib6_table *tb;
355 struct hlist_node *node;
356 struct hlist_head *head;
357 int res = 0;
358
359 s_h = cb->args[0];
360 s_e = cb->args[1];
361
362 w = (void *)cb->args[2];
363 if (w == NULL) {
364 /* New dump:
365 *
366 * 1. hook callback destructor.
367 */
368 cb->args[3] = (long)cb->done;
369 cb->done = fib6_dump_done;
370
371 /*
372 * 2. allocate and initialize walker.
373 */
374 w = kzalloc(sizeof(*w), GFP_ATOMIC);
375 if (w == NULL)
376 return -ENOMEM;
377 w->func = fib6_dump_node;
378 cb->args[2] = (long)w;
379 }
380
381 arg.skb = skb;
382 arg.cb = cb;
383 w->args = &arg;
384
385 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
386 e = 0;
387 head = &net->ipv6.fib_table_hash[h];
388 hlist_for_each_entry(tb, node, head, tb6_hlist) {
389 if (e < s_e)
390 goto next;
391 res = fib6_dump_table(tb, skb, cb);
392 if (res != 0)
393 goto out;
394 next:
395 e++;
396 }
397 }
398 out:
399 cb->args[1] = e;
400 cb->args[0] = h;
401
402 res = res < 0 ? res : skb->len;
403 if (res <= 0)
404 fib6_dump_end(cb);
405 return res;
406 }
407
408 /*
409 * Routing Table
410 *
411 * return the appropriate node for a routing tree "add" operation
412 * by either creating and inserting or by returning an existing
413 * node.
414 */
415
416 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
417 int addrlen, int plen,
418 int offset)
419 {
420 struct fib6_node *fn, *in, *ln;
421 struct fib6_node *pn = NULL;
422 struct rt6key *key;
423 int bit;
424 __be32 dir = 0;
425 __u32 sernum = fib6_new_sernum();
426
427 RT6_TRACE("fib6_add_1\n");
428
429 /* insert node in tree */
430
431 fn = root;
432
433 do {
434 key = (struct rt6key *)((u8 *)fn->leaf + offset);
435
436 /*
437 * Prefix match
438 */
439 if (plen < fn->fn_bit ||
440 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
441 goto insert_above;
442
443 /*
444 * Exact match ?
445 */
446
447 if (plen == fn->fn_bit) {
448 /* clean up an intermediate node */
449 if ((fn->fn_flags & RTN_RTINFO) == 0) {
450 rt6_release(fn->leaf);
451 fn->leaf = NULL;
452 }
453
454 fn->fn_sernum = sernum;
455
456 return fn;
457 }
458
459 /*
460 * We have more bits to go
461 */
462
463 /* Try to walk down on tree. */
464 fn->fn_sernum = sernum;
465 dir = addr_bit_set(addr, fn->fn_bit);
466 pn = fn;
467 fn = dir ? fn->right: fn->left;
468 } while (fn);
469
470 /*
471 * We walked to the bottom of tree.
472 * Create new leaf node without children.
473 */
474
475 ln = node_alloc();
476
477 if (ln == NULL)
478 return NULL;
479 ln->fn_bit = plen;
480
481 ln->parent = pn;
482 ln->fn_sernum = sernum;
483
484 if (dir)
485 pn->right = ln;
486 else
487 pn->left = ln;
488
489 return ln;
490
491
492 insert_above:
493 /*
494 * split since we don't have a common prefix anymore or
495 * we have a less significant route.
496 * we've to insert an intermediate node on the list
497 * this new node will point to the one we need to create
498 * and the current
499 */
500
501 pn = fn->parent;
502
503 /* find 1st bit in difference between the 2 addrs.
504
505 See comment in __ipv6_addr_diff: bit may be an invalid value,
506 but if it is >= plen, the value is ignored in any case.
507 */
508
509 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
510
511 /*
512 * (intermediate)[in]
513 * / \
514 * (new leaf node)[ln] (old node)[fn]
515 */
516 if (plen > bit) {
517 in = node_alloc();
518 ln = node_alloc();
519
520 if (in == NULL || ln == NULL) {
521 if (in)
522 node_free(in);
523 if (ln)
524 node_free(ln);
525 return NULL;
526 }
527
528 /*
529 * new intermediate node.
530 * RTN_RTINFO will
531 * be off since that an address that chooses one of
532 * the branches would not match less specific routes
533 * in the other branch
534 */
535
536 in->fn_bit = bit;
537
538 in->parent = pn;
539 in->leaf = fn->leaf;
540 atomic_inc(&in->leaf->rt6i_ref);
541
542 in->fn_sernum = sernum;
543
544 /* update parent pointer */
545 if (dir)
546 pn->right = in;
547 else
548 pn->left = in;
549
550 ln->fn_bit = plen;
551
552 ln->parent = in;
553 fn->parent = in;
554
555 ln->fn_sernum = sernum;
556
557 if (addr_bit_set(addr, bit)) {
558 in->right = ln;
559 in->left = fn;
560 } else {
561 in->left = ln;
562 in->right = fn;
563 }
564 } else { /* plen <= bit */
565
566 /*
567 * (new leaf node)[ln]
568 * / \
569 * (old node)[fn] NULL
570 */
571
572 ln = node_alloc();
573
574 if (ln == NULL)
575 return NULL;
576
577 ln->fn_bit = plen;
578
579 ln->parent = pn;
580
581 ln->fn_sernum = sernum;
582
583 if (dir)
584 pn->right = ln;
585 else
586 pn->left = ln;
587
588 if (addr_bit_set(&key->addr, plen))
589 ln->right = fn;
590 else
591 ln->left = fn;
592
593 fn->parent = ln;
594 }
595 return ln;
596 }
597
598 /*
599 * Insert routing information in a node.
600 */
601
602 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
603 struct nl_info *info)
604 {
605 struct rt6_info *iter = NULL;
606 struct rt6_info **ins;
607
608 ins = &fn->leaf;
609
610 for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
611 /*
612 * Search for duplicates
613 */
614
615 if (iter->rt6i_metric == rt->rt6i_metric) {
616 /*
617 * Same priority level
618 */
619
620 if (iter->rt6i_dev == rt->rt6i_dev &&
621 iter->rt6i_idev == rt->rt6i_idev &&
622 ipv6_addr_equal(&iter->rt6i_gateway,
623 &rt->rt6i_gateway)) {
624 if (!(iter->rt6i_flags&RTF_EXPIRES))
625 return -EEXIST;
626 iter->rt6i_expires = rt->rt6i_expires;
627 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
628 iter->rt6i_flags &= ~RTF_EXPIRES;
629 iter->rt6i_expires = 0;
630 }
631 return -EEXIST;
632 }
633 }
634
635 if (iter->rt6i_metric > rt->rt6i_metric)
636 break;
637
638 ins = &iter->u.dst.rt6_next;
639 }
640
641 /* Reset round-robin state, if necessary */
642 if (ins == &fn->leaf)
643 fn->rr_ptr = NULL;
644
645 /*
646 * insert node
647 */
648
649 rt->u.dst.rt6_next = iter;
650 *ins = rt;
651 rt->rt6i_node = fn;
652 atomic_inc(&rt->rt6i_ref);
653 inet6_rt_notify(RTM_NEWROUTE, rt, info);
654 rt6_stats.fib_rt_entries++;
655
656 if ((fn->fn_flags & RTN_RTINFO) == 0) {
657 rt6_stats.fib_route_nodes++;
658 fn->fn_flags |= RTN_RTINFO;
659 }
660
661 return 0;
662 }
663
664 static __inline__ void fib6_start_gc(struct rt6_info *rt)
665 {
666 if (ip6_fib_timer.expires == 0 &&
667 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
668 mod_timer(&ip6_fib_timer, jiffies +
669 init_net.ipv6.sysctl.ip6_rt_gc_interval);
670 }
671
672 void fib6_force_start_gc(void)
673 {
674 if (ip6_fib_timer.expires == 0)
675 mod_timer(&ip6_fib_timer, jiffies +
676 init_net.ipv6.sysctl.ip6_rt_gc_interval);
677 }
678
679 /*
680 * Add routing information to the routing tree.
681 * <destination addr>/<source addr>
682 * with source addr info in sub-trees
683 */
684
685 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
686 {
687 struct fib6_node *fn, *pn = NULL;
688 int err = -ENOMEM;
689
690 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
691 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
692
693 if (fn == NULL)
694 goto out;
695
696 pn = fn;
697
698 #ifdef CONFIG_IPV6_SUBTREES
699 if (rt->rt6i_src.plen) {
700 struct fib6_node *sn;
701
702 if (fn->subtree == NULL) {
703 struct fib6_node *sfn;
704
705 /*
706 * Create subtree.
707 *
708 * fn[main tree]
709 * |
710 * sfn[subtree root]
711 * \
712 * sn[new leaf node]
713 */
714
715 /* Create subtree root node */
716 sfn = node_alloc();
717 if (sfn == NULL)
718 goto st_failure;
719
720 sfn->leaf = &ip6_null_entry;
721 atomic_inc(&ip6_null_entry.rt6i_ref);
722 sfn->fn_flags = RTN_ROOT;
723 sfn->fn_sernum = fib6_new_sernum();
724
725 /* Now add the first leaf node to new subtree */
726
727 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
728 sizeof(struct in6_addr), rt->rt6i_src.plen,
729 offsetof(struct rt6_info, rt6i_src));
730
731 if (sn == NULL) {
732 /* If it is failed, discard just allocated
733 root, and then (in st_failure) stale node
734 in main tree.
735 */
736 node_free(sfn);
737 goto st_failure;
738 }
739
740 /* Now link new subtree to main tree */
741 sfn->parent = fn;
742 fn->subtree = sfn;
743 } else {
744 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
745 sizeof(struct in6_addr), rt->rt6i_src.plen,
746 offsetof(struct rt6_info, rt6i_src));
747
748 if (sn == NULL)
749 goto st_failure;
750 }
751
752 if (fn->leaf == NULL) {
753 fn->leaf = rt;
754 atomic_inc(&rt->rt6i_ref);
755 }
756 fn = sn;
757 }
758 #endif
759
760 err = fib6_add_rt2node(fn, rt, info);
761
762 if (err == 0) {
763 fib6_start_gc(rt);
764 if (!(rt->rt6i_flags&RTF_CACHE))
765 fib6_prune_clones(pn, rt);
766 }
767
768 out:
769 if (err) {
770 #ifdef CONFIG_IPV6_SUBTREES
771 /*
772 * If fib6_add_1 has cleared the old leaf pointer in the
773 * super-tree leaf node we have to find a new one for it.
774 */
775 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
776 pn->leaf = fib6_find_prefix(pn);
777 #if RT6_DEBUG >= 2
778 if (!pn->leaf) {
779 BUG_TRAP(pn->leaf != NULL);
780 pn->leaf = &ip6_null_entry;
781 }
782 #endif
783 atomic_inc(&pn->leaf->rt6i_ref);
784 }
785 #endif
786 dst_free(&rt->u.dst);
787 }
788 return err;
789
790 #ifdef CONFIG_IPV6_SUBTREES
791 /* Subtree creation failed, probably main tree node
792 is orphan. If it is, shoot it.
793 */
794 st_failure:
795 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
796 fib6_repair_tree(fn);
797 dst_free(&rt->u.dst);
798 return err;
799 #endif
800 }
801
802 /*
803 * Routing tree lookup
804 *
805 */
806
807 struct lookup_args {
808 int offset; /* key offset on rt6_info */
809 struct in6_addr *addr; /* search key */
810 };
811
812 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
813 struct lookup_args *args)
814 {
815 struct fib6_node *fn;
816 __be32 dir;
817
818 if (unlikely(args->offset == 0))
819 return NULL;
820
821 /*
822 * Descend on a tree
823 */
824
825 fn = root;
826
827 for (;;) {
828 struct fib6_node *next;
829
830 dir = addr_bit_set(args->addr, fn->fn_bit);
831
832 next = dir ? fn->right : fn->left;
833
834 if (next) {
835 fn = next;
836 continue;
837 }
838
839 break;
840 }
841
842 while(fn) {
843 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
844 struct rt6key *key;
845
846 key = (struct rt6key *) ((u8 *) fn->leaf +
847 args->offset);
848
849 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
850 #ifdef CONFIG_IPV6_SUBTREES
851 if (fn->subtree)
852 fn = fib6_lookup_1(fn->subtree, args + 1);
853 #endif
854 if (!fn || fn->fn_flags & RTN_RTINFO)
855 return fn;
856 }
857 }
858
859 if (fn->fn_flags & RTN_ROOT)
860 break;
861
862 fn = fn->parent;
863 }
864
865 return NULL;
866 }
867
868 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
869 struct in6_addr *saddr)
870 {
871 struct fib6_node *fn;
872 struct lookup_args args[] = {
873 {
874 .offset = offsetof(struct rt6_info, rt6i_dst),
875 .addr = daddr,
876 },
877 #ifdef CONFIG_IPV6_SUBTREES
878 {
879 .offset = offsetof(struct rt6_info, rt6i_src),
880 .addr = saddr,
881 },
882 #endif
883 {
884 .offset = 0, /* sentinel */
885 }
886 };
887
888 fn = fib6_lookup_1(root, daddr ? args : args + 1);
889
890 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
891 fn = root;
892
893 return fn;
894 }
895
896 /*
897 * Get node with specified destination prefix (and source prefix,
898 * if subtrees are used)
899 */
900
901
902 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
903 struct in6_addr *addr,
904 int plen, int offset)
905 {
906 struct fib6_node *fn;
907
908 for (fn = root; fn ; ) {
909 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
910
911 /*
912 * Prefix match
913 */
914 if (plen < fn->fn_bit ||
915 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
916 return NULL;
917
918 if (plen == fn->fn_bit)
919 return fn;
920
921 /*
922 * We have more bits to go
923 */
924 if (addr_bit_set(addr, fn->fn_bit))
925 fn = fn->right;
926 else
927 fn = fn->left;
928 }
929 return NULL;
930 }
931
932 struct fib6_node * fib6_locate(struct fib6_node *root,
933 struct in6_addr *daddr, int dst_len,
934 struct in6_addr *saddr, int src_len)
935 {
936 struct fib6_node *fn;
937
938 fn = fib6_locate_1(root, daddr, dst_len,
939 offsetof(struct rt6_info, rt6i_dst));
940
941 #ifdef CONFIG_IPV6_SUBTREES
942 if (src_len) {
943 BUG_TRAP(saddr!=NULL);
944 if (fn && fn->subtree)
945 fn = fib6_locate_1(fn->subtree, saddr, src_len,
946 offsetof(struct rt6_info, rt6i_src));
947 }
948 #endif
949
950 if (fn && fn->fn_flags&RTN_RTINFO)
951 return fn;
952
953 return NULL;
954 }
955
956
957 /*
958 * Deletion
959 *
960 */
961
962 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
963 {
964 if (fn->fn_flags&RTN_ROOT)
965 return &ip6_null_entry;
966
967 while(fn) {
968 if(fn->left)
969 return fn->left->leaf;
970
971 if(fn->right)
972 return fn->right->leaf;
973
974 fn = FIB6_SUBTREE(fn);
975 }
976 return NULL;
977 }
978
979 /*
980 * Called to trim the tree of intermediate nodes when possible. "fn"
981 * is the node we want to try and remove.
982 */
983
984 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
985 {
986 int children;
987 int nstate;
988 struct fib6_node *child, *pn;
989 struct fib6_walker_t *w;
990 int iter = 0;
991
992 for (;;) {
993 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
994 iter++;
995
996 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
997 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
998 BUG_TRAP(fn->leaf==NULL);
999
1000 children = 0;
1001 child = NULL;
1002 if (fn->right) child = fn->right, children |= 1;
1003 if (fn->left) child = fn->left, children |= 2;
1004
1005 if (children == 3 || FIB6_SUBTREE(fn)
1006 #ifdef CONFIG_IPV6_SUBTREES
1007 /* Subtree root (i.e. fn) may have one child */
1008 || (children && fn->fn_flags&RTN_ROOT)
1009 #endif
1010 ) {
1011 fn->leaf = fib6_find_prefix(fn);
1012 #if RT6_DEBUG >= 2
1013 if (fn->leaf==NULL) {
1014 BUG_TRAP(fn->leaf);
1015 fn->leaf = &ip6_null_entry;
1016 }
1017 #endif
1018 atomic_inc(&fn->leaf->rt6i_ref);
1019 return fn->parent;
1020 }
1021
1022 pn = fn->parent;
1023 #ifdef CONFIG_IPV6_SUBTREES
1024 if (FIB6_SUBTREE(pn) == fn) {
1025 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1026 FIB6_SUBTREE(pn) = NULL;
1027 nstate = FWS_L;
1028 } else {
1029 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1030 #endif
1031 if (pn->right == fn) pn->right = child;
1032 else if (pn->left == fn) pn->left = child;
1033 #if RT6_DEBUG >= 2
1034 else BUG_TRAP(0);
1035 #endif
1036 if (child)
1037 child->parent = pn;
1038 nstate = FWS_R;
1039 #ifdef CONFIG_IPV6_SUBTREES
1040 }
1041 #endif
1042
1043 read_lock(&fib6_walker_lock);
1044 FOR_WALKERS(w) {
1045 if (child == NULL) {
1046 if (w->root == fn) {
1047 w->root = w->node = NULL;
1048 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1049 } else if (w->node == fn) {
1050 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1051 w->node = pn;
1052 w->state = nstate;
1053 }
1054 } else {
1055 if (w->root == fn) {
1056 w->root = child;
1057 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1058 }
1059 if (w->node == fn) {
1060 w->node = child;
1061 if (children&2) {
1062 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1063 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1064 } else {
1065 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1066 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1067 }
1068 }
1069 }
1070 }
1071 read_unlock(&fib6_walker_lock);
1072
1073 node_free(fn);
1074 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1075 return pn;
1076
1077 rt6_release(pn->leaf);
1078 pn->leaf = NULL;
1079 fn = pn;
1080 }
1081 }
1082
1083 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1084 struct nl_info *info)
1085 {
1086 struct fib6_walker_t *w;
1087 struct rt6_info *rt = *rtp;
1088
1089 RT6_TRACE("fib6_del_route\n");
1090
1091 /* Unlink it */
1092 *rtp = rt->u.dst.rt6_next;
1093 rt->rt6i_node = NULL;
1094 rt6_stats.fib_rt_entries--;
1095 rt6_stats.fib_discarded_routes++;
1096
1097 /* Reset round-robin state, if necessary */
1098 if (fn->rr_ptr == rt)
1099 fn->rr_ptr = NULL;
1100
1101 /* Adjust walkers */
1102 read_lock(&fib6_walker_lock);
1103 FOR_WALKERS(w) {
1104 if (w->state == FWS_C && w->leaf == rt) {
1105 RT6_TRACE("walker %p adjusted by delroute\n", w);
1106 w->leaf = rt->u.dst.rt6_next;
1107 if (w->leaf == NULL)
1108 w->state = FWS_U;
1109 }
1110 }
1111 read_unlock(&fib6_walker_lock);
1112
1113 rt->u.dst.rt6_next = NULL;
1114
1115 /* If it was last route, expunge its radix tree node */
1116 if (fn->leaf == NULL) {
1117 fn->fn_flags &= ~RTN_RTINFO;
1118 rt6_stats.fib_route_nodes--;
1119 fn = fib6_repair_tree(fn);
1120 }
1121
1122 if (atomic_read(&rt->rt6i_ref) != 1) {
1123 /* This route is used as dummy address holder in some split
1124 * nodes. It is not leaked, but it still holds other resources,
1125 * which must be released in time. So, scan ascendant nodes
1126 * and replace dummy references to this route with references
1127 * to still alive ones.
1128 */
1129 while (fn) {
1130 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1131 fn->leaf = fib6_find_prefix(fn);
1132 atomic_inc(&fn->leaf->rt6i_ref);
1133 rt6_release(rt);
1134 }
1135 fn = fn->parent;
1136 }
1137 /* No more references are possible at this point. */
1138 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1139 }
1140
1141 inet6_rt_notify(RTM_DELROUTE, rt, info);
1142 rt6_release(rt);
1143 }
1144
1145 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1146 {
1147 struct fib6_node *fn = rt->rt6i_node;
1148 struct rt6_info **rtp;
1149
1150 #if RT6_DEBUG >= 2
1151 if (rt->u.dst.obsolete>0) {
1152 BUG_TRAP(fn==NULL);
1153 return -ENOENT;
1154 }
1155 #endif
1156 if (fn == NULL || rt == &ip6_null_entry)
1157 return -ENOENT;
1158
1159 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1160
1161 if (!(rt->rt6i_flags&RTF_CACHE)) {
1162 struct fib6_node *pn = fn;
1163 #ifdef CONFIG_IPV6_SUBTREES
1164 /* clones of this route might be in another subtree */
1165 if (rt->rt6i_src.plen) {
1166 while (!(pn->fn_flags&RTN_ROOT))
1167 pn = pn->parent;
1168 pn = pn->parent;
1169 }
1170 #endif
1171 fib6_prune_clones(pn, rt);
1172 }
1173
1174 /*
1175 * Walk the leaf entries looking for ourself
1176 */
1177
1178 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1179 if (*rtp == rt) {
1180 fib6_del_route(fn, rtp, info);
1181 return 0;
1182 }
1183 }
1184 return -ENOENT;
1185 }
1186
1187 /*
1188 * Tree traversal function.
1189 *
1190 * Certainly, it is not interrupt safe.
1191 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1192 * It means, that we can modify tree during walking
1193 * and use this function for garbage collection, clone pruning,
1194 * cleaning tree when a device goes down etc. etc.
1195 *
1196 * It guarantees that every node will be traversed,
1197 * and that it will be traversed only once.
1198 *
1199 * Callback function w->func may return:
1200 * 0 -> continue walking.
1201 * positive value -> walking is suspended (used by tree dumps,
1202 * and probably by gc, if it will be split to several slices)
1203 * negative value -> terminate walking.
1204 *
1205 * The function itself returns:
1206 * 0 -> walk is complete.
1207 * >0 -> walk is incomplete (i.e. suspended)
1208 * <0 -> walk is terminated by an error.
1209 */
1210
1211 static int fib6_walk_continue(struct fib6_walker_t *w)
1212 {
1213 struct fib6_node *fn, *pn;
1214
1215 for (;;) {
1216 fn = w->node;
1217 if (fn == NULL)
1218 return 0;
1219
1220 if (w->prune && fn != w->root &&
1221 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1222 w->state = FWS_C;
1223 w->leaf = fn->leaf;
1224 }
1225 switch (w->state) {
1226 #ifdef CONFIG_IPV6_SUBTREES
1227 case FWS_S:
1228 if (FIB6_SUBTREE(fn)) {
1229 w->node = FIB6_SUBTREE(fn);
1230 continue;
1231 }
1232 w->state = FWS_L;
1233 #endif
1234 case FWS_L:
1235 if (fn->left) {
1236 w->node = fn->left;
1237 w->state = FWS_INIT;
1238 continue;
1239 }
1240 w->state = FWS_R;
1241 case FWS_R:
1242 if (fn->right) {
1243 w->node = fn->right;
1244 w->state = FWS_INIT;
1245 continue;
1246 }
1247 w->state = FWS_C;
1248 w->leaf = fn->leaf;
1249 case FWS_C:
1250 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1251 int err = w->func(w);
1252 if (err)
1253 return err;
1254 continue;
1255 }
1256 w->state = FWS_U;
1257 case FWS_U:
1258 if (fn == w->root)
1259 return 0;
1260 pn = fn->parent;
1261 w->node = pn;
1262 #ifdef CONFIG_IPV6_SUBTREES
1263 if (FIB6_SUBTREE(pn) == fn) {
1264 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1265 w->state = FWS_L;
1266 continue;
1267 }
1268 #endif
1269 if (pn->left == fn) {
1270 w->state = FWS_R;
1271 continue;
1272 }
1273 if (pn->right == fn) {
1274 w->state = FWS_C;
1275 w->leaf = w->node->leaf;
1276 continue;
1277 }
1278 #if RT6_DEBUG >= 2
1279 BUG_TRAP(0);
1280 #endif
1281 }
1282 }
1283 }
1284
1285 static int fib6_walk(struct fib6_walker_t *w)
1286 {
1287 int res;
1288
1289 w->state = FWS_INIT;
1290 w->node = w->root;
1291
1292 fib6_walker_link(w);
1293 res = fib6_walk_continue(w);
1294 if (res <= 0)
1295 fib6_walker_unlink(w);
1296 return res;
1297 }
1298
1299 static int fib6_clean_node(struct fib6_walker_t *w)
1300 {
1301 struct nl_info info = {
1302 .nl_net = &init_net,
1303 };
1304 int res;
1305 struct rt6_info *rt;
1306 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1307
1308 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1309 res = c->func(rt, c->arg);
1310 if (res < 0) {
1311 w->leaf = rt;
1312 res = fib6_del(rt, &info);
1313 if (res) {
1314 #if RT6_DEBUG >= 2
1315 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1316 #endif
1317 continue;
1318 }
1319 return 0;
1320 }
1321 BUG_TRAP(res==0);
1322 }
1323 w->leaf = rt;
1324 return 0;
1325 }
1326
1327 /*
1328 * Convenient frontend to tree walker.
1329 *
1330 * func is called on each route.
1331 * It may return -1 -> delete this route.
1332 * 0 -> continue walking
1333 *
1334 * prune==1 -> only immediate children of node (certainly,
1335 * ignoring pure split nodes) will be scanned.
1336 */
1337
1338 static void fib6_clean_tree(struct fib6_node *root,
1339 int (*func)(struct rt6_info *, void *arg),
1340 int prune, void *arg)
1341 {
1342 struct fib6_cleaner_t c;
1343
1344 c.w.root = root;
1345 c.w.func = fib6_clean_node;
1346 c.w.prune = prune;
1347 c.func = func;
1348 c.arg = arg;
1349
1350 fib6_walk(&c.w);
1351 }
1352
1353 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1354 int prune, void *arg)
1355 {
1356 struct fib6_table *table;
1357 struct hlist_node *node;
1358 struct hlist_head *head;
1359 unsigned int h;
1360
1361 rcu_read_lock();
1362 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1363 head = &net->ipv6.fib_table_hash[h];
1364 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1365 write_lock_bh(&table->tb6_lock);
1366 fib6_clean_tree(&table->tb6_root, func, prune, arg);
1367 write_unlock_bh(&table->tb6_lock);
1368 }
1369 }
1370 rcu_read_unlock();
1371 }
1372
1373 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1374 {
1375 if (rt->rt6i_flags & RTF_CACHE) {
1376 RT6_TRACE("pruning clone %p\n", rt);
1377 return -1;
1378 }
1379
1380 return 0;
1381 }
1382
1383 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1384 {
1385 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1386 }
1387
1388 /*
1389 * Garbage collection
1390 */
1391
1392 static struct fib6_gc_args
1393 {
1394 int timeout;
1395 int more;
1396 } gc_args;
1397
1398 static int fib6_age(struct rt6_info *rt, void *arg)
1399 {
1400 unsigned long now = jiffies;
1401
1402 /*
1403 * check addrconf expiration here.
1404 * Routes are expired even if they are in use.
1405 *
1406 * Also age clones. Note, that clones are aged out
1407 * only if they are not in use now.
1408 */
1409
1410 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1411 if (time_after(now, rt->rt6i_expires)) {
1412 RT6_TRACE("expiring %p\n", rt);
1413 return -1;
1414 }
1415 gc_args.more++;
1416 } else if (rt->rt6i_flags & RTF_CACHE) {
1417 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1418 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1419 RT6_TRACE("aging clone %p\n", rt);
1420 return -1;
1421 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1422 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1423 RT6_TRACE("purging route %p via non-router but gateway\n",
1424 rt);
1425 return -1;
1426 }
1427 gc_args.more++;
1428 }
1429
1430 return 0;
1431 }
1432
1433 static DEFINE_SPINLOCK(fib6_gc_lock);
1434
1435 void fib6_run_gc(unsigned long dummy)
1436 {
1437 if (dummy != ~0UL) {
1438 spin_lock_bh(&fib6_gc_lock);
1439 gc_args.timeout = dummy ? (int)dummy :
1440 init_net.ipv6.sysctl.ip6_rt_gc_interval;
1441 } else {
1442 local_bh_disable();
1443 if (!spin_trylock(&fib6_gc_lock)) {
1444 mod_timer(&ip6_fib_timer, jiffies + HZ);
1445 local_bh_enable();
1446 return;
1447 }
1448 gc_args.timeout = init_net.ipv6.sysctl.ip6_rt_gc_interval;
1449 }
1450 gc_args.more = 0;
1451
1452 icmp6_dst_gc(&gc_args.more);
1453
1454 fib6_clean_all(&init_net, fib6_age, 0, NULL);
1455
1456 if (gc_args.more)
1457 mod_timer(&ip6_fib_timer, jiffies +
1458 init_net.ipv6.sysctl.ip6_rt_gc_interval);
1459 else {
1460 del_timer(&ip6_fib_timer);
1461 ip6_fib_timer.expires = 0;
1462 }
1463 spin_unlock_bh(&fib6_gc_lock);
1464 }
1465
1466 static int fib6_net_init(struct net *net)
1467 {
1468 int ret;
1469
1470 ret = -ENOMEM;
1471 net->ipv6.fib_table_hash =
1472 kzalloc(sizeof(*net->ipv6.fib_table_hash)*FIB_TABLE_HASHSZ,
1473 GFP_KERNEL);
1474 if (!net->ipv6.fib_table_hash)
1475 goto out;
1476
1477 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1478 GFP_KERNEL);
1479 if (!net->ipv6.fib6_main_tbl)
1480 goto out_fib_table_hash;
1481
1482 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1483 net->ipv6.fib6_main_tbl->tb6_root.leaf = &ip6_null_entry;
1484 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1485 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1486
1487 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1488 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1489 GFP_KERNEL);
1490 if (!net->ipv6.fib6_local_tbl)
1491 goto out_fib6_main_tbl;
1492 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1493 net->ipv6.fib6_local_tbl->tb6_root.leaf = &ip6_null_entry;
1494 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1495 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1496 #endif
1497 fib6_tables_init(net);
1498
1499 ret = 0;
1500 out:
1501 return ret;
1502
1503 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1504 out_fib6_main_tbl:
1505 kfree(net->ipv6.fib6_main_tbl);
1506 #endif
1507 out_fib_table_hash:
1508 kfree(net->ipv6.fib_table_hash);
1509 goto out;
1510 }
1511
1512 static void fib6_net_exit(struct net *net)
1513 {
1514 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1515 kfree(net->ipv6.fib6_local_tbl);
1516 #endif
1517 kfree(net->ipv6.fib6_main_tbl);
1518 kfree(net->ipv6.fib_table_hash);
1519 }
1520
1521 static struct pernet_operations fib6_net_ops = {
1522 .init = fib6_net_init,
1523 .exit = fib6_net_exit,
1524 };
1525
1526 int __init fib6_init(void)
1527 {
1528 int ret = -ENOMEM;
1529 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1530 sizeof(struct fib6_node),
1531 0, SLAB_HWCACHE_ALIGN,
1532 NULL);
1533 if (!fib6_node_kmem)
1534 goto out;
1535
1536 ret = register_pernet_subsys(&fib6_net_ops);
1537 if (ret)
1538 goto out_kmem_cache_create;
1539
1540 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1541 if (ret)
1542 goto out_unregister_subsys;
1543 out:
1544 return ret;
1545
1546 out_unregister_subsys:
1547 unregister_pernet_subsys(&fib6_net_ops);
1548 out_kmem_cache_create:
1549 kmem_cache_destroy(fib6_node_kmem);
1550 goto out;
1551 }
1552
1553 void fib6_gc_cleanup(void)
1554 {
1555 del_timer(&ip6_fib_timer);
1556 unregister_pernet_subsys(&fib6_net_ops);
1557 kmem_cache_destroy(fib6_node_kmem);
1558 }