]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/ipv6/ip6_fib.c
ASoC: fix ABE_TWL6040 dependency
[mirror_ubuntu-eoan-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
96 static int fib6_new_sernum(struct net *net)
97 {
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106 }
107
108 enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119 /*
120 * test bit
121 */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE 0
126 #endif
127
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140 }
141
142 static struct fib6_node *node_alloc(void)
143 {
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149 }
150
151 static void node_free(struct fib6_node *fn)
152 {
153 kmem_cache_free(fib6_node_kmem, fn);
154 }
155
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163 int cpu;
164
165 if (!non_pcpu_rt->rt6i_pcpu)
166 return;
167
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
171
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 pcpu_rt = *ppcpu_rt;
174 if (pcpu_rt) {
175 rt6_rcu_free(pcpu_rt);
176 *ppcpu_rt = NULL;
177 }
178 }
179
180 non_pcpu_rt->rt6i_pcpu = NULL;
181 }
182
183 static void rt6_release(struct rt6_info *rt)
184 {
185 if (atomic_dec_and_test(&rt->rt6i_ref)) {
186 rt6_free_pcpu(rt);
187 rt6_rcu_free(rt);
188 }
189 }
190
191 static void fib6_link_table(struct net *net, struct fib6_table *tb)
192 {
193 unsigned int h;
194
195 /*
196 * Initialize table lock at a single place to give lockdep a key,
197 * tables aren't visible prior to being linked to the list.
198 */
199 rwlock_init(&tb->tb6_lock);
200
201 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
202
203 /*
204 * No protection necessary, this is the only list mutatation
205 * operation, tables never disappear once they exist.
206 */
207 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
208 }
209
210 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
211
212 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
213 {
214 struct fib6_table *table;
215
216 table = kzalloc(sizeof(*table), GFP_ATOMIC);
217 if (table) {
218 table->tb6_id = id;
219 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
220 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221 inet_peer_base_init(&table->tb6_peers);
222 }
223
224 return table;
225 }
226
227 struct fib6_table *fib6_new_table(struct net *net, u32 id)
228 {
229 struct fib6_table *tb;
230
231 if (id == 0)
232 id = RT6_TABLE_MAIN;
233 tb = fib6_get_table(net, id);
234 if (tb)
235 return tb;
236
237 tb = fib6_alloc_table(net, id);
238 if (tb)
239 fib6_link_table(net, tb);
240
241 return tb;
242 }
243 EXPORT_SYMBOL_GPL(fib6_new_table);
244
245 struct fib6_table *fib6_get_table(struct net *net, u32 id)
246 {
247 struct fib6_table *tb;
248 struct hlist_head *head;
249 unsigned int h;
250
251 if (id == 0)
252 id = RT6_TABLE_MAIN;
253 h = id & (FIB6_TABLE_HASHSZ - 1);
254 rcu_read_lock();
255 head = &net->ipv6.fib_table_hash[h];
256 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
257 if (tb->tb6_id == id) {
258 rcu_read_unlock();
259 return tb;
260 }
261 }
262 rcu_read_unlock();
263
264 return NULL;
265 }
266 EXPORT_SYMBOL_GPL(fib6_get_table);
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277 return fib6_get_table(net, id);
278 }
279
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282 return net->ipv6.fib6_main_tbl;
283 }
284
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286 int flags, pol_lookup_t lookup)
287 {
288 struct rt6_info *rt;
289
290 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
291 if (rt->rt6i_flags & RTF_REJECT &&
292 rt->dst.error == -EAGAIN) {
293 ip6_rt_put(rt);
294 rt = net->ipv6.ip6_null_entry;
295 dst_hold(&rt->dst);
296 }
297
298 return &rt->dst;
299 }
300
301 static void __net_init fib6_tables_init(struct net *net)
302 {
303 fib6_link_table(net, net->ipv6.fib6_main_tbl);
304 }
305
306 #endif
307
308 static int fib6_dump_node(struct fib6_walker *w)
309 {
310 int res;
311 struct rt6_info *rt;
312
313 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314 res = rt6_dump_route(rt, w->args);
315 if (res < 0) {
316 /* Frame is full, suspend walking */
317 w->leaf = rt;
318 return 1;
319 }
320 }
321 w->leaf = NULL;
322 return 0;
323 }
324
325 static void fib6_dump_end(struct netlink_callback *cb)
326 {
327 struct net *net = sock_net(cb->skb->sk);
328 struct fib6_walker *w = (void *)cb->args[2];
329
330 if (w) {
331 if (cb->args[4]) {
332 cb->args[4] = 0;
333 fib6_walker_unlink(net, w);
334 }
335 cb->args[2] = 0;
336 kfree(w);
337 }
338 cb->done = (void *)cb->args[3];
339 cb->args[1] = 3;
340 }
341
342 static int fib6_dump_done(struct netlink_callback *cb)
343 {
344 fib6_dump_end(cb);
345 return cb->done ? cb->done(cb) : 0;
346 }
347
348 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
349 struct netlink_callback *cb)
350 {
351 struct net *net = sock_net(skb->sk);
352 struct fib6_walker *w;
353 int res;
354
355 w = (void *)cb->args[2];
356 w->root = &table->tb6_root;
357
358 if (cb->args[4] == 0) {
359 w->count = 0;
360 w->skip = 0;
361
362 read_lock_bh(&table->tb6_lock);
363 res = fib6_walk(net, w);
364 read_unlock_bh(&table->tb6_lock);
365 if (res > 0) {
366 cb->args[4] = 1;
367 cb->args[5] = w->root->fn_sernum;
368 }
369 } else {
370 if (cb->args[5] != w->root->fn_sernum) {
371 /* Begin at the root if the tree changed */
372 cb->args[5] = w->root->fn_sernum;
373 w->state = FWS_INIT;
374 w->node = w->root;
375 w->skip = w->count;
376 } else
377 w->skip = 0;
378
379 read_lock_bh(&table->tb6_lock);
380 res = fib6_walk_continue(w);
381 read_unlock_bh(&table->tb6_lock);
382 if (res <= 0) {
383 fib6_walker_unlink(net, w);
384 cb->args[4] = 0;
385 }
386 }
387
388 return res;
389 }
390
391 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
392 {
393 struct net *net = sock_net(skb->sk);
394 unsigned int h, s_h;
395 unsigned int e = 0, s_e;
396 struct rt6_rtnl_dump_arg arg;
397 struct fib6_walker *w;
398 struct fib6_table *tb;
399 struct hlist_head *head;
400 int res = 0;
401
402 s_h = cb->args[0];
403 s_e = cb->args[1];
404
405 w = (void *)cb->args[2];
406 if (!w) {
407 /* New dump:
408 *
409 * 1. hook callback destructor.
410 */
411 cb->args[3] = (long)cb->done;
412 cb->done = fib6_dump_done;
413
414 /*
415 * 2. allocate and initialize walker.
416 */
417 w = kzalloc(sizeof(*w), GFP_ATOMIC);
418 if (!w)
419 return -ENOMEM;
420 w->func = fib6_dump_node;
421 cb->args[2] = (long)w;
422 }
423
424 arg.skb = skb;
425 arg.cb = cb;
426 arg.net = net;
427 w->args = &arg;
428
429 rcu_read_lock();
430 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
431 e = 0;
432 head = &net->ipv6.fib_table_hash[h];
433 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
434 if (e < s_e)
435 goto next;
436 res = fib6_dump_table(tb, skb, cb);
437 if (res != 0)
438 goto out;
439 next:
440 e++;
441 }
442 }
443 out:
444 rcu_read_unlock();
445 cb->args[1] = e;
446 cb->args[0] = h;
447
448 res = res < 0 ? res : skb->len;
449 if (res <= 0)
450 fib6_dump_end(cb);
451 return res;
452 }
453
454 /*
455 * Routing Table
456 *
457 * return the appropriate node for a routing tree "add" operation
458 * by either creating and inserting or by returning an existing
459 * node.
460 */
461
462 static struct fib6_node *fib6_add_1(struct fib6_node *root,
463 struct in6_addr *addr, int plen,
464 int offset, int allow_create,
465 int replace_required, int sernum)
466 {
467 struct fib6_node *fn, *in, *ln;
468 struct fib6_node *pn = NULL;
469 struct rt6key *key;
470 int bit;
471 __be32 dir = 0;
472
473 RT6_TRACE("fib6_add_1\n");
474
475 /* insert node in tree */
476
477 fn = root;
478
479 do {
480 key = (struct rt6key *)((u8 *)fn->leaf + offset);
481
482 /*
483 * Prefix match
484 */
485 if (plen < fn->fn_bit ||
486 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
487 if (!allow_create) {
488 if (replace_required) {
489 pr_warn("Can't replace route, no match found\n");
490 return ERR_PTR(-ENOENT);
491 }
492 pr_warn("NLM_F_CREATE should be set when creating new route\n");
493 }
494 goto insert_above;
495 }
496
497 /*
498 * Exact match ?
499 */
500
501 if (plen == fn->fn_bit) {
502 /* clean up an intermediate node */
503 if (!(fn->fn_flags & RTN_RTINFO)) {
504 rt6_release(fn->leaf);
505 fn->leaf = NULL;
506 }
507
508 fn->fn_sernum = sernum;
509
510 return fn;
511 }
512
513 /*
514 * We have more bits to go
515 */
516
517 /* Try to walk down on tree. */
518 fn->fn_sernum = sernum;
519 dir = addr_bit_set(addr, fn->fn_bit);
520 pn = fn;
521 fn = dir ? fn->right : fn->left;
522 } while (fn);
523
524 if (!allow_create) {
525 /* We should not create new node because
526 * NLM_F_REPLACE was specified without NLM_F_CREATE
527 * I assume it is safe to require NLM_F_CREATE when
528 * REPLACE flag is used! Later we may want to remove the
529 * check for replace_required, because according
530 * to netlink specification, NLM_F_CREATE
531 * MUST be specified if new route is created.
532 * That would keep IPv6 consistent with IPv4
533 */
534 if (replace_required) {
535 pr_warn("Can't replace route, no match found\n");
536 return ERR_PTR(-ENOENT);
537 }
538 pr_warn("NLM_F_CREATE should be set when creating new route\n");
539 }
540 /*
541 * We walked to the bottom of tree.
542 * Create new leaf node without children.
543 */
544
545 ln = node_alloc();
546
547 if (!ln)
548 return ERR_PTR(-ENOMEM);
549 ln->fn_bit = plen;
550
551 ln->parent = pn;
552 ln->fn_sernum = sernum;
553
554 if (dir)
555 pn->right = ln;
556 else
557 pn->left = ln;
558
559 return ln;
560
561
562 insert_above:
563 /*
564 * split since we don't have a common prefix anymore or
565 * we have a less significant route.
566 * we've to insert an intermediate node on the list
567 * this new node will point to the one we need to create
568 * and the current
569 */
570
571 pn = fn->parent;
572
573 /* find 1st bit in difference between the 2 addrs.
574
575 See comment in __ipv6_addr_diff: bit may be an invalid value,
576 but if it is >= plen, the value is ignored in any case.
577 */
578
579 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
580
581 /*
582 * (intermediate)[in]
583 * / \
584 * (new leaf node)[ln] (old node)[fn]
585 */
586 if (plen > bit) {
587 in = node_alloc();
588 ln = node_alloc();
589
590 if (!in || !ln) {
591 if (in)
592 node_free(in);
593 if (ln)
594 node_free(ln);
595 return ERR_PTR(-ENOMEM);
596 }
597
598 /*
599 * new intermediate node.
600 * RTN_RTINFO will
601 * be off since that an address that chooses one of
602 * the branches would not match less specific routes
603 * in the other branch
604 */
605
606 in->fn_bit = bit;
607
608 in->parent = pn;
609 in->leaf = fn->leaf;
610 atomic_inc(&in->leaf->rt6i_ref);
611
612 in->fn_sernum = sernum;
613
614 /* update parent pointer */
615 if (dir)
616 pn->right = in;
617 else
618 pn->left = in;
619
620 ln->fn_bit = plen;
621
622 ln->parent = in;
623 fn->parent = in;
624
625 ln->fn_sernum = sernum;
626
627 if (addr_bit_set(addr, bit)) {
628 in->right = ln;
629 in->left = fn;
630 } else {
631 in->left = ln;
632 in->right = fn;
633 }
634 } else { /* plen <= bit */
635
636 /*
637 * (new leaf node)[ln]
638 * / \
639 * (old node)[fn] NULL
640 */
641
642 ln = node_alloc();
643
644 if (!ln)
645 return ERR_PTR(-ENOMEM);
646
647 ln->fn_bit = plen;
648
649 ln->parent = pn;
650
651 ln->fn_sernum = sernum;
652
653 if (dir)
654 pn->right = ln;
655 else
656 pn->left = ln;
657
658 if (addr_bit_set(&key->addr, plen))
659 ln->right = fn;
660 else
661 ln->left = fn;
662
663 fn->parent = ln;
664 }
665 return ln;
666 }
667
668 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
669 {
670 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
671 RTF_GATEWAY;
672 }
673
674 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
675 {
676 int i;
677
678 for (i = 0; i < RTAX_MAX; i++) {
679 if (test_bit(i, mxc->mx_valid))
680 mp[i] = mxc->mx[i];
681 }
682 }
683
684 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
685 {
686 if (!mxc->mx)
687 return 0;
688
689 if (dst->flags & DST_HOST) {
690 u32 *mp = dst_metrics_write_ptr(dst);
691
692 if (unlikely(!mp))
693 return -ENOMEM;
694
695 fib6_copy_metrics(mp, mxc);
696 } else {
697 dst_init_metrics(dst, mxc->mx, false);
698
699 /* We've stolen mx now. */
700 mxc->mx = NULL;
701 }
702
703 return 0;
704 }
705
706 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
707 struct net *net)
708 {
709 if (atomic_read(&rt->rt6i_ref) != 1) {
710 /* This route is used as dummy address holder in some split
711 * nodes. It is not leaked, but it still holds other resources,
712 * which must be released in time. So, scan ascendant nodes
713 * and replace dummy references to this route with references
714 * to still alive ones.
715 */
716 while (fn) {
717 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
718 fn->leaf = fib6_find_prefix(net, fn);
719 atomic_inc(&fn->leaf->rt6i_ref);
720 rt6_release(rt);
721 }
722 fn = fn->parent;
723 }
724 /* No more references are possible at this point. */
725 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
726 }
727 }
728
729 /*
730 * Insert routing information in a node.
731 */
732
733 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
734 struct nl_info *info, struct mx6_config *mxc)
735 {
736 struct rt6_info *iter = NULL;
737 struct rt6_info **ins;
738 struct rt6_info **fallback_ins = NULL;
739 int replace = (info->nlh &&
740 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
741 int add = (!info->nlh ||
742 (info->nlh->nlmsg_flags & NLM_F_CREATE));
743 int found = 0;
744 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
745 int err;
746
747 ins = &fn->leaf;
748
749 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
750 /*
751 * Search for duplicates
752 */
753
754 if (iter->rt6i_metric == rt->rt6i_metric) {
755 /*
756 * Same priority level
757 */
758 if (info->nlh &&
759 (info->nlh->nlmsg_flags & NLM_F_EXCL))
760 return -EEXIST;
761 if (replace) {
762 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
763 found++;
764 break;
765 }
766 if (rt_can_ecmp)
767 fallback_ins = fallback_ins ?: ins;
768 goto next_iter;
769 }
770
771 if (iter->dst.dev == rt->dst.dev &&
772 iter->rt6i_idev == rt->rt6i_idev &&
773 ipv6_addr_equal(&iter->rt6i_gateway,
774 &rt->rt6i_gateway)) {
775 if (rt->rt6i_nsiblings)
776 rt->rt6i_nsiblings = 0;
777 if (!(iter->rt6i_flags & RTF_EXPIRES))
778 return -EEXIST;
779 if (!(rt->rt6i_flags & RTF_EXPIRES))
780 rt6_clean_expires(iter);
781 else
782 rt6_set_expires(iter, rt->dst.expires);
783 iter->rt6i_pmtu = rt->rt6i_pmtu;
784 return -EEXIST;
785 }
786 /* If we have the same destination and the same metric,
787 * but not the same gateway, then the route we try to
788 * add is sibling to this route, increment our counter
789 * of siblings, and later we will add our route to the
790 * list.
791 * Only static routes (which don't have flag
792 * RTF_EXPIRES) are used for ECMPv6.
793 *
794 * To avoid long list, we only had siblings if the
795 * route have a gateway.
796 */
797 if (rt_can_ecmp &&
798 rt6_qualify_for_ecmp(iter))
799 rt->rt6i_nsiblings++;
800 }
801
802 if (iter->rt6i_metric > rt->rt6i_metric)
803 break;
804
805 next_iter:
806 ins = &iter->dst.rt6_next;
807 }
808
809 if (fallback_ins && !found) {
810 /* No ECMP-able route found, replace first non-ECMP one */
811 ins = fallback_ins;
812 iter = *ins;
813 found++;
814 }
815
816 /* Reset round-robin state, if necessary */
817 if (ins == &fn->leaf)
818 fn->rr_ptr = NULL;
819
820 /* Link this route to others same route. */
821 if (rt->rt6i_nsiblings) {
822 unsigned int rt6i_nsiblings;
823 struct rt6_info *sibling, *temp_sibling;
824
825 /* Find the first route that have the same metric */
826 sibling = fn->leaf;
827 while (sibling) {
828 if (sibling->rt6i_metric == rt->rt6i_metric &&
829 rt6_qualify_for_ecmp(sibling)) {
830 list_add_tail(&rt->rt6i_siblings,
831 &sibling->rt6i_siblings);
832 break;
833 }
834 sibling = sibling->dst.rt6_next;
835 }
836 /* For each sibling in the list, increment the counter of
837 * siblings. BUG() if counters does not match, list of siblings
838 * is broken!
839 */
840 rt6i_nsiblings = 0;
841 list_for_each_entry_safe(sibling, temp_sibling,
842 &rt->rt6i_siblings, rt6i_siblings) {
843 sibling->rt6i_nsiblings++;
844 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
845 rt6i_nsiblings++;
846 }
847 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
848 }
849
850 /*
851 * insert node
852 */
853 if (!replace) {
854 if (!add)
855 pr_warn("NLM_F_CREATE should be set when creating new route\n");
856
857 add:
858 err = fib6_commit_metrics(&rt->dst, mxc);
859 if (err)
860 return err;
861
862 rt->dst.rt6_next = iter;
863 *ins = rt;
864 rt->rt6i_node = fn;
865 atomic_inc(&rt->rt6i_ref);
866 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
867 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
868
869 if (!(fn->fn_flags & RTN_RTINFO)) {
870 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
871 fn->fn_flags |= RTN_RTINFO;
872 }
873
874 } else {
875 int nsiblings;
876
877 if (!found) {
878 if (add)
879 goto add;
880 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
881 return -ENOENT;
882 }
883
884 err = fib6_commit_metrics(&rt->dst, mxc);
885 if (err)
886 return err;
887
888 *ins = rt;
889 rt->rt6i_node = fn;
890 rt->dst.rt6_next = iter->dst.rt6_next;
891 atomic_inc(&rt->rt6i_ref);
892 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
893 if (!(fn->fn_flags & RTN_RTINFO)) {
894 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
895 fn->fn_flags |= RTN_RTINFO;
896 }
897 nsiblings = iter->rt6i_nsiblings;
898 fib6_purge_rt(iter, fn, info->nl_net);
899 rt6_release(iter);
900
901 if (nsiblings) {
902 /* Replacing an ECMP route, remove all siblings */
903 ins = &rt->dst.rt6_next;
904 iter = *ins;
905 while (iter) {
906 if (rt6_qualify_for_ecmp(iter)) {
907 *ins = iter->dst.rt6_next;
908 fib6_purge_rt(iter, fn, info->nl_net);
909 rt6_release(iter);
910 nsiblings--;
911 } else {
912 ins = &iter->dst.rt6_next;
913 }
914 iter = *ins;
915 }
916 WARN_ON(nsiblings != 0);
917 }
918 }
919
920 return 0;
921 }
922
923 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
924 {
925 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
926 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
927 mod_timer(&net->ipv6.ip6_fib_timer,
928 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
929 }
930
931 void fib6_force_start_gc(struct net *net)
932 {
933 if (!timer_pending(&net->ipv6.ip6_fib_timer))
934 mod_timer(&net->ipv6.ip6_fib_timer,
935 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
936 }
937
938 /*
939 * Add routing information to the routing tree.
940 * <destination addr>/<source addr>
941 * with source addr info in sub-trees
942 */
943
944 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
945 struct nl_info *info, struct mx6_config *mxc)
946 {
947 struct fib6_node *fn, *pn = NULL;
948 int err = -ENOMEM;
949 int allow_create = 1;
950 int replace_required = 0;
951 int sernum = fib6_new_sernum(info->nl_net);
952
953 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
954 !atomic_read(&rt->dst.__refcnt)))
955 return -EINVAL;
956
957 if (info->nlh) {
958 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
959 allow_create = 0;
960 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
961 replace_required = 1;
962 }
963 if (!allow_create && !replace_required)
964 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
965
966 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
967 offsetof(struct rt6_info, rt6i_dst), allow_create,
968 replace_required, sernum);
969 if (IS_ERR(fn)) {
970 err = PTR_ERR(fn);
971 fn = NULL;
972 goto out;
973 }
974
975 pn = fn;
976
977 #ifdef CONFIG_IPV6_SUBTREES
978 if (rt->rt6i_src.plen) {
979 struct fib6_node *sn;
980
981 if (!fn->subtree) {
982 struct fib6_node *sfn;
983
984 /*
985 * Create subtree.
986 *
987 * fn[main tree]
988 * |
989 * sfn[subtree root]
990 * \
991 * sn[new leaf node]
992 */
993
994 /* Create subtree root node */
995 sfn = node_alloc();
996 if (!sfn)
997 goto st_failure;
998
999 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1000 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1001 sfn->fn_flags = RTN_ROOT;
1002 sfn->fn_sernum = sernum;
1003
1004 /* Now add the first leaf node to new subtree */
1005
1006 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1007 rt->rt6i_src.plen,
1008 offsetof(struct rt6_info, rt6i_src),
1009 allow_create, replace_required, sernum);
1010
1011 if (IS_ERR(sn)) {
1012 /* If it is failed, discard just allocated
1013 root, and then (in st_failure) stale node
1014 in main tree.
1015 */
1016 node_free(sfn);
1017 err = PTR_ERR(sn);
1018 goto st_failure;
1019 }
1020
1021 /* Now link new subtree to main tree */
1022 sfn->parent = fn;
1023 fn->subtree = sfn;
1024 } else {
1025 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1026 rt->rt6i_src.plen,
1027 offsetof(struct rt6_info, rt6i_src),
1028 allow_create, replace_required, sernum);
1029
1030 if (IS_ERR(sn)) {
1031 err = PTR_ERR(sn);
1032 goto st_failure;
1033 }
1034 }
1035
1036 if (!fn->leaf) {
1037 fn->leaf = rt;
1038 atomic_inc(&rt->rt6i_ref);
1039 }
1040 fn = sn;
1041 }
1042 #endif
1043
1044 err = fib6_add_rt2node(fn, rt, info, mxc);
1045 if (!err) {
1046 fib6_start_gc(info->nl_net, rt);
1047 if (!(rt->rt6i_flags & RTF_CACHE))
1048 fib6_prune_clones(info->nl_net, pn);
1049 rt->dst.flags &= ~DST_NOCACHE;
1050 }
1051
1052 out:
1053 if (err) {
1054 #ifdef CONFIG_IPV6_SUBTREES
1055 /*
1056 * If fib6_add_1 has cleared the old leaf pointer in the
1057 * super-tree leaf node we have to find a new one for it.
1058 */
1059 if (pn != fn && pn->leaf == rt) {
1060 pn->leaf = NULL;
1061 atomic_dec(&rt->rt6i_ref);
1062 }
1063 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1064 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1065 #if RT6_DEBUG >= 2
1066 if (!pn->leaf) {
1067 WARN_ON(pn->leaf == NULL);
1068 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1069 }
1070 #endif
1071 atomic_inc(&pn->leaf->rt6i_ref);
1072 }
1073 #endif
1074 if (!(rt->dst.flags & DST_NOCACHE))
1075 dst_free(&rt->dst);
1076 }
1077 return err;
1078
1079 #ifdef CONFIG_IPV6_SUBTREES
1080 /* Subtree creation failed, probably main tree node
1081 is orphan. If it is, shoot it.
1082 */
1083 st_failure:
1084 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1085 fib6_repair_tree(info->nl_net, fn);
1086 if (!(rt->dst.flags & DST_NOCACHE))
1087 dst_free(&rt->dst);
1088 return err;
1089 #endif
1090 }
1091
1092 /*
1093 * Routing tree lookup
1094 *
1095 */
1096
1097 struct lookup_args {
1098 int offset; /* key offset on rt6_info */
1099 const struct in6_addr *addr; /* search key */
1100 };
1101
1102 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1103 struct lookup_args *args)
1104 {
1105 struct fib6_node *fn;
1106 __be32 dir;
1107
1108 if (unlikely(args->offset == 0))
1109 return NULL;
1110
1111 /*
1112 * Descend on a tree
1113 */
1114
1115 fn = root;
1116
1117 for (;;) {
1118 struct fib6_node *next;
1119
1120 dir = addr_bit_set(args->addr, fn->fn_bit);
1121
1122 next = dir ? fn->right : fn->left;
1123
1124 if (next) {
1125 fn = next;
1126 continue;
1127 }
1128 break;
1129 }
1130
1131 while (fn) {
1132 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1133 struct rt6key *key;
1134
1135 key = (struct rt6key *) ((u8 *) fn->leaf +
1136 args->offset);
1137
1138 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1139 #ifdef CONFIG_IPV6_SUBTREES
1140 if (fn->subtree) {
1141 struct fib6_node *sfn;
1142 sfn = fib6_lookup_1(fn->subtree,
1143 args + 1);
1144 if (!sfn)
1145 goto backtrack;
1146 fn = sfn;
1147 }
1148 #endif
1149 if (fn->fn_flags & RTN_RTINFO)
1150 return fn;
1151 }
1152 }
1153 #ifdef CONFIG_IPV6_SUBTREES
1154 backtrack:
1155 #endif
1156 if (fn->fn_flags & RTN_ROOT)
1157 break;
1158
1159 fn = fn->parent;
1160 }
1161
1162 return NULL;
1163 }
1164
1165 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1166 const struct in6_addr *saddr)
1167 {
1168 struct fib6_node *fn;
1169 struct lookup_args args[] = {
1170 {
1171 .offset = offsetof(struct rt6_info, rt6i_dst),
1172 .addr = daddr,
1173 },
1174 #ifdef CONFIG_IPV6_SUBTREES
1175 {
1176 .offset = offsetof(struct rt6_info, rt6i_src),
1177 .addr = saddr,
1178 },
1179 #endif
1180 {
1181 .offset = 0, /* sentinel */
1182 }
1183 };
1184
1185 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1186 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1187 fn = root;
1188
1189 return fn;
1190 }
1191
1192 /*
1193 * Get node with specified destination prefix (and source prefix,
1194 * if subtrees are used)
1195 */
1196
1197
1198 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1199 const struct in6_addr *addr,
1200 int plen, int offset)
1201 {
1202 struct fib6_node *fn;
1203
1204 for (fn = root; fn ; ) {
1205 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1206
1207 /*
1208 * Prefix match
1209 */
1210 if (plen < fn->fn_bit ||
1211 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1212 return NULL;
1213
1214 if (plen == fn->fn_bit)
1215 return fn;
1216
1217 /*
1218 * We have more bits to go
1219 */
1220 if (addr_bit_set(addr, fn->fn_bit))
1221 fn = fn->right;
1222 else
1223 fn = fn->left;
1224 }
1225 return NULL;
1226 }
1227
1228 struct fib6_node *fib6_locate(struct fib6_node *root,
1229 const struct in6_addr *daddr, int dst_len,
1230 const struct in6_addr *saddr, int src_len)
1231 {
1232 struct fib6_node *fn;
1233
1234 fn = fib6_locate_1(root, daddr, dst_len,
1235 offsetof(struct rt6_info, rt6i_dst));
1236
1237 #ifdef CONFIG_IPV6_SUBTREES
1238 if (src_len) {
1239 WARN_ON(saddr == NULL);
1240 if (fn && fn->subtree)
1241 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1242 offsetof(struct rt6_info, rt6i_src));
1243 }
1244 #endif
1245
1246 if (fn && fn->fn_flags & RTN_RTINFO)
1247 return fn;
1248
1249 return NULL;
1250 }
1251
1252
1253 /*
1254 * Deletion
1255 *
1256 */
1257
1258 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1259 {
1260 if (fn->fn_flags & RTN_ROOT)
1261 return net->ipv6.ip6_null_entry;
1262
1263 while (fn) {
1264 if (fn->left)
1265 return fn->left->leaf;
1266 if (fn->right)
1267 return fn->right->leaf;
1268
1269 fn = FIB6_SUBTREE(fn);
1270 }
1271 return NULL;
1272 }
1273
1274 /*
1275 * Called to trim the tree of intermediate nodes when possible. "fn"
1276 * is the node we want to try and remove.
1277 */
1278
1279 static struct fib6_node *fib6_repair_tree(struct net *net,
1280 struct fib6_node *fn)
1281 {
1282 int children;
1283 int nstate;
1284 struct fib6_node *child, *pn;
1285 struct fib6_walker *w;
1286 int iter = 0;
1287
1288 for (;;) {
1289 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1290 iter++;
1291
1292 WARN_ON(fn->fn_flags & RTN_RTINFO);
1293 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1294 WARN_ON(fn->leaf);
1295
1296 children = 0;
1297 child = NULL;
1298 if (fn->right)
1299 child = fn->right, children |= 1;
1300 if (fn->left)
1301 child = fn->left, children |= 2;
1302
1303 if (children == 3 || FIB6_SUBTREE(fn)
1304 #ifdef CONFIG_IPV6_SUBTREES
1305 /* Subtree root (i.e. fn) may have one child */
1306 || (children && fn->fn_flags & RTN_ROOT)
1307 #endif
1308 ) {
1309 fn->leaf = fib6_find_prefix(net, fn);
1310 #if RT6_DEBUG >= 2
1311 if (!fn->leaf) {
1312 WARN_ON(!fn->leaf);
1313 fn->leaf = net->ipv6.ip6_null_entry;
1314 }
1315 #endif
1316 atomic_inc(&fn->leaf->rt6i_ref);
1317 return fn->parent;
1318 }
1319
1320 pn = fn->parent;
1321 #ifdef CONFIG_IPV6_SUBTREES
1322 if (FIB6_SUBTREE(pn) == fn) {
1323 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1324 FIB6_SUBTREE(pn) = NULL;
1325 nstate = FWS_L;
1326 } else {
1327 WARN_ON(fn->fn_flags & RTN_ROOT);
1328 #endif
1329 if (pn->right == fn)
1330 pn->right = child;
1331 else if (pn->left == fn)
1332 pn->left = child;
1333 #if RT6_DEBUG >= 2
1334 else
1335 WARN_ON(1);
1336 #endif
1337 if (child)
1338 child->parent = pn;
1339 nstate = FWS_R;
1340 #ifdef CONFIG_IPV6_SUBTREES
1341 }
1342 #endif
1343
1344 read_lock(&net->ipv6.fib6_walker_lock);
1345 FOR_WALKERS(net, w) {
1346 if (!child) {
1347 if (w->root == fn) {
1348 w->root = w->node = NULL;
1349 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1350 } else if (w->node == fn) {
1351 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1352 w->node = pn;
1353 w->state = nstate;
1354 }
1355 } else {
1356 if (w->root == fn) {
1357 w->root = child;
1358 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1359 }
1360 if (w->node == fn) {
1361 w->node = child;
1362 if (children&2) {
1363 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1364 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1365 } else {
1366 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1367 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1368 }
1369 }
1370 }
1371 }
1372 read_unlock(&net->ipv6.fib6_walker_lock);
1373
1374 node_free(fn);
1375 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1376 return pn;
1377
1378 rt6_release(pn->leaf);
1379 pn->leaf = NULL;
1380 fn = pn;
1381 }
1382 }
1383
1384 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1385 struct nl_info *info)
1386 {
1387 struct fib6_walker *w;
1388 struct rt6_info *rt = *rtp;
1389 struct net *net = info->nl_net;
1390
1391 RT6_TRACE("fib6_del_route\n");
1392
1393 /* Unlink it */
1394 *rtp = rt->dst.rt6_next;
1395 rt->rt6i_node = NULL;
1396 net->ipv6.rt6_stats->fib_rt_entries--;
1397 net->ipv6.rt6_stats->fib_discarded_routes++;
1398
1399 /* Reset round-robin state, if necessary */
1400 if (fn->rr_ptr == rt)
1401 fn->rr_ptr = NULL;
1402
1403 /* Remove this entry from other siblings */
1404 if (rt->rt6i_nsiblings) {
1405 struct rt6_info *sibling, *next_sibling;
1406
1407 list_for_each_entry_safe(sibling, next_sibling,
1408 &rt->rt6i_siblings, rt6i_siblings)
1409 sibling->rt6i_nsiblings--;
1410 rt->rt6i_nsiblings = 0;
1411 list_del_init(&rt->rt6i_siblings);
1412 }
1413
1414 /* Adjust walkers */
1415 read_lock(&net->ipv6.fib6_walker_lock);
1416 FOR_WALKERS(net, w) {
1417 if (w->state == FWS_C && w->leaf == rt) {
1418 RT6_TRACE("walker %p adjusted by delroute\n", w);
1419 w->leaf = rt->dst.rt6_next;
1420 if (!w->leaf)
1421 w->state = FWS_U;
1422 }
1423 }
1424 read_unlock(&net->ipv6.fib6_walker_lock);
1425
1426 rt->dst.rt6_next = NULL;
1427
1428 /* If it was last route, expunge its radix tree node */
1429 if (!fn->leaf) {
1430 fn->fn_flags &= ~RTN_RTINFO;
1431 net->ipv6.rt6_stats->fib_route_nodes--;
1432 fn = fib6_repair_tree(net, fn);
1433 }
1434
1435 fib6_purge_rt(rt, fn, net);
1436
1437 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1438 rt6_release(rt);
1439 }
1440
1441 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1442 {
1443 struct net *net = info->nl_net;
1444 struct fib6_node *fn = rt->rt6i_node;
1445 struct rt6_info **rtp;
1446
1447 #if RT6_DEBUG >= 2
1448 if (rt->dst.obsolete > 0) {
1449 WARN_ON(fn);
1450 return -ENOENT;
1451 }
1452 #endif
1453 if (!fn || rt == net->ipv6.ip6_null_entry)
1454 return -ENOENT;
1455
1456 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1457
1458 if (!(rt->rt6i_flags & RTF_CACHE)) {
1459 struct fib6_node *pn = fn;
1460 #ifdef CONFIG_IPV6_SUBTREES
1461 /* clones of this route might be in another subtree */
1462 if (rt->rt6i_src.plen) {
1463 while (!(pn->fn_flags & RTN_ROOT))
1464 pn = pn->parent;
1465 pn = pn->parent;
1466 }
1467 #endif
1468 fib6_prune_clones(info->nl_net, pn);
1469 }
1470
1471 /*
1472 * Walk the leaf entries looking for ourself
1473 */
1474
1475 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1476 if (*rtp == rt) {
1477 fib6_del_route(fn, rtp, info);
1478 return 0;
1479 }
1480 }
1481 return -ENOENT;
1482 }
1483
1484 /*
1485 * Tree traversal function.
1486 *
1487 * Certainly, it is not interrupt safe.
1488 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1489 * It means, that we can modify tree during walking
1490 * and use this function for garbage collection, clone pruning,
1491 * cleaning tree when a device goes down etc. etc.
1492 *
1493 * It guarantees that every node will be traversed,
1494 * and that it will be traversed only once.
1495 *
1496 * Callback function w->func may return:
1497 * 0 -> continue walking.
1498 * positive value -> walking is suspended (used by tree dumps,
1499 * and probably by gc, if it will be split to several slices)
1500 * negative value -> terminate walking.
1501 *
1502 * The function itself returns:
1503 * 0 -> walk is complete.
1504 * >0 -> walk is incomplete (i.e. suspended)
1505 * <0 -> walk is terminated by an error.
1506 */
1507
1508 static int fib6_walk_continue(struct fib6_walker *w)
1509 {
1510 struct fib6_node *fn, *pn;
1511
1512 for (;;) {
1513 fn = w->node;
1514 if (!fn)
1515 return 0;
1516
1517 if (w->prune && fn != w->root &&
1518 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1519 w->state = FWS_C;
1520 w->leaf = fn->leaf;
1521 }
1522 switch (w->state) {
1523 #ifdef CONFIG_IPV6_SUBTREES
1524 case FWS_S:
1525 if (FIB6_SUBTREE(fn)) {
1526 w->node = FIB6_SUBTREE(fn);
1527 continue;
1528 }
1529 w->state = FWS_L;
1530 #endif
1531 case FWS_L:
1532 if (fn->left) {
1533 w->node = fn->left;
1534 w->state = FWS_INIT;
1535 continue;
1536 }
1537 w->state = FWS_R;
1538 case FWS_R:
1539 if (fn->right) {
1540 w->node = fn->right;
1541 w->state = FWS_INIT;
1542 continue;
1543 }
1544 w->state = FWS_C;
1545 w->leaf = fn->leaf;
1546 case FWS_C:
1547 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1548 int err;
1549
1550 if (w->skip) {
1551 w->skip--;
1552 goto skip;
1553 }
1554
1555 err = w->func(w);
1556 if (err)
1557 return err;
1558
1559 w->count++;
1560 continue;
1561 }
1562 skip:
1563 w->state = FWS_U;
1564 case FWS_U:
1565 if (fn == w->root)
1566 return 0;
1567 pn = fn->parent;
1568 w->node = pn;
1569 #ifdef CONFIG_IPV6_SUBTREES
1570 if (FIB6_SUBTREE(pn) == fn) {
1571 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1572 w->state = FWS_L;
1573 continue;
1574 }
1575 #endif
1576 if (pn->left == fn) {
1577 w->state = FWS_R;
1578 continue;
1579 }
1580 if (pn->right == fn) {
1581 w->state = FWS_C;
1582 w->leaf = w->node->leaf;
1583 continue;
1584 }
1585 #if RT6_DEBUG >= 2
1586 WARN_ON(1);
1587 #endif
1588 }
1589 }
1590 }
1591
1592 static int fib6_walk(struct net *net, struct fib6_walker *w)
1593 {
1594 int res;
1595
1596 w->state = FWS_INIT;
1597 w->node = w->root;
1598
1599 fib6_walker_link(net, w);
1600 res = fib6_walk_continue(w);
1601 if (res <= 0)
1602 fib6_walker_unlink(net, w);
1603 return res;
1604 }
1605
1606 static int fib6_clean_node(struct fib6_walker *w)
1607 {
1608 int res;
1609 struct rt6_info *rt;
1610 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1611 struct nl_info info = {
1612 .nl_net = c->net,
1613 };
1614
1615 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1616 w->node->fn_sernum != c->sernum)
1617 w->node->fn_sernum = c->sernum;
1618
1619 if (!c->func) {
1620 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1621 w->leaf = NULL;
1622 return 0;
1623 }
1624
1625 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1626 res = c->func(rt, c->arg);
1627 if (res < 0) {
1628 w->leaf = rt;
1629 res = fib6_del(rt, &info);
1630 if (res) {
1631 #if RT6_DEBUG >= 2
1632 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1633 __func__, rt, rt->rt6i_node, res);
1634 #endif
1635 continue;
1636 }
1637 return 0;
1638 }
1639 WARN_ON(res != 0);
1640 }
1641 w->leaf = rt;
1642 return 0;
1643 }
1644
1645 /*
1646 * Convenient frontend to tree walker.
1647 *
1648 * func is called on each route.
1649 * It may return -1 -> delete this route.
1650 * 0 -> continue walking
1651 *
1652 * prune==1 -> only immediate children of node (certainly,
1653 * ignoring pure split nodes) will be scanned.
1654 */
1655
1656 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1657 int (*func)(struct rt6_info *, void *arg),
1658 bool prune, int sernum, void *arg)
1659 {
1660 struct fib6_cleaner c;
1661
1662 c.w.root = root;
1663 c.w.func = fib6_clean_node;
1664 c.w.prune = prune;
1665 c.w.count = 0;
1666 c.w.skip = 0;
1667 c.func = func;
1668 c.sernum = sernum;
1669 c.arg = arg;
1670 c.net = net;
1671
1672 fib6_walk(net, &c.w);
1673 }
1674
1675 static void __fib6_clean_all(struct net *net,
1676 int (*func)(struct rt6_info *, void *),
1677 int sernum, void *arg)
1678 {
1679 struct fib6_table *table;
1680 struct hlist_head *head;
1681 unsigned int h;
1682
1683 rcu_read_lock();
1684 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1685 head = &net->ipv6.fib_table_hash[h];
1686 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1687 write_lock_bh(&table->tb6_lock);
1688 fib6_clean_tree(net, &table->tb6_root,
1689 func, false, sernum, arg);
1690 write_unlock_bh(&table->tb6_lock);
1691 }
1692 }
1693 rcu_read_unlock();
1694 }
1695
1696 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1697 void *arg)
1698 {
1699 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1700 }
1701
1702 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1703 {
1704 if (rt->rt6i_flags & RTF_CACHE) {
1705 RT6_TRACE("pruning clone %p\n", rt);
1706 return -1;
1707 }
1708
1709 return 0;
1710 }
1711
1712 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1713 {
1714 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1715 FIB6_NO_SERNUM_CHANGE, NULL);
1716 }
1717
1718 static void fib6_flush_trees(struct net *net)
1719 {
1720 int new_sernum = fib6_new_sernum(net);
1721
1722 __fib6_clean_all(net, NULL, new_sernum, NULL);
1723 }
1724
1725 /*
1726 * Garbage collection
1727 */
1728
1729 struct fib6_gc_args
1730 {
1731 int timeout;
1732 int more;
1733 };
1734
1735 static int fib6_age(struct rt6_info *rt, void *arg)
1736 {
1737 struct fib6_gc_args *gc_args = arg;
1738 unsigned long now = jiffies;
1739
1740 /*
1741 * check addrconf expiration here.
1742 * Routes are expired even if they are in use.
1743 *
1744 * Also age clones. Note, that clones are aged out
1745 * only if they are not in use now.
1746 */
1747
1748 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1749 if (time_after(now, rt->dst.expires)) {
1750 RT6_TRACE("expiring %p\n", rt);
1751 return -1;
1752 }
1753 gc_args->more++;
1754 } else if (rt->rt6i_flags & RTF_CACHE) {
1755 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1756 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1757 RT6_TRACE("aging clone %p\n", rt);
1758 return -1;
1759 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1760 struct neighbour *neigh;
1761 __u8 neigh_flags = 0;
1762
1763 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1764 if (neigh) {
1765 neigh_flags = neigh->flags;
1766 neigh_release(neigh);
1767 }
1768 if (!(neigh_flags & NTF_ROUTER)) {
1769 RT6_TRACE("purging route %p via non-router but gateway\n",
1770 rt);
1771 return -1;
1772 }
1773 }
1774 gc_args->more++;
1775 }
1776
1777 return 0;
1778 }
1779
1780 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1781 {
1782 struct fib6_gc_args gc_args;
1783 unsigned long now;
1784
1785 if (force) {
1786 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1787 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1788 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1789 return;
1790 }
1791 gc_args.timeout = expires ? (int)expires :
1792 net->ipv6.sysctl.ip6_rt_gc_interval;
1793
1794 gc_args.more = icmp6_dst_gc();
1795
1796 fib6_clean_all(net, fib6_age, &gc_args);
1797 now = jiffies;
1798 net->ipv6.ip6_rt_last_gc = now;
1799
1800 if (gc_args.more)
1801 mod_timer(&net->ipv6.ip6_fib_timer,
1802 round_jiffies(now
1803 + net->ipv6.sysctl.ip6_rt_gc_interval));
1804 else
1805 del_timer(&net->ipv6.ip6_fib_timer);
1806 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1807 }
1808
1809 static void fib6_gc_timer_cb(unsigned long arg)
1810 {
1811 fib6_run_gc(0, (struct net *)arg, true);
1812 }
1813
1814 static int __net_init fib6_net_init(struct net *net)
1815 {
1816 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1817
1818 spin_lock_init(&net->ipv6.fib6_gc_lock);
1819 rwlock_init(&net->ipv6.fib6_walker_lock);
1820 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1821 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1822
1823 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1824 if (!net->ipv6.rt6_stats)
1825 goto out_timer;
1826
1827 /* Avoid false sharing : Use at least a full cache line */
1828 size = max_t(size_t, size, L1_CACHE_BYTES);
1829
1830 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1831 if (!net->ipv6.fib_table_hash)
1832 goto out_rt6_stats;
1833
1834 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1835 GFP_KERNEL);
1836 if (!net->ipv6.fib6_main_tbl)
1837 goto out_fib_table_hash;
1838
1839 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1840 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1841 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1842 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1843 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1844
1845 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1846 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1847 GFP_KERNEL);
1848 if (!net->ipv6.fib6_local_tbl)
1849 goto out_fib6_main_tbl;
1850 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1851 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1852 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1853 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1854 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1855 #endif
1856 fib6_tables_init(net);
1857
1858 return 0;
1859
1860 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1861 out_fib6_main_tbl:
1862 kfree(net->ipv6.fib6_main_tbl);
1863 #endif
1864 out_fib_table_hash:
1865 kfree(net->ipv6.fib_table_hash);
1866 out_rt6_stats:
1867 kfree(net->ipv6.rt6_stats);
1868 out_timer:
1869 return -ENOMEM;
1870 }
1871
1872 static void fib6_net_exit(struct net *net)
1873 {
1874 rt6_ifdown(net, NULL);
1875 del_timer_sync(&net->ipv6.ip6_fib_timer);
1876
1877 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1878 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1879 kfree(net->ipv6.fib6_local_tbl);
1880 #endif
1881 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1882 kfree(net->ipv6.fib6_main_tbl);
1883 kfree(net->ipv6.fib_table_hash);
1884 kfree(net->ipv6.rt6_stats);
1885 }
1886
1887 static struct pernet_operations fib6_net_ops = {
1888 .init = fib6_net_init,
1889 .exit = fib6_net_exit,
1890 };
1891
1892 int __init fib6_init(void)
1893 {
1894 int ret = -ENOMEM;
1895
1896 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1897 sizeof(struct fib6_node),
1898 0, SLAB_HWCACHE_ALIGN,
1899 NULL);
1900 if (!fib6_node_kmem)
1901 goto out;
1902
1903 ret = register_pernet_subsys(&fib6_net_ops);
1904 if (ret)
1905 goto out_kmem_cache_create;
1906
1907 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1908 NULL);
1909 if (ret)
1910 goto out_unregister_subsys;
1911
1912 __fib6_flush_trees = fib6_flush_trees;
1913 out:
1914 return ret;
1915
1916 out_unregister_subsys:
1917 unregister_pernet_subsys(&fib6_net_ops);
1918 out_kmem_cache_create:
1919 kmem_cache_destroy(fib6_node_kmem);
1920 goto out;
1921 }
1922
1923 void fib6_gc_cleanup(void)
1924 {
1925 unregister_pernet_subsys(&fib6_net_ops);
1926 kmem_cache_destroy(fib6_node_kmem);
1927 }
1928
1929 #ifdef CONFIG_PROC_FS
1930
1931 struct ipv6_route_iter {
1932 struct seq_net_private p;
1933 struct fib6_walker w;
1934 loff_t skip;
1935 struct fib6_table *tbl;
1936 int sernum;
1937 };
1938
1939 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1940 {
1941 struct rt6_info *rt = v;
1942 struct ipv6_route_iter *iter = seq->private;
1943
1944 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1945
1946 #ifdef CONFIG_IPV6_SUBTREES
1947 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1948 #else
1949 seq_puts(seq, "00000000000000000000000000000000 00 ");
1950 #endif
1951 if (rt->rt6i_flags & RTF_GATEWAY)
1952 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1953 else
1954 seq_puts(seq, "00000000000000000000000000000000");
1955
1956 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1957 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1958 rt->dst.__use, rt->rt6i_flags,
1959 rt->dst.dev ? rt->dst.dev->name : "");
1960 iter->w.leaf = NULL;
1961 return 0;
1962 }
1963
1964 static int ipv6_route_yield(struct fib6_walker *w)
1965 {
1966 struct ipv6_route_iter *iter = w->args;
1967
1968 if (!iter->skip)
1969 return 1;
1970
1971 do {
1972 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1973 iter->skip--;
1974 if (!iter->skip && iter->w.leaf)
1975 return 1;
1976 } while (iter->w.leaf);
1977
1978 return 0;
1979 }
1980
1981 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1982 struct net *net)
1983 {
1984 memset(&iter->w, 0, sizeof(iter->w));
1985 iter->w.func = ipv6_route_yield;
1986 iter->w.root = &iter->tbl->tb6_root;
1987 iter->w.state = FWS_INIT;
1988 iter->w.node = iter->w.root;
1989 iter->w.args = iter;
1990 iter->sernum = iter->w.root->fn_sernum;
1991 INIT_LIST_HEAD(&iter->w.lh);
1992 fib6_walker_link(net, &iter->w);
1993 }
1994
1995 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1996 struct net *net)
1997 {
1998 unsigned int h;
1999 struct hlist_node *node;
2000
2001 if (tbl) {
2002 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2003 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2004 } else {
2005 h = 0;
2006 node = NULL;
2007 }
2008
2009 while (!node && h < FIB6_TABLE_HASHSZ) {
2010 node = rcu_dereference_bh(
2011 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2012 }
2013 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2014 }
2015
2016 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2017 {
2018 if (iter->sernum != iter->w.root->fn_sernum) {
2019 iter->sernum = iter->w.root->fn_sernum;
2020 iter->w.state = FWS_INIT;
2021 iter->w.node = iter->w.root;
2022 WARN_ON(iter->w.skip);
2023 iter->w.skip = iter->w.count;
2024 }
2025 }
2026
2027 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2028 {
2029 int r;
2030 struct rt6_info *n;
2031 struct net *net = seq_file_net(seq);
2032 struct ipv6_route_iter *iter = seq->private;
2033
2034 if (!v)
2035 goto iter_table;
2036
2037 n = ((struct rt6_info *)v)->dst.rt6_next;
2038 if (n) {
2039 ++*pos;
2040 return n;
2041 }
2042
2043 iter_table:
2044 ipv6_route_check_sernum(iter);
2045 read_lock(&iter->tbl->tb6_lock);
2046 r = fib6_walk_continue(&iter->w);
2047 read_unlock(&iter->tbl->tb6_lock);
2048 if (r > 0) {
2049 if (v)
2050 ++*pos;
2051 return iter->w.leaf;
2052 } else if (r < 0) {
2053 fib6_walker_unlink(net, &iter->w);
2054 return NULL;
2055 }
2056 fib6_walker_unlink(net, &iter->w);
2057
2058 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2059 if (!iter->tbl)
2060 return NULL;
2061
2062 ipv6_route_seq_setup_walk(iter, net);
2063 goto iter_table;
2064 }
2065
2066 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2067 __acquires(RCU_BH)
2068 {
2069 struct net *net = seq_file_net(seq);
2070 struct ipv6_route_iter *iter = seq->private;
2071
2072 rcu_read_lock_bh();
2073 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2074 iter->skip = *pos;
2075
2076 if (iter->tbl) {
2077 ipv6_route_seq_setup_walk(iter, net);
2078 return ipv6_route_seq_next(seq, NULL, pos);
2079 } else {
2080 return NULL;
2081 }
2082 }
2083
2084 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2085 {
2086 struct fib6_walker *w = &iter->w;
2087 return w->node && !(w->state == FWS_U && w->node == w->root);
2088 }
2089
2090 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2091 __releases(RCU_BH)
2092 {
2093 struct net *net = seq_file_net(seq);
2094 struct ipv6_route_iter *iter = seq->private;
2095
2096 if (ipv6_route_iter_active(iter))
2097 fib6_walker_unlink(net, &iter->w);
2098
2099 rcu_read_unlock_bh();
2100 }
2101
2102 static const struct seq_operations ipv6_route_seq_ops = {
2103 .start = ipv6_route_seq_start,
2104 .next = ipv6_route_seq_next,
2105 .stop = ipv6_route_seq_stop,
2106 .show = ipv6_route_seq_show
2107 };
2108
2109 int ipv6_route_open(struct inode *inode, struct file *file)
2110 {
2111 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2112 sizeof(struct ipv6_route_iter));
2113 }
2114
2115 #endif /* CONFIG_PROC_FS */