]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/ipv6/ip6_fib.c
xfrm: Only compute net once in xfrm_policy_queue_process
[mirror_ubuntu-zesty-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 static DEFINE_RWLOCK(fib6_walker_lock);
59
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71
72 /*
73 * A routing update causes an increase of the serial number on the
74 * affected subtree. This allows for cached routes to be asynchronously
75 * tested when modifications are made to the destination cache as a
76 * result of redirects, path MTU changes, etc.
77 */
78
79 static void fib6_gc_timer_cb(unsigned long arg);
80
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86 write_lock_bh(&fib6_walker_lock);
87 list_add(&w->lh, &fib6_walkers);
88 write_unlock_bh(&fib6_walker_lock);
89 }
90
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93 write_lock_bh(&fib6_walker_lock);
94 list_del(&w->lh);
95 write_unlock_bh(&fib6_walker_lock);
96 }
97
98 static int fib6_new_sernum(struct net *net)
99 {
100 int new, old;
101
102 do {
103 old = atomic_read(&net->ipv6.fib6_sernum);
104 new = old < INT_MAX ? old + 1 : 1;
105 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106 old, new) != old);
107 return new;
108 }
109
110 enum {
111 FIB6_NO_SERNUM_CHANGE = 0,
112 };
113
114 /*
115 * Auxiliary address test functions for the radix tree.
116 *
117 * These assume a 32bit processor (although it will work on
118 * 64bit processors)
119 */
120
121 /*
122 * test bit
123 */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE 0
128 #endif
129
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132 const __be32 *addr = token;
133 /*
134 * Here,
135 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136 * is optimized version of
137 * htonl(1 << ((~fn_bit)&0x1F))
138 * See include/asm-generic/bitops/le.h.
139 */
140 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141 addr[fn_bit >> 5];
142 }
143
144 static struct fib6_node *node_alloc(void)
145 {
146 struct fib6_node *fn;
147
148 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149
150 return fn;
151 }
152
153 static void node_free(struct fib6_node *fn)
154 {
155 kmem_cache_free(fib6_node_kmem, fn);
156 }
157
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165 int cpu;
166
167 if (!non_pcpu_rt->rt6i_pcpu)
168 return;
169
170 for_each_possible_cpu(cpu) {
171 struct rt6_info **ppcpu_rt;
172 struct rt6_info *pcpu_rt;
173
174 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175 pcpu_rt = *ppcpu_rt;
176 if (pcpu_rt) {
177 rt6_rcu_free(pcpu_rt);
178 *ppcpu_rt = NULL;
179 }
180 }
181
182 non_pcpu_rt->rt6i_pcpu = NULL;
183 }
184
185 static void rt6_release(struct rt6_info *rt)
186 {
187 if (atomic_dec_and_test(&rt->rt6i_ref)) {
188 rt6_free_pcpu(rt);
189 rt6_rcu_free(rt);
190 }
191 }
192
193 static void fib6_link_table(struct net *net, struct fib6_table *tb)
194 {
195 unsigned int h;
196
197 /*
198 * Initialize table lock at a single place to give lockdep a key,
199 * tables aren't visible prior to being linked to the list.
200 */
201 rwlock_init(&tb->tb6_lock);
202
203 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204
205 /*
206 * No protection necessary, this is the only list mutatation
207 * operation, tables never disappear once they exist.
208 */
209 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 }
211
212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213
214 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
215 {
216 struct fib6_table *table;
217
218 table = kzalloc(sizeof(*table), GFP_ATOMIC);
219 if (table) {
220 table->tb6_id = id;
221 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
222 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
223 inet_peer_base_init(&table->tb6_peers);
224 }
225
226 return table;
227 }
228
229 struct fib6_table *fib6_new_table(struct net *net, u32 id)
230 {
231 struct fib6_table *tb;
232
233 if (id == 0)
234 id = RT6_TABLE_MAIN;
235 tb = fib6_get_table(net, id);
236 if (tb)
237 return tb;
238
239 tb = fib6_alloc_table(net, id);
240 if (tb)
241 fib6_link_table(net, tb);
242
243 return tb;
244 }
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 struct fib6_table *tb;
249 struct hlist_head *head;
250 unsigned int h;
251
252 if (id == 0)
253 id = RT6_TABLE_MAIN;
254 h = id & (FIB6_TABLE_HASHSZ - 1);
255 rcu_read_lock();
256 head = &net->ipv6.fib_table_hash[h];
257 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 if (tb->tb6_id == id) {
259 rcu_read_unlock();
260 return tb;
261 }
262 }
263 rcu_read_unlock();
264
265 return NULL;
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277 return fib6_get_table(net, id);
278 }
279
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282 return net->ipv6.fib6_main_tbl;
283 }
284
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286 int flags, pol_lookup_t lookup)
287 {
288 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
289 }
290
291 static void __net_init fib6_tables_init(struct net *net)
292 {
293 fib6_link_table(net, net->ipv6.fib6_main_tbl);
294 }
295
296 #endif
297
298 static int fib6_dump_node(struct fib6_walker *w)
299 {
300 int res;
301 struct rt6_info *rt;
302
303 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
304 res = rt6_dump_route(rt, w->args);
305 if (res < 0) {
306 /* Frame is full, suspend walking */
307 w->leaf = rt;
308 return 1;
309 }
310 }
311 w->leaf = NULL;
312 return 0;
313 }
314
315 static void fib6_dump_end(struct netlink_callback *cb)
316 {
317 struct fib6_walker *w = (void *)cb->args[2];
318
319 if (w) {
320 if (cb->args[4]) {
321 cb->args[4] = 0;
322 fib6_walker_unlink(w);
323 }
324 cb->args[2] = 0;
325 kfree(w);
326 }
327 cb->done = (void *)cb->args[3];
328 cb->args[1] = 3;
329 }
330
331 static int fib6_dump_done(struct netlink_callback *cb)
332 {
333 fib6_dump_end(cb);
334 return cb->done ? cb->done(cb) : 0;
335 }
336
337 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
338 struct netlink_callback *cb)
339 {
340 struct fib6_walker *w;
341 int res;
342
343 w = (void *)cb->args[2];
344 w->root = &table->tb6_root;
345
346 if (cb->args[4] == 0) {
347 w->count = 0;
348 w->skip = 0;
349
350 read_lock_bh(&table->tb6_lock);
351 res = fib6_walk(w);
352 read_unlock_bh(&table->tb6_lock);
353 if (res > 0) {
354 cb->args[4] = 1;
355 cb->args[5] = w->root->fn_sernum;
356 }
357 } else {
358 if (cb->args[5] != w->root->fn_sernum) {
359 /* Begin at the root if the tree changed */
360 cb->args[5] = w->root->fn_sernum;
361 w->state = FWS_INIT;
362 w->node = w->root;
363 w->skip = w->count;
364 } else
365 w->skip = 0;
366
367 read_lock_bh(&table->tb6_lock);
368 res = fib6_walk_continue(w);
369 read_unlock_bh(&table->tb6_lock);
370 if (res <= 0) {
371 fib6_walker_unlink(w);
372 cb->args[4] = 0;
373 }
374 }
375
376 return res;
377 }
378
379 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
380 {
381 struct net *net = sock_net(skb->sk);
382 unsigned int h, s_h;
383 unsigned int e = 0, s_e;
384 struct rt6_rtnl_dump_arg arg;
385 struct fib6_walker *w;
386 struct fib6_table *tb;
387 struct hlist_head *head;
388 int res = 0;
389
390 s_h = cb->args[0];
391 s_e = cb->args[1];
392
393 w = (void *)cb->args[2];
394 if (!w) {
395 /* New dump:
396 *
397 * 1. hook callback destructor.
398 */
399 cb->args[3] = (long)cb->done;
400 cb->done = fib6_dump_done;
401
402 /*
403 * 2. allocate and initialize walker.
404 */
405 w = kzalloc(sizeof(*w), GFP_ATOMIC);
406 if (!w)
407 return -ENOMEM;
408 w->func = fib6_dump_node;
409 cb->args[2] = (long)w;
410 }
411
412 arg.skb = skb;
413 arg.cb = cb;
414 arg.net = net;
415 w->args = &arg;
416
417 rcu_read_lock();
418 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
419 e = 0;
420 head = &net->ipv6.fib_table_hash[h];
421 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
422 if (e < s_e)
423 goto next;
424 res = fib6_dump_table(tb, skb, cb);
425 if (res != 0)
426 goto out;
427 next:
428 e++;
429 }
430 }
431 out:
432 rcu_read_unlock();
433 cb->args[1] = e;
434 cb->args[0] = h;
435
436 res = res < 0 ? res : skb->len;
437 if (res <= 0)
438 fib6_dump_end(cb);
439 return res;
440 }
441
442 /*
443 * Routing Table
444 *
445 * return the appropriate node for a routing tree "add" operation
446 * by either creating and inserting or by returning an existing
447 * node.
448 */
449
450 static struct fib6_node *fib6_add_1(struct fib6_node *root,
451 struct in6_addr *addr, int plen,
452 int offset, int allow_create,
453 int replace_required, int sernum)
454 {
455 struct fib6_node *fn, *in, *ln;
456 struct fib6_node *pn = NULL;
457 struct rt6key *key;
458 int bit;
459 __be32 dir = 0;
460
461 RT6_TRACE("fib6_add_1\n");
462
463 /* insert node in tree */
464
465 fn = root;
466
467 do {
468 key = (struct rt6key *)((u8 *)fn->leaf + offset);
469
470 /*
471 * Prefix match
472 */
473 if (plen < fn->fn_bit ||
474 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
475 if (!allow_create) {
476 if (replace_required) {
477 pr_warn("Can't replace route, no match found\n");
478 return ERR_PTR(-ENOENT);
479 }
480 pr_warn("NLM_F_CREATE should be set when creating new route\n");
481 }
482 goto insert_above;
483 }
484
485 /*
486 * Exact match ?
487 */
488
489 if (plen == fn->fn_bit) {
490 /* clean up an intermediate node */
491 if (!(fn->fn_flags & RTN_RTINFO)) {
492 rt6_release(fn->leaf);
493 fn->leaf = NULL;
494 }
495
496 fn->fn_sernum = sernum;
497
498 return fn;
499 }
500
501 /*
502 * We have more bits to go
503 */
504
505 /* Try to walk down on tree. */
506 fn->fn_sernum = sernum;
507 dir = addr_bit_set(addr, fn->fn_bit);
508 pn = fn;
509 fn = dir ? fn->right : fn->left;
510 } while (fn);
511
512 if (!allow_create) {
513 /* We should not create new node because
514 * NLM_F_REPLACE was specified without NLM_F_CREATE
515 * I assume it is safe to require NLM_F_CREATE when
516 * REPLACE flag is used! Later we may want to remove the
517 * check for replace_required, because according
518 * to netlink specification, NLM_F_CREATE
519 * MUST be specified if new route is created.
520 * That would keep IPv6 consistent with IPv4
521 */
522 if (replace_required) {
523 pr_warn("Can't replace route, no match found\n");
524 return ERR_PTR(-ENOENT);
525 }
526 pr_warn("NLM_F_CREATE should be set when creating new route\n");
527 }
528 /*
529 * We walked to the bottom of tree.
530 * Create new leaf node without children.
531 */
532
533 ln = node_alloc();
534
535 if (!ln)
536 return ERR_PTR(-ENOMEM);
537 ln->fn_bit = plen;
538
539 ln->parent = pn;
540 ln->fn_sernum = sernum;
541
542 if (dir)
543 pn->right = ln;
544 else
545 pn->left = ln;
546
547 return ln;
548
549
550 insert_above:
551 /*
552 * split since we don't have a common prefix anymore or
553 * we have a less significant route.
554 * we've to insert an intermediate node on the list
555 * this new node will point to the one we need to create
556 * and the current
557 */
558
559 pn = fn->parent;
560
561 /* find 1st bit in difference between the 2 addrs.
562
563 See comment in __ipv6_addr_diff: bit may be an invalid value,
564 but if it is >= plen, the value is ignored in any case.
565 */
566
567 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
568
569 /*
570 * (intermediate)[in]
571 * / \
572 * (new leaf node)[ln] (old node)[fn]
573 */
574 if (plen > bit) {
575 in = node_alloc();
576 ln = node_alloc();
577
578 if (!in || !ln) {
579 if (in)
580 node_free(in);
581 if (ln)
582 node_free(ln);
583 return ERR_PTR(-ENOMEM);
584 }
585
586 /*
587 * new intermediate node.
588 * RTN_RTINFO will
589 * be off since that an address that chooses one of
590 * the branches would not match less specific routes
591 * in the other branch
592 */
593
594 in->fn_bit = bit;
595
596 in->parent = pn;
597 in->leaf = fn->leaf;
598 atomic_inc(&in->leaf->rt6i_ref);
599
600 in->fn_sernum = sernum;
601
602 /* update parent pointer */
603 if (dir)
604 pn->right = in;
605 else
606 pn->left = in;
607
608 ln->fn_bit = plen;
609
610 ln->parent = in;
611 fn->parent = in;
612
613 ln->fn_sernum = sernum;
614
615 if (addr_bit_set(addr, bit)) {
616 in->right = ln;
617 in->left = fn;
618 } else {
619 in->left = ln;
620 in->right = fn;
621 }
622 } else { /* plen <= bit */
623
624 /*
625 * (new leaf node)[ln]
626 * / \
627 * (old node)[fn] NULL
628 */
629
630 ln = node_alloc();
631
632 if (!ln)
633 return ERR_PTR(-ENOMEM);
634
635 ln->fn_bit = plen;
636
637 ln->parent = pn;
638
639 ln->fn_sernum = sernum;
640
641 if (dir)
642 pn->right = ln;
643 else
644 pn->left = ln;
645
646 if (addr_bit_set(&key->addr, plen))
647 ln->right = fn;
648 else
649 ln->left = fn;
650
651 fn->parent = ln;
652 }
653 return ln;
654 }
655
656 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
657 {
658 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
659 RTF_GATEWAY;
660 }
661
662 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
663 {
664 int i;
665
666 for (i = 0; i < RTAX_MAX; i++) {
667 if (test_bit(i, mxc->mx_valid))
668 mp[i] = mxc->mx[i];
669 }
670 }
671
672 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
673 {
674 if (!mxc->mx)
675 return 0;
676
677 if (dst->flags & DST_HOST) {
678 u32 *mp = dst_metrics_write_ptr(dst);
679
680 if (unlikely(!mp))
681 return -ENOMEM;
682
683 fib6_copy_metrics(mp, mxc);
684 } else {
685 dst_init_metrics(dst, mxc->mx, false);
686
687 /* We've stolen mx now. */
688 mxc->mx = NULL;
689 }
690
691 return 0;
692 }
693
694 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
695 struct net *net)
696 {
697 if (atomic_read(&rt->rt6i_ref) != 1) {
698 /* This route is used as dummy address holder in some split
699 * nodes. It is not leaked, but it still holds other resources,
700 * which must be released in time. So, scan ascendant nodes
701 * and replace dummy references to this route with references
702 * to still alive ones.
703 */
704 while (fn) {
705 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
706 fn->leaf = fib6_find_prefix(net, fn);
707 atomic_inc(&fn->leaf->rt6i_ref);
708 rt6_release(rt);
709 }
710 fn = fn->parent;
711 }
712 /* No more references are possible at this point. */
713 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
714 }
715 }
716
717 /*
718 * Insert routing information in a node.
719 */
720
721 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
722 struct nl_info *info, struct mx6_config *mxc)
723 {
724 struct rt6_info *iter = NULL;
725 struct rt6_info **ins;
726 struct rt6_info **fallback_ins = NULL;
727 int replace = (info->nlh &&
728 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
729 int add = (!info->nlh ||
730 (info->nlh->nlmsg_flags & NLM_F_CREATE));
731 int found = 0;
732 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
733 int err;
734
735 ins = &fn->leaf;
736
737 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
738 /*
739 * Search for duplicates
740 */
741
742 if (iter->rt6i_metric == rt->rt6i_metric) {
743 /*
744 * Same priority level
745 */
746 if (info->nlh &&
747 (info->nlh->nlmsg_flags & NLM_F_EXCL))
748 return -EEXIST;
749 if (replace) {
750 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
751 found++;
752 break;
753 }
754 if (rt_can_ecmp)
755 fallback_ins = fallback_ins ?: ins;
756 goto next_iter;
757 }
758
759 if (iter->dst.dev == rt->dst.dev &&
760 iter->rt6i_idev == rt->rt6i_idev &&
761 ipv6_addr_equal(&iter->rt6i_gateway,
762 &rt->rt6i_gateway)) {
763 if (rt->rt6i_nsiblings)
764 rt->rt6i_nsiblings = 0;
765 if (!(iter->rt6i_flags & RTF_EXPIRES))
766 return -EEXIST;
767 if (!(rt->rt6i_flags & RTF_EXPIRES))
768 rt6_clean_expires(iter);
769 else
770 rt6_set_expires(iter, rt->dst.expires);
771 iter->rt6i_pmtu = rt->rt6i_pmtu;
772 return -EEXIST;
773 }
774 /* If we have the same destination and the same metric,
775 * but not the same gateway, then the route we try to
776 * add is sibling to this route, increment our counter
777 * of siblings, and later we will add our route to the
778 * list.
779 * Only static routes (which don't have flag
780 * RTF_EXPIRES) are used for ECMPv6.
781 *
782 * To avoid long list, we only had siblings if the
783 * route have a gateway.
784 */
785 if (rt_can_ecmp &&
786 rt6_qualify_for_ecmp(iter))
787 rt->rt6i_nsiblings++;
788 }
789
790 if (iter->rt6i_metric > rt->rt6i_metric)
791 break;
792
793 next_iter:
794 ins = &iter->dst.rt6_next;
795 }
796
797 if (fallback_ins && !found) {
798 /* No ECMP-able route found, replace first non-ECMP one */
799 ins = fallback_ins;
800 iter = *ins;
801 found++;
802 }
803
804 /* Reset round-robin state, if necessary */
805 if (ins == &fn->leaf)
806 fn->rr_ptr = NULL;
807
808 /* Link this route to others same route. */
809 if (rt->rt6i_nsiblings) {
810 unsigned int rt6i_nsiblings;
811 struct rt6_info *sibling, *temp_sibling;
812
813 /* Find the first route that have the same metric */
814 sibling = fn->leaf;
815 while (sibling) {
816 if (sibling->rt6i_metric == rt->rt6i_metric &&
817 rt6_qualify_for_ecmp(sibling)) {
818 list_add_tail(&rt->rt6i_siblings,
819 &sibling->rt6i_siblings);
820 break;
821 }
822 sibling = sibling->dst.rt6_next;
823 }
824 /* For each sibling in the list, increment the counter of
825 * siblings. BUG() if counters does not match, list of siblings
826 * is broken!
827 */
828 rt6i_nsiblings = 0;
829 list_for_each_entry_safe(sibling, temp_sibling,
830 &rt->rt6i_siblings, rt6i_siblings) {
831 sibling->rt6i_nsiblings++;
832 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
833 rt6i_nsiblings++;
834 }
835 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
836 }
837
838 /*
839 * insert node
840 */
841 if (!replace) {
842 if (!add)
843 pr_warn("NLM_F_CREATE should be set when creating new route\n");
844
845 add:
846 err = fib6_commit_metrics(&rt->dst, mxc);
847 if (err)
848 return err;
849
850 rt->dst.rt6_next = iter;
851 *ins = rt;
852 rt->rt6i_node = fn;
853 atomic_inc(&rt->rt6i_ref);
854 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
855 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
856
857 if (!(fn->fn_flags & RTN_RTINFO)) {
858 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
859 fn->fn_flags |= RTN_RTINFO;
860 }
861
862 } else {
863 int nsiblings;
864
865 if (!found) {
866 if (add)
867 goto add;
868 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
869 return -ENOENT;
870 }
871
872 err = fib6_commit_metrics(&rt->dst, mxc);
873 if (err)
874 return err;
875
876 *ins = rt;
877 rt->rt6i_node = fn;
878 rt->dst.rt6_next = iter->dst.rt6_next;
879 atomic_inc(&rt->rt6i_ref);
880 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
881 if (!(fn->fn_flags & RTN_RTINFO)) {
882 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
883 fn->fn_flags |= RTN_RTINFO;
884 }
885 nsiblings = iter->rt6i_nsiblings;
886 fib6_purge_rt(iter, fn, info->nl_net);
887 rt6_release(iter);
888
889 if (nsiblings) {
890 /* Replacing an ECMP route, remove all siblings */
891 ins = &rt->dst.rt6_next;
892 iter = *ins;
893 while (iter) {
894 if (rt6_qualify_for_ecmp(iter)) {
895 *ins = iter->dst.rt6_next;
896 fib6_purge_rt(iter, fn, info->nl_net);
897 rt6_release(iter);
898 nsiblings--;
899 } else {
900 ins = &iter->dst.rt6_next;
901 }
902 iter = *ins;
903 }
904 WARN_ON(nsiblings != 0);
905 }
906 }
907
908 return 0;
909 }
910
911 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
912 {
913 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
914 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
915 mod_timer(&net->ipv6.ip6_fib_timer,
916 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
917 }
918
919 void fib6_force_start_gc(struct net *net)
920 {
921 if (!timer_pending(&net->ipv6.ip6_fib_timer))
922 mod_timer(&net->ipv6.ip6_fib_timer,
923 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
924 }
925
926 /*
927 * Add routing information to the routing tree.
928 * <destination addr>/<source addr>
929 * with source addr info in sub-trees
930 */
931
932 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
933 struct nl_info *info, struct mx6_config *mxc)
934 {
935 struct fib6_node *fn, *pn = NULL;
936 int err = -ENOMEM;
937 int allow_create = 1;
938 int replace_required = 0;
939 int sernum = fib6_new_sernum(info->nl_net);
940
941 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
942 !atomic_read(&rt->dst.__refcnt)))
943 return -EINVAL;
944
945 if (info->nlh) {
946 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
947 allow_create = 0;
948 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
949 replace_required = 1;
950 }
951 if (!allow_create && !replace_required)
952 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
953
954 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
955 offsetof(struct rt6_info, rt6i_dst), allow_create,
956 replace_required, sernum);
957 if (IS_ERR(fn)) {
958 err = PTR_ERR(fn);
959 fn = NULL;
960 goto out;
961 }
962
963 pn = fn;
964
965 #ifdef CONFIG_IPV6_SUBTREES
966 if (rt->rt6i_src.plen) {
967 struct fib6_node *sn;
968
969 if (!fn->subtree) {
970 struct fib6_node *sfn;
971
972 /*
973 * Create subtree.
974 *
975 * fn[main tree]
976 * |
977 * sfn[subtree root]
978 * \
979 * sn[new leaf node]
980 */
981
982 /* Create subtree root node */
983 sfn = node_alloc();
984 if (!sfn)
985 goto st_failure;
986
987 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
988 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
989 sfn->fn_flags = RTN_ROOT;
990 sfn->fn_sernum = sernum;
991
992 /* Now add the first leaf node to new subtree */
993
994 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
995 rt->rt6i_src.plen,
996 offsetof(struct rt6_info, rt6i_src),
997 allow_create, replace_required, sernum);
998
999 if (IS_ERR(sn)) {
1000 /* If it is failed, discard just allocated
1001 root, and then (in st_failure) stale node
1002 in main tree.
1003 */
1004 node_free(sfn);
1005 err = PTR_ERR(sn);
1006 goto st_failure;
1007 }
1008
1009 /* Now link new subtree to main tree */
1010 sfn->parent = fn;
1011 fn->subtree = sfn;
1012 } else {
1013 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1014 rt->rt6i_src.plen,
1015 offsetof(struct rt6_info, rt6i_src),
1016 allow_create, replace_required, sernum);
1017
1018 if (IS_ERR(sn)) {
1019 err = PTR_ERR(sn);
1020 goto st_failure;
1021 }
1022 }
1023
1024 if (!fn->leaf) {
1025 fn->leaf = rt;
1026 atomic_inc(&rt->rt6i_ref);
1027 }
1028 fn = sn;
1029 }
1030 #endif
1031
1032 err = fib6_add_rt2node(fn, rt, info, mxc);
1033 if (!err) {
1034 fib6_start_gc(info->nl_net, rt);
1035 if (!(rt->rt6i_flags & RTF_CACHE))
1036 fib6_prune_clones(info->nl_net, pn);
1037 rt->dst.flags &= ~DST_NOCACHE;
1038 }
1039
1040 out:
1041 if (err) {
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 /*
1044 * If fib6_add_1 has cleared the old leaf pointer in the
1045 * super-tree leaf node we have to find a new one for it.
1046 */
1047 if (pn != fn && pn->leaf == rt) {
1048 pn->leaf = NULL;
1049 atomic_dec(&rt->rt6i_ref);
1050 }
1051 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1052 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1053 #if RT6_DEBUG >= 2
1054 if (!pn->leaf) {
1055 WARN_ON(pn->leaf == NULL);
1056 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1057 }
1058 #endif
1059 atomic_inc(&pn->leaf->rt6i_ref);
1060 }
1061 #endif
1062 if (!(rt->dst.flags & DST_NOCACHE))
1063 dst_free(&rt->dst);
1064 }
1065 return err;
1066
1067 #ifdef CONFIG_IPV6_SUBTREES
1068 /* Subtree creation failed, probably main tree node
1069 is orphan. If it is, shoot it.
1070 */
1071 st_failure:
1072 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1073 fib6_repair_tree(info->nl_net, fn);
1074 if (!(rt->dst.flags & DST_NOCACHE))
1075 dst_free(&rt->dst);
1076 return err;
1077 #endif
1078 }
1079
1080 /*
1081 * Routing tree lookup
1082 *
1083 */
1084
1085 struct lookup_args {
1086 int offset; /* key offset on rt6_info */
1087 const struct in6_addr *addr; /* search key */
1088 };
1089
1090 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1091 struct lookup_args *args)
1092 {
1093 struct fib6_node *fn;
1094 __be32 dir;
1095
1096 if (unlikely(args->offset == 0))
1097 return NULL;
1098
1099 /*
1100 * Descend on a tree
1101 */
1102
1103 fn = root;
1104
1105 for (;;) {
1106 struct fib6_node *next;
1107
1108 dir = addr_bit_set(args->addr, fn->fn_bit);
1109
1110 next = dir ? fn->right : fn->left;
1111
1112 if (next) {
1113 fn = next;
1114 continue;
1115 }
1116 break;
1117 }
1118
1119 while (fn) {
1120 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1121 struct rt6key *key;
1122
1123 key = (struct rt6key *) ((u8 *) fn->leaf +
1124 args->offset);
1125
1126 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1127 #ifdef CONFIG_IPV6_SUBTREES
1128 if (fn->subtree) {
1129 struct fib6_node *sfn;
1130 sfn = fib6_lookup_1(fn->subtree,
1131 args + 1);
1132 if (!sfn)
1133 goto backtrack;
1134 fn = sfn;
1135 }
1136 #endif
1137 if (fn->fn_flags & RTN_RTINFO)
1138 return fn;
1139 }
1140 }
1141 #ifdef CONFIG_IPV6_SUBTREES
1142 backtrack:
1143 #endif
1144 if (fn->fn_flags & RTN_ROOT)
1145 break;
1146
1147 fn = fn->parent;
1148 }
1149
1150 return NULL;
1151 }
1152
1153 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1154 const struct in6_addr *saddr)
1155 {
1156 struct fib6_node *fn;
1157 struct lookup_args args[] = {
1158 {
1159 .offset = offsetof(struct rt6_info, rt6i_dst),
1160 .addr = daddr,
1161 },
1162 #ifdef CONFIG_IPV6_SUBTREES
1163 {
1164 .offset = offsetof(struct rt6_info, rt6i_src),
1165 .addr = saddr,
1166 },
1167 #endif
1168 {
1169 .offset = 0, /* sentinel */
1170 }
1171 };
1172
1173 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1174 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1175 fn = root;
1176
1177 return fn;
1178 }
1179
1180 /*
1181 * Get node with specified destination prefix (and source prefix,
1182 * if subtrees are used)
1183 */
1184
1185
1186 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1187 const struct in6_addr *addr,
1188 int plen, int offset)
1189 {
1190 struct fib6_node *fn;
1191
1192 for (fn = root; fn ; ) {
1193 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1194
1195 /*
1196 * Prefix match
1197 */
1198 if (plen < fn->fn_bit ||
1199 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1200 return NULL;
1201
1202 if (plen == fn->fn_bit)
1203 return fn;
1204
1205 /*
1206 * We have more bits to go
1207 */
1208 if (addr_bit_set(addr, fn->fn_bit))
1209 fn = fn->right;
1210 else
1211 fn = fn->left;
1212 }
1213 return NULL;
1214 }
1215
1216 struct fib6_node *fib6_locate(struct fib6_node *root,
1217 const struct in6_addr *daddr, int dst_len,
1218 const struct in6_addr *saddr, int src_len)
1219 {
1220 struct fib6_node *fn;
1221
1222 fn = fib6_locate_1(root, daddr, dst_len,
1223 offsetof(struct rt6_info, rt6i_dst));
1224
1225 #ifdef CONFIG_IPV6_SUBTREES
1226 if (src_len) {
1227 WARN_ON(saddr == NULL);
1228 if (fn && fn->subtree)
1229 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1230 offsetof(struct rt6_info, rt6i_src));
1231 }
1232 #endif
1233
1234 if (fn && fn->fn_flags & RTN_RTINFO)
1235 return fn;
1236
1237 return NULL;
1238 }
1239
1240
1241 /*
1242 * Deletion
1243 *
1244 */
1245
1246 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1247 {
1248 if (fn->fn_flags & RTN_ROOT)
1249 return net->ipv6.ip6_null_entry;
1250
1251 while (fn) {
1252 if (fn->left)
1253 return fn->left->leaf;
1254 if (fn->right)
1255 return fn->right->leaf;
1256
1257 fn = FIB6_SUBTREE(fn);
1258 }
1259 return NULL;
1260 }
1261
1262 /*
1263 * Called to trim the tree of intermediate nodes when possible. "fn"
1264 * is the node we want to try and remove.
1265 */
1266
1267 static struct fib6_node *fib6_repair_tree(struct net *net,
1268 struct fib6_node *fn)
1269 {
1270 int children;
1271 int nstate;
1272 struct fib6_node *child, *pn;
1273 struct fib6_walker *w;
1274 int iter = 0;
1275
1276 for (;;) {
1277 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1278 iter++;
1279
1280 WARN_ON(fn->fn_flags & RTN_RTINFO);
1281 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1282 WARN_ON(fn->leaf);
1283
1284 children = 0;
1285 child = NULL;
1286 if (fn->right)
1287 child = fn->right, children |= 1;
1288 if (fn->left)
1289 child = fn->left, children |= 2;
1290
1291 if (children == 3 || FIB6_SUBTREE(fn)
1292 #ifdef CONFIG_IPV6_SUBTREES
1293 /* Subtree root (i.e. fn) may have one child */
1294 || (children && fn->fn_flags & RTN_ROOT)
1295 #endif
1296 ) {
1297 fn->leaf = fib6_find_prefix(net, fn);
1298 #if RT6_DEBUG >= 2
1299 if (!fn->leaf) {
1300 WARN_ON(!fn->leaf);
1301 fn->leaf = net->ipv6.ip6_null_entry;
1302 }
1303 #endif
1304 atomic_inc(&fn->leaf->rt6i_ref);
1305 return fn->parent;
1306 }
1307
1308 pn = fn->parent;
1309 #ifdef CONFIG_IPV6_SUBTREES
1310 if (FIB6_SUBTREE(pn) == fn) {
1311 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1312 FIB6_SUBTREE(pn) = NULL;
1313 nstate = FWS_L;
1314 } else {
1315 WARN_ON(fn->fn_flags & RTN_ROOT);
1316 #endif
1317 if (pn->right == fn)
1318 pn->right = child;
1319 else if (pn->left == fn)
1320 pn->left = child;
1321 #if RT6_DEBUG >= 2
1322 else
1323 WARN_ON(1);
1324 #endif
1325 if (child)
1326 child->parent = pn;
1327 nstate = FWS_R;
1328 #ifdef CONFIG_IPV6_SUBTREES
1329 }
1330 #endif
1331
1332 read_lock(&fib6_walker_lock);
1333 FOR_WALKERS(w) {
1334 if (!child) {
1335 if (w->root == fn) {
1336 w->root = w->node = NULL;
1337 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1338 } else if (w->node == fn) {
1339 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1340 w->node = pn;
1341 w->state = nstate;
1342 }
1343 } else {
1344 if (w->root == fn) {
1345 w->root = child;
1346 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1347 }
1348 if (w->node == fn) {
1349 w->node = child;
1350 if (children&2) {
1351 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1352 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1353 } else {
1354 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1355 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1356 }
1357 }
1358 }
1359 }
1360 read_unlock(&fib6_walker_lock);
1361
1362 node_free(fn);
1363 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1364 return pn;
1365
1366 rt6_release(pn->leaf);
1367 pn->leaf = NULL;
1368 fn = pn;
1369 }
1370 }
1371
1372 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1373 struct nl_info *info)
1374 {
1375 struct fib6_walker *w;
1376 struct rt6_info *rt = *rtp;
1377 struct net *net = info->nl_net;
1378
1379 RT6_TRACE("fib6_del_route\n");
1380
1381 /* Unlink it */
1382 *rtp = rt->dst.rt6_next;
1383 rt->rt6i_node = NULL;
1384 net->ipv6.rt6_stats->fib_rt_entries--;
1385 net->ipv6.rt6_stats->fib_discarded_routes++;
1386
1387 /* Reset round-robin state, if necessary */
1388 if (fn->rr_ptr == rt)
1389 fn->rr_ptr = NULL;
1390
1391 /* Remove this entry from other siblings */
1392 if (rt->rt6i_nsiblings) {
1393 struct rt6_info *sibling, *next_sibling;
1394
1395 list_for_each_entry_safe(sibling, next_sibling,
1396 &rt->rt6i_siblings, rt6i_siblings)
1397 sibling->rt6i_nsiblings--;
1398 rt->rt6i_nsiblings = 0;
1399 list_del_init(&rt->rt6i_siblings);
1400 }
1401
1402 /* Adjust walkers */
1403 read_lock(&fib6_walker_lock);
1404 FOR_WALKERS(w) {
1405 if (w->state == FWS_C && w->leaf == rt) {
1406 RT6_TRACE("walker %p adjusted by delroute\n", w);
1407 w->leaf = rt->dst.rt6_next;
1408 if (!w->leaf)
1409 w->state = FWS_U;
1410 }
1411 }
1412 read_unlock(&fib6_walker_lock);
1413
1414 rt->dst.rt6_next = NULL;
1415
1416 /* If it was last route, expunge its radix tree node */
1417 if (!fn->leaf) {
1418 fn->fn_flags &= ~RTN_RTINFO;
1419 net->ipv6.rt6_stats->fib_route_nodes--;
1420 fn = fib6_repair_tree(net, fn);
1421 }
1422
1423 fib6_purge_rt(rt, fn, net);
1424
1425 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1426 rt6_release(rt);
1427 }
1428
1429 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1430 {
1431 struct net *net = info->nl_net;
1432 struct fib6_node *fn = rt->rt6i_node;
1433 struct rt6_info **rtp;
1434
1435 #if RT6_DEBUG >= 2
1436 if (rt->dst.obsolete > 0) {
1437 WARN_ON(fn);
1438 return -ENOENT;
1439 }
1440 #endif
1441 if (!fn || rt == net->ipv6.ip6_null_entry)
1442 return -ENOENT;
1443
1444 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1445
1446 if (!(rt->rt6i_flags & RTF_CACHE)) {
1447 struct fib6_node *pn = fn;
1448 #ifdef CONFIG_IPV6_SUBTREES
1449 /* clones of this route might be in another subtree */
1450 if (rt->rt6i_src.plen) {
1451 while (!(pn->fn_flags & RTN_ROOT))
1452 pn = pn->parent;
1453 pn = pn->parent;
1454 }
1455 #endif
1456 fib6_prune_clones(info->nl_net, pn);
1457 }
1458
1459 /*
1460 * Walk the leaf entries looking for ourself
1461 */
1462
1463 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1464 if (*rtp == rt) {
1465 fib6_del_route(fn, rtp, info);
1466 return 0;
1467 }
1468 }
1469 return -ENOENT;
1470 }
1471
1472 /*
1473 * Tree traversal function.
1474 *
1475 * Certainly, it is not interrupt safe.
1476 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1477 * It means, that we can modify tree during walking
1478 * and use this function for garbage collection, clone pruning,
1479 * cleaning tree when a device goes down etc. etc.
1480 *
1481 * It guarantees that every node will be traversed,
1482 * and that it will be traversed only once.
1483 *
1484 * Callback function w->func may return:
1485 * 0 -> continue walking.
1486 * positive value -> walking is suspended (used by tree dumps,
1487 * and probably by gc, if it will be split to several slices)
1488 * negative value -> terminate walking.
1489 *
1490 * The function itself returns:
1491 * 0 -> walk is complete.
1492 * >0 -> walk is incomplete (i.e. suspended)
1493 * <0 -> walk is terminated by an error.
1494 */
1495
1496 static int fib6_walk_continue(struct fib6_walker *w)
1497 {
1498 struct fib6_node *fn, *pn;
1499
1500 for (;;) {
1501 fn = w->node;
1502 if (!fn)
1503 return 0;
1504
1505 if (w->prune && fn != w->root &&
1506 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1507 w->state = FWS_C;
1508 w->leaf = fn->leaf;
1509 }
1510 switch (w->state) {
1511 #ifdef CONFIG_IPV6_SUBTREES
1512 case FWS_S:
1513 if (FIB6_SUBTREE(fn)) {
1514 w->node = FIB6_SUBTREE(fn);
1515 continue;
1516 }
1517 w->state = FWS_L;
1518 #endif
1519 case FWS_L:
1520 if (fn->left) {
1521 w->node = fn->left;
1522 w->state = FWS_INIT;
1523 continue;
1524 }
1525 w->state = FWS_R;
1526 case FWS_R:
1527 if (fn->right) {
1528 w->node = fn->right;
1529 w->state = FWS_INIT;
1530 continue;
1531 }
1532 w->state = FWS_C;
1533 w->leaf = fn->leaf;
1534 case FWS_C:
1535 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1536 int err;
1537
1538 if (w->skip) {
1539 w->skip--;
1540 goto skip;
1541 }
1542
1543 err = w->func(w);
1544 if (err)
1545 return err;
1546
1547 w->count++;
1548 continue;
1549 }
1550 skip:
1551 w->state = FWS_U;
1552 case FWS_U:
1553 if (fn == w->root)
1554 return 0;
1555 pn = fn->parent;
1556 w->node = pn;
1557 #ifdef CONFIG_IPV6_SUBTREES
1558 if (FIB6_SUBTREE(pn) == fn) {
1559 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1560 w->state = FWS_L;
1561 continue;
1562 }
1563 #endif
1564 if (pn->left == fn) {
1565 w->state = FWS_R;
1566 continue;
1567 }
1568 if (pn->right == fn) {
1569 w->state = FWS_C;
1570 w->leaf = w->node->leaf;
1571 continue;
1572 }
1573 #if RT6_DEBUG >= 2
1574 WARN_ON(1);
1575 #endif
1576 }
1577 }
1578 }
1579
1580 static int fib6_walk(struct fib6_walker *w)
1581 {
1582 int res;
1583
1584 w->state = FWS_INIT;
1585 w->node = w->root;
1586
1587 fib6_walker_link(w);
1588 res = fib6_walk_continue(w);
1589 if (res <= 0)
1590 fib6_walker_unlink(w);
1591 return res;
1592 }
1593
1594 static int fib6_clean_node(struct fib6_walker *w)
1595 {
1596 int res;
1597 struct rt6_info *rt;
1598 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1599 struct nl_info info = {
1600 .nl_net = c->net,
1601 };
1602
1603 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1604 w->node->fn_sernum != c->sernum)
1605 w->node->fn_sernum = c->sernum;
1606
1607 if (!c->func) {
1608 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1609 w->leaf = NULL;
1610 return 0;
1611 }
1612
1613 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1614 res = c->func(rt, c->arg);
1615 if (res < 0) {
1616 w->leaf = rt;
1617 res = fib6_del(rt, &info);
1618 if (res) {
1619 #if RT6_DEBUG >= 2
1620 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1621 __func__, rt, rt->rt6i_node, res);
1622 #endif
1623 continue;
1624 }
1625 return 0;
1626 }
1627 WARN_ON(res != 0);
1628 }
1629 w->leaf = rt;
1630 return 0;
1631 }
1632
1633 /*
1634 * Convenient frontend to tree walker.
1635 *
1636 * func is called on each route.
1637 * It may return -1 -> delete this route.
1638 * 0 -> continue walking
1639 *
1640 * prune==1 -> only immediate children of node (certainly,
1641 * ignoring pure split nodes) will be scanned.
1642 */
1643
1644 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1645 int (*func)(struct rt6_info *, void *arg),
1646 bool prune, int sernum, void *arg)
1647 {
1648 struct fib6_cleaner c;
1649
1650 c.w.root = root;
1651 c.w.func = fib6_clean_node;
1652 c.w.prune = prune;
1653 c.w.count = 0;
1654 c.w.skip = 0;
1655 c.func = func;
1656 c.sernum = sernum;
1657 c.arg = arg;
1658 c.net = net;
1659
1660 fib6_walk(&c.w);
1661 }
1662
1663 static void __fib6_clean_all(struct net *net,
1664 int (*func)(struct rt6_info *, void *),
1665 int sernum, void *arg)
1666 {
1667 struct fib6_table *table;
1668 struct hlist_head *head;
1669 unsigned int h;
1670
1671 rcu_read_lock();
1672 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1673 head = &net->ipv6.fib_table_hash[h];
1674 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1675 write_lock_bh(&table->tb6_lock);
1676 fib6_clean_tree(net, &table->tb6_root,
1677 func, false, sernum, arg);
1678 write_unlock_bh(&table->tb6_lock);
1679 }
1680 }
1681 rcu_read_unlock();
1682 }
1683
1684 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1685 void *arg)
1686 {
1687 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1688 }
1689
1690 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1691 {
1692 if (rt->rt6i_flags & RTF_CACHE) {
1693 RT6_TRACE("pruning clone %p\n", rt);
1694 return -1;
1695 }
1696
1697 return 0;
1698 }
1699
1700 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1701 {
1702 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1703 FIB6_NO_SERNUM_CHANGE, NULL);
1704 }
1705
1706 static void fib6_flush_trees(struct net *net)
1707 {
1708 int new_sernum = fib6_new_sernum(net);
1709
1710 __fib6_clean_all(net, NULL, new_sernum, NULL);
1711 }
1712
1713 /*
1714 * Garbage collection
1715 */
1716
1717 static struct fib6_gc_args
1718 {
1719 int timeout;
1720 int more;
1721 } gc_args;
1722
1723 static int fib6_age(struct rt6_info *rt, void *arg)
1724 {
1725 unsigned long now = jiffies;
1726
1727 /*
1728 * check addrconf expiration here.
1729 * Routes are expired even if they are in use.
1730 *
1731 * Also age clones. Note, that clones are aged out
1732 * only if they are not in use now.
1733 */
1734
1735 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1736 if (time_after(now, rt->dst.expires)) {
1737 RT6_TRACE("expiring %p\n", rt);
1738 return -1;
1739 }
1740 gc_args.more++;
1741 } else if (rt->rt6i_flags & RTF_CACHE) {
1742 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1743 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1744 RT6_TRACE("aging clone %p\n", rt);
1745 return -1;
1746 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1747 struct neighbour *neigh;
1748 __u8 neigh_flags = 0;
1749
1750 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1751 if (neigh) {
1752 neigh_flags = neigh->flags;
1753 neigh_release(neigh);
1754 }
1755 if (!(neigh_flags & NTF_ROUTER)) {
1756 RT6_TRACE("purging route %p via non-router but gateway\n",
1757 rt);
1758 return -1;
1759 }
1760 }
1761 gc_args.more++;
1762 }
1763
1764 return 0;
1765 }
1766
1767 static DEFINE_SPINLOCK(fib6_gc_lock);
1768
1769 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1770 {
1771 unsigned long now;
1772
1773 if (force) {
1774 spin_lock_bh(&fib6_gc_lock);
1775 } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1776 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1777 return;
1778 }
1779 gc_args.timeout = expires ? (int)expires :
1780 net->ipv6.sysctl.ip6_rt_gc_interval;
1781
1782 gc_args.more = icmp6_dst_gc();
1783
1784 fib6_clean_all(net, fib6_age, NULL);
1785 now = jiffies;
1786 net->ipv6.ip6_rt_last_gc = now;
1787
1788 if (gc_args.more)
1789 mod_timer(&net->ipv6.ip6_fib_timer,
1790 round_jiffies(now
1791 + net->ipv6.sysctl.ip6_rt_gc_interval));
1792 else
1793 del_timer(&net->ipv6.ip6_fib_timer);
1794 spin_unlock_bh(&fib6_gc_lock);
1795 }
1796
1797 static void fib6_gc_timer_cb(unsigned long arg)
1798 {
1799 fib6_run_gc(0, (struct net *)arg, true);
1800 }
1801
1802 static int __net_init fib6_net_init(struct net *net)
1803 {
1804 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1805
1806 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1807
1808 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1809 if (!net->ipv6.rt6_stats)
1810 goto out_timer;
1811
1812 /* Avoid false sharing : Use at least a full cache line */
1813 size = max_t(size_t, size, L1_CACHE_BYTES);
1814
1815 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1816 if (!net->ipv6.fib_table_hash)
1817 goto out_rt6_stats;
1818
1819 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1820 GFP_KERNEL);
1821 if (!net->ipv6.fib6_main_tbl)
1822 goto out_fib_table_hash;
1823
1824 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1825 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1826 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1827 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1828 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1829
1830 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1831 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1832 GFP_KERNEL);
1833 if (!net->ipv6.fib6_local_tbl)
1834 goto out_fib6_main_tbl;
1835 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1836 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1837 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1838 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1839 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1840 #endif
1841 fib6_tables_init(net);
1842
1843 return 0;
1844
1845 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1846 out_fib6_main_tbl:
1847 kfree(net->ipv6.fib6_main_tbl);
1848 #endif
1849 out_fib_table_hash:
1850 kfree(net->ipv6.fib_table_hash);
1851 out_rt6_stats:
1852 kfree(net->ipv6.rt6_stats);
1853 out_timer:
1854 return -ENOMEM;
1855 }
1856
1857 static void fib6_net_exit(struct net *net)
1858 {
1859 rt6_ifdown(net, NULL);
1860 del_timer_sync(&net->ipv6.ip6_fib_timer);
1861
1862 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1863 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1864 kfree(net->ipv6.fib6_local_tbl);
1865 #endif
1866 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1867 kfree(net->ipv6.fib6_main_tbl);
1868 kfree(net->ipv6.fib_table_hash);
1869 kfree(net->ipv6.rt6_stats);
1870 }
1871
1872 static struct pernet_operations fib6_net_ops = {
1873 .init = fib6_net_init,
1874 .exit = fib6_net_exit,
1875 };
1876
1877 int __init fib6_init(void)
1878 {
1879 int ret = -ENOMEM;
1880
1881 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1882 sizeof(struct fib6_node),
1883 0, SLAB_HWCACHE_ALIGN,
1884 NULL);
1885 if (!fib6_node_kmem)
1886 goto out;
1887
1888 ret = register_pernet_subsys(&fib6_net_ops);
1889 if (ret)
1890 goto out_kmem_cache_create;
1891
1892 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1893 NULL);
1894 if (ret)
1895 goto out_unregister_subsys;
1896
1897 __fib6_flush_trees = fib6_flush_trees;
1898 out:
1899 return ret;
1900
1901 out_unregister_subsys:
1902 unregister_pernet_subsys(&fib6_net_ops);
1903 out_kmem_cache_create:
1904 kmem_cache_destroy(fib6_node_kmem);
1905 goto out;
1906 }
1907
1908 void fib6_gc_cleanup(void)
1909 {
1910 unregister_pernet_subsys(&fib6_net_ops);
1911 kmem_cache_destroy(fib6_node_kmem);
1912 }
1913
1914 #ifdef CONFIG_PROC_FS
1915
1916 struct ipv6_route_iter {
1917 struct seq_net_private p;
1918 struct fib6_walker w;
1919 loff_t skip;
1920 struct fib6_table *tbl;
1921 int sernum;
1922 };
1923
1924 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1925 {
1926 struct rt6_info *rt = v;
1927 struct ipv6_route_iter *iter = seq->private;
1928
1929 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1930
1931 #ifdef CONFIG_IPV6_SUBTREES
1932 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1933 #else
1934 seq_puts(seq, "00000000000000000000000000000000 00 ");
1935 #endif
1936 if (rt->rt6i_flags & RTF_GATEWAY)
1937 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1938 else
1939 seq_puts(seq, "00000000000000000000000000000000");
1940
1941 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1942 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1943 rt->dst.__use, rt->rt6i_flags,
1944 rt->dst.dev ? rt->dst.dev->name : "");
1945 iter->w.leaf = NULL;
1946 return 0;
1947 }
1948
1949 static int ipv6_route_yield(struct fib6_walker *w)
1950 {
1951 struct ipv6_route_iter *iter = w->args;
1952
1953 if (!iter->skip)
1954 return 1;
1955
1956 do {
1957 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1958 iter->skip--;
1959 if (!iter->skip && iter->w.leaf)
1960 return 1;
1961 } while (iter->w.leaf);
1962
1963 return 0;
1964 }
1965
1966 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1967 {
1968 memset(&iter->w, 0, sizeof(iter->w));
1969 iter->w.func = ipv6_route_yield;
1970 iter->w.root = &iter->tbl->tb6_root;
1971 iter->w.state = FWS_INIT;
1972 iter->w.node = iter->w.root;
1973 iter->w.args = iter;
1974 iter->sernum = iter->w.root->fn_sernum;
1975 INIT_LIST_HEAD(&iter->w.lh);
1976 fib6_walker_link(&iter->w);
1977 }
1978
1979 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1980 struct net *net)
1981 {
1982 unsigned int h;
1983 struct hlist_node *node;
1984
1985 if (tbl) {
1986 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1987 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1988 } else {
1989 h = 0;
1990 node = NULL;
1991 }
1992
1993 while (!node && h < FIB6_TABLE_HASHSZ) {
1994 node = rcu_dereference_bh(
1995 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1996 }
1997 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1998 }
1999
2000 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2001 {
2002 if (iter->sernum != iter->w.root->fn_sernum) {
2003 iter->sernum = iter->w.root->fn_sernum;
2004 iter->w.state = FWS_INIT;
2005 iter->w.node = iter->w.root;
2006 WARN_ON(iter->w.skip);
2007 iter->w.skip = iter->w.count;
2008 }
2009 }
2010
2011 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2012 {
2013 int r;
2014 struct rt6_info *n;
2015 struct net *net = seq_file_net(seq);
2016 struct ipv6_route_iter *iter = seq->private;
2017
2018 if (!v)
2019 goto iter_table;
2020
2021 n = ((struct rt6_info *)v)->dst.rt6_next;
2022 if (n) {
2023 ++*pos;
2024 return n;
2025 }
2026
2027 iter_table:
2028 ipv6_route_check_sernum(iter);
2029 read_lock(&iter->tbl->tb6_lock);
2030 r = fib6_walk_continue(&iter->w);
2031 read_unlock(&iter->tbl->tb6_lock);
2032 if (r > 0) {
2033 if (v)
2034 ++*pos;
2035 return iter->w.leaf;
2036 } else if (r < 0) {
2037 fib6_walker_unlink(&iter->w);
2038 return NULL;
2039 }
2040 fib6_walker_unlink(&iter->w);
2041
2042 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2043 if (!iter->tbl)
2044 return NULL;
2045
2046 ipv6_route_seq_setup_walk(iter);
2047 goto iter_table;
2048 }
2049
2050 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2051 __acquires(RCU_BH)
2052 {
2053 struct net *net = seq_file_net(seq);
2054 struct ipv6_route_iter *iter = seq->private;
2055
2056 rcu_read_lock_bh();
2057 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2058 iter->skip = *pos;
2059
2060 if (iter->tbl) {
2061 ipv6_route_seq_setup_walk(iter);
2062 return ipv6_route_seq_next(seq, NULL, pos);
2063 } else {
2064 return NULL;
2065 }
2066 }
2067
2068 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2069 {
2070 struct fib6_walker *w = &iter->w;
2071 return w->node && !(w->state == FWS_U && w->node == w->root);
2072 }
2073
2074 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2075 __releases(RCU_BH)
2076 {
2077 struct ipv6_route_iter *iter = seq->private;
2078
2079 if (ipv6_route_iter_active(iter))
2080 fib6_walker_unlink(&iter->w);
2081
2082 rcu_read_unlock_bh();
2083 }
2084
2085 static const struct seq_operations ipv6_route_seq_ops = {
2086 .start = ipv6_route_seq_start,
2087 .next = ipv6_route_seq_next,
2088 .stop = ipv6_route_seq_stop,
2089 .show = ipv6_route_seq_show
2090 };
2091
2092 int ipv6_route_open(struct inode *inode, struct file *file)
2093 {
2094 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2095 sizeof(struct ipv6_route_iter));
2096 }
2097
2098 #endif /* CONFIG_PROC_FS */