]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv6/ip6_fib.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
96 static int fib6_new_sernum(struct net *net)
97 {
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106 }
107
108 enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119 /*
120 * test bit
121 */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE 0
126 #endif
127
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140 }
141
142 static struct fib6_node *node_alloc(void)
143 {
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149 }
150
151 static void node_free(struct fib6_node *fn)
152 {
153 kmem_cache_free(fib6_node_kmem, fn);
154 }
155
156 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
157 {
158 int cpu;
159
160 if (!non_pcpu_rt->rt6i_pcpu)
161 return;
162
163 for_each_possible_cpu(cpu) {
164 struct rt6_info **ppcpu_rt;
165 struct rt6_info *pcpu_rt;
166
167 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
168 pcpu_rt = *ppcpu_rt;
169 if (pcpu_rt) {
170 dst_dev_put(&pcpu_rt->dst);
171 dst_release(&pcpu_rt->dst);
172 *ppcpu_rt = NULL;
173 }
174 }
175
176 free_percpu(non_pcpu_rt->rt6i_pcpu);
177 non_pcpu_rt->rt6i_pcpu = NULL;
178 }
179
180 static void rt6_release(struct rt6_info *rt)
181 {
182 if (atomic_dec_and_test(&rt->rt6i_ref)) {
183 rt6_free_pcpu(rt);
184 dst_dev_put(&rt->dst);
185 dst_release(&rt->dst);
186 }
187 }
188
189 static void fib6_link_table(struct net *net, struct fib6_table *tb)
190 {
191 unsigned int h;
192
193 /*
194 * Initialize table lock at a single place to give lockdep a key,
195 * tables aren't visible prior to being linked to the list.
196 */
197 rwlock_init(&tb->tb6_lock);
198
199 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
200
201 /*
202 * No protection necessary, this is the only list mutatation
203 * operation, tables never disappear once they exist.
204 */
205 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
206 }
207
208 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
209
210 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
211 {
212 struct fib6_table *table;
213
214 table = kzalloc(sizeof(*table), GFP_ATOMIC);
215 if (table) {
216 table->tb6_id = id;
217 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
218 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
219 inet_peer_base_init(&table->tb6_peers);
220 }
221
222 return table;
223 }
224
225 struct fib6_table *fib6_new_table(struct net *net, u32 id)
226 {
227 struct fib6_table *tb;
228
229 if (id == 0)
230 id = RT6_TABLE_MAIN;
231 tb = fib6_get_table(net, id);
232 if (tb)
233 return tb;
234
235 tb = fib6_alloc_table(net, id);
236 if (tb)
237 fib6_link_table(net, tb);
238
239 return tb;
240 }
241 EXPORT_SYMBOL_GPL(fib6_new_table);
242
243 struct fib6_table *fib6_get_table(struct net *net, u32 id)
244 {
245 struct fib6_table *tb;
246 struct hlist_head *head;
247 unsigned int h;
248
249 if (id == 0)
250 id = RT6_TABLE_MAIN;
251 h = id & (FIB6_TABLE_HASHSZ - 1);
252 rcu_read_lock();
253 head = &net->ipv6.fib_table_hash[h];
254 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
255 if (tb->tb6_id == id) {
256 rcu_read_unlock();
257 return tb;
258 }
259 }
260 rcu_read_unlock();
261
262 return NULL;
263 }
264 EXPORT_SYMBOL_GPL(fib6_get_table);
265
266 static void __net_init fib6_tables_init(struct net *net)
267 {
268 fib6_link_table(net, net->ipv6.fib6_main_tbl);
269 fib6_link_table(net, net->ipv6.fib6_local_tbl);
270 }
271 #else
272
273 struct fib6_table *fib6_new_table(struct net *net, u32 id)
274 {
275 return fib6_get_table(net, id);
276 }
277
278 struct fib6_table *fib6_get_table(struct net *net, u32 id)
279 {
280 return net->ipv6.fib6_main_tbl;
281 }
282
283 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
284 int flags, pol_lookup_t lookup)
285 {
286 struct rt6_info *rt;
287
288 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
289 if (rt->dst.error == -EAGAIN) {
290 ip6_rt_put(rt);
291 rt = net->ipv6.ip6_null_entry;
292 dst_hold(&rt->dst);
293 }
294
295 return &rt->dst;
296 }
297
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 }
302
303 #endif
304
305 static int fib6_dump_node(struct fib6_walker *w)
306 {
307 int res;
308 struct rt6_info *rt;
309
310 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
311 res = rt6_dump_route(rt, w->args);
312 if (res < 0) {
313 /* Frame is full, suspend walking */
314 w->leaf = rt;
315 return 1;
316 }
317
318 /* Multipath routes are dumped in one route with the
319 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
320 * last sibling of this route (no need to dump the
321 * sibling routes again)
322 */
323 if (rt->rt6i_nsiblings)
324 rt = list_last_entry(&rt->rt6i_siblings,
325 struct rt6_info,
326 rt6i_siblings);
327 }
328 w->leaf = NULL;
329 return 0;
330 }
331
332 static void fib6_dump_end(struct netlink_callback *cb)
333 {
334 struct net *net = sock_net(cb->skb->sk);
335 struct fib6_walker *w = (void *)cb->args[2];
336
337 if (w) {
338 if (cb->args[4]) {
339 cb->args[4] = 0;
340 fib6_walker_unlink(net, w);
341 }
342 cb->args[2] = 0;
343 kfree(w);
344 }
345 cb->done = (void *)cb->args[3];
346 cb->args[1] = 3;
347 }
348
349 static int fib6_dump_done(struct netlink_callback *cb)
350 {
351 fib6_dump_end(cb);
352 return cb->done ? cb->done(cb) : 0;
353 }
354
355 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
356 struct netlink_callback *cb)
357 {
358 struct net *net = sock_net(skb->sk);
359 struct fib6_walker *w;
360 int res;
361
362 w = (void *)cb->args[2];
363 w->root = &table->tb6_root;
364
365 if (cb->args[4] == 0) {
366 w->count = 0;
367 w->skip = 0;
368
369 read_lock_bh(&table->tb6_lock);
370 res = fib6_walk(net, w);
371 read_unlock_bh(&table->tb6_lock);
372 if (res > 0) {
373 cb->args[4] = 1;
374 cb->args[5] = w->root->fn_sernum;
375 }
376 } else {
377 if (cb->args[5] != w->root->fn_sernum) {
378 /* Begin at the root if the tree changed */
379 cb->args[5] = w->root->fn_sernum;
380 w->state = FWS_INIT;
381 w->node = w->root;
382 w->skip = w->count;
383 } else
384 w->skip = 0;
385
386 read_lock_bh(&table->tb6_lock);
387 res = fib6_walk_continue(w);
388 read_unlock_bh(&table->tb6_lock);
389 if (res <= 0) {
390 fib6_walker_unlink(net, w);
391 cb->args[4] = 0;
392 }
393 }
394
395 return res;
396 }
397
398 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
399 {
400 struct net *net = sock_net(skb->sk);
401 unsigned int h, s_h;
402 unsigned int e = 0, s_e;
403 struct rt6_rtnl_dump_arg arg;
404 struct fib6_walker *w;
405 struct fib6_table *tb;
406 struct hlist_head *head;
407 int res = 0;
408
409 s_h = cb->args[0];
410 s_e = cb->args[1];
411
412 w = (void *)cb->args[2];
413 if (!w) {
414 /* New dump:
415 *
416 * 1. hook callback destructor.
417 */
418 cb->args[3] = (long)cb->done;
419 cb->done = fib6_dump_done;
420
421 /*
422 * 2. allocate and initialize walker.
423 */
424 w = kzalloc(sizeof(*w), GFP_ATOMIC);
425 if (!w)
426 return -ENOMEM;
427 w->func = fib6_dump_node;
428 cb->args[2] = (long)w;
429 }
430
431 arg.skb = skb;
432 arg.cb = cb;
433 arg.net = net;
434 w->args = &arg;
435
436 rcu_read_lock();
437 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
438 e = 0;
439 head = &net->ipv6.fib_table_hash[h];
440 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
441 if (e < s_e)
442 goto next;
443 res = fib6_dump_table(tb, skb, cb);
444 if (res != 0)
445 goto out;
446 next:
447 e++;
448 }
449 }
450 out:
451 rcu_read_unlock();
452 cb->args[1] = e;
453 cb->args[0] = h;
454
455 res = res < 0 ? res : skb->len;
456 if (res <= 0)
457 fib6_dump_end(cb);
458 return res;
459 }
460
461 /*
462 * Routing Table
463 *
464 * return the appropriate node for a routing tree "add" operation
465 * by either creating and inserting or by returning an existing
466 * node.
467 */
468
469 static struct fib6_node *fib6_add_1(struct fib6_node *root,
470 struct in6_addr *addr, int plen,
471 int offset, int allow_create,
472 int replace_required, int sernum,
473 struct netlink_ext_ack *extack)
474 {
475 struct fib6_node *fn, *in, *ln;
476 struct fib6_node *pn = NULL;
477 struct rt6key *key;
478 int bit;
479 __be32 dir = 0;
480
481 RT6_TRACE("fib6_add_1\n");
482
483 /* insert node in tree */
484
485 fn = root;
486
487 do {
488 key = (struct rt6key *)((u8 *)fn->leaf + offset);
489
490 /*
491 * Prefix match
492 */
493 if (plen < fn->fn_bit ||
494 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
495 if (!allow_create) {
496 if (replace_required) {
497 NL_SET_ERR_MSG(extack,
498 "Can not replace route - no match found");
499 pr_warn("Can't replace route, no match found\n");
500 return ERR_PTR(-ENOENT);
501 }
502 pr_warn("NLM_F_CREATE should be set when creating new route\n");
503 }
504 goto insert_above;
505 }
506
507 /*
508 * Exact match ?
509 */
510
511 if (plen == fn->fn_bit) {
512 /* clean up an intermediate node */
513 if (!(fn->fn_flags & RTN_RTINFO)) {
514 rt6_release(fn->leaf);
515 fn->leaf = NULL;
516 }
517
518 fn->fn_sernum = sernum;
519
520 return fn;
521 }
522
523 /*
524 * We have more bits to go
525 */
526
527 /* Try to walk down on tree. */
528 fn->fn_sernum = sernum;
529 dir = addr_bit_set(addr, fn->fn_bit);
530 pn = fn;
531 fn = dir ? fn->right : fn->left;
532 } while (fn);
533
534 if (!allow_create) {
535 /* We should not create new node because
536 * NLM_F_REPLACE was specified without NLM_F_CREATE
537 * I assume it is safe to require NLM_F_CREATE when
538 * REPLACE flag is used! Later we may want to remove the
539 * check for replace_required, because according
540 * to netlink specification, NLM_F_CREATE
541 * MUST be specified if new route is created.
542 * That would keep IPv6 consistent with IPv4
543 */
544 if (replace_required) {
545 NL_SET_ERR_MSG(extack,
546 "Can not replace route - no match found");
547 pr_warn("Can't replace route, no match found\n");
548 return ERR_PTR(-ENOENT);
549 }
550 pr_warn("NLM_F_CREATE should be set when creating new route\n");
551 }
552 /*
553 * We walked to the bottom of tree.
554 * Create new leaf node without children.
555 */
556
557 ln = node_alloc();
558
559 if (!ln)
560 return ERR_PTR(-ENOMEM);
561 ln->fn_bit = plen;
562
563 ln->parent = pn;
564 ln->fn_sernum = sernum;
565
566 if (dir)
567 pn->right = ln;
568 else
569 pn->left = ln;
570
571 return ln;
572
573
574 insert_above:
575 /*
576 * split since we don't have a common prefix anymore or
577 * we have a less significant route.
578 * we've to insert an intermediate node on the list
579 * this new node will point to the one we need to create
580 * and the current
581 */
582
583 pn = fn->parent;
584
585 /* find 1st bit in difference between the 2 addrs.
586
587 See comment in __ipv6_addr_diff: bit may be an invalid value,
588 but if it is >= plen, the value is ignored in any case.
589 */
590
591 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
592
593 /*
594 * (intermediate)[in]
595 * / \
596 * (new leaf node)[ln] (old node)[fn]
597 */
598 if (plen > bit) {
599 in = node_alloc();
600 ln = node_alloc();
601
602 if (!in || !ln) {
603 if (in)
604 node_free(in);
605 if (ln)
606 node_free(ln);
607 return ERR_PTR(-ENOMEM);
608 }
609
610 /*
611 * new intermediate node.
612 * RTN_RTINFO will
613 * be off since that an address that chooses one of
614 * the branches would not match less specific routes
615 * in the other branch
616 */
617
618 in->fn_bit = bit;
619
620 in->parent = pn;
621 in->leaf = fn->leaf;
622 atomic_inc(&in->leaf->rt6i_ref);
623
624 in->fn_sernum = sernum;
625
626 /* update parent pointer */
627 if (dir)
628 pn->right = in;
629 else
630 pn->left = in;
631
632 ln->fn_bit = plen;
633
634 ln->parent = in;
635 fn->parent = in;
636
637 ln->fn_sernum = sernum;
638
639 if (addr_bit_set(addr, bit)) {
640 in->right = ln;
641 in->left = fn;
642 } else {
643 in->left = ln;
644 in->right = fn;
645 }
646 } else { /* plen <= bit */
647
648 /*
649 * (new leaf node)[ln]
650 * / \
651 * (old node)[fn] NULL
652 */
653
654 ln = node_alloc();
655
656 if (!ln)
657 return ERR_PTR(-ENOMEM);
658
659 ln->fn_bit = plen;
660
661 ln->parent = pn;
662
663 ln->fn_sernum = sernum;
664
665 if (dir)
666 pn->right = ln;
667 else
668 pn->left = ln;
669
670 if (addr_bit_set(&key->addr, plen))
671 ln->right = fn;
672 else
673 ln->left = fn;
674
675 fn->parent = ln;
676 }
677 return ln;
678 }
679
680 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
681 {
682 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
683 RTF_GATEWAY;
684 }
685
686 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
687 {
688 int i;
689
690 for (i = 0; i < RTAX_MAX; i++) {
691 if (test_bit(i, mxc->mx_valid))
692 mp[i] = mxc->mx[i];
693 }
694 }
695
696 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
697 {
698 if (!mxc->mx)
699 return 0;
700
701 if (dst->flags & DST_HOST) {
702 u32 *mp = dst_metrics_write_ptr(dst);
703
704 if (unlikely(!mp))
705 return -ENOMEM;
706
707 fib6_copy_metrics(mp, mxc);
708 } else {
709 dst_init_metrics(dst, mxc->mx, false);
710
711 /* We've stolen mx now. */
712 mxc->mx = NULL;
713 }
714
715 return 0;
716 }
717
718 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
719 struct net *net)
720 {
721 if (atomic_read(&rt->rt6i_ref) != 1) {
722 /* This route is used as dummy address holder in some split
723 * nodes. It is not leaked, but it still holds other resources,
724 * which must be released in time. So, scan ascendant nodes
725 * and replace dummy references to this route with references
726 * to still alive ones.
727 */
728 while (fn) {
729 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
730 fn->leaf = fib6_find_prefix(net, fn);
731 atomic_inc(&fn->leaf->rt6i_ref);
732 rt6_release(rt);
733 }
734 fn = fn->parent;
735 }
736 /* No more references are possible at this point. */
737 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
738 }
739 }
740
741 /*
742 * Insert routing information in a node.
743 */
744
745 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
746 struct nl_info *info, struct mx6_config *mxc)
747 {
748 struct rt6_info *iter = NULL;
749 struct rt6_info **ins;
750 struct rt6_info **fallback_ins = NULL;
751 int replace = (info->nlh &&
752 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
753 int add = (!info->nlh ||
754 (info->nlh->nlmsg_flags & NLM_F_CREATE));
755 int found = 0;
756 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
757 u16 nlflags = NLM_F_EXCL;
758 int err;
759
760 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
761 nlflags |= NLM_F_APPEND;
762
763 ins = &fn->leaf;
764
765 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
766 /*
767 * Search for duplicates
768 */
769
770 if (iter->rt6i_metric == rt->rt6i_metric) {
771 /*
772 * Same priority level
773 */
774 if (info->nlh &&
775 (info->nlh->nlmsg_flags & NLM_F_EXCL))
776 return -EEXIST;
777
778 nlflags &= ~NLM_F_EXCL;
779 if (replace) {
780 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
781 found++;
782 break;
783 }
784 if (rt_can_ecmp)
785 fallback_ins = fallback_ins ?: ins;
786 goto next_iter;
787 }
788
789 if (rt6_duplicate_nexthop(iter, rt)) {
790 if (rt->rt6i_nsiblings)
791 rt->rt6i_nsiblings = 0;
792 if (!(iter->rt6i_flags & RTF_EXPIRES))
793 return -EEXIST;
794 if (!(rt->rt6i_flags & RTF_EXPIRES))
795 rt6_clean_expires(iter);
796 else
797 rt6_set_expires(iter, rt->dst.expires);
798 iter->rt6i_pmtu = rt->rt6i_pmtu;
799 return -EEXIST;
800 }
801 /* If we have the same destination and the same metric,
802 * but not the same gateway, then the route we try to
803 * add is sibling to this route, increment our counter
804 * of siblings, and later we will add our route to the
805 * list.
806 * Only static routes (which don't have flag
807 * RTF_EXPIRES) are used for ECMPv6.
808 *
809 * To avoid long list, we only had siblings if the
810 * route have a gateway.
811 */
812 if (rt_can_ecmp &&
813 rt6_qualify_for_ecmp(iter))
814 rt->rt6i_nsiblings++;
815 }
816
817 if (iter->rt6i_metric > rt->rt6i_metric)
818 break;
819
820 next_iter:
821 ins = &iter->dst.rt6_next;
822 }
823
824 if (fallback_ins && !found) {
825 /* No ECMP-able route found, replace first non-ECMP one */
826 ins = fallback_ins;
827 iter = *ins;
828 found++;
829 }
830
831 /* Reset round-robin state, if necessary */
832 if (ins == &fn->leaf)
833 fn->rr_ptr = NULL;
834
835 /* Link this route to others same route. */
836 if (rt->rt6i_nsiblings) {
837 unsigned int rt6i_nsiblings;
838 struct rt6_info *sibling, *temp_sibling;
839
840 /* Find the first route that have the same metric */
841 sibling = fn->leaf;
842 while (sibling) {
843 if (sibling->rt6i_metric == rt->rt6i_metric &&
844 rt6_qualify_for_ecmp(sibling)) {
845 list_add_tail(&rt->rt6i_siblings,
846 &sibling->rt6i_siblings);
847 break;
848 }
849 sibling = sibling->dst.rt6_next;
850 }
851 /* For each sibling in the list, increment the counter of
852 * siblings. BUG() if counters does not match, list of siblings
853 * is broken!
854 */
855 rt6i_nsiblings = 0;
856 list_for_each_entry_safe(sibling, temp_sibling,
857 &rt->rt6i_siblings, rt6i_siblings) {
858 sibling->rt6i_nsiblings++;
859 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
860 rt6i_nsiblings++;
861 }
862 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
863 }
864
865 /*
866 * insert node
867 */
868 if (!replace) {
869 if (!add)
870 pr_warn("NLM_F_CREATE should be set when creating new route\n");
871
872 add:
873 nlflags |= NLM_F_CREATE;
874 err = fib6_commit_metrics(&rt->dst, mxc);
875 if (err)
876 return err;
877
878 rt->dst.rt6_next = iter;
879 *ins = rt;
880 rt->rt6i_node = fn;
881 atomic_inc(&rt->rt6i_ref);
882 if (!info->skip_notify)
883 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
884 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
885
886 if (!(fn->fn_flags & RTN_RTINFO)) {
887 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
888 fn->fn_flags |= RTN_RTINFO;
889 }
890
891 } else {
892 int nsiblings;
893
894 if (!found) {
895 if (add)
896 goto add;
897 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
898 return -ENOENT;
899 }
900
901 err = fib6_commit_metrics(&rt->dst, mxc);
902 if (err)
903 return err;
904
905 *ins = rt;
906 rt->rt6i_node = fn;
907 rt->dst.rt6_next = iter->dst.rt6_next;
908 atomic_inc(&rt->rt6i_ref);
909 if (!info->skip_notify)
910 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
911 if (!(fn->fn_flags & RTN_RTINFO)) {
912 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
913 fn->fn_flags |= RTN_RTINFO;
914 }
915 nsiblings = iter->rt6i_nsiblings;
916 fib6_purge_rt(iter, fn, info->nl_net);
917 if (fn->rr_ptr == iter)
918 fn->rr_ptr = NULL;
919 rt6_release(iter);
920
921 if (nsiblings) {
922 /* Replacing an ECMP route, remove all siblings */
923 ins = &rt->dst.rt6_next;
924 iter = *ins;
925 while (iter) {
926 if (iter->rt6i_metric > rt->rt6i_metric)
927 break;
928 if (rt6_qualify_for_ecmp(iter)) {
929 *ins = iter->dst.rt6_next;
930 fib6_purge_rt(iter, fn, info->nl_net);
931 if (fn->rr_ptr == iter)
932 fn->rr_ptr = NULL;
933 rt6_release(iter);
934 nsiblings--;
935 } else {
936 ins = &iter->dst.rt6_next;
937 }
938 iter = *ins;
939 }
940 WARN_ON(nsiblings != 0);
941 }
942 }
943
944 return 0;
945 }
946
947 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
948 {
949 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
950 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
951 mod_timer(&net->ipv6.ip6_fib_timer,
952 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
953 }
954
955 void fib6_force_start_gc(struct net *net)
956 {
957 if (!timer_pending(&net->ipv6.ip6_fib_timer))
958 mod_timer(&net->ipv6.ip6_fib_timer,
959 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
960 }
961
962 /*
963 * Add routing information to the routing tree.
964 * <destination addr>/<source addr>
965 * with source addr info in sub-trees
966 */
967
968 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
969 struct nl_info *info, struct mx6_config *mxc,
970 struct netlink_ext_ack *extack)
971 {
972 struct fib6_node *fn, *pn = NULL;
973 int err = -ENOMEM;
974 int allow_create = 1;
975 int replace_required = 0;
976 int sernum = fib6_new_sernum(info->nl_net);
977
978 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
979 return -EINVAL;
980
981 if (info->nlh) {
982 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
983 allow_create = 0;
984 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
985 replace_required = 1;
986 }
987 if (!allow_create && !replace_required)
988 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
989
990 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
991 offsetof(struct rt6_info, rt6i_dst), allow_create,
992 replace_required, sernum, extack);
993 if (IS_ERR(fn)) {
994 err = PTR_ERR(fn);
995 fn = NULL;
996 goto out;
997 }
998
999 pn = fn;
1000
1001 #ifdef CONFIG_IPV6_SUBTREES
1002 if (rt->rt6i_src.plen) {
1003 struct fib6_node *sn;
1004
1005 if (!fn->subtree) {
1006 struct fib6_node *sfn;
1007
1008 /*
1009 * Create subtree.
1010 *
1011 * fn[main tree]
1012 * |
1013 * sfn[subtree root]
1014 * \
1015 * sn[new leaf node]
1016 */
1017
1018 /* Create subtree root node */
1019 sfn = node_alloc();
1020 if (!sfn)
1021 goto failure;
1022
1023 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1024 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1025 sfn->fn_flags = RTN_ROOT;
1026 sfn->fn_sernum = sernum;
1027
1028 /* Now add the first leaf node to new subtree */
1029
1030 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1031 rt->rt6i_src.plen,
1032 offsetof(struct rt6_info, rt6i_src),
1033 allow_create, replace_required, sernum,
1034 extack);
1035
1036 if (IS_ERR(sn)) {
1037 /* If it is failed, discard just allocated
1038 root, and then (in failure) stale node
1039 in main tree.
1040 */
1041 node_free(sfn);
1042 err = PTR_ERR(sn);
1043 goto failure;
1044 }
1045
1046 /* Now link new subtree to main tree */
1047 sfn->parent = fn;
1048 fn->subtree = sfn;
1049 } else {
1050 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1051 rt->rt6i_src.plen,
1052 offsetof(struct rt6_info, rt6i_src),
1053 allow_create, replace_required, sernum,
1054 extack);
1055
1056 if (IS_ERR(sn)) {
1057 err = PTR_ERR(sn);
1058 goto failure;
1059 }
1060 }
1061
1062 if (!fn->leaf) {
1063 fn->leaf = rt;
1064 atomic_inc(&rt->rt6i_ref);
1065 }
1066 fn = sn;
1067 }
1068 #endif
1069
1070 err = fib6_add_rt2node(fn, rt, info, mxc);
1071 if (!err) {
1072 fib6_start_gc(info->nl_net, rt);
1073 if (!(rt->rt6i_flags & RTF_CACHE))
1074 fib6_prune_clones(info->nl_net, pn);
1075 }
1076
1077 out:
1078 if (err) {
1079 #ifdef CONFIG_IPV6_SUBTREES
1080 /*
1081 * If fib6_add_1 has cleared the old leaf pointer in the
1082 * super-tree leaf node we have to find a new one for it.
1083 */
1084 if (pn != fn && pn->leaf == rt) {
1085 pn->leaf = NULL;
1086 atomic_dec(&rt->rt6i_ref);
1087 }
1088 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1089 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1090 #if RT6_DEBUG >= 2
1091 if (!pn->leaf) {
1092 WARN_ON(pn->leaf == NULL);
1093 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1094 }
1095 #endif
1096 atomic_inc(&pn->leaf->rt6i_ref);
1097 }
1098 #endif
1099 goto failure;
1100 }
1101 return err;
1102
1103 failure:
1104 /* fn->leaf could be NULL if fn is an intermediate node and we
1105 * failed to add the new route to it in both subtree creation
1106 * failure and fib6_add_rt2node() failure case.
1107 * In both cases, fib6_repair_tree() should be called to fix
1108 * fn->leaf.
1109 */
1110 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1111 fib6_repair_tree(info->nl_net, fn);
1112 /* Always release dst as dst->__refcnt is guaranteed
1113 * to be taken before entering this function
1114 */
1115 dst_release_immediate(&rt->dst);
1116 return err;
1117 }
1118
1119 /*
1120 * Routing tree lookup
1121 *
1122 */
1123
1124 struct lookup_args {
1125 int offset; /* key offset on rt6_info */
1126 const struct in6_addr *addr; /* search key */
1127 };
1128
1129 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1130 struct lookup_args *args)
1131 {
1132 struct fib6_node *fn;
1133 __be32 dir;
1134
1135 if (unlikely(args->offset == 0))
1136 return NULL;
1137
1138 /*
1139 * Descend on a tree
1140 */
1141
1142 fn = root;
1143
1144 for (;;) {
1145 struct fib6_node *next;
1146
1147 dir = addr_bit_set(args->addr, fn->fn_bit);
1148
1149 next = dir ? fn->right : fn->left;
1150
1151 if (next) {
1152 fn = next;
1153 continue;
1154 }
1155 break;
1156 }
1157
1158 while (fn) {
1159 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1160 struct rt6key *key;
1161
1162 key = (struct rt6key *) ((u8 *) fn->leaf +
1163 args->offset);
1164
1165 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1166 #ifdef CONFIG_IPV6_SUBTREES
1167 if (fn->subtree) {
1168 struct fib6_node *sfn;
1169 sfn = fib6_lookup_1(fn->subtree,
1170 args + 1);
1171 if (!sfn)
1172 goto backtrack;
1173 fn = sfn;
1174 }
1175 #endif
1176 if (fn->fn_flags & RTN_RTINFO)
1177 return fn;
1178 }
1179 }
1180 #ifdef CONFIG_IPV6_SUBTREES
1181 backtrack:
1182 #endif
1183 if (fn->fn_flags & RTN_ROOT)
1184 break;
1185
1186 fn = fn->parent;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1193 const struct in6_addr *saddr)
1194 {
1195 struct fib6_node *fn;
1196 struct lookup_args args[] = {
1197 {
1198 .offset = offsetof(struct rt6_info, rt6i_dst),
1199 .addr = daddr,
1200 },
1201 #ifdef CONFIG_IPV6_SUBTREES
1202 {
1203 .offset = offsetof(struct rt6_info, rt6i_src),
1204 .addr = saddr,
1205 },
1206 #endif
1207 {
1208 .offset = 0, /* sentinel */
1209 }
1210 };
1211
1212 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1213 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1214 fn = root;
1215
1216 return fn;
1217 }
1218
1219 /*
1220 * Get node with specified destination prefix (and source prefix,
1221 * if subtrees are used)
1222 */
1223
1224
1225 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1226 const struct in6_addr *addr,
1227 int plen, int offset)
1228 {
1229 struct fib6_node *fn;
1230
1231 for (fn = root; fn ; ) {
1232 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1233
1234 /*
1235 * Prefix match
1236 */
1237 if (plen < fn->fn_bit ||
1238 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1239 return NULL;
1240
1241 if (plen == fn->fn_bit)
1242 return fn;
1243
1244 /*
1245 * We have more bits to go
1246 */
1247 if (addr_bit_set(addr, fn->fn_bit))
1248 fn = fn->right;
1249 else
1250 fn = fn->left;
1251 }
1252 return NULL;
1253 }
1254
1255 struct fib6_node *fib6_locate(struct fib6_node *root,
1256 const struct in6_addr *daddr, int dst_len,
1257 const struct in6_addr *saddr, int src_len)
1258 {
1259 struct fib6_node *fn;
1260
1261 fn = fib6_locate_1(root, daddr, dst_len,
1262 offsetof(struct rt6_info, rt6i_dst));
1263
1264 #ifdef CONFIG_IPV6_SUBTREES
1265 if (src_len) {
1266 WARN_ON(saddr == NULL);
1267 if (fn && fn->subtree)
1268 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1269 offsetof(struct rt6_info, rt6i_src));
1270 }
1271 #endif
1272
1273 if (fn && fn->fn_flags & RTN_RTINFO)
1274 return fn;
1275
1276 return NULL;
1277 }
1278
1279
1280 /*
1281 * Deletion
1282 *
1283 */
1284
1285 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1286 {
1287 if (fn->fn_flags & RTN_ROOT)
1288 return net->ipv6.ip6_null_entry;
1289
1290 while (fn) {
1291 if (fn->left)
1292 return fn->left->leaf;
1293 if (fn->right)
1294 return fn->right->leaf;
1295
1296 fn = FIB6_SUBTREE(fn);
1297 }
1298 return NULL;
1299 }
1300
1301 /*
1302 * Called to trim the tree of intermediate nodes when possible. "fn"
1303 * is the node we want to try and remove.
1304 */
1305
1306 static struct fib6_node *fib6_repair_tree(struct net *net,
1307 struct fib6_node *fn)
1308 {
1309 int children;
1310 int nstate;
1311 struct fib6_node *child, *pn;
1312 struct fib6_walker *w;
1313 int iter = 0;
1314
1315 for (;;) {
1316 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1317 iter++;
1318
1319 WARN_ON(fn->fn_flags & RTN_RTINFO);
1320 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1321 WARN_ON(fn->leaf);
1322
1323 children = 0;
1324 child = NULL;
1325 if (fn->right)
1326 child = fn->right, children |= 1;
1327 if (fn->left)
1328 child = fn->left, children |= 2;
1329
1330 if (children == 3 || FIB6_SUBTREE(fn)
1331 #ifdef CONFIG_IPV6_SUBTREES
1332 /* Subtree root (i.e. fn) may have one child */
1333 || (children && fn->fn_flags & RTN_ROOT)
1334 #endif
1335 ) {
1336 fn->leaf = fib6_find_prefix(net, fn);
1337 #if RT6_DEBUG >= 2
1338 if (!fn->leaf) {
1339 WARN_ON(!fn->leaf);
1340 fn->leaf = net->ipv6.ip6_null_entry;
1341 }
1342 #endif
1343 atomic_inc(&fn->leaf->rt6i_ref);
1344 return fn->parent;
1345 }
1346
1347 pn = fn->parent;
1348 #ifdef CONFIG_IPV6_SUBTREES
1349 if (FIB6_SUBTREE(pn) == fn) {
1350 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1351 FIB6_SUBTREE(pn) = NULL;
1352 nstate = FWS_L;
1353 } else {
1354 WARN_ON(fn->fn_flags & RTN_ROOT);
1355 #endif
1356 if (pn->right == fn)
1357 pn->right = child;
1358 else if (pn->left == fn)
1359 pn->left = child;
1360 #if RT6_DEBUG >= 2
1361 else
1362 WARN_ON(1);
1363 #endif
1364 if (child)
1365 child->parent = pn;
1366 nstate = FWS_R;
1367 #ifdef CONFIG_IPV6_SUBTREES
1368 }
1369 #endif
1370
1371 read_lock(&net->ipv6.fib6_walker_lock);
1372 FOR_WALKERS(net, w) {
1373 if (!child) {
1374 if (w->root == fn) {
1375 w->root = w->node = NULL;
1376 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1377 } else if (w->node == fn) {
1378 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1379 w->node = pn;
1380 w->state = nstate;
1381 }
1382 } else {
1383 if (w->root == fn) {
1384 w->root = child;
1385 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1386 }
1387 if (w->node == fn) {
1388 w->node = child;
1389 if (children&2) {
1390 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1391 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1392 } else {
1393 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1394 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1395 }
1396 }
1397 }
1398 }
1399 read_unlock(&net->ipv6.fib6_walker_lock);
1400
1401 node_free(fn);
1402 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1403 return pn;
1404
1405 rt6_release(pn->leaf);
1406 pn->leaf = NULL;
1407 fn = pn;
1408 }
1409 }
1410
1411 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1412 struct nl_info *info)
1413 {
1414 struct fib6_walker *w;
1415 struct rt6_info *rt = *rtp;
1416 struct net *net = info->nl_net;
1417
1418 RT6_TRACE("fib6_del_route\n");
1419
1420 /* Unlink it */
1421 *rtp = rt->dst.rt6_next;
1422 rt->rt6i_node = NULL;
1423 net->ipv6.rt6_stats->fib_rt_entries--;
1424 net->ipv6.rt6_stats->fib_discarded_routes++;
1425
1426 /* Reset round-robin state, if necessary */
1427 if (fn->rr_ptr == rt)
1428 fn->rr_ptr = NULL;
1429
1430 /* Remove this entry from other siblings */
1431 if (rt->rt6i_nsiblings) {
1432 struct rt6_info *sibling, *next_sibling;
1433
1434 list_for_each_entry_safe(sibling, next_sibling,
1435 &rt->rt6i_siblings, rt6i_siblings)
1436 sibling->rt6i_nsiblings--;
1437 rt->rt6i_nsiblings = 0;
1438 list_del_init(&rt->rt6i_siblings);
1439 }
1440
1441 /* Adjust walkers */
1442 read_lock(&net->ipv6.fib6_walker_lock);
1443 FOR_WALKERS(net, w) {
1444 if (w->state == FWS_C && w->leaf == rt) {
1445 RT6_TRACE("walker %p adjusted by delroute\n", w);
1446 w->leaf = rt->dst.rt6_next;
1447 if (!w->leaf)
1448 w->state = FWS_U;
1449 }
1450 }
1451 read_unlock(&net->ipv6.fib6_walker_lock);
1452
1453 rt->dst.rt6_next = NULL;
1454
1455 /* If it was last route, expunge its radix tree node */
1456 if (!fn->leaf) {
1457 fn->fn_flags &= ~RTN_RTINFO;
1458 net->ipv6.rt6_stats->fib_route_nodes--;
1459 fn = fib6_repair_tree(net, fn);
1460 }
1461
1462 fib6_purge_rt(rt, fn, net);
1463
1464 if (!info->skip_notify)
1465 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1466 rt6_release(rt);
1467 }
1468
1469 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1470 {
1471 struct net *net = info->nl_net;
1472 struct fib6_node *fn = rt->rt6i_node;
1473 struct rt6_info **rtp;
1474
1475 #if RT6_DEBUG >= 2
1476 if (rt->dst.obsolete > 0) {
1477 WARN_ON(fn);
1478 return -ENOENT;
1479 }
1480 #endif
1481 if (!fn || rt == net->ipv6.ip6_null_entry)
1482 return -ENOENT;
1483
1484 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1485
1486 if (!(rt->rt6i_flags & RTF_CACHE)) {
1487 struct fib6_node *pn = fn;
1488 #ifdef CONFIG_IPV6_SUBTREES
1489 /* clones of this route might be in another subtree */
1490 if (rt->rt6i_src.plen) {
1491 while (!(pn->fn_flags & RTN_ROOT))
1492 pn = pn->parent;
1493 pn = pn->parent;
1494 }
1495 #endif
1496 fib6_prune_clones(info->nl_net, pn);
1497 }
1498
1499 /*
1500 * Walk the leaf entries looking for ourself
1501 */
1502
1503 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1504 if (*rtp == rt) {
1505 fib6_del_route(fn, rtp, info);
1506 return 0;
1507 }
1508 }
1509 return -ENOENT;
1510 }
1511
1512 /*
1513 * Tree traversal function.
1514 *
1515 * Certainly, it is not interrupt safe.
1516 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1517 * It means, that we can modify tree during walking
1518 * and use this function for garbage collection, clone pruning,
1519 * cleaning tree when a device goes down etc. etc.
1520 *
1521 * It guarantees that every node will be traversed,
1522 * and that it will be traversed only once.
1523 *
1524 * Callback function w->func may return:
1525 * 0 -> continue walking.
1526 * positive value -> walking is suspended (used by tree dumps,
1527 * and probably by gc, if it will be split to several slices)
1528 * negative value -> terminate walking.
1529 *
1530 * The function itself returns:
1531 * 0 -> walk is complete.
1532 * >0 -> walk is incomplete (i.e. suspended)
1533 * <0 -> walk is terminated by an error.
1534 */
1535
1536 static int fib6_walk_continue(struct fib6_walker *w)
1537 {
1538 struct fib6_node *fn, *pn;
1539
1540 for (;;) {
1541 fn = w->node;
1542 if (!fn)
1543 return 0;
1544
1545 if (w->prune && fn != w->root &&
1546 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1547 w->state = FWS_C;
1548 w->leaf = fn->leaf;
1549 }
1550 switch (w->state) {
1551 #ifdef CONFIG_IPV6_SUBTREES
1552 case FWS_S:
1553 if (FIB6_SUBTREE(fn)) {
1554 w->node = FIB6_SUBTREE(fn);
1555 continue;
1556 }
1557 w->state = FWS_L;
1558 #endif
1559 case FWS_L:
1560 if (fn->left) {
1561 w->node = fn->left;
1562 w->state = FWS_INIT;
1563 continue;
1564 }
1565 w->state = FWS_R;
1566 case FWS_R:
1567 if (fn->right) {
1568 w->node = fn->right;
1569 w->state = FWS_INIT;
1570 continue;
1571 }
1572 w->state = FWS_C;
1573 w->leaf = fn->leaf;
1574 case FWS_C:
1575 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1576 int err;
1577
1578 if (w->skip) {
1579 w->skip--;
1580 goto skip;
1581 }
1582
1583 err = w->func(w);
1584 if (err)
1585 return err;
1586
1587 w->count++;
1588 continue;
1589 }
1590 skip:
1591 w->state = FWS_U;
1592 case FWS_U:
1593 if (fn == w->root)
1594 return 0;
1595 pn = fn->parent;
1596 w->node = pn;
1597 #ifdef CONFIG_IPV6_SUBTREES
1598 if (FIB6_SUBTREE(pn) == fn) {
1599 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1600 w->state = FWS_L;
1601 continue;
1602 }
1603 #endif
1604 if (pn->left == fn) {
1605 w->state = FWS_R;
1606 continue;
1607 }
1608 if (pn->right == fn) {
1609 w->state = FWS_C;
1610 w->leaf = w->node->leaf;
1611 continue;
1612 }
1613 #if RT6_DEBUG >= 2
1614 WARN_ON(1);
1615 #endif
1616 }
1617 }
1618 }
1619
1620 static int fib6_walk(struct net *net, struct fib6_walker *w)
1621 {
1622 int res;
1623
1624 w->state = FWS_INIT;
1625 w->node = w->root;
1626
1627 fib6_walker_link(net, w);
1628 res = fib6_walk_continue(w);
1629 if (res <= 0)
1630 fib6_walker_unlink(net, w);
1631 return res;
1632 }
1633
1634 static int fib6_clean_node(struct fib6_walker *w)
1635 {
1636 int res;
1637 struct rt6_info *rt;
1638 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1639 struct nl_info info = {
1640 .nl_net = c->net,
1641 };
1642
1643 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1644 w->node->fn_sernum != c->sernum)
1645 w->node->fn_sernum = c->sernum;
1646
1647 if (!c->func) {
1648 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1649 w->leaf = NULL;
1650 return 0;
1651 }
1652
1653 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1654 res = c->func(rt, c->arg);
1655 if (res < 0) {
1656 w->leaf = rt;
1657 res = fib6_del(rt, &info);
1658 if (res) {
1659 #if RT6_DEBUG >= 2
1660 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1661 __func__, rt, rt->rt6i_node, res);
1662 #endif
1663 continue;
1664 }
1665 return 0;
1666 }
1667 WARN_ON(res != 0);
1668 }
1669 w->leaf = rt;
1670 return 0;
1671 }
1672
1673 /*
1674 * Convenient frontend to tree walker.
1675 *
1676 * func is called on each route.
1677 * It may return -1 -> delete this route.
1678 * 0 -> continue walking
1679 *
1680 * prune==1 -> only immediate children of node (certainly,
1681 * ignoring pure split nodes) will be scanned.
1682 */
1683
1684 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1685 int (*func)(struct rt6_info *, void *arg),
1686 bool prune, int sernum, void *arg)
1687 {
1688 struct fib6_cleaner c;
1689
1690 c.w.root = root;
1691 c.w.func = fib6_clean_node;
1692 c.w.prune = prune;
1693 c.w.count = 0;
1694 c.w.skip = 0;
1695 c.func = func;
1696 c.sernum = sernum;
1697 c.arg = arg;
1698 c.net = net;
1699
1700 fib6_walk(net, &c.w);
1701 }
1702
1703 static void __fib6_clean_all(struct net *net,
1704 int (*func)(struct rt6_info *, void *),
1705 int sernum, void *arg)
1706 {
1707 struct fib6_table *table;
1708 struct hlist_head *head;
1709 unsigned int h;
1710
1711 rcu_read_lock();
1712 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1713 head = &net->ipv6.fib_table_hash[h];
1714 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1715 write_lock_bh(&table->tb6_lock);
1716 fib6_clean_tree(net, &table->tb6_root,
1717 func, false, sernum, arg);
1718 write_unlock_bh(&table->tb6_lock);
1719 }
1720 }
1721 rcu_read_unlock();
1722 }
1723
1724 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1725 void *arg)
1726 {
1727 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1728 }
1729
1730 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1731 {
1732 if (rt->rt6i_flags & RTF_CACHE) {
1733 RT6_TRACE("pruning clone %p\n", rt);
1734 return -1;
1735 }
1736
1737 return 0;
1738 }
1739
1740 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1741 {
1742 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1743 FIB6_NO_SERNUM_CHANGE, NULL);
1744 }
1745
1746 static void fib6_flush_trees(struct net *net)
1747 {
1748 int new_sernum = fib6_new_sernum(net);
1749
1750 __fib6_clean_all(net, NULL, new_sernum, NULL);
1751 }
1752
1753 /*
1754 * Garbage collection
1755 */
1756
1757 struct fib6_gc_args
1758 {
1759 int timeout;
1760 int more;
1761 };
1762
1763 static int fib6_age(struct rt6_info *rt, void *arg)
1764 {
1765 struct fib6_gc_args *gc_args = arg;
1766 unsigned long now = jiffies;
1767
1768 /*
1769 * check addrconf expiration here.
1770 * Routes are expired even if they are in use.
1771 *
1772 * Also age clones. Note, that clones are aged out
1773 * only if they are not in use now.
1774 */
1775
1776 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1777 if (time_after(now, rt->dst.expires)) {
1778 RT6_TRACE("expiring %p\n", rt);
1779 return -1;
1780 }
1781 gc_args->more++;
1782 } else if (rt->rt6i_flags & RTF_CACHE) {
1783 if (atomic_read(&rt->dst.__refcnt) == 1 &&
1784 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1785 RT6_TRACE("aging clone %p\n", rt);
1786 return -1;
1787 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1788 struct neighbour *neigh;
1789 __u8 neigh_flags = 0;
1790
1791 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1792 if (neigh) {
1793 neigh_flags = neigh->flags;
1794 neigh_release(neigh);
1795 }
1796 if (!(neigh_flags & NTF_ROUTER)) {
1797 RT6_TRACE("purging route %p via non-router but gateway\n",
1798 rt);
1799 return -1;
1800 }
1801 }
1802 gc_args->more++;
1803 }
1804
1805 return 0;
1806 }
1807
1808 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1809 {
1810 struct fib6_gc_args gc_args;
1811 unsigned long now;
1812
1813 if (force) {
1814 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1815 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1816 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1817 return;
1818 }
1819 gc_args.timeout = expires ? (int)expires :
1820 net->ipv6.sysctl.ip6_rt_gc_interval;
1821 gc_args.more = 0;
1822
1823 fib6_clean_all(net, fib6_age, &gc_args);
1824 now = jiffies;
1825 net->ipv6.ip6_rt_last_gc = now;
1826
1827 if (gc_args.more)
1828 mod_timer(&net->ipv6.ip6_fib_timer,
1829 round_jiffies(now
1830 + net->ipv6.sysctl.ip6_rt_gc_interval));
1831 else
1832 del_timer(&net->ipv6.ip6_fib_timer);
1833 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1834 }
1835
1836 static void fib6_gc_timer_cb(unsigned long arg)
1837 {
1838 fib6_run_gc(0, (struct net *)arg, true);
1839 }
1840
1841 static int __net_init fib6_net_init(struct net *net)
1842 {
1843 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1844
1845 spin_lock_init(&net->ipv6.fib6_gc_lock);
1846 rwlock_init(&net->ipv6.fib6_walker_lock);
1847 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1848 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1849
1850 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1851 if (!net->ipv6.rt6_stats)
1852 goto out_timer;
1853
1854 /* Avoid false sharing : Use at least a full cache line */
1855 size = max_t(size_t, size, L1_CACHE_BYTES);
1856
1857 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1858 if (!net->ipv6.fib_table_hash)
1859 goto out_rt6_stats;
1860
1861 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1862 GFP_KERNEL);
1863 if (!net->ipv6.fib6_main_tbl)
1864 goto out_fib_table_hash;
1865
1866 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1867 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1868 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1869 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1870 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1871
1872 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1873 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1874 GFP_KERNEL);
1875 if (!net->ipv6.fib6_local_tbl)
1876 goto out_fib6_main_tbl;
1877 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1878 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1879 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1880 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1881 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1882 #endif
1883 fib6_tables_init(net);
1884
1885 return 0;
1886
1887 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1888 out_fib6_main_tbl:
1889 kfree(net->ipv6.fib6_main_tbl);
1890 #endif
1891 out_fib_table_hash:
1892 kfree(net->ipv6.fib_table_hash);
1893 out_rt6_stats:
1894 kfree(net->ipv6.rt6_stats);
1895 out_timer:
1896 return -ENOMEM;
1897 }
1898
1899 static void fib6_net_exit(struct net *net)
1900 {
1901 rt6_ifdown(net, NULL);
1902 del_timer_sync(&net->ipv6.ip6_fib_timer);
1903
1904 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1905 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1906 kfree(net->ipv6.fib6_local_tbl);
1907 #endif
1908 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1909 kfree(net->ipv6.fib6_main_tbl);
1910 kfree(net->ipv6.fib_table_hash);
1911 kfree(net->ipv6.rt6_stats);
1912 }
1913
1914 static struct pernet_operations fib6_net_ops = {
1915 .init = fib6_net_init,
1916 .exit = fib6_net_exit,
1917 };
1918
1919 int __init fib6_init(void)
1920 {
1921 int ret = -ENOMEM;
1922
1923 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1924 sizeof(struct fib6_node),
1925 0, SLAB_HWCACHE_ALIGN,
1926 NULL);
1927 if (!fib6_node_kmem)
1928 goto out;
1929
1930 ret = register_pernet_subsys(&fib6_net_ops);
1931 if (ret)
1932 goto out_kmem_cache_create;
1933
1934 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1935 NULL);
1936 if (ret)
1937 goto out_unregister_subsys;
1938
1939 __fib6_flush_trees = fib6_flush_trees;
1940 out:
1941 return ret;
1942
1943 out_unregister_subsys:
1944 unregister_pernet_subsys(&fib6_net_ops);
1945 out_kmem_cache_create:
1946 kmem_cache_destroy(fib6_node_kmem);
1947 goto out;
1948 }
1949
1950 void fib6_gc_cleanup(void)
1951 {
1952 unregister_pernet_subsys(&fib6_net_ops);
1953 kmem_cache_destroy(fib6_node_kmem);
1954 }
1955
1956 #ifdef CONFIG_PROC_FS
1957
1958 struct ipv6_route_iter {
1959 struct seq_net_private p;
1960 struct fib6_walker w;
1961 loff_t skip;
1962 struct fib6_table *tbl;
1963 int sernum;
1964 };
1965
1966 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1967 {
1968 struct rt6_info *rt = v;
1969 struct ipv6_route_iter *iter = seq->private;
1970
1971 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1972
1973 #ifdef CONFIG_IPV6_SUBTREES
1974 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1975 #else
1976 seq_puts(seq, "00000000000000000000000000000000 00 ");
1977 #endif
1978 if (rt->rt6i_flags & RTF_GATEWAY)
1979 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1980 else
1981 seq_puts(seq, "00000000000000000000000000000000");
1982
1983 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1984 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1985 rt->dst.__use, rt->rt6i_flags,
1986 rt->dst.dev ? rt->dst.dev->name : "");
1987 iter->w.leaf = NULL;
1988 return 0;
1989 }
1990
1991 static int ipv6_route_yield(struct fib6_walker *w)
1992 {
1993 struct ipv6_route_iter *iter = w->args;
1994
1995 if (!iter->skip)
1996 return 1;
1997
1998 do {
1999 iter->w.leaf = iter->w.leaf->dst.rt6_next;
2000 iter->skip--;
2001 if (!iter->skip && iter->w.leaf)
2002 return 1;
2003 } while (iter->w.leaf);
2004
2005 return 0;
2006 }
2007
2008 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2009 struct net *net)
2010 {
2011 memset(&iter->w, 0, sizeof(iter->w));
2012 iter->w.func = ipv6_route_yield;
2013 iter->w.root = &iter->tbl->tb6_root;
2014 iter->w.state = FWS_INIT;
2015 iter->w.node = iter->w.root;
2016 iter->w.args = iter;
2017 iter->sernum = iter->w.root->fn_sernum;
2018 INIT_LIST_HEAD(&iter->w.lh);
2019 fib6_walker_link(net, &iter->w);
2020 }
2021
2022 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2023 struct net *net)
2024 {
2025 unsigned int h;
2026 struct hlist_node *node;
2027
2028 if (tbl) {
2029 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2030 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2031 } else {
2032 h = 0;
2033 node = NULL;
2034 }
2035
2036 while (!node && h < FIB6_TABLE_HASHSZ) {
2037 node = rcu_dereference_bh(
2038 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2039 }
2040 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2041 }
2042
2043 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2044 {
2045 if (iter->sernum != iter->w.root->fn_sernum) {
2046 iter->sernum = iter->w.root->fn_sernum;
2047 iter->w.state = FWS_INIT;
2048 iter->w.node = iter->w.root;
2049 WARN_ON(iter->w.skip);
2050 iter->w.skip = iter->w.count;
2051 }
2052 }
2053
2054 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2055 {
2056 int r;
2057 struct rt6_info *n;
2058 struct net *net = seq_file_net(seq);
2059 struct ipv6_route_iter *iter = seq->private;
2060
2061 if (!v)
2062 goto iter_table;
2063
2064 n = ((struct rt6_info *)v)->dst.rt6_next;
2065 if (n) {
2066 ++*pos;
2067 return n;
2068 }
2069
2070 iter_table:
2071 ipv6_route_check_sernum(iter);
2072 read_lock(&iter->tbl->tb6_lock);
2073 r = fib6_walk_continue(&iter->w);
2074 read_unlock(&iter->tbl->tb6_lock);
2075 if (r > 0) {
2076 if (v)
2077 ++*pos;
2078 return iter->w.leaf;
2079 } else if (r < 0) {
2080 fib6_walker_unlink(net, &iter->w);
2081 return NULL;
2082 }
2083 fib6_walker_unlink(net, &iter->w);
2084
2085 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2086 if (!iter->tbl)
2087 return NULL;
2088
2089 ipv6_route_seq_setup_walk(iter, net);
2090 goto iter_table;
2091 }
2092
2093 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2094 __acquires(RCU_BH)
2095 {
2096 struct net *net = seq_file_net(seq);
2097 struct ipv6_route_iter *iter = seq->private;
2098
2099 rcu_read_lock_bh();
2100 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2101 iter->skip = *pos;
2102
2103 if (iter->tbl) {
2104 ipv6_route_seq_setup_walk(iter, net);
2105 return ipv6_route_seq_next(seq, NULL, pos);
2106 } else {
2107 return NULL;
2108 }
2109 }
2110
2111 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2112 {
2113 struct fib6_walker *w = &iter->w;
2114 return w->node && !(w->state == FWS_U && w->node == w->root);
2115 }
2116
2117 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2118 __releases(RCU_BH)
2119 {
2120 struct net *net = seq_file_net(seq);
2121 struct ipv6_route_iter *iter = seq->private;
2122
2123 if (ipv6_route_iter_active(iter))
2124 fib6_walker_unlink(net, &iter->w);
2125
2126 rcu_read_unlock_bh();
2127 }
2128
2129 static const struct seq_operations ipv6_route_seq_ops = {
2130 .start = ipv6_route_seq_start,
2131 .next = ipv6_route_seq_next,
2132 .stop = ipv6_route_seq_stop,
2133 .show = ipv6_route_seq_show
2134 };
2135
2136 int ipv6_route_open(struct inode *inode, struct file *file)
2137 {
2138 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2139 sizeof(struct ipv6_route_iter));
2140 }
2141
2142 #endif /* CONFIG_PROC_FS */