]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv6/ip6_fib.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
96 static int fib6_new_sernum(struct net *net)
97 {
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106 }
107
108 enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119 /*
120 * test bit
121 */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE 0
126 #endif
127
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140 }
141
142 static struct fib6_node *node_alloc(void)
143 {
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149 }
150
151 static void node_free(struct fib6_node *fn)
152 {
153 kmem_cache_free(fib6_node_kmem, fn);
154 }
155
156 static void rt6_rcu_free(struct rt6_info *rt)
157 {
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159 }
160
161 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162 {
163 int cpu;
164
165 if (!non_pcpu_rt->rt6i_pcpu)
166 return;
167
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
171
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 pcpu_rt = *ppcpu_rt;
174 if (pcpu_rt) {
175 rt6_rcu_free(pcpu_rt);
176 *ppcpu_rt = NULL;
177 }
178 }
179
180 free_percpu(non_pcpu_rt->rt6i_pcpu);
181 non_pcpu_rt->rt6i_pcpu = NULL;
182 }
183
184 static void rt6_release(struct rt6_info *rt)
185 {
186 if (atomic_dec_and_test(&rt->rt6i_ref)) {
187 rt6_free_pcpu(rt);
188 rt6_rcu_free(rt);
189 }
190 }
191
192 static void fib6_link_table(struct net *net, struct fib6_table *tb)
193 {
194 unsigned int h;
195
196 /*
197 * Initialize table lock at a single place to give lockdep a key,
198 * tables aren't visible prior to being linked to the list.
199 */
200 rwlock_init(&tb->tb6_lock);
201
202 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
203
204 /*
205 * No protection necessary, this is the only list mutatation
206 * operation, tables never disappear once they exist.
207 */
208 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
209 }
210
211 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
212
213 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
214 {
215 struct fib6_table *table;
216
217 table = kzalloc(sizeof(*table), GFP_ATOMIC);
218 if (table) {
219 table->tb6_id = id;
220 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
221 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
222 inet_peer_base_init(&table->tb6_peers);
223 }
224
225 return table;
226 }
227
228 struct fib6_table *fib6_new_table(struct net *net, u32 id)
229 {
230 struct fib6_table *tb;
231
232 if (id == 0)
233 id = RT6_TABLE_MAIN;
234 tb = fib6_get_table(net, id);
235 if (tb)
236 return tb;
237
238 tb = fib6_alloc_table(net, id);
239 if (tb)
240 fib6_link_table(net, tb);
241
242 return tb;
243 }
244 EXPORT_SYMBOL_GPL(fib6_new_table);
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 struct fib6_table *tb;
249 struct hlist_head *head;
250 unsigned int h;
251
252 if (id == 0)
253 id = RT6_TABLE_MAIN;
254 h = id & (FIB6_TABLE_HASHSZ - 1);
255 rcu_read_lock();
256 head = &net->ipv6.fib_table_hash[h];
257 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 if (tb->tb6_id == id) {
259 rcu_read_unlock();
260 return tb;
261 }
262 }
263 rcu_read_unlock();
264
265 return NULL;
266 }
267 EXPORT_SYMBOL_GPL(fib6_get_table);
268
269 static void __net_init fib6_tables_init(struct net *net)
270 {
271 fib6_link_table(net, net->ipv6.fib6_main_tbl);
272 fib6_link_table(net, net->ipv6.fib6_local_tbl);
273 }
274 #else
275
276 struct fib6_table *fib6_new_table(struct net *net, u32 id)
277 {
278 return fib6_get_table(net, id);
279 }
280
281 struct fib6_table *fib6_get_table(struct net *net, u32 id)
282 {
283 return net->ipv6.fib6_main_tbl;
284 }
285
286 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
287 int flags, pol_lookup_t lookup)
288 {
289 struct rt6_info *rt;
290
291 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
292 if (rt->rt6i_flags & RTF_REJECT &&
293 rt->dst.error == -EAGAIN) {
294 ip6_rt_put(rt);
295 rt = net->ipv6.ip6_null_entry;
296 dst_hold(&rt->dst);
297 }
298
299 return &rt->dst;
300 }
301
302 static void __net_init fib6_tables_init(struct net *net)
303 {
304 fib6_link_table(net, net->ipv6.fib6_main_tbl);
305 }
306
307 #endif
308
309 static int fib6_dump_node(struct fib6_walker *w)
310 {
311 int res;
312 struct rt6_info *rt;
313
314 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
315 res = rt6_dump_route(rt, w->args);
316 if (res < 0) {
317 /* Frame is full, suspend walking */
318 w->leaf = rt;
319 return 1;
320 }
321
322 /* Multipath routes are dumped in one route with the
323 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
324 * last sibling of this route (no need to dump the
325 * sibling routes again)
326 */
327 if (rt->rt6i_nsiblings)
328 rt = list_last_entry(&rt->rt6i_siblings,
329 struct rt6_info,
330 rt6i_siblings);
331 }
332 w->leaf = NULL;
333 return 0;
334 }
335
336 static void fib6_dump_end(struct netlink_callback *cb)
337 {
338 struct net *net = sock_net(cb->skb->sk);
339 struct fib6_walker *w = (void *)cb->args[2];
340
341 if (w) {
342 if (cb->args[4]) {
343 cb->args[4] = 0;
344 fib6_walker_unlink(net, w);
345 }
346 cb->args[2] = 0;
347 kfree(w);
348 }
349 cb->done = (void *)cb->args[3];
350 cb->args[1] = 3;
351 }
352
353 static int fib6_dump_done(struct netlink_callback *cb)
354 {
355 fib6_dump_end(cb);
356 return cb->done ? cb->done(cb) : 0;
357 }
358
359 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
360 struct netlink_callback *cb)
361 {
362 struct net *net = sock_net(skb->sk);
363 struct fib6_walker *w;
364 int res;
365
366 w = (void *)cb->args[2];
367 w->root = &table->tb6_root;
368
369 if (cb->args[4] == 0) {
370 w->count = 0;
371 w->skip = 0;
372
373 read_lock_bh(&table->tb6_lock);
374 res = fib6_walk(net, w);
375 read_unlock_bh(&table->tb6_lock);
376 if (res > 0) {
377 cb->args[4] = 1;
378 cb->args[5] = w->root->fn_sernum;
379 }
380 } else {
381 if (cb->args[5] != w->root->fn_sernum) {
382 /* Begin at the root if the tree changed */
383 cb->args[5] = w->root->fn_sernum;
384 w->state = FWS_INIT;
385 w->node = w->root;
386 w->skip = w->count;
387 } else
388 w->skip = 0;
389
390 read_lock_bh(&table->tb6_lock);
391 res = fib6_walk_continue(w);
392 read_unlock_bh(&table->tb6_lock);
393 if (res <= 0) {
394 fib6_walker_unlink(net, w);
395 cb->args[4] = 0;
396 }
397 }
398
399 return res;
400 }
401
402 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
403 {
404 struct net *net = sock_net(skb->sk);
405 unsigned int h, s_h;
406 unsigned int e = 0, s_e;
407 struct rt6_rtnl_dump_arg arg;
408 struct fib6_walker *w;
409 struct fib6_table *tb;
410 struct hlist_head *head;
411 int res = 0;
412
413 s_h = cb->args[0];
414 s_e = cb->args[1];
415
416 w = (void *)cb->args[2];
417 if (!w) {
418 /* New dump:
419 *
420 * 1. hook callback destructor.
421 */
422 cb->args[3] = (long)cb->done;
423 cb->done = fib6_dump_done;
424
425 /*
426 * 2. allocate and initialize walker.
427 */
428 w = kzalloc(sizeof(*w), GFP_ATOMIC);
429 if (!w)
430 return -ENOMEM;
431 w->func = fib6_dump_node;
432 cb->args[2] = (long)w;
433 }
434
435 arg.skb = skb;
436 arg.cb = cb;
437 arg.net = net;
438 w->args = &arg;
439
440 rcu_read_lock();
441 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
442 e = 0;
443 head = &net->ipv6.fib_table_hash[h];
444 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
445 if (e < s_e)
446 goto next;
447 res = fib6_dump_table(tb, skb, cb);
448 if (res != 0)
449 goto out;
450 next:
451 e++;
452 }
453 }
454 out:
455 rcu_read_unlock();
456 cb->args[1] = e;
457 cb->args[0] = h;
458
459 res = res < 0 ? res : skb->len;
460 if (res <= 0)
461 fib6_dump_end(cb);
462 return res;
463 }
464
465 /*
466 * Routing Table
467 *
468 * return the appropriate node for a routing tree "add" operation
469 * by either creating and inserting or by returning an existing
470 * node.
471 */
472
473 static struct fib6_node *fib6_add_1(struct fib6_node *root,
474 struct in6_addr *addr, int plen,
475 int offset, int allow_create,
476 int replace_required, int sernum)
477 {
478 struct fib6_node *fn, *in, *ln;
479 struct fib6_node *pn = NULL;
480 struct rt6key *key;
481 int bit;
482 __be32 dir = 0;
483
484 RT6_TRACE("fib6_add_1\n");
485
486 /* insert node in tree */
487
488 fn = root;
489
490 do {
491 key = (struct rt6key *)((u8 *)fn->leaf + offset);
492
493 /*
494 * Prefix match
495 */
496 if (plen < fn->fn_bit ||
497 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
498 if (!allow_create) {
499 if (replace_required) {
500 pr_warn("Can't replace route, no match found\n");
501 return ERR_PTR(-ENOENT);
502 }
503 pr_warn("NLM_F_CREATE should be set when creating new route\n");
504 }
505 goto insert_above;
506 }
507
508 /*
509 * Exact match ?
510 */
511
512 if (plen == fn->fn_bit) {
513 /* clean up an intermediate node */
514 if (!(fn->fn_flags & RTN_RTINFO)) {
515 rt6_release(fn->leaf);
516 fn->leaf = NULL;
517 }
518
519 fn->fn_sernum = sernum;
520
521 return fn;
522 }
523
524 /*
525 * We have more bits to go
526 */
527
528 /* Try to walk down on tree. */
529 fn->fn_sernum = sernum;
530 dir = addr_bit_set(addr, fn->fn_bit);
531 pn = fn;
532 fn = dir ? fn->right : fn->left;
533 } while (fn);
534
535 if (!allow_create) {
536 /* We should not create new node because
537 * NLM_F_REPLACE was specified without NLM_F_CREATE
538 * I assume it is safe to require NLM_F_CREATE when
539 * REPLACE flag is used! Later we may want to remove the
540 * check for replace_required, because according
541 * to netlink specification, NLM_F_CREATE
542 * MUST be specified if new route is created.
543 * That would keep IPv6 consistent with IPv4
544 */
545 if (replace_required) {
546 pr_warn("Can't replace route, no match found\n");
547 return ERR_PTR(-ENOENT);
548 }
549 pr_warn("NLM_F_CREATE should be set when creating new route\n");
550 }
551 /*
552 * We walked to the bottom of tree.
553 * Create new leaf node without children.
554 */
555
556 ln = node_alloc();
557
558 if (!ln)
559 return ERR_PTR(-ENOMEM);
560 ln->fn_bit = plen;
561
562 ln->parent = pn;
563 ln->fn_sernum = sernum;
564
565 if (dir)
566 pn->right = ln;
567 else
568 pn->left = ln;
569
570 return ln;
571
572
573 insert_above:
574 /*
575 * split since we don't have a common prefix anymore or
576 * we have a less significant route.
577 * we've to insert an intermediate node on the list
578 * this new node will point to the one we need to create
579 * and the current
580 */
581
582 pn = fn->parent;
583
584 /* find 1st bit in difference between the 2 addrs.
585
586 See comment in __ipv6_addr_diff: bit may be an invalid value,
587 but if it is >= plen, the value is ignored in any case.
588 */
589
590 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
591
592 /*
593 * (intermediate)[in]
594 * / \
595 * (new leaf node)[ln] (old node)[fn]
596 */
597 if (plen > bit) {
598 in = node_alloc();
599 ln = node_alloc();
600
601 if (!in || !ln) {
602 if (in)
603 node_free(in);
604 if (ln)
605 node_free(ln);
606 return ERR_PTR(-ENOMEM);
607 }
608
609 /*
610 * new intermediate node.
611 * RTN_RTINFO will
612 * be off since that an address that chooses one of
613 * the branches would not match less specific routes
614 * in the other branch
615 */
616
617 in->fn_bit = bit;
618
619 in->parent = pn;
620 in->leaf = fn->leaf;
621 atomic_inc(&in->leaf->rt6i_ref);
622
623 in->fn_sernum = sernum;
624
625 /* update parent pointer */
626 if (dir)
627 pn->right = in;
628 else
629 pn->left = in;
630
631 ln->fn_bit = plen;
632
633 ln->parent = in;
634 fn->parent = in;
635
636 ln->fn_sernum = sernum;
637
638 if (addr_bit_set(addr, bit)) {
639 in->right = ln;
640 in->left = fn;
641 } else {
642 in->left = ln;
643 in->right = fn;
644 }
645 } else { /* plen <= bit */
646
647 /*
648 * (new leaf node)[ln]
649 * / \
650 * (old node)[fn] NULL
651 */
652
653 ln = node_alloc();
654
655 if (!ln)
656 return ERR_PTR(-ENOMEM);
657
658 ln->fn_bit = plen;
659
660 ln->parent = pn;
661
662 ln->fn_sernum = sernum;
663
664 if (dir)
665 pn->right = ln;
666 else
667 pn->left = ln;
668
669 if (addr_bit_set(&key->addr, plen))
670 ln->right = fn;
671 else
672 ln->left = fn;
673
674 fn->parent = ln;
675 }
676 return ln;
677 }
678
679 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
680 {
681 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
682 RTF_GATEWAY;
683 }
684
685 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
686 {
687 int i;
688
689 for (i = 0; i < RTAX_MAX; i++) {
690 if (test_bit(i, mxc->mx_valid))
691 mp[i] = mxc->mx[i];
692 }
693 }
694
695 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
696 {
697 if (!mxc->mx)
698 return 0;
699
700 if (dst->flags & DST_HOST) {
701 u32 *mp = dst_metrics_write_ptr(dst);
702
703 if (unlikely(!mp))
704 return -ENOMEM;
705
706 fib6_copy_metrics(mp, mxc);
707 } else {
708 dst_init_metrics(dst, mxc->mx, false);
709
710 /* We've stolen mx now. */
711 mxc->mx = NULL;
712 }
713
714 return 0;
715 }
716
717 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
718 struct net *net)
719 {
720 if (atomic_read(&rt->rt6i_ref) != 1) {
721 /* This route is used as dummy address holder in some split
722 * nodes. It is not leaked, but it still holds other resources,
723 * which must be released in time. So, scan ascendant nodes
724 * and replace dummy references to this route with references
725 * to still alive ones.
726 */
727 while (fn) {
728 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
729 fn->leaf = fib6_find_prefix(net, fn);
730 atomic_inc(&fn->leaf->rt6i_ref);
731 rt6_release(rt);
732 }
733 fn = fn->parent;
734 }
735 /* No more references are possible at this point. */
736 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
737 }
738 }
739
740 /*
741 * Insert routing information in a node.
742 */
743
744 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
745 struct nl_info *info, struct mx6_config *mxc)
746 {
747 struct rt6_info *iter = NULL;
748 struct rt6_info **ins;
749 struct rt6_info **fallback_ins = NULL;
750 int replace = (info->nlh &&
751 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
752 int add = (!info->nlh ||
753 (info->nlh->nlmsg_flags & NLM_F_CREATE));
754 int found = 0;
755 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
756 u16 nlflags = NLM_F_EXCL;
757 int err;
758
759 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
760 nlflags |= NLM_F_APPEND;
761
762 ins = &fn->leaf;
763
764 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
765 /*
766 * Search for duplicates
767 */
768
769 if (iter->rt6i_metric == rt->rt6i_metric) {
770 /*
771 * Same priority level
772 */
773 if (info->nlh &&
774 (info->nlh->nlmsg_flags & NLM_F_EXCL))
775 return -EEXIST;
776
777 nlflags &= ~NLM_F_EXCL;
778 if (replace) {
779 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
780 found++;
781 break;
782 }
783 if (rt_can_ecmp)
784 fallback_ins = fallback_ins ?: ins;
785 goto next_iter;
786 }
787
788 if (iter->dst.dev == rt->dst.dev &&
789 iter->rt6i_idev == rt->rt6i_idev &&
790 ipv6_addr_equal(&iter->rt6i_gateway,
791 &rt->rt6i_gateway)) {
792 if (rt->rt6i_nsiblings)
793 rt->rt6i_nsiblings = 0;
794 if (!(iter->rt6i_flags & RTF_EXPIRES))
795 return -EEXIST;
796 if (!(rt->rt6i_flags & RTF_EXPIRES))
797 rt6_clean_expires(iter);
798 else
799 rt6_set_expires(iter, rt->dst.expires);
800 iter->rt6i_pmtu = rt->rt6i_pmtu;
801 return -EEXIST;
802 }
803 /* If we have the same destination and the same metric,
804 * but not the same gateway, then the route we try to
805 * add is sibling to this route, increment our counter
806 * of siblings, and later we will add our route to the
807 * list.
808 * Only static routes (which don't have flag
809 * RTF_EXPIRES) are used for ECMPv6.
810 *
811 * To avoid long list, we only had siblings if the
812 * route have a gateway.
813 */
814 if (rt_can_ecmp &&
815 rt6_qualify_for_ecmp(iter))
816 rt->rt6i_nsiblings++;
817 }
818
819 if (iter->rt6i_metric > rt->rt6i_metric)
820 break;
821
822 next_iter:
823 ins = &iter->dst.rt6_next;
824 }
825
826 if (fallback_ins && !found) {
827 /* No ECMP-able route found, replace first non-ECMP one */
828 ins = fallback_ins;
829 iter = *ins;
830 found++;
831 }
832
833 /* Reset round-robin state, if necessary */
834 if (ins == &fn->leaf)
835 fn->rr_ptr = NULL;
836
837 /* Link this route to others same route. */
838 if (rt->rt6i_nsiblings) {
839 unsigned int rt6i_nsiblings;
840 struct rt6_info *sibling, *temp_sibling;
841
842 /* Find the first route that have the same metric */
843 sibling = fn->leaf;
844 while (sibling) {
845 if (sibling->rt6i_metric == rt->rt6i_metric &&
846 rt6_qualify_for_ecmp(sibling)) {
847 list_add_tail(&rt->rt6i_siblings,
848 &sibling->rt6i_siblings);
849 break;
850 }
851 sibling = sibling->dst.rt6_next;
852 }
853 /* For each sibling in the list, increment the counter of
854 * siblings. BUG() if counters does not match, list of siblings
855 * is broken!
856 */
857 rt6i_nsiblings = 0;
858 list_for_each_entry_safe(sibling, temp_sibling,
859 &rt->rt6i_siblings, rt6i_siblings) {
860 sibling->rt6i_nsiblings++;
861 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
862 rt6i_nsiblings++;
863 }
864 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
865 }
866
867 /*
868 * insert node
869 */
870 if (!replace) {
871 if (!add)
872 pr_warn("NLM_F_CREATE should be set when creating new route\n");
873
874 add:
875 nlflags |= NLM_F_CREATE;
876 err = fib6_commit_metrics(&rt->dst, mxc);
877 if (err)
878 return err;
879
880 rt->dst.rt6_next = iter;
881 *ins = rt;
882 rt->rt6i_node = fn;
883 atomic_inc(&rt->rt6i_ref);
884 if (!info->skip_notify)
885 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
886 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
887
888 if (!(fn->fn_flags & RTN_RTINFO)) {
889 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
890 fn->fn_flags |= RTN_RTINFO;
891 }
892
893 } else {
894 int nsiblings;
895
896 if (!found) {
897 if (add)
898 goto add;
899 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
900 return -ENOENT;
901 }
902
903 err = fib6_commit_metrics(&rt->dst, mxc);
904 if (err)
905 return err;
906
907 *ins = rt;
908 rt->rt6i_node = fn;
909 rt->dst.rt6_next = iter->dst.rt6_next;
910 atomic_inc(&rt->rt6i_ref);
911 if (!info->skip_notify)
912 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
913 if (!(fn->fn_flags & RTN_RTINFO)) {
914 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
915 fn->fn_flags |= RTN_RTINFO;
916 }
917 nsiblings = iter->rt6i_nsiblings;
918 fib6_purge_rt(iter, fn, info->nl_net);
919 rt6_release(iter);
920
921 if (nsiblings) {
922 /* Replacing an ECMP route, remove all siblings */
923 ins = &rt->dst.rt6_next;
924 iter = *ins;
925 while (iter) {
926 if (iter->rt6i_metric > rt->rt6i_metric)
927 break;
928 if (rt6_qualify_for_ecmp(iter)) {
929 *ins = iter->dst.rt6_next;
930 fib6_purge_rt(iter, fn, info->nl_net);
931 rt6_release(iter);
932 nsiblings--;
933 } else {
934 ins = &iter->dst.rt6_next;
935 }
936 iter = *ins;
937 }
938 WARN_ON(nsiblings != 0);
939 }
940 }
941
942 return 0;
943 }
944
945 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
946 {
947 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
948 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
949 mod_timer(&net->ipv6.ip6_fib_timer,
950 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
951 }
952
953 void fib6_force_start_gc(struct net *net)
954 {
955 if (!timer_pending(&net->ipv6.ip6_fib_timer))
956 mod_timer(&net->ipv6.ip6_fib_timer,
957 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
958 }
959
960 /*
961 * Add routing information to the routing tree.
962 * <destination addr>/<source addr>
963 * with source addr info in sub-trees
964 */
965
966 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
967 struct nl_info *info, struct mx6_config *mxc)
968 {
969 struct fib6_node *fn, *pn = NULL;
970 int err = -ENOMEM;
971 int allow_create = 1;
972 int replace_required = 0;
973 int sernum = fib6_new_sernum(info->nl_net);
974
975 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
976 !atomic_read(&rt->dst.__refcnt)))
977 return -EINVAL;
978
979 if (info->nlh) {
980 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
981 allow_create = 0;
982 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
983 replace_required = 1;
984 }
985 if (!allow_create && !replace_required)
986 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
987
988 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
989 offsetof(struct rt6_info, rt6i_dst), allow_create,
990 replace_required, sernum);
991 if (IS_ERR(fn)) {
992 err = PTR_ERR(fn);
993 fn = NULL;
994 goto out;
995 }
996
997 pn = fn;
998
999 #ifdef CONFIG_IPV6_SUBTREES
1000 if (rt->rt6i_src.plen) {
1001 struct fib6_node *sn;
1002
1003 if (!fn->subtree) {
1004 struct fib6_node *sfn;
1005
1006 /*
1007 * Create subtree.
1008 *
1009 * fn[main tree]
1010 * |
1011 * sfn[subtree root]
1012 * \
1013 * sn[new leaf node]
1014 */
1015
1016 /* Create subtree root node */
1017 sfn = node_alloc();
1018 if (!sfn)
1019 goto st_failure;
1020
1021 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1022 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1023 sfn->fn_flags = RTN_ROOT;
1024 sfn->fn_sernum = sernum;
1025
1026 /* Now add the first leaf node to new subtree */
1027
1028 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1029 rt->rt6i_src.plen,
1030 offsetof(struct rt6_info, rt6i_src),
1031 allow_create, replace_required, sernum);
1032
1033 if (IS_ERR(sn)) {
1034 /* If it is failed, discard just allocated
1035 root, and then (in st_failure) stale node
1036 in main tree.
1037 */
1038 node_free(sfn);
1039 err = PTR_ERR(sn);
1040 goto st_failure;
1041 }
1042
1043 /* Now link new subtree to main tree */
1044 sfn->parent = fn;
1045 fn->subtree = sfn;
1046 } else {
1047 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1048 rt->rt6i_src.plen,
1049 offsetof(struct rt6_info, rt6i_src),
1050 allow_create, replace_required, sernum);
1051
1052 if (IS_ERR(sn)) {
1053 err = PTR_ERR(sn);
1054 goto st_failure;
1055 }
1056 }
1057
1058 if (!fn->leaf) {
1059 fn->leaf = rt;
1060 atomic_inc(&rt->rt6i_ref);
1061 }
1062 fn = sn;
1063 }
1064 #endif
1065
1066 err = fib6_add_rt2node(fn, rt, info, mxc);
1067 if (!err) {
1068 fib6_start_gc(info->nl_net, rt);
1069 if (!(rt->rt6i_flags & RTF_CACHE))
1070 fib6_prune_clones(info->nl_net, pn);
1071 rt->dst.flags &= ~DST_NOCACHE;
1072 }
1073
1074 out:
1075 if (err) {
1076 #ifdef CONFIG_IPV6_SUBTREES
1077 /*
1078 * If fib6_add_1 has cleared the old leaf pointer in the
1079 * super-tree leaf node we have to find a new one for it.
1080 */
1081 if (pn != fn && pn->leaf == rt) {
1082 pn->leaf = NULL;
1083 atomic_dec(&rt->rt6i_ref);
1084 }
1085 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1086 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1087 #if RT6_DEBUG >= 2
1088 if (!pn->leaf) {
1089 WARN_ON(pn->leaf == NULL);
1090 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1091 }
1092 #endif
1093 atomic_inc(&pn->leaf->rt6i_ref);
1094 }
1095 #endif
1096 if (!(rt->dst.flags & DST_NOCACHE))
1097 dst_free(&rt->dst);
1098 }
1099 return err;
1100
1101 #ifdef CONFIG_IPV6_SUBTREES
1102 /* Subtree creation failed, probably main tree node
1103 is orphan. If it is, shoot it.
1104 */
1105 st_failure:
1106 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1107 fib6_repair_tree(info->nl_net, fn);
1108 if (!(rt->dst.flags & DST_NOCACHE))
1109 dst_free(&rt->dst);
1110 return err;
1111 #endif
1112 }
1113
1114 /*
1115 * Routing tree lookup
1116 *
1117 */
1118
1119 struct lookup_args {
1120 int offset; /* key offset on rt6_info */
1121 const struct in6_addr *addr; /* search key */
1122 };
1123
1124 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1125 struct lookup_args *args)
1126 {
1127 struct fib6_node *fn;
1128 __be32 dir;
1129
1130 if (unlikely(args->offset == 0))
1131 return NULL;
1132
1133 /*
1134 * Descend on a tree
1135 */
1136
1137 fn = root;
1138
1139 for (;;) {
1140 struct fib6_node *next;
1141
1142 dir = addr_bit_set(args->addr, fn->fn_bit);
1143
1144 next = dir ? fn->right : fn->left;
1145
1146 if (next) {
1147 fn = next;
1148 continue;
1149 }
1150 break;
1151 }
1152
1153 while (fn) {
1154 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1155 struct rt6key *key;
1156
1157 key = (struct rt6key *) ((u8 *) fn->leaf +
1158 args->offset);
1159
1160 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1161 #ifdef CONFIG_IPV6_SUBTREES
1162 if (fn->subtree) {
1163 struct fib6_node *sfn;
1164 sfn = fib6_lookup_1(fn->subtree,
1165 args + 1);
1166 if (!sfn)
1167 goto backtrack;
1168 fn = sfn;
1169 }
1170 #endif
1171 if (fn->fn_flags & RTN_RTINFO)
1172 return fn;
1173 }
1174 }
1175 #ifdef CONFIG_IPV6_SUBTREES
1176 backtrack:
1177 #endif
1178 if (fn->fn_flags & RTN_ROOT)
1179 break;
1180
1181 fn = fn->parent;
1182 }
1183
1184 return NULL;
1185 }
1186
1187 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1188 const struct in6_addr *saddr)
1189 {
1190 struct fib6_node *fn;
1191 struct lookup_args args[] = {
1192 {
1193 .offset = offsetof(struct rt6_info, rt6i_dst),
1194 .addr = daddr,
1195 },
1196 #ifdef CONFIG_IPV6_SUBTREES
1197 {
1198 .offset = offsetof(struct rt6_info, rt6i_src),
1199 .addr = saddr,
1200 },
1201 #endif
1202 {
1203 .offset = 0, /* sentinel */
1204 }
1205 };
1206
1207 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1208 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1209 fn = root;
1210
1211 return fn;
1212 }
1213
1214 /*
1215 * Get node with specified destination prefix (and source prefix,
1216 * if subtrees are used)
1217 */
1218
1219
1220 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1221 const struct in6_addr *addr,
1222 int plen, int offset)
1223 {
1224 struct fib6_node *fn;
1225
1226 for (fn = root; fn ; ) {
1227 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1228
1229 /*
1230 * Prefix match
1231 */
1232 if (plen < fn->fn_bit ||
1233 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1234 return NULL;
1235
1236 if (plen == fn->fn_bit)
1237 return fn;
1238
1239 /*
1240 * We have more bits to go
1241 */
1242 if (addr_bit_set(addr, fn->fn_bit))
1243 fn = fn->right;
1244 else
1245 fn = fn->left;
1246 }
1247 return NULL;
1248 }
1249
1250 struct fib6_node *fib6_locate(struct fib6_node *root,
1251 const struct in6_addr *daddr, int dst_len,
1252 const struct in6_addr *saddr, int src_len)
1253 {
1254 struct fib6_node *fn;
1255
1256 fn = fib6_locate_1(root, daddr, dst_len,
1257 offsetof(struct rt6_info, rt6i_dst));
1258
1259 #ifdef CONFIG_IPV6_SUBTREES
1260 if (src_len) {
1261 WARN_ON(saddr == NULL);
1262 if (fn && fn->subtree)
1263 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1264 offsetof(struct rt6_info, rt6i_src));
1265 }
1266 #endif
1267
1268 if (fn && fn->fn_flags & RTN_RTINFO)
1269 return fn;
1270
1271 return NULL;
1272 }
1273
1274
1275 /*
1276 * Deletion
1277 *
1278 */
1279
1280 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1281 {
1282 if (fn->fn_flags & RTN_ROOT)
1283 return net->ipv6.ip6_null_entry;
1284
1285 while (fn) {
1286 if (fn->left)
1287 return fn->left->leaf;
1288 if (fn->right)
1289 return fn->right->leaf;
1290
1291 fn = FIB6_SUBTREE(fn);
1292 }
1293 return NULL;
1294 }
1295
1296 /*
1297 * Called to trim the tree of intermediate nodes when possible. "fn"
1298 * is the node we want to try and remove.
1299 */
1300
1301 static struct fib6_node *fib6_repair_tree(struct net *net,
1302 struct fib6_node *fn)
1303 {
1304 int children;
1305 int nstate;
1306 struct fib6_node *child, *pn;
1307 struct fib6_walker *w;
1308 int iter = 0;
1309
1310 for (;;) {
1311 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1312 iter++;
1313
1314 WARN_ON(fn->fn_flags & RTN_RTINFO);
1315 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1316 WARN_ON(fn->leaf);
1317
1318 children = 0;
1319 child = NULL;
1320 if (fn->right)
1321 child = fn->right, children |= 1;
1322 if (fn->left)
1323 child = fn->left, children |= 2;
1324
1325 if (children == 3 || FIB6_SUBTREE(fn)
1326 #ifdef CONFIG_IPV6_SUBTREES
1327 /* Subtree root (i.e. fn) may have one child */
1328 || (children && fn->fn_flags & RTN_ROOT)
1329 #endif
1330 ) {
1331 fn->leaf = fib6_find_prefix(net, fn);
1332 #if RT6_DEBUG >= 2
1333 if (!fn->leaf) {
1334 WARN_ON(!fn->leaf);
1335 fn->leaf = net->ipv6.ip6_null_entry;
1336 }
1337 #endif
1338 atomic_inc(&fn->leaf->rt6i_ref);
1339 return fn->parent;
1340 }
1341
1342 pn = fn->parent;
1343 #ifdef CONFIG_IPV6_SUBTREES
1344 if (FIB6_SUBTREE(pn) == fn) {
1345 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1346 FIB6_SUBTREE(pn) = NULL;
1347 nstate = FWS_L;
1348 } else {
1349 WARN_ON(fn->fn_flags & RTN_ROOT);
1350 #endif
1351 if (pn->right == fn)
1352 pn->right = child;
1353 else if (pn->left == fn)
1354 pn->left = child;
1355 #if RT6_DEBUG >= 2
1356 else
1357 WARN_ON(1);
1358 #endif
1359 if (child)
1360 child->parent = pn;
1361 nstate = FWS_R;
1362 #ifdef CONFIG_IPV6_SUBTREES
1363 }
1364 #endif
1365
1366 read_lock(&net->ipv6.fib6_walker_lock);
1367 FOR_WALKERS(net, w) {
1368 if (!child) {
1369 if (w->root == fn) {
1370 w->root = w->node = NULL;
1371 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1372 } else if (w->node == fn) {
1373 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1374 w->node = pn;
1375 w->state = nstate;
1376 }
1377 } else {
1378 if (w->root == fn) {
1379 w->root = child;
1380 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1381 }
1382 if (w->node == fn) {
1383 w->node = child;
1384 if (children&2) {
1385 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1386 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1387 } else {
1388 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1389 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1390 }
1391 }
1392 }
1393 }
1394 read_unlock(&net->ipv6.fib6_walker_lock);
1395
1396 node_free(fn);
1397 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1398 return pn;
1399
1400 rt6_release(pn->leaf);
1401 pn->leaf = NULL;
1402 fn = pn;
1403 }
1404 }
1405
1406 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1407 struct nl_info *info)
1408 {
1409 struct fib6_walker *w;
1410 struct rt6_info *rt = *rtp;
1411 struct net *net = info->nl_net;
1412
1413 RT6_TRACE("fib6_del_route\n");
1414
1415 /* Unlink it */
1416 *rtp = rt->dst.rt6_next;
1417 rt->rt6i_node = NULL;
1418 net->ipv6.rt6_stats->fib_rt_entries--;
1419 net->ipv6.rt6_stats->fib_discarded_routes++;
1420
1421 /* Reset round-robin state, if necessary */
1422 if (fn->rr_ptr == rt)
1423 fn->rr_ptr = NULL;
1424
1425 /* Remove this entry from other siblings */
1426 if (rt->rt6i_nsiblings) {
1427 struct rt6_info *sibling, *next_sibling;
1428
1429 list_for_each_entry_safe(sibling, next_sibling,
1430 &rt->rt6i_siblings, rt6i_siblings)
1431 sibling->rt6i_nsiblings--;
1432 rt->rt6i_nsiblings = 0;
1433 list_del_init(&rt->rt6i_siblings);
1434 }
1435
1436 /* Adjust walkers */
1437 read_lock(&net->ipv6.fib6_walker_lock);
1438 FOR_WALKERS(net, w) {
1439 if (w->state == FWS_C && w->leaf == rt) {
1440 RT6_TRACE("walker %p adjusted by delroute\n", w);
1441 w->leaf = rt->dst.rt6_next;
1442 if (!w->leaf)
1443 w->state = FWS_U;
1444 }
1445 }
1446 read_unlock(&net->ipv6.fib6_walker_lock);
1447
1448 rt->dst.rt6_next = NULL;
1449
1450 /* If it was last route, expunge its radix tree node */
1451 if (!fn->leaf) {
1452 fn->fn_flags &= ~RTN_RTINFO;
1453 net->ipv6.rt6_stats->fib_route_nodes--;
1454 fn = fib6_repair_tree(net, fn);
1455 }
1456
1457 fib6_purge_rt(rt, fn, net);
1458
1459 if (!info->skip_notify)
1460 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1461 rt6_release(rt);
1462 }
1463
1464 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1465 {
1466 struct net *net = info->nl_net;
1467 struct fib6_node *fn = rt->rt6i_node;
1468 struct rt6_info **rtp;
1469
1470 #if RT6_DEBUG >= 2
1471 if (rt->dst.obsolete > 0) {
1472 WARN_ON(fn);
1473 return -ENOENT;
1474 }
1475 #endif
1476 if (!fn || rt == net->ipv6.ip6_null_entry)
1477 return -ENOENT;
1478
1479 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1480
1481 if (!(rt->rt6i_flags & RTF_CACHE)) {
1482 struct fib6_node *pn = fn;
1483 #ifdef CONFIG_IPV6_SUBTREES
1484 /* clones of this route might be in another subtree */
1485 if (rt->rt6i_src.plen) {
1486 while (!(pn->fn_flags & RTN_ROOT))
1487 pn = pn->parent;
1488 pn = pn->parent;
1489 }
1490 #endif
1491 fib6_prune_clones(info->nl_net, pn);
1492 }
1493
1494 /*
1495 * Walk the leaf entries looking for ourself
1496 */
1497
1498 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1499 if (*rtp == rt) {
1500 fib6_del_route(fn, rtp, info);
1501 return 0;
1502 }
1503 }
1504 return -ENOENT;
1505 }
1506
1507 /*
1508 * Tree traversal function.
1509 *
1510 * Certainly, it is not interrupt safe.
1511 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1512 * It means, that we can modify tree during walking
1513 * and use this function for garbage collection, clone pruning,
1514 * cleaning tree when a device goes down etc. etc.
1515 *
1516 * It guarantees that every node will be traversed,
1517 * and that it will be traversed only once.
1518 *
1519 * Callback function w->func may return:
1520 * 0 -> continue walking.
1521 * positive value -> walking is suspended (used by tree dumps,
1522 * and probably by gc, if it will be split to several slices)
1523 * negative value -> terminate walking.
1524 *
1525 * The function itself returns:
1526 * 0 -> walk is complete.
1527 * >0 -> walk is incomplete (i.e. suspended)
1528 * <0 -> walk is terminated by an error.
1529 */
1530
1531 static int fib6_walk_continue(struct fib6_walker *w)
1532 {
1533 struct fib6_node *fn, *pn;
1534
1535 for (;;) {
1536 fn = w->node;
1537 if (!fn)
1538 return 0;
1539
1540 if (w->prune && fn != w->root &&
1541 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1542 w->state = FWS_C;
1543 w->leaf = fn->leaf;
1544 }
1545 switch (w->state) {
1546 #ifdef CONFIG_IPV6_SUBTREES
1547 case FWS_S:
1548 if (FIB6_SUBTREE(fn)) {
1549 w->node = FIB6_SUBTREE(fn);
1550 continue;
1551 }
1552 w->state = FWS_L;
1553 #endif
1554 case FWS_L:
1555 if (fn->left) {
1556 w->node = fn->left;
1557 w->state = FWS_INIT;
1558 continue;
1559 }
1560 w->state = FWS_R;
1561 case FWS_R:
1562 if (fn->right) {
1563 w->node = fn->right;
1564 w->state = FWS_INIT;
1565 continue;
1566 }
1567 w->state = FWS_C;
1568 w->leaf = fn->leaf;
1569 case FWS_C:
1570 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1571 int err;
1572
1573 if (w->skip) {
1574 w->skip--;
1575 goto skip;
1576 }
1577
1578 err = w->func(w);
1579 if (err)
1580 return err;
1581
1582 w->count++;
1583 continue;
1584 }
1585 skip:
1586 w->state = FWS_U;
1587 case FWS_U:
1588 if (fn == w->root)
1589 return 0;
1590 pn = fn->parent;
1591 w->node = pn;
1592 #ifdef CONFIG_IPV6_SUBTREES
1593 if (FIB6_SUBTREE(pn) == fn) {
1594 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1595 w->state = FWS_L;
1596 continue;
1597 }
1598 #endif
1599 if (pn->left == fn) {
1600 w->state = FWS_R;
1601 continue;
1602 }
1603 if (pn->right == fn) {
1604 w->state = FWS_C;
1605 w->leaf = w->node->leaf;
1606 continue;
1607 }
1608 #if RT6_DEBUG >= 2
1609 WARN_ON(1);
1610 #endif
1611 }
1612 }
1613 }
1614
1615 static int fib6_walk(struct net *net, struct fib6_walker *w)
1616 {
1617 int res;
1618
1619 w->state = FWS_INIT;
1620 w->node = w->root;
1621
1622 fib6_walker_link(net, w);
1623 res = fib6_walk_continue(w);
1624 if (res <= 0)
1625 fib6_walker_unlink(net, w);
1626 return res;
1627 }
1628
1629 static int fib6_clean_node(struct fib6_walker *w)
1630 {
1631 int res;
1632 struct rt6_info *rt;
1633 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1634 struct nl_info info = {
1635 .nl_net = c->net,
1636 };
1637
1638 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1639 w->node->fn_sernum != c->sernum)
1640 w->node->fn_sernum = c->sernum;
1641
1642 if (!c->func) {
1643 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1644 w->leaf = NULL;
1645 return 0;
1646 }
1647
1648 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1649 res = c->func(rt, c->arg);
1650 if (res < 0) {
1651 w->leaf = rt;
1652 res = fib6_del(rt, &info);
1653 if (res) {
1654 #if RT6_DEBUG >= 2
1655 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1656 __func__, rt, rt->rt6i_node, res);
1657 #endif
1658 continue;
1659 }
1660 return 0;
1661 }
1662 WARN_ON(res != 0);
1663 }
1664 w->leaf = rt;
1665 return 0;
1666 }
1667
1668 /*
1669 * Convenient frontend to tree walker.
1670 *
1671 * func is called on each route.
1672 * It may return -1 -> delete this route.
1673 * 0 -> continue walking
1674 *
1675 * prune==1 -> only immediate children of node (certainly,
1676 * ignoring pure split nodes) will be scanned.
1677 */
1678
1679 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1680 int (*func)(struct rt6_info *, void *arg),
1681 bool prune, int sernum, void *arg)
1682 {
1683 struct fib6_cleaner c;
1684
1685 c.w.root = root;
1686 c.w.func = fib6_clean_node;
1687 c.w.prune = prune;
1688 c.w.count = 0;
1689 c.w.skip = 0;
1690 c.func = func;
1691 c.sernum = sernum;
1692 c.arg = arg;
1693 c.net = net;
1694
1695 fib6_walk(net, &c.w);
1696 }
1697
1698 static void __fib6_clean_all(struct net *net,
1699 int (*func)(struct rt6_info *, void *),
1700 int sernum, void *arg)
1701 {
1702 struct fib6_table *table;
1703 struct hlist_head *head;
1704 unsigned int h;
1705
1706 rcu_read_lock();
1707 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1708 head = &net->ipv6.fib_table_hash[h];
1709 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1710 write_lock_bh(&table->tb6_lock);
1711 fib6_clean_tree(net, &table->tb6_root,
1712 func, false, sernum, arg);
1713 write_unlock_bh(&table->tb6_lock);
1714 }
1715 }
1716 rcu_read_unlock();
1717 }
1718
1719 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1720 void *arg)
1721 {
1722 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1723 }
1724
1725 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1726 {
1727 if (rt->rt6i_flags & RTF_CACHE) {
1728 RT6_TRACE("pruning clone %p\n", rt);
1729 return -1;
1730 }
1731
1732 return 0;
1733 }
1734
1735 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1736 {
1737 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1738 FIB6_NO_SERNUM_CHANGE, NULL);
1739 }
1740
1741 static void fib6_flush_trees(struct net *net)
1742 {
1743 int new_sernum = fib6_new_sernum(net);
1744
1745 __fib6_clean_all(net, NULL, new_sernum, NULL);
1746 }
1747
1748 /*
1749 * Garbage collection
1750 */
1751
1752 struct fib6_gc_args
1753 {
1754 int timeout;
1755 int more;
1756 };
1757
1758 static int fib6_age(struct rt6_info *rt, void *arg)
1759 {
1760 struct fib6_gc_args *gc_args = arg;
1761 unsigned long now = jiffies;
1762
1763 /*
1764 * check addrconf expiration here.
1765 * Routes are expired even if they are in use.
1766 *
1767 * Also age clones. Note, that clones are aged out
1768 * only if they are not in use now.
1769 */
1770
1771 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1772 if (time_after(now, rt->dst.expires)) {
1773 RT6_TRACE("expiring %p\n", rt);
1774 return -1;
1775 }
1776 gc_args->more++;
1777 } else if (rt->rt6i_flags & RTF_CACHE) {
1778 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1779 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1780 RT6_TRACE("aging clone %p\n", rt);
1781 return -1;
1782 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1783 struct neighbour *neigh;
1784 __u8 neigh_flags = 0;
1785
1786 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1787 if (neigh) {
1788 neigh_flags = neigh->flags;
1789 neigh_release(neigh);
1790 }
1791 if (!(neigh_flags & NTF_ROUTER)) {
1792 RT6_TRACE("purging route %p via non-router but gateway\n",
1793 rt);
1794 return -1;
1795 }
1796 }
1797 gc_args->more++;
1798 }
1799
1800 return 0;
1801 }
1802
1803 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1804 {
1805 struct fib6_gc_args gc_args;
1806 unsigned long now;
1807
1808 if (force) {
1809 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1810 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1811 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1812 return;
1813 }
1814 gc_args.timeout = expires ? (int)expires :
1815 net->ipv6.sysctl.ip6_rt_gc_interval;
1816
1817 gc_args.more = icmp6_dst_gc();
1818
1819 fib6_clean_all(net, fib6_age, &gc_args);
1820 now = jiffies;
1821 net->ipv6.ip6_rt_last_gc = now;
1822
1823 if (gc_args.more)
1824 mod_timer(&net->ipv6.ip6_fib_timer,
1825 round_jiffies(now
1826 + net->ipv6.sysctl.ip6_rt_gc_interval));
1827 else
1828 del_timer(&net->ipv6.ip6_fib_timer);
1829 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1830 }
1831
1832 static void fib6_gc_timer_cb(unsigned long arg)
1833 {
1834 fib6_run_gc(0, (struct net *)arg, true);
1835 }
1836
1837 static int __net_init fib6_net_init(struct net *net)
1838 {
1839 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1840
1841 spin_lock_init(&net->ipv6.fib6_gc_lock);
1842 rwlock_init(&net->ipv6.fib6_walker_lock);
1843 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1844 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1845
1846 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1847 if (!net->ipv6.rt6_stats)
1848 goto out_timer;
1849
1850 /* Avoid false sharing : Use at least a full cache line */
1851 size = max_t(size_t, size, L1_CACHE_BYTES);
1852
1853 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1854 if (!net->ipv6.fib_table_hash)
1855 goto out_rt6_stats;
1856
1857 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1858 GFP_KERNEL);
1859 if (!net->ipv6.fib6_main_tbl)
1860 goto out_fib_table_hash;
1861
1862 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1863 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1864 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1865 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1866 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1867
1868 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1869 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1870 GFP_KERNEL);
1871 if (!net->ipv6.fib6_local_tbl)
1872 goto out_fib6_main_tbl;
1873 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1874 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1875 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1876 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1877 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1878 #endif
1879 fib6_tables_init(net);
1880
1881 return 0;
1882
1883 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1884 out_fib6_main_tbl:
1885 kfree(net->ipv6.fib6_main_tbl);
1886 #endif
1887 out_fib_table_hash:
1888 kfree(net->ipv6.fib_table_hash);
1889 out_rt6_stats:
1890 kfree(net->ipv6.rt6_stats);
1891 out_timer:
1892 return -ENOMEM;
1893 }
1894
1895 static void fib6_net_exit(struct net *net)
1896 {
1897 rt6_ifdown(net, NULL);
1898 del_timer_sync(&net->ipv6.ip6_fib_timer);
1899
1900 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1901 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1902 kfree(net->ipv6.fib6_local_tbl);
1903 #endif
1904 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1905 kfree(net->ipv6.fib6_main_tbl);
1906 kfree(net->ipv6.fib_table_hash);
1907 kfree(net->ipv6.rt6_stats);
1908 }
1909
1910 static struct pernet_operations fib6_net_ops = {
1911 .init = fib6_net_init,
1912 .exit = fib6_net_exit,
1913 };
1914
1915 int __init fib6_init(void)
1916 {
1917 int ret = -ENOMEM;
1918
1919 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1920 sizeof(struct fib6_node),
1921 0, SLAB_HWCACHE_ALIGN,
1922 NULL);
1923 if (!fib6_node_kmem)
1924 goto out;
1925
1926 ret = register_pernet_subsys(&fib6_net_ops);
1927 if (ret)
1928 goto out_kmem_cache_create;
1929
1930 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1931 NULL);
1932 if (ret)
1933 goto out_unregister_subsys;
1934
1935 __fib6_flush_trees = fib6_flush_trees;
1936 out:
1937 return ret;
1938
1939 out_unregister_subsys:
1940 unregister_pernet_subsys(&fib6_net_ops);
1941 out_kmem_cache_create:
1942 kmem_cache_destroy(fib6_node_kmem);
1943 goto out;
1944 }
1945
1946 void fib6_gc_cleanup(void)
1947 {
1948 unregister_pernet_subsys(&fib6_net_ops);
1949 kmem_cache_destroy(fib6_node_kmem);
1950 }
1951
1952 #ifdef CONFIG_PROC_FS
1953
1954 struct ipv6_route_iter {
1955 struct seq_net_private p;
1956 struct fib6_walker w;
1957 loff_t skip;
1958 struct fib6_table *tbl;
1959 int sernum;
1960 };
1961
1962 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1963 {
1964 struct rt6_info *rt = v;
1965 struct ipv6_route_iter *iter = seq->private;
1966
1967 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1968
1969 #ifdef CONFIG_IPV6_SUBTREES
1970 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1971 #else
1972 seq_puts(seq, "00000000000000000000000000000000 00 ");
1973 #endif
1974 if (rt->rt6i_flags & RTF_GATEWAY)
1975 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1976 else
1977 seq_puts(seq, "00000000000000000000000000000000");
1978
1979 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1980 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1981 rt->dst.__use, rt->rt6i_flags,
1982 rt->dst.dev ? rt->dst.dev->name : "");
1983 iter->w.leaf = NULL;
1984 return 0;
1985 }
1986
1987 static int ipv6_route_yield(struct fib6_walker *w)
1988 {
1989 struct ipv6_route_iter *iter = w->args;
1990
1991 if (!iter->skip)
1992 return 1;
1993
1994 do {
1995 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1996 iter->skip--;
1997 if (!iter->skip && iter->w.leaf)
1998 return 1;
1999 } while (iter->w.leaf);
2000
2001 return 0;
2002 }
2003
2004 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2005 struct net *net)
2006 {
2007 memset(&iter->w, 0, sizeof(iter->w));
2008 iter->w.func = ipv6_route_yield;
2009 iter->w.root = &iter->tbl->tb6_root;
2010 iter->w.state = FWS_INIT;
2011 iter->w.node = iter->w.root;
2012 iter->w.args = iter;
2013 iter->sernum = iter->w.root->fn_sernum;
2014 INIT_LIST_HEAD(&iter->w.lh);
2015 fib6_walker_link(net, &iter->w);
2016 }
2017
2018 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2019 struct net *net)
2020 {
2021 unsigned int h;
2022 struct hlist_node *node;
2023
2024 if (tbl) {
2025 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2026 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2027 } else {
2028 h = 0;
2029 node = NULL;
2030 }
2031
2032 while (!node && h < FIB6_TABLE_HASHSZ) {
2033 node = rcu_dereference_bh(
2034 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2035 }
2036 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2037 }
2038
2039 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2040 {
2041 if (iter->sernum != iter->w.root->fn_sernum) {
2042 iter->sernum = iter->w.root->fn_sernum;
2043 iter->w.state = FWS_INIT;
2044 iter->w.node = iter->w.root;
2045 WARN_ON(iter->w.skip);
2046 iter->w.skip = iter->w.count;
2047 }
2048 }
2049
2050 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2051 {
2052 int r;
2053 struct rt6_info *n;
2054 struct net *net = seq_file_net(seq);
2055 struct ipv6_route_iter *iter = seq->private;
2056
2057 if (!v)
2058 goto iter_table;
2059
2060 n = ((struct rt6_info *)v)->dst.rt6_next;
2061 if (n) {
2062 ++*pos;
2063 return n;
2064 }
2065
2066 iter_table:
2067 ipv6_route_check_sernum(iter);
2068 read_lock(&iter->tbl->tb6_lock);
2069 r = fib6_walk_continue(&iter->w);
2070 read_unlock(&iter->tbl->tb6_lock);
2071 if (r > 0) {
2072 if (v)
2073 ++*pos;
2074 return iter->w.leaf;
2075 } else if (r < 0) {
2076 fib6_walker_unlink(net, &iter->w);
2077 return NULL;
2078 }
2079 fib6_walker_unlink(net, &iter->w);
2080
2081 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2082 if (!iter->tbl)
2083 return NULL;
2084
2085 ipv6_route_seq_setup_walk(iter, net);
2086 goto iter_table;
2087 }
2088
2089 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2090 __acquires(RCU_BH)
2091 {
2092 struct net *net = seq_file_net(seq);
2093 struct ipv6_route_iter *iter = seq->private;
2094
2095 rcu_read_lock_bh();
2096 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2097 iter->skip = *pos;
2098
2099 if (iter->tbl) {
2100 ipv6_route_seq_setup_walk(iter, net);
2101 return ipv6_route_seq_next(seq, NULL, pos);
2102 } else {
2103 return NULL;
2104 }
2105 }
2106
2107 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2108 {
2109 struct fib6_walker *w = &iter->w;
2110 return w->node && !(w->state == FWS_U && w->node == w->root);
2111 }
2112
2113 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2114 __releases(RCU_BH)
2115 {
2116 struct net *net = seq_file_net(seq);
2117 struct ipv6_route_iter *iter = seq->private;
2118
2119 if (ipv6_route_iter_active(iter))
2120 fib6_walker_unlink(net, &iter->w);
2121
2122 rcu_read_unlock_bh();
2123 }
2124
2125 static const struct seq_operations ipv6_route_seq_ops = {
2126 .start = ipv6_route_seq_start,
2127 .next = ipv6_route_seq_next,
2128 .stop = ipv6_route_seq_stop,
2129 .show = ipv6_route_seq_show
2130 };
2131
2132 int ipv6_route_open(struct inode *inode, struct file *file)
2133 {
2134 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2135 sizeof(struct ipv6_route_iter));
2136 }
2137
2138 #endif /* CONFIG_PROC_FS */