]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv6/ip6_fib.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-bionic-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21 #include <linux/errno.h>
22 #include <linux/types.h>
23 #include <linux/net.h>
24 #include <linux/route.h>
25 #include <linux/netdevice.h>
26 #include <linux/in6.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30
31 #ifdef CONFIG_PROC_FS
32 #include <linux/proc_fs.h>
33 #endif
34
35 #include <net/ipv6.h>
36 #include <net/ndisc.h>
37 #include <net/addrconf.h>
38
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41
42 #define RT6_DEBUG 2
43
44 #if RT6_DEBUG >= 3
45 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
46 #else
47 #define RT6_TRACE(x...) do { ; } while (0)
48 #endif
49
50 static struct kmem_cache * fib6_node_kmem __read_mostly;
51
52 enum fib_walk_state_t
53 {
54 #ifdef CONFIG_IPV6_SUBTREES
55 FWS_S,
56 #endif
57 FWS_L,
58 FWS_R,
59 FWS_C,
60 FWS_U
61 };
62
63 struct fib6_cleaner_t
64 {
65 struct fib6_walker_t w;
66 struct net *net;
67 int (*func)(struct rt6_info *, void *arg);
68 void *arg;
69 };
70
71 static DEFINE_RWLOCK(fib6_walker_lock);
72
73 #ifdef CONFIG_IPV6_SUBTREES
74 #define FWS_INIT FWS_S
75 #else
76 #define FWS_INIT FWS_L
77 #endif
78
79 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
80 struct rt6_info *rt);
81 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
82 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
83 static int fib6_walk(struct fib6_walker_t *w);
84 static int fib6_walk_continue(struct fib6_walker_t *w);
85
86 /*
87 * A routing update causes an increase of the serial number on the
88 * affected subtree. This allows for cached routes to be asynchronously
89 * tested when modifications are made to the destination cache as a
90 * result of redirects, path MTU changes, etc.
91 */
92
93 static __u32 rt_sernum;
94
95 static void fib6_gc_timer_cb(unsigned long arg);
96
97 static LIST_HEAD(fib6_walkers);
98 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
99
100 static inline void fib6_walker_link(struct fib6_walker_t *w)
101 {
102 write_lock_bh(&fib6_walker_lock);
103 list_add(&w->lh, &fib6_walkers);
104 write_unlock_bh(&fib6_walker_lock);
105 }
106
107 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
108 {
109 write_lock_bh(&fib6_walker_lock);
110 list_del(&w->lh);
111 write_unlock_bh(&fib6_walker_lock);
112 }
113 static __inline__ u32 fib6_new_sernum(void)
114 {
115 u32 n = ++rt_sernum;
116 if ((__s32)n <= 0)
117 rt_sernum = n = 1;
118 return n;
119 }
120
121 /*
122 * Auxiliary address test functions for the radix tree.
123 *
124 * These assume a 32bit processor (although it will work on
125 * 64bit processors)
126 */
127
128 /*
129 * test bit
130 */
131
132 static __inline__ __be32 addr_bit_set(void *token, int fn_bit)
133 {
134 __be32 *addr = token;
135
136 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
137 }
138
139 static __inline__ struct fib6_node * node_alloc(void)
140 {
141 struct fib6_node *fn;
142
143 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
144
145 return fn;
146 }
147
148 static __inline__ void node_free(struct fib6_node * fn)
149 {
150 kmem_cache_free(fib6_node_kmem, fn);
151 }
152
153 static __inline__ void rt6_release(struct rt6_info *rt)
154 {
155 if (atomic_dec_and_test(&rt->rt6i_ref))
156 dst_free(&rt->u.dst);
157 }
158
159 static void fib6_link_table(struct net *net, struct fib6_table *tb)
160 {
161 unsigned int h;
162
163 /*
164 * Initialize table lock at a single place to give lockdep a key,
165 * tables aren't visible prior to being linked to the list.
166 */
167 rwlock_init(&tb->tb6_lock);
168
169 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
170
171 /*
172 * No protection necessary, this is the only list mutatation
173 * operation, tables never disappear once they exist.
174 */
175 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
176 }
177
178 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
179
180 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
181 {
182 struct fib6_table *table;
183
184 table = kzalloc(sizeof(*table), GFP_ATOMIC);
185 if (table != NULL) {
186 table->tb6_id = id;
187 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
188 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
189 }
190
191 return table;
192 }
193
194 struct fib6_table *fib6_new_table(struct net *net, u32 id)
195 {
196 struct fib6_table *tb;
197
198 if (id == 0)
199 id = RT6_TABLE_MAIN;
200 tb = fib6_get_table(net, id);
201 if (tb)
202 return tb;
203
204 tb = fib6_alloc_table(net, id);
205 if (tb != NULL)
206 fib6_link_table(net, tb);
207
208 return tb;
209 }
210
211 struct fib6_table *fib6_get_table(struct net *net, u32 id)
212 {
213 struct fib6_table *tb;
214 struct hlist_head *head;
215 struct hlist_node *node;
216 unsigned int h;
217
218 if (id == 0)
219 id = RT6_TABLE_MAIN;
220 h = id & (FIB6_TABLE_HASHSZ - 1);
221 rcu_read_lock();
222 head = &net->ipv6.fib_table_hash[h];
223 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
224 if (tb->tb6_id == id) {
225 rcu_read_unlock();
226 return tb;
227 }
228 }
229 rcu_read_unlock();
230
231 return NULL;
232 }
233
234 static void __net_init fib6_tables_init(struct net *net)
235 {
236 fib6_link_table(net, net->ipv6.fib6_main_tbl);
237 fib6_link_table(net, net->ipv6.fib6_local_tbl);
238 }
239 #else
240
241 struct fib6_table *fib6_new_table(struct net *net, u32 id)
242 {
243 return fib6_get_table(net, id);
244 }
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 return net->ipv6.fib6_main_tbl;
249 }
250
251 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi *fl,
252 int flags, pol_lookup_t lookup)
253 {
254 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl, flags);
255 }
256
257 static void __net_init fib6_tables_init(struct net *net)
258 {
259 fib6_link_table(net, net->ipv6.fib6_main_tbl);
260 }
261
262 #endif
263
264 static int fib6_dump_node(struct fib6_walker_t *w)
265 {
266 int res;
267 struct rt6_info *rt;
268
269 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
270 res = rt6_dump_route(rt, w->args);
271 if (res < 0) {
272 /* Frame is full, suspend walking */
273 w->leaf = rt;
274 return 1;
275 }
276 WARN_ON(res == 0);
277 }
278 w->leaf = NULL;
279 return 0;
280 }
281
282 static void fib6_dump_end(struct netlink_callback *cb)
283 {
284 struct fib6_walker_t *w = (void*)cb->args[2];
285
286 if (w) {
287 if (cb->args[4]) {
288 cb->args[4] = 0;
289 fib6_walker_unlink(w);
290 }
291 cb->args[2] = 0;
292 kfree(w);
293 }
294 cb->done = (void*)cb->args[3];
295 cb->args[1] = 3;
296 }
297
298 static int fib6_dump_done(struct netlink_callback *cb)
299 {
300 fib6_dump_end(cb);
301 return cb->done ? cb->done(cb) : 0;
302 }
303
304 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
305 struct netlink_callback *cb)
306 {
307 struct fib6_walker_t *w;
308 int res;
309
310 w = (void *)cb->args[2];
311 w->root = &table->tb6_root;
312
313 if (cb->args[4] == 0) {
314 w->count = 0;
315 w->skip = 0;
316
317 read_lock_bh(&table->tb6_lock);
318 res = fib6_walk(w);
319 read_unlock_bh(&table->tb6_lock);
320 if (res > 0) {
321 cb->args[4] = 1;
322 cb->args[5] = w->root->fn_sernum;
323 }
324 } else {
325 if (cb->args[5] != w->root->fn_sernum) {
326 /* Begin at the root if the tree changed */
327 cb->args[5] = w->root->fn_sernum;
328 w->state = FWS_INIT;
329 w->node = w->root;
330 w->skip = w->count;
331 } else
332 w->skip = 0;
333
334 read_lock_bh(&table->tb6_lock);
335 res = fib6_walk_continue(w);
336 read_unlock_bh(&table->tb6_lock);
337 if (res <= 0) {
338 fib6_walker_unlink(w);
339 cb->args[4] = 0;
340 }
341 }
342
343 return res;
344 }
345
346 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
347 {
348 struct net *net = sock_net(skb->sk);
349 unsigned int h, s_h;
350 unsigned int e = 0, s_e;
351 struct rt6_rtnl_dump_arg arg;
352 struct fib6_walker_t *w;
353 struct fib6_table *tb;
354 struct hlist_node *node;
355 struct hlist_head *head;
356 int res = 0;
357
358 s_h = cb->args[0];
359 s_e = cb->args[1];
360
361 w = (void *)cb->args[2];
362 if (w == NULL) {
363 /* New dump:
364 *
365 * 1. hook callback destructor.
366 */
367 cb->args[3] = (long)cb->done;
368 cb->done = fib6_dump_done;
369
370 /*
371 * 2. allocate and initialize walker.
372 */
373 w = kzalloc(sizeof(*w), GFP_ATOMIC);
374 if (w == NULL)
375 return -ENOMEM;
376 w->func = fib6_dump_node;
377 cb->args[2] = (long)w;
378 }
379
380 arg.skb = skb;
381 arg.cb = cb;
382 arg.net = net;
383 w->args = &arg;
384
385 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
386 e = 0;
387 head = &net->ipv6.fib_table_hash[h];
388 hlist_for_each_entry(tb, node, head, tb6_hlist) {
389 if (e < s_e)
390 goto next;
391 res = fib6_dump_table(tb, skb, cb);
392 if (res != 0)
393 goto out;
394 next:
395 e++;
396 }
397 }
398 out:
399 cb->args[1] = e;
400 cb->args[0] = h;
401
402 res = res < 0 ? res : skb->len;
403 if (res <= 0)
404 fib6_dump_end(cb);
405 return res;
406 }
407
408 /*
409 * Routing Table
410 *
411 * return the appropriate node for a routing tree "add" operation
412 * by either creating and inserting or by returning an existing
413 * node.
414 */
415
416 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
417 int addrlen, int plen,
418 int offset)
419 {
420 struct fib6_node *fn, *in, *ln;
421 struct fib6_node *pn = NULL;
422 struct rt6key *key;
423 int bit;
424 __be32 dir = 0;
425 __u32 sernum = fib6_new_sernum();
426
427 RT6_TRACE("fib6_add_1\n");
428
429 /* insert node in tree */
430
431 fn = root;
432
433 do {
434 key = (struct rt6key *)((u8 *)fn->leaf + offset);
435
436 /*
437 * Prefix match
438 */
439 if (plen < fn->fn_bit ||
440 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
441 goto insert_above;
442
443 /*
444 * Exact match ?
445 */
446
447 if (plen == fn->fn_bit) {
448 /* clean up an intermediate node */
449 if ((fn->fn_flags & RTN_RTINFO) == 0) {
450 rt6_release(fn->leaf);
451 fn->leaf = NULL;
452 }
453
454 fn->fn_sernum = sernum;
455
456 return fn;
457 }
458
459 /*
460 * We have more bits to go
461 */
462
463 /* Try to walk down on tree. */
464 fn->fn_sernum = sernum;
465 dir = addr_bit_set(addr, fn->fn_bit);
466 pn = fn;
467 fn = dir ? fn->right: fn->left;
468 } while (fn);
469
470 /*
471 * We walked to the bottom of tree.
472 * Create new leaf node without children.
473 */
474
475 ln = node_alloc();
476
477 if (ln == NULL)
478 return NULL;
479 ln->fn_bit = plen;
480
481 ln->parent = pn;
482 ln->fn_sernum = sernum;
483
484 if (dir)
485 pn->right = ln;
486 else
487 pn->left = ln;
488
489 return ln;
490
491
492 insert_above:
493 /*
494 * split since we don't have a common prefix anymore or
495 * we have a less significant route.
496 * we've to insert an intermediate node on the list
497 * this new node will point to the one we need to create
498 * and the current
499 */
500
501 pn = fn->parent;
502
503 /* find 1st bit in difference between the 2 addrs.
504
505 See comment in __ipv6_addr_diff: bit may be an invalid value,
506 but if it is >= plen, the value is ignored in any case.
507 */
508
509 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
510
511 /*
512 * (intermediate)[in]
513 * / \
514 * (new leaf node)[ln] (old node)[fn]
515 */
516 if (plen > bit) {
517 in = node_alloc();
518 ln = node_alloc();
519
520 if (in == NULL || ln == NULL) {
521 if (in)
522 node_free(in);
523 if (ln)
524 node_free(ln);
525 return NULL;
526 }
527
528 /*
529 * new intermediate node.
530 * RTN_RTINFO will
531 * be off since that an address that chooses one of
532 * the branches would not match less specific routes
533 * in the other branch
534 */
535
536 in->fn_bit = bit;
537
538 in->parent = pn;
539 in->leaf = fn->leaf;
540 atomic_inc(&in->leaf->rt6i_ref);
541
542 in->fn_sernum = sernum;
543
544 /* update parent pointer */
545 if (dir)
546 pn->right = in;
547 else
548 pn->left = in;
549
550 ln->fn_bit = plen;
551
552 ln->parent = in;
553 fn->parent = in;
554
555 ln->fn_sernum = sernum;
556
557 if (addr_bit_set(addr, bit)) {
558 in->right = ln;
559 in->left = fn;
560 } else {
561 in->left = ln;
562 in->right = fn;
563 }
564 } else { /* plen <= bit */
565
566 /*
567 * (new leaf node)[ln]
568 * / \
569 * (old node)[fn] NULL
570 */
571
572 ln = node_alloc();
573
574 if (ln == NULL)
575 return NULL;
576
577 ln->fn_bit = plen;
578
579 ln->parent = pn;
580
581 ln->fn_sernum = sernum;
582
583 if (dir)
584 pn->right = ln;
585 else
586 pn->left = ln;
587
588 if (addr_bit_set(&key->addr, plen))
589 ln->right = fn;
590 else
591 ln->left = fn;
592
593 fn->parent = ln;
594 }
595 return ln;
596 }
597
598 /*
599 * Insert routing information in a node.
600 */
601
602 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
603 struct nl_info *info)
604 {
605 struct rt6_info *iter = NULL;
606 struct rt6_info **ins;
607
608 ins = &fn->leaf;
609
610 for (iter = fn->leaf; iter; iter=iter->u.dst.rt6_next) {
611 /*
612 * Search for duplicates
613 */
614
615 if (iter->rt6i_metric == rt->rt6i_metric) {
616 /*
617 * Same priority level
618 */
619
620 if (iter->rt6i_dev == rt->rt6i_dev &&
621 iter->rt6i_idev == rt->rt6i_idev &&
622 ipv6_addr_equal(&iter->rt6i_gateway,
623 &rt->rt6i_gateway)) {
624 if (!(iter->rt6i_flags&RTF_EXPIRES))
625 return -EEXIST;
626 iter->rt6i_expires = rt->rt6i_expires;
627 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
628 iter->rt6i_flags &= ~RTF_EXPIRES;
629 iter->rt6i_expires = 0;
630 }
631 return -EEXIST;
632 }
633 }
634
635 if (iter->rt6i_metric > rt->rt6i_metric)
636 break;
637
638 ins = &iter->u.dst.rt6_next;
639 }
640
641 /* Reset round-robin state, if necessary */
642 if (ins == &fn->leaf)
643 fn->rr_ptr = NULL;
644
645 /*
646 * insert node
647 */
648
649 rt->u.dst.rt6_next = iter;
650 *ins = rt;
651 rt->rt6i_node = fn;
652 atomic_inc(&rt->rt6i_ref);
653 inet6_rt_notify(RTM_NEWROUTE, rt, info);
654 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
655
656 if ((fn->fn_flags & RTN_RTINFO) == 0) {
657 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
658 fn->fn_flags |= RTN_RTINFO;
659 }
660
661 return 0;
662 }
663
664 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
665 {
666 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
667 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
668 mod_timer(&net->ipv6.ip6_fib_timer,
669 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
670 }
671
672 void fib6_force_start_gc(struct net *net)
673 {
674 if (!timer_pending(&net->ipv6.ip6_fib_timer))
675 mod_timer(&net->ipv6.ip6_fib_timer,
676 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
677 }
678
679 /*
680 * Add routing information to the routing tree.
681 * <destination addr>/<source addr>
682 * with source addr info in sub-trees
683 */
684
685 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
686 {
687 struct fib6_node *fn, *pn = NULL;
688 int err = -ENOMEM;
689
690 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
691 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
692
693 if (fn == NULL)
694 goto out;
695
696 pn = fn;
697
698 #ifdef CONFIG_IPV6_SUBTREES
699 if (rt->rt6i_src.plen) {
700 struct fib6_node *sn;
701
702 if (fn->subtree == NULL) {
703 struct fib6_node *sfn;
704
705 /*
706 * Create subtree.
707 *
708 * fn[main tree]
709 * |
710 * sfn[subtree root]
711 * \
712 * sn[new leaf node]
713 */
714
715 /* Create subtree root node */
716 sfn = node_alloc();
717 if (sfn == NULL)
718 goto st_failure;
719
720 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
721 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
722 sfn->fn_flags = RTN_ROOT;
723 sfn->fn_sernum = fib6_new_sernum();
724
725 /* Now add the first leaf node to new subtree */
726
727 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
728 sizeof(struct in6_addr), rt->rt6i_src.plen,
729 offsetof(struct rt6_info, rt6i_src));
730
731 if (sn == NULL) {
732 /* If it is failed, discard just allocated
733 root, and then (in st_failure) stale node
734 in main tree.
735 */
736 node_free(sfn);
737 goto st_failure;
738 }
739
740 /* Now link new subtree to main tree */
741 sfn->parent = fn;
742 fn->subtree = sfn;
743 } else {
744 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
745 sizeof(struct in6_addr), rt->rt6i_src.plen,
746 offsetof(struct rt6_info, rt6i_src));
747
748 if (sn == NULL)
749 goto st_failure;
750 }
751
752 if (fn->leaf == NULL) {
753 fn->leaf = rt;
754 atomic_inc(&rt->rt6i_ref);
755 }
756 fn = sn;
757 }
758 #endif
759
760 err = fib6_add_rt2node(fn, rt, info);
761
762 if (err == 0) {
763 fib6_start_gc(info->nl_net, rt);
764 if (!(rt->rt6i_flags&RTF_CACHE))
765 fib6_prune_clones(info->nl_net, pn, rt);
766 }
767
768 out:
769 if (err) {
770 #ifdef CONFIG_IPV6_SUBTREES
771 /*
772 * If fib6_add_1 has cleared the old leaf pointer in the
773 * super-tree leaf node we have to find a new one for it.
774 */
775 if (pn != fn && pn->leaf == rt) {
776 pn->leaf = NULL;
777 atomic_dec(&rt->rt6i_ref);
778 }
779 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
780 pn->leaf = fib6_find_prefix(info->nl_net, pn);
781 #if RT6_DEBUG >= 2
782 if (!pn->leaf) {
783 WARN_ON(pn->leaf == NULL);
784 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
785 }
786 #endif
787 atomic_inc(&pn->leaf->rt6i_ref);
788 }
789 #endif
790 dst_free(&rt->u.dst);
791 }
792 return err;
793
794 #ifdef CONFIG_IPV6_SUBTREES
795 /* Subtree creation failed, probably main tree node
796 is orphan. If it is, shoot it.
797 */
798 st_failure:
799 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
800 fib6_repair_tree(info->nl_net, fn);
801 dst_free(&rt->u.dst);
802 return err;
803 #endif
804 }
805
806 /*
807 * Routing tree lookup
808 *
809 */
810
811 struct lookup_args {
812 int offset; /* key offset on rt6_info */
813 struct in6_addr *addr; /* search key */
814 };
815
816 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
817 struct lookup_args *args)
818 {
819 struct fib6_node *fn;
820 __be32 dir;
821
822 if (unlikely(args->offset == 0))
823 return NULL;
824
825 /*
826 * Descend on a tree
827 */
828
829 fn = root;
830
831 for (;;) {
832 struct fib6_node *next;
833
834 dir = addr_bit_set(args->addr, fn->fn_bit);
835
836 next = dir ? fn->right : fn->left;
837
838 if (next) {
839 fn = next;
840 continue;
841 }
842
843 break;
844 }
845
846 while(fn) {
847 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
848 struct rt6key *key;
849
850 key = (struct rt6key *) ((u8 *) fn->leaf +
851 args->offset);
852
853 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
854 #ifdef CONFIG_IPV6_SUBTREES
855 if (fn->subtree)
856 fn = fib6_lookup_1(fn->subtree, args + 1);
857 #endif
858 if (!fn || fn->fn_flags & RTN_RTINFO)
859 return fn;
860 }
861 }
862
863 if (fn->fn_flags & RTN_ROOT)
864 break;
865
866 fn = fn->parent;
867 }
868
869 return NULL;
870 }
871
872 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
873 struct in6_addr *saddr)
874 {
875 struct fib6_node *fn;
876 struct lookup_args args[] = {
877 {
878 .offset = offsetof(struct rt6_info, rt6i_dst),
879 .addr = daddr,
880 },
881 #ifdef CONFIG_IPV6_SUBTREES
882 {
883 .offset = offsetof(struct rt6_info, rt6i_src),
884 .addr = saddr,
885 },
886 #endif
887 {
888 .offset = 0, /* sentinel */
889 }
890 };
891
892 fn = fib6_lookup_1(root, daddr ? args : args + 1);
893
894 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
895 fn = root;
896
897 return fn;
898 }
899
900 /*
901 * Get node with specified destination prefix (and source prefix,
902 * if subtrees are used)
903 */
904
905
906 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
907 struct in6_addr *addr,
908 int plen, int offset)
909 {
910 struct fib6_node *fn;
911
912 for (fn = root; fn ; ) {
913 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
914
915 /*
916 * Prefix match
917 */
918 if (plen < fn->fn_bit ||
919 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
920 return NULL;
921
922 if (plen == fn->fn_bit)
923 return fn;
924
925 /*
926 * We have more bits to go
927 */
928 if (addr_bit_set(addr, fn->fn_bit))
929 fn = fn->right;
930 else
931 fn = fn->left;
932 }
933 return NULL;
934 }
935
936 struct fib6_node * fib6_locate(struct fib6_node *root,
937 struct in6_addr *daddr, int dst_len,
938 struct in6_addr *saddr, int src_len)
939 {
940 struct fib6_node *fn;
941
942 fn = fib6_locate_1(root, daddr, dst_len,
943 offsetof(struct rt6_info, rt6i_dst));
944
945 #ifdef CONFIG_IPV6_SUBTREES
946 if (src_len) {
947 WARN_ON(saddr == NULL);
948 if (fn && fn->subtree)
949 fn = fib6_locate_1(fn->subtree, saddr, src_len,
950 offsetof(struct rt6_info, rt6i_src));
951 }
952 #endif
953
954 if (fn && fn->fn_flags&RTN_RTINFO)
955 return fn;
956
957 return NULL;
958 }
959
960
961 /*
962 * Deletion
963 *
964 */
965
966 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
967 {
968 if (fn->fn_flags&RTN_ROOT)
969 return net->ipv6.ip6_null_entry;
970
971 while(fn) {
972 if(fn->left)
973 return fn->left->leaf;
974
975 if(fn->right)
976 return fn->right->leaf;
977
978 fn = FIB6_SUBTREE(fn);
979 }
980 return NULL;
981 }
982
983 /*
984 * Called to trim the tree of intermediate nodes when possible. "fn"
985 * is the node we want to try and remove.
986 */
987
988 static struct fib6_node *fib6_repair_tree(struct net *net,
989 struct fib6_node *fn)
990 {
991 int children;
992 int nstate;
993 struct fib6_node *child, *pn;
994 struct fib6_walker_t *w;
995 int iter = 0;
996
997 for (;;) {
998 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
999 iter++;
1000
1001 WARN_ON(fn->fn_flags & RTN_RTINFO);
1002 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1003 WARN_ON(fn->leaf != NULL);
1004
1005 children = 0;
1006 child = NULL;
1007 if (fn->right) child = fn->right, children |= 1;
1008 if (fn->left) child = fn->left, children |= 2;
1009
1010 if (children == 3 || FIB6_SUBTREE(fn)
1011 #ifdef CONFIG_IPV6_SUBTREES
1012 /* Subtree root (i.e. fn) may have one child */
1013 || (children && fn->fn_flags&RTN_ROOT)
1014 #endif
1015 ) {
1016 fn->leaf = fib6_find_prefix(net, fn);
1017 #if RT6_DEBUG >= 2
1018 if (fn->leaf==NULL) {
1019 WARN_ON(!fn->leaf);
1020 fn->leaf = net->ipv6.ip6_null_entry;
1021 }
1022 #endif
1023 atomic_inc(&fn->leaf->rt6i_ref);
1024 return fn->parent;
1025 }
1026
1027 pn = fn->parent;
1028 #ifdef CONFIG_IPV6_SUBTREES
1029 if (FIB6_SUBTREE(pn) == fn) {
1030 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1031 FIB6_SUBTREE(pn) = NULL;
1032 nstate = FWS_L;
1033 } else {
1034 WARN_ON(fn->fn_flags & RTN_ROOT);
1035 #endif
1036 if (pn->right == fn) pn->right = child;
1037 else if (pn->left == fn) pn->left = child;
1038 #if RT6_DEBUG >= 2
1039 else
1040 WARN_ON(1);
1041 #endif
1042 if (child)
1043 child->parent = pn;
1044 nstate = FWS_R;
1045 #ifdef CONFIG_IPV6_SUBTREES
1046 }
1047 #endif
1048
1049 read_lock(&fib6_walker_lock);
1050 FOR_WALKERS(w) {
1051 if (child == NULL) {
1052 if (w->root == fn) {
1053 w->root = w->node = NULL;
1054 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1055 } else if (w->node == fn) {
1056 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1057 w->node = pn;
1058 w->state = nstate;
1059 }
1060 } else {
1061 if (w->root == fn) {
1062 w->root = child;
1063 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1064 }
1065 if (w->node == fn) {
1066 w->node = child;
1067 if (children&2) {
1068 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1069 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1070 } else {
1071 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1072 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1073 }
1074 }
1075 }
1076 }
1077 read_unlock(&fib6_walker_lock);
1078
1079 node_free(fn);
1080 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1081 return pn;
1082
1083 rt6_release(pn->leaf);
1084 pn->leaf = NULL;
1085 fn = pn;
1086 }
1087 }
1088
1089 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1090 struct nl_info *info)
1091 {
1092 struct fib6_walker_t *w;
1093 struct rt6_info *rt = *rtp;
1094 struct net *net = info->nl_net;
1095
1096 RT6_TRACE("fib6_del_route\n");
1097
1098 /* Unlink it */
1099 *rtp = rt->u.dst.rt6_next;
1100 rt->rt6i_node = NULL;
1101 net->ipv6.rt6_stats->fib_rt_entries--;
1102 net->ipv6.rt6_stats->fib_discarded_routes++;
1103
1104 /* Reset round-robin state, if necessary */
1105 if (fn->rr_ptr == rt)
1106 fn->rr_ptr = NULL;
1107
1108 /* Adjust walkers */
1109 read_lock(&fib6_walker_lock);
1110 FOR_WALKERS(w) {
1111 if (w->state == FWS_C && w->leaf == rt) {
1112 RT6_TRACE("walker %p adjusted by delroute\n", w);
1113 w->leaf = rt->u.dst.rt6_next;
1114 if (w->leaf == NULL)
1115 w->state = FWS_U;
1116 }
1117 }
1118 read_unlock(&fib6_walker_lock);
1119
1120 rt->u.dst.rt6_next = NULL;
1121
1122 /* If it was last route, expunge its radix tree node */
1123 if (fn->leaf == NULL) {
1124 fn->fn_flags &= ~RTN_RTINFO;
1125 net->ipv6.rt6_stats->fib_route_nodes--;
1126 fn = fib6_repair_tree(net, fn);
1127 }
1128
1129 if (atomic_read(&rt->rt6i_ref) != 1) {
1130 /* This route is used as dummy address holder in some split
1131 * nodes. It is not leaked, but it still holds other resources,
1132 * which must be released in time. So, scan ascendant nodes
1133 * and replace dummy references to this route with references
1134 * to still alive ones.
1135 */
1136 while (fn) {
1137 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1138 fn->leaf = fib6_find_prefix(net, fn);
1139 atomic_inc(&fn->leaf->rt6i_ref);
1140 rt6_release(rt);
1141 }
1142 fn = fn->parent;
1143 }
1144 /* No more references are possible at this point. */
1145 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1146 }
1147
1148 inet6_rt_notify(RTM_DELROUTE, rt, info);
1149 rt6_release(rt);
1150 }
1151
1152 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1153 {
1154 struct net *net = info->nl_net;
1155 struct fib6_node *fn = rt->rt6i_node;
1156 struct rt6_info **rtp;
1157
1158 #if RT6_DEBUG >= 2
1159 if (rt->u.dst.obsolete>0) {
1160 WARN_ON(fn != NULL);
1161 return -ENOENT;
1162 }
1163 #endif
1164 if (fn == NULL || rt == net->ipv6.ip6_null_entry)
1165 return -ENOENT;
1166
1167 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1168
1169 if (!(rt->rt6i_flags&RTF_CACHE)) {
1170 struct fib6_node *pn = fn;
1171 #ifdef CONFIG_IPV6_SUBTREES
1172 /* clones of this route might be in another subtree */
1173 if (rt->rt6i_src.plen) {
1174 while (!(pn->fn_flags&RTN_ROOT))
1175 pn = pn->parent;
1176 pn = pn->parent;
1177 }
1178 #endif
1179 fib6_prune_clones(info->nl_net, pn, rt);
1180 }
1181
1182 /*
1183 * Walk the leaf entries looking for ourself
1184 */
1185
1186 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.dst.rt6_next) {
1187 if (*rtp == rt) {
1188 fib6_del_route(fn, rtp, info);
1189 return 0;
1190 }
1191 }
1192 return -ENOENT;
1193 }
1194
1195 /*
1196 * Tree traversal function.
1197 *
1198 * Certainly, it is not interrupt safe.
1199 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1200 * It means, that we can modify tree during walking
1201 * and use this function for garbage collection, clone pruning,
1202 * cleaning tree when a device goes down etc. etc.
1203 *
1204 * It guarantees that every node will be traversed,
1205 * and that it will be traversed only once.
1206 *
1207 * Callback function w->func may return:
1208 * 0 -> continue walking.
1209 * positive value -> walking is suspended (used by tree dumps,
1210 * and probably by gc, if it will be split to several slices)
1211 * negative value -> terminate walking.
1212 *
1213 * The function itself returns:
1214 * 0 -> walk is complete.
1215 * >0 -> walk is incomplete (i.e. suspended)
1216 * <0 -> walk is terminated by an error.
1217 */
1218
1219 static int fib6_walk_continue(struct fib6_walker_t *w)
1220 {
1221 struct fib6_node *fn, *pn;
1222
1223 for (;;) {
1224 fn = w->node;
1225 if (fn == NULL)
1226 return 0;
1227
1228 if (w->prune && fn != w->root &&
1229 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1230 w->state = FWS_C;
1231 w->leaf = fn->leaf;
1232 }
1233 switch (w->state) {
1234 #ifdef CONFIG_IPV6_SUBTREES
1235 case FWS_S:
1236 if (FIB6_SUBTREE(fn)) {
1237 w->node = FIB6_SUBTREE(fn);
1238 continue;
1239 }
1240 w->state = FWS_L;
1241 #endif
1242 case FWS_L:
1243 if (fn->left) {
1244 w->node = fn->left;
1245 w->state = FWS_INIT;
1246 continue;
1247 }
1248 w->state = FWS_R;
1249 case FWS_R:
1250 if (fn->right) {
1251 w->node = fn->right;
1252 w->state = FWS_INIT;
1253 continue;
1254 }
1255 w->state = FWS_C;
1256 w->leaf = fn->leaf;
1257 case FWS_C:
1258 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1259 int err;
1260
1261 if (w->count < w->skip) {
1262 w->count++;
1263 continue;
1264 }
1265
1266 err = w->func(w);
1267 if (err)
1268 return err;
1269
1270 w->count++;
1271 continue;
1272 }
1273 w->state = FWS_U;
1274 case FWS_U:
1275 if (fn == w->root)
1276 return 0;
1277 pn = fn->parent;
1278 w->node = pn;
1279 #ifdef CONFIG_IPV6_SUBTREES
1280 if (FIB6_SUBTREE(pn) == fn) {
1281 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1282 w->state = FWS_L;
1283 continue;
1284 }
1285 #endif
1286 if (pn->left == fn) {
1287 w->state = FWS_R;
1288 continue;
1289 }
1290 if (pn->right == fn) {
1291 w->state = FWS_C;
1292 w->leaf = w->node->leaf;
1293 continue;
1294 }
1295 #if RT6_DEBUG >= 2
1296 WARN_ON(1);
1297 #endif
1298 }
1299 }
1300 }
1301
1302 static int fib6_walk(struct fib6_walker_t *w)
1303 {
1304 int res;
1305
1306 w->state = FWS_INIT;
1307 w->node = w->root;
1308
1309 fib6_walker_link(w);
1310 res = fib6_walk_continue(w);
1311 if (res <= 0)
1312 fib6_walker_unlink(w);
1313 return res;
1314 }
1315
1316 static int fib6_clean_node(struct fib6_walker_t *w)
1317 {
1318 int res;
1319 struct rt6_info *rt;
1320 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1321 struct nl_info info = {
1322 .nl_net = c->net,
1323 };
1324
1325 for (rt = w->leaf; rt; rt = rt->u.dst.rt6_next) {
1326 res = c->func(rt, c->arg);
1327 if (res < 0) {
1328 w->leaf = rt;
1329 res = fib6_del(rt, &info);
1330 if (res) {
1331 #if RT6_DEBUG >= 2
1332 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1333 #endif
1334 continue;
1335 }
1336 return 0;
1337 }
1338 WARN_ON(res != 0);
1339 }
1340 w->leaf = rt;
1341 return 0;
1342 }
1343
1344 /*
1345 * Convenient frontend to tree walker.
1346 *
1347 * func is called on each route.
1348 * It may return -1 -> delete this route.
1349 * 0 -> continue walking
1350 *
1351 * prune==1 -> only immediate children of node (certainly,
1352 * ignoring pure split nodes) will be scanned.
1353 */
1354
1355 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1356 int (*func)(struct rt6_info *, void *arg),
1357 int prune, void *arg)
1358 {
1359 struct fib6_cleaner_t c;
1360
1361 c.w.root = root;
1362 c.w.func = fib6_clean_node;
1363 c.w.prune = prune;
1364 c.w.count = 0;
1365 c.w.skip = 0;
1366 c.func = func;
1367 c.arg = arg;
1368 c.net = net;
1369
1370 fib6_walk(&c.w);
1371 }
1372
1373 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1374 int prune, void *arg)
1375 {
1376 struct fib6_table *table;
1377 struct hlist_node *node;
1378 struct hlist_head *head;
1379 unsigned int h;
1380
1381 rcu_read_lock();
1382 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1383 head = &net->ipv6.fib_table_hash[h];
1384 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1385 write_lock_bh(&table->tb6_lock);
1386 fib6_clean_tree(net, &table->tb6_root,
1387 func, prune, arg);
1388 write_unlock_bh(&table->tb6_lock);
1389 }
1390 }
1391 rcu_read_unlock();
1392 }
1393
1394 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1395 {
1396 if (rt->rt6i_flags & RTF_CACHE) {
1397 RT6_TRACE("pruning clone %p\n", rt);
1398 return -1;
1399 }
1400
1401 return 0;
1402 }
1403
1404 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1405 struct rt6_info *rt)
1406 {
1407 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1408 }
1409
1410 /*
1411 * Garbage collection
1412 */
1413
1414 static struct fib6_gc_args
1415 {
1416 int timeout;
1417 int more;
1418 } gc_args;
1419
1420 static int fib6_age(struct rt6_info *rt, void *arg)
1421 {
1422 unsigned long now = jiffies;
1423
1424 /*
1425 * check addrconf expiration here.
1426 * Routes are expired even if they are in use.
1427 *
1428 * Also age clones. Note, that clones are aged out
1429 * only if they are not in use now.
1430 */
1431
1432 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1433 if (time_after(now, rt->rt6i_expires)) {
1434 RT6_TRACE("expiring %p\n", rt);
1435 return -1;
1436 }
1437 gc_args.more++;
1438 } else if (rt->rt6i_flags & RTF_CACHE) {
1439 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1440 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1441 RT6_TRACE("aging clone %p\n", rt);
1442 return -1;
1443 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1444 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1445 RT6_TRACE("purging route %p via non-router but gateway\n",
1446 rt);
1447 return -1;
1448 }
1449 gc_args.more++;
1450 }
1451
1452 return 0;
1453 }
1454
1455 static DEFINE_SPINLOCK(fib6_gc_lock);
1456
1457 void fib6_run_gc(unsigned long expires, struct net *net)
1458 {
1459 if (expires != ~0UL) {
1460 spin_lock_bh(&fib6_gc_lock);
1461 gc_args.timeout = expires ? (int)expires :
1462 net->ipv6.sysctl.ip6_rt_gc_interval;
1463 } else {
1464 if (!spin_trylock_bh(&fib6_gc_lock)) {
1465 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1466 return;
1467 }
1468 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1469 }
1470
1471 gc_args.more = icmp6_dst_gc();
1472
1473 fib6_clean_all(net, fib6_age, 0, NULL);
1474
1475 if (gc_args.more)
1476 mod_timer(&net->ipv6.ip6_fib_timer,
1477 round_jiffies(jiffies
1478 + net->ipv6.sysctl.ip6_rt_gc_interval));
1479 else
1480 del_timer(&net->ipv6.ip6_fib_timer);
1481 spin_unlock_bh(&fib6_gc_lock);
1482 }
1483
1484 static void fib6_gc_timer_cb(unsigned long arg)
1485 {
1486 fib6_run_gc(0, (struct net *)arg);
1487 }
1488
1489 static int __net_init fib6_net_init(struct net *net)
1490 {
1491 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1492
1493 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1494 if (!net->ipv6.rt6_stats)
1495 goto out_timer;
1496
1497 net->ipv6.fib_table_hash = kcalloc(FIB6_TABLE_HASHSZ,
1498 sizeof(*net->ipv6.fib_table_hash),
1499 GFP_KERNEL);
1500 if (!net->ipv6.fib_table_hash)
1501 goto out_rt6_stats;
1502
1503 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1504 GFP_KERNEL);
1505 if (!net->ipv6.fib6_main_tbl)
1506 goto out_fib_table_hash;
1507
1508 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1509 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1510 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1511 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1512
1513 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1514 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1515 GFP_KERNEL);
1516 if (!net->ipv6.fib6_local_tbl)
1517 goto out_fib6_main_tbl;
1518 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1519 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1520 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1521 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1522 #endif
1523 fib6_tables_init(net);
1524
1525 return 0;
1526
1527 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1528 out_fib6_main_tbl:
1529 kfree(net->ipv6.fib6_main_tbl);
1530 #endif
1531 out_fib_table_hash:
1532 kfree(net->ipv6.fib_table_hash);
1533 out_rt6_stats:
1534 kfree(net->ipv6.rt6_stats);
1535 out_timer:
1536 return -ENOMEM;
1537 }
1538
1539 static void fib6_net_exit(struct net *net)
1540 {
1541 rt6_ifdown(net, NULL);
1542 del_timer_sync(&net->ipv6.ip6_fib_timer);
1543
1544 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1545 kfree(net->ipv6.fib6_local_tbl);
1546 #endif
1547 kfree(net->ipv6.fib6_main_tbl);
1548 kfree(net->ipv6.fib_table_hash);
1549 kfree(net->ipv6.rt6_stats);
1550 }
1551
1552 static struct pernet_operations fib6_net_ops = {
1553 .init = fib6_net_init,
1554 .exit = fib6_net_exit,
1555 };
1556
1557 int __init fib6_init(void)
1558 {
1559 int ret = -ENOMEM;
1560
1561 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1562 sizeof(struct fib6_node),
1563 0, SLAB_HWCACHE_ALIGN,
1564 NULL);
1565 if (!fib6_node_kmem)
1566 goto out;
1567
1568 ret = register_pernet_subsys(&fib6_net_ops);
1569 if (ret)
1570 goto out_kmem_cache_create;
1571
1572 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib);
1573 if (ret)
1574 goto out_unregister_subsys;
1575 out:
1576 return ret;
1577
1578 out_unregister_subsys:
1579 unregister_pernet_subsys(&fib6_net_ops);
1580 out_kmem_cache_create:
1581 kmem_cache_destroy(fib6_node_kmem);
1582 goto out;
1583 }
1584
1585 void fib6_gc_cleanup(void)
1586 {
1587 unregister_pernet_subsys(&fib6_net_ops);
1588 kmem_cache_destroy(fib6_node_kmem);
1589 }