]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/ipv6/ip6_fib.c
regulator: rn5t618: add RC5T619 PMIC support
[mirror_ubuntu-eoan-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 #ifdef CONFIG_IPV6_SUBTREES
59 #define FWS_INIT FWS_S
60 #else
61 #define FWS_INIT FWS_L
62 #endif
63
64 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67 static int fib6_walk(struct net *net, struct fib6_walker *w);
68 static int fib6_walk_continue(struct fib6_walker *w);
69
70 /*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77 static void fib6_gc_timer_cb(unsigned long arg);
78
79 #define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83 {
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87 }
88
89 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90 {
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94 }
95
96 static int fib6_new_sernum(struct net *net)
97 {
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106 }
107
108 enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110 };
111
112 /*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119 /*
120 * test bit
121 */
122 #if defined(__LITTLE_ENDIAN)
123 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
124 #else
125 # define BITOP_BE32_SWIZZLE 0
126 #endif
127
128 static __be32 addr_bit_set(const void *token, int fn_bit)
129 {
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140 }
141
142 static struct fib6_node *node_alloc(void)
143 {
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149 }
150
151 static void node_free(struct fib6_node *fn)
152 {
153 kmem_cache_free(fib6_node_kmem, fn);
154 }
155
156 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
157 {
158 int cpu;
159
160 if (!non_pcpu_rt->rt6i_pcpu)
161 return;
162
163 for_each_possible_cpu(cpu) {
164 struct rt6_info **ppcpu_rt;
165 struct rt6_info *pcpu_rt;
166
167 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
168 pcpu_rt = *ppcpu_rt;
169 if (pcpu_rt) {
170 dst_dev_put(&pcpu_rt->dst);
171 dst_release(&pcpu_rt->dst);
172 *ppcpu_rt = NULL;
173 }
174 }
175
176 free_percpu(non_pcpu_rt->rt6i_pcpu);
177 non_pcpu_rt->rt6i_pcpu = NULL;
178 }
179
180 static void rt6_release(struct rt6_info *rt)
181 {
182 if (atomic_dec_and_test(&rt->rt6i_ref)) {
183 rt6_free_pcpu(rt);
184 dst_dev_put(&rt->dst);
185 dst_release(&rt->dst);
186 }
187 }
188
189 static void fib6_link_table(struct net *net, struct fib6_table *tb)
190 {
191 unsigned int h;
192
193 /*
194 * Initialize table lock at a single place to give lockdep a key,
195 * tables aren't visible prior to being linked to the list.
196 */
197 rwlock_init(&tb->tb6_lock);
198
199 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
200
201 /*
202 * No protection necessary, this is the only list mutatation
203 * operation, tables never disappear once they exist.
204 */
205 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
206 }
207
208 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
209
210 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
211 {
212 struct fib6_table *table;
213
214 table = kzalloc(sizeof(*table), GFP_ATOMIC);
215 if (table) {
216 table->tb6_id = id;
217 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
218 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
219 inet_peer_base_init(&table->tb6_peers);
220 }
221
222 return table;
223 }
224
225 struct fib6_table *fib6_new_table(struct net *net, u32 id)
226 {
227 struct fib6_table *tb;
228
229 if (id == 0)
230 id = RT6_TABLE_MAIN;
231 tb = fib6_get_table(net, id);
232 if (tb)
233 return tb;
234
235 tb = fib6_alloc_table(net, id);
236 if (tb)
237 fib6_link_table(net, tb);
238
239 return tb;
240 }
241 EXPORT_SYMBOL_GPL(fib6_new_table);
242
243 struct fib6_table *fib6_get_table(struct net *net, u32 id)
244 {
245 struct fib6_table *tb;
246 struct hlist_head *head;
247 unsigned int h;
248
249 if (id == 0)
250 id = RT6_TABLE_MAIN;
251 h = id & (FIB6_TABLE_HASHSZ - 1);
252 rcu_read_lock();
253 head = &net->ipv6.fib_table_hash[h];
254 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
255 if (tb->tb6_id == id) {
256 rcu_read_unlock();
257 return tb;
258 }
259 }
260 rcu_read_unlock();
261
262 return NULL;
263 }
264 EXPORT_SYMBOL_GPL(fib6_get_table);
265
266 static void __net_init fib6_tables_init(struct net *net)
267 {
268 fib6_link_table(net, net->ipv6.fib6_main_tbl);
269 fib6_link_table(net, net->ipv6.fib6_local_tbl);
270 }
271 #else
272
273 struct fib6_table *fib6_new_table(struct net *net, u32 id)
274 {
275 return fib6_get_table(net, id);
276 }
277
278 struct fib6_table *fib6_get_table(struct net *net, u32 id)
279 {
280 return net->ipv6.fib6_main_tbl;
281 }
282
283 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
284 int flags, pol_lookup_t lookup)
285 {
286 struct rt6_info *rt;
287
288 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
289 if (rt->dst.error == -EAGAIN) {
290 ip6_rt_put(rt);
291 rt = net->ipv6.ip6_null_entry;
292 dst_hold(&rt->dst);
293 }
294
295 return &rt->dst;
296 }
297
298 static void __net_init fib6_tables_init(struct net *net)
299 {
300 fib6_link_table(net, net->ipv6.fib6_main_tbl);
301 }
302
303 #endif
304
305 static int fib6_dump_node(struct fib6_walker *w)
306 {
307 int res;
308 struct rt6_info *rt;
309
310 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
311 res = rt6_dump_route(rt, w->args);
312 if (res < 0) {
313 /* Frame is full, suspend walking */
314 w->leaf = rt;
315 return 1;
316 }
317
318 /* Multipath routes are dumped in one route with the
319 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
320 * last sibling of this route (no need to dump the
321 * sibling routes again)
322 */
323 if (rt->rt6i_nsiblings)
324 rt = list_last_entry(&rt->rt6i_siblings,
325 struct rt6_info,
326 rt6i_siblings);
327 }
328 w->leaf = NULL;
329 return 0;
330 }
331
332 static void fib6_dump_end(struct netlink_callback *cb)
333 {
334 struct net *net = sock_net(cb->skb->sk);
335 struct fib6_walker *w = (void *)cb->args[2];
336
337 if (w) {
338 if (cb->args[4]) {
339 cb->args[4] = 0;
340 fib6_walker_unlink(net, w);
341 }
342 cb->args[2] = 0;
343 kfree(w);
344 }
345 cb->done = (void *)cb->args[3];
346 cb->args[1] = 3;
347 }
348
349 static int fib6_dump_done(struct netlink_callback *cb)
350 {
351 fib6_dump_end(cb);
352 return cb->done ? cb->done(cb) : 0;
353 }
354
355 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
356 struct netlink_callback *cb)
357 {
358 struct net *net = sock_net(skb->sk);
359 struct fib6_walker *w;
360 int res;
361
362 w = (void *)cb->args[2];
363 w->root = &table->tb6_root;
364
365 if (cb->args[4] == 0) {
366 w->count = 0;
367 w->skip = 0;
368
369 read_lock_bh(&table->tb6_lock);
370 res = fib6_walk(net, w);
371 read_unlock_bh(&table->tb6_lock);
372 if (res > 0) {
373 cb->args[4] = 1;
374 cb->args[5] = w->root->fn_sernum;
375 }
376 } else {
377 if (cb->args[5] != w->root->fn_sernum) {
378 /* Begin at the root if the tree changed */
379 cb->args[5] = w->root->fn_sernum;
380 w->state = FWS_INIT;
381 w->node = w->root;
382 w->skip = w->count;
383 } else
384 w->skip = 0;
385
386 read_lock_bh(&table->tb6_lock);
387 res = fib6_walk_continue(w);
388 read_unlock_bh(&table->tb6_lock);
389 if (res <= 0) {
390 fib6_walker_unlink(net, w);
391 cb->args[4] = 0;
392 }
393 }
394
395 return res;
396 }
397
398 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
399 {
400 struct net *net = sock_net(skb->sk);
401 unsigned int h, s_h;
402 unsigned int e = 0, s_e;
403 struct rt6_rtnl_dump_arg arg;
404 struct fib6_walker *w;
405 struct fib6_table *tb;
406 struct hlist_head *head;
407 int res = 0;
408
409 s_h = cb->args[0];
410 s_e = cb->args[1];
411
412 w = (void *)cb->args[2];
413 if (!w) {
414 /* New dump:
415 *
416 * 1. hook callback destructor.
417 */
418 cb->args[3] = (long)cb->done;
419 cb->done = fib6_dump_done;
420
421 /*
422 * 2. allocate and initialize walker.
423 */
424 w = kzalloc(sizeof(*w), GFP_ATOMIC);
425 if (!w)
426 return -ENOMEM;
427 w->func = fib6_dump_node;
428 cb->args[2] = (long)w;
429 }
430
431 arg.skb = skb;
432 arg.cb = cb;
433 arg.net = net;
434 w->args = &arg;
435
436 rcu_read_lock();
437 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
438 e = 0;
439 head = &net->ipv6.fib_table_hash[h];
440 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
441 if (e < s_e)
442 goto next;
443 res = fib6_dump_table(tb, skb, cb);
444 if (res != 0)
445 goto out;
446 next:
447 e++;
448 }
449 }
450 out:
451 rcu_read_unlock();
452 cb->args[1] = e;
453 cb->args[0] = h;
454
455 res = res < 0 ? res : skb->len;
456 if (res <= 0)
457 fib6_dump_end(cb);
458 return res;
459 }
460
461 /*
462 * Routing Table
463 *
464 * return the appropriate node for a routing tree "add" operation
465 * by either creating and inserting or by returning an existing
466 * node.
467 */
468
469 static struct fib6_node *fib6_add_1(struct fib6_node *root,
470 struct in6_addr *addr, int plen,
471 int offset, int allow_create,
472 int replace_required, int sernum,
473 struct netlink_ext_ack *extack)
474 {
475 struct fib6_node *fn, *in, *ln;
476 struct fib6_node *pn = NULL;
477 struct rt6key *key;
478 int bit;
479 __be32 dir = 0;
480
481 RT6_TRACE("fib6_add_1\n");
482
483 /* insert node in tree */
484
485 fn = root;
486
487 do {
488 key = (struct rt6key *)((u8 *)fn->leaf + offset);
489
490 /*
491 * Prefix match
492 */
493 if (plen < fn->fn_bit ||
494 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
495 if (!allow_create) {
496 if (replace_required) {
497 NL_SET_ERR_MSG(extack,
498 "Can not replace route - no match found");
499 pr_warn("Can't replace route, no match found\n");
500 return ERR_PTR(-ENOENT);
501 }
502 pr_warn("NLM_F_CREATE should be set when creating new route\n");
503 }
504 goto insert_above;
505 }
506
507 /*
508 * Exact match ?
509 */
510
511 if (plen == fn->fn_bit) {
512 /* clean up an intermediate node */
513 if (!(fn->fn_flags & RTN_RTINFO)) {
514 rt6_release(fn->leaf);
515 fn->leaf = NULL;
516 }
517
518 fn->fn_sernum = sernum;
519
520 return fn;
521 }
522
523 /*
524 * We have more bits to go
525 */
526
527 /* Try to walk down on tree. */
528 fn->fn_sernum = sernum;
529 dir = addr_bit_set(addr, fn->fn_bit);
530 pn = fn;
531 fn = dir ? fn->right : fn->left;
532 } while (fn);
533
534 if (!allow_create) {
535 /* We should not create new node because
536 * NLM_F_REPLACE was specified without NLM_F_CREATE
537 * I assume it is safe to require NLM_F_CREATE when
538 * REPLACE flag is used! Later we may want to remove the
539 * check for replace_required, because according
540 * to netlink specification, NLM_F_CREATE
541 * MUST be specified if new route is created.
542 * That would keep IPv6 consistent with IPv4
543 */
544 if (replace_required) {
545 NL_SET_ERR_MSG(extack,
546 "Can not replace route - no match found");
547 pr_warn("Can't replace route, no match found\n");
548 return ERR_PTR(-ENOENT);
549 }
550 pr_warn("NLM_F_CREATE should be set when creating new route\n");
551 }
552 /*
553 * We walked to the bottom of tree.
554 * Create new leaf node without children.
555 */
556
557 ln = node_alloc();
558
559 if (!ln)
560 return ERR_PTR(-ENOMEM);
561 ln->fn_bit = plen;
562
563 ln->parent = pn;
564 ln->fn_sernum = sernum;
565
566 if (dir)
567 pn->right = ln;
568 else
569 pn->left = ln;
570
571 return ln;
572
573
574 insert_above:
575 /*
576 * split since we don't have a common prefix anymore or
577 * we have a less significant route.
578 * we've to insert an intermediate node on the list
579 * this new node will point to the one we need to create
580 * and the current
581 */
582
583 pn = fn->parent;
584
585 /* find 1st bit in difference between the 2 addrs.
586
587 See comment in __ipv6_addr_diff: bit may be an invalid value,
588 but if it is >= plen, the value is ignored in any case.
589 */
590
591 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
592
593 /*
594 * (intermediate)[in]
595 * / \
596 * (new leaf node)[ln] (old node)[fn]
597 */
598 if (plen > bit) {
599 in = node_alloc();
600 ln = node_alloc();
601
602 if (!in || !ln) {
603 if (in)
604 node_free(in);
605 if (ln)
606 node_free(ln);
607 return ERR_PTR(-ENOMEM);
608 }
609
610 /*
611 * new intermediate node.
612 * RTN_RTINFO will
613 * be off since that an address that chooses one of
614 * the branches would not match less specific routes
615 * in the other branch
616 */
617
618 in->fn_bit = bit;
619
620 in->parent = pn;
621 in->leaf = fn->leaf;
622 atomic_inc(&in->leaf->rt6i_ref);
623
624 in->fn_sernum = sernum;
625
626 /* update parent pointer */
627 if (dir)
628 pn->right = in;
629 else
630 pn->left = in;
631
632 ln->fn_bit = plen;
633
634 ln->parent = in;
635 fn->parent = in;
636
637 ln->fn_sernum = sernum;
638
639 if (addr_bit_set(addr, bit)) {
640 in->right = ln;
641 in->left = fn;
642 } else {
643 in->left = ln;
644 in->right = fn;
645 }
646 } else { /* plen <= bit */
647
648 /*
649 * (new leaf node)[ln]
650 * / \
651 * (old node)[fn] NULL
652 */
653
654 ln = node_alloc();
655
656 if (!ln)
657 return ERR_PTR(-ENOMEM);
658
659 ln->fn_bit = plen;
660
661 ln->parent = pn;
662
663 ln->fn_sernum = sernum;
664
665 if (dir)
666 pn->right = ln;
667 else
668 pn->left = ln;
669
670 if (addr_bit_set(&key->addr, plen))
671 ln->right = fn;
672 else
673 ln->left = fn;
674
675 fn->parent = ln;
676 }
677 return ln;
678 }
679
680 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
681 {
682 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
683 RTF_GATEWAY;
684 }
685
686 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
687 {
688 int i;
689
690 for (i = 0; i < RTAX_MAX; i++) {
691 if (test_bit(i, mxc->mx_valid))
692 mp[i] = mxc->mx[i];
693 }
694 }
695
696 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
697 {
698 if (!mxc->mx)
699 return 0;
700
701 if (dst->flags & DST_HOST) {
702 u32 *mp = dst_metrics_write_ptr(dst);
703
704 if (unlikely(!mp))
705 return -ENOMEM;
706
707 fib6_copy_metrics(mp, mxc);
708 } else {
709 dst_init_metrics(dst, mxc->mx, false);
710
711 /* We've stolen mx now. */
712 mxc->mx = NULL;
713 }
714
715 return 0;
716 }
717
718 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
719 struct net *net)
720 {
721 if (atomic_read(&rt->rt6i_ref) != 1) {
722 /* This route is used as dummy address holder in some split
723 * nodes. It is not leaked, but it still holds other resources,
724 * which must be released in time. So, scan ascendant nodes
725 * and replace dummy references to this route with references
726 * to still alive ones.
727 */
728 while (fn) {
729 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
730 fn->leaf = fib6_find_prefix(net, fn);
731 atomic_inc(&fn->leaf->rt6i_ref);
732 rt6_release(rt);
733 }
734 fn = fn->parent;
735 }
736 /* No more references are possible at this point. */
737 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
738 }
739 }
740
741 /*
742 * Insert routing information in a node.
743 */
744
745 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
746 struct nl_info *info, struct mx6_config *mxc)
747 {
748 struct rt6_info *iter = NULL;
749 struct rt6_info **ins;
750 struct rt6_info **fallback_ins = NULL;
751 int replace = (info->nlh &&
752 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
753 int add = (!info->nlh ||
754 (info->nlh->nlmsg_flags & NLM_F_CREATE));
755 int found = 0;
756 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
757 u16 nlflags = NLM_F_EXCL;
758 int err;
759
760 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
761 nlflags |= NLM_F_APPEND;
762
763 ins = &fn->leaf;
764
765 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
766 /*
767 * Search for duplicates
768 */
769
770 if (iter->rt6i_metric == rt->rt6i_metric) {
771 /*
772 * Same priority level
773 */
774 if (info->nlh &&
775 (info->nlh->nlmsg_flags & NLM_F_EXCL))
776 return -EEXIST;
777
778 nlflags &= ~NLM_F_EXCL;
779 if (replace) {
780 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
781 found++;
782 break;
783 }
784 if (rt_can_ecmp)
785 fallback_ins = fallback_ins ?: ins;
786 goto next_iter;
787 }
788
789 if (rt6_duplicate_nexthop(iter, rt)) {
790 if (rt->rt6i_nsiblings)
791 rt->rt6i_nsiblings = 0;
792 if (!(iter->rt6i_flags & RTF_EXPIRES))
793 return -EEXIST;
794 if (!(rt->rt6i_flags & RTF_EXPIRES))
795 rt6_clean_expires(iter);
796 else
797 rt6_set_expires(iter, rt->dst.expires);
798 iter->rt6i_pmtu = rt->rt6i_pmtu;
799 return -EEXIST;
800 }
801 /* If we have the same destination and the same metric,
802 * but not the same gateway, then the route we try to
803 * add is sibling to this route, increment our counter
804 * of siblings, and later we will add our route to the
805 * list.
806 * Only static routes (which don't have flag
807 * RTF_EXPIRES) are used for ECMPv6.
808 *
809 * To avoid long list, we only had siblings if the
810 * route have a gateway.
811 */
812 if (rt_can_ecmp &&
813 rt6_qualify_for_ecmp(iter))
814 rt->rt6i_nsiblings++;
815 }
816
817 if (iter->rt6i_metric > rt->rt6i_metric)
818 break;
819
820 next_iter:
821 ins = &iter->dst.rt6_next;
822 }
823
824 if (fallback_ins && !found) {
825 /* No ECMP-able route found, replace first non-ECMP one */
826 ins = fallback_ins;
827 iter = *ins;
828 found++;
829 }
830
831 /* Reset round-robin state, if necessary */
832 if (ins == &fn->leaf)
833 fn->rr_ptr = NULL;
834
835 /* Link this route to others same route. */
836 if (rt->rt6i_nsiblings) {
837 unsigned int rt6i_nsiblings;
838 struct rt6_info *sibling, *temp_sibling;
839
840 /* Find the first route that have the same metric */
841 sibling = fn->leaf;
842 while (sibling) {
843 if (sibling->rt6i_metric == rt->rt6i_metric &&
844 rt6_qualify_for_ecmp(sibling)) {
845 list_add_tail(&rt->rt6i_siblings,
846 &sibling->rt6i_siblings);
847 break;
848 }
849 sibling = sibling->dst.rt6_next;
850 }
851 /* For each sibling in the list, increment the counter of
852 * siblings. BUG() if counters does not match, list of siblings
853 * is broken!
854 */
855 rt6i_nsiblings = 0;
856 list_for_each_entry_safe(sibling, temp_sibling,
857 &rt->rt6i_siblings, rt6i_siblings) {
858 sibling->rt6i_nsiblings++;
859 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
860 rt6i_nsiblings++;
861 }
862 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
863 }
864
865 /*
866 * insert node
867 */
868 if (!replace) {
869 if (!add)
870 pr_warn("NLM_F_CREATE should be set when creating new route\n");
871
872 add:
873 nlflags |= NLM_F_CREATE;
874 err = fib6_commit_metrics(&rt->dst, mxc);
875 if (err)
876 return err;
877
878 rt->dst.rt6_next = iter;
879 *ins = rt;
880 rt->rt6i_node = fn;
881 atomic_inc(&rt->rt6i_ref);
882 if (!info->skip_notify)
883 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
884 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
885
886 if (!(fn->fn_flags & RTN_RTINFO)) {
887 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
888 fn->fn_flags |= RTN_RTINFO;
889 }
890
891 } else {
892 int nsiblings;
893
894 if (!found) {
895 if (add)
896 goto add;
897 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
898 return -ENOENT;
899 }
900
901 err = fib6_commit_metrics(&rt->dst, mxc);
902 if (err)
903 return err;
904
905 *ins = rt;
906 rt->rt6i_node = fn;
907 rt->dst.rt6_next = iter->dst.rt6_next;
908 atomic_inc(&rt->rt6i_ref);
909 if (!info->skip_notify)
910 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
911 if (!(fn->fn_flags & RTN_RTINFO)) {
912 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
913 fn->fn_flags |= RTN_RTINFO;
914 }
915 nsiblings = iter->rt6i_nsiblings;
916 fib6_purge_rt(iter, fn, info->nl_net);
917 rt6_release(iter);
918
919 if (nsiblings) {
920 /* Replacing an ECMP route, remove all siblings */
921 ins = &rt->dst.rt6_next;
922 iter = *ins;
923 while (iter) {
924 if (iter->rt6i_metric > rt->rt6i_metric)
925 break;
926 if (rt6_qualify_for_ecmp(iter)) {
927 *ins = iter->dst.rt6_next;
928 fib6_purge_rt(iter, fn, info->nl_net);
929 rt6_release(iter);
930 nsiblings--;
931 } else {
932 ins = &iter->dst.rt6_next;
933 }
934 iter = *ins;
935 }
936 WARN_ON(nsiblings != 0);
937 }
938 }
939
940 return 0;
941 }
942
943 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
944 {
945 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
946 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
947 mod_timer(&net->ipv6.ip6_fib_timer,
948 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
949 }
950
951 void fib6_force_start_gc(struct net *net)
952 {
953 if (!timer_pending(&net->ipv6.ip6_fib_timer))
954 mod_timer(&net->ipv6.ip6_fib_timer,
955 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
956 }
957
958 /*
959 * Add routing information to the routing tree.
960 * <destination addr>/<source addr>
961 * with source addr info in sub-trees
962 */
963
964 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
965 struct nl_info *info, struct mx6_config *mxc,
966 struct netlink_ext_ack *extack)
967 {
968 struct fib6_node *fn, *pn = NULL;
969 int err = -ENOMEM;
970 int allow_create = 1;
971 int replace_required = 0;
972 int sernum = fib6_new_sernum(info->nl_net);
973
974 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
975 return -EINVAL;
976
977 if (info->nlh) {
978 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
979 allow_create = 0;
980 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
981 replace_required = 1;
982 }
983 if (!allow_create && !replace_required)
984 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
985
986 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
987 offsetof(struct rt6_info, rt6i_dst), allow_create,
988 replace_required, sernum, extack);
989 if (IS_ERR(fn)) {
990 err = PTR_ERR(fn);
991 fn = NULL;
992 goto out;
993 }
994
995 pn = fn;
996
997 #ifdef CONFIG_IPV6_SUBTREES
998 if (rt->rt6i_src.plen) {
999 struct fib6_node *sn;
1000
1001 if (!fn->subtree) {
1002 struct fib6_node *sfn;
1003
1004 /*
1005 * Create subtree.
1006 *
1007 * fn[main tree]
1008 * |
1009 * sfn[subtree root]
1010 * \
1011 * sn[new leaf node]
1012 */
1013
1014 /* Create subtree root node */
1015 sfn = node_alloc();
1016 if (!sfn)
1017 goto st_failure;
1018
1019 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
1020 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1021 sfn->fn_flags = RTN_ROOT;
1022 sfn->fn_sernum = sernum;
1023
1024 /* Now add the first leaf node to new subtree */
1025
1026 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1027 rt->rt6i_src.plen,
1028 offsetof(struct rt6_info, rt6i_src),
1029 allow_create, replace_required, sernum,
1030 extack);
1031
1032 if (IS_ERR(sn)) {
1033 /* If it is failed, discard just allocated
1034 root, and then (in st_failure) stale node
1035 in main tree.
1036 */
1037 node_free(sfn);
1038 err = PTR_ERR(sn);
1039 goto st_failure;
1040 }
1041
1042 /* Now link new subtree to main tree */
1043 sfn->parent = fn;
1044 fn->subtree = sfn;
1045 } else {
1046 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1047 rt->rt6i_src.plen,
1048 offsetof(struct rt6_info, rt6i_src),
1049 allow_create, replace_required, sernum,
1050 extack);
1051
1052 if (IS_ERR(sn)) {
1053 err = PTR_ERR(sn);
1054 goto st_failure;
1055 }
1056 }
1057
1058 if (!fn->leaf) {
1059 fn->leaf = rt;
1060 atomic_inc(&rt->rt6i_ref);
1061 }
1062 fn = sn;
1063 }
1064 #endif
1065
1066 err = fib6_add_rt2node(fn, rt, info, mxc);
1067 if (!err) {
1068 fib6_start_gc(info->nl_net, rt);
1069 if (!(rt->rt6i_flags & RTF_CACHE))
1070 fib6_prune_clones(info->nl_net, pn);
1071 }
1072
1073 out:
1074 if (err) {
1075 #ifdef CONFIG_IPV6_SUBTREES
1076 /*
1077 * If fib6_add_1 has cleared the old leaf pointer in the
1078 * super-tree leaf node we have to find a new one for it.
1079 */
1080 if (pn != fn && pn->leaf == rt) {
1081 pn->leaf = NULL;
1082 atomic_dec(&rt->rt6i_ref);
1083 }
1084 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1085 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1086 #if RT6_DEBUG >= 2
1087 if (!pn->leaf) {
1088 WARN_ON(pn->leaf == NULL);
1089 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1090 }
1091 #endif
1092 atomic_inc(&pn->leaf->rt6i_ref);
1093 }
1094 #endif
1095 /* Always release dst as dst->__refcnt is guaranteed
1096 * to be taken before entering this function
1097 */
1098 dst_release_immediate(&rt->dst);
1099 }
1100 return err;
1101
1102 #ifdef CONFIG_IPV6_SUBTREES
1103 /* Subtree creation failed, probably main tree node
1104 is orphan. If it is, shoot it.
1105 */
1106 st_failure:
1107 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1108 fib6_repair_tree(info->nl_net, fn);
1109 /* Always release dst as dst->__refcnt is guaranteed
1110 * to be taken before entering this function
1111 */
1112 dst_release_immediate(&rt->dst);
1113 return err;
1114 #endif
1115 }
1116
1117 /*
1118 * Routing tree lookup
1119 *
1120 */
1121
1122 struct lookup_args {
1123 int offset; /* key offset on rt6_info */
1124 const struct in6_addr *addr; /* search key */
1125 };
1126
1127 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1128 struct lookup_args *args)
1129 {
1130 struct fib6_node *fn;
1131 __be32 dir;
1132
1133 if (unlikely(args->offset == 0))
1134 return NULL;
1135
1136 /*
1137 * Descend on a tree
1138 */
1139
1140 fn = root;
1141
1142 for (;;) {
1143 struct fib6_node *next;
1144
1145 dir = addr_bit_set(args->addr, fn->fn_bit);
1146
1147 next = dir ? fn->right : fn->left;
1148
1149 if (next) {
1150 fn = next;
1151 continue;
1152 }
1153 break;
1154 }
1155
1156 while (fn) {
1157 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1158 struct rt6key *key;
1159
1160 key = (struct rt6key *) ((u8 *) fn->leaf +
1161 args->offset);
1162
1163 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1164 #ifdef CONFIG_IPV6_SUBTREES
1165 if (fn->subtree) {
1166 struct fib6_node *sfn;
1167 sfn = fib6_lookup_1(fn->subtree,
1168 args + 1);
1169 if (!sfn)
1170 goto backtrack;
1171 fn = sfn;
1172 }
1173 #endif
1174 if (fn->fn_flags & RTN_RTINFO)
1175 return fn;
1176 }
1177 }
1178 #ifdef CONFIG_IPV6_SUBTREES
1179 backtrack:
1180 #endif
1181 if (fn->fn_flags & RTN_ROOT)
1182 break;
1183
1184 fn = fn->parent;
1185 }
1186
1187 return NULL;
1188 }
1189
1190 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1191 const struct in6_addr *saddr)
1192 {
1193 struct fib6_node *fn;
1194 struct lookup_args args[] = {
1195 {
1196 .offset = offsetof(struct rt6_info, rt6i_dst),
1197 .addr = daddr,
1198 },
1199 #ifdef CONFIG_IPV6_SUBTREES
1200 {
1201 .offset = offsetof(struct rt6_info, rt6i_src),
1202 .addr = saddr,
1203 },
1204 #endif
1205 {
1206 .offset = 0, /* sentinel */
1207 }
1208 };
1209
1210 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1211 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1212 fn = root;
1213
1214 return fn;
1215 }
1216
1217 /*
1218 * Get node with specified destination prefix (and source prefix,
1219 * if subtrees are used)
1220 */
1221
1222
1223 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1224 const struct in6_addr *addr,
1225 int plen, int offset)
1226 {
1227 struct fib6_node *fn;
1228
1229 for (fn = root; fn ; ) {
1230 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1231
1232 /*
1233 * Prefix match
1234 */
1235 if (plen < fn->fn_bit ||
1236 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1237 return NULL;
1238
1239 if (plen == fn->fn_bit)
1240 return fn;
1241
1242 /*
1243 * We have more bits to go
1244 */
1245 if (addr_bit_set(addr, fn->fn_bit))
1246 fn = fn->right;
1247 else
1248 fn = fn->left;
1249 }
1250 return NULL;
1251 }
1252
1253 struct fib6_node *fib6_locate(struct fib6_node *root,
1254 const struct in6_addr *daddr, int dst_len,
1255 const struct in6_addr *saddr, int src_len)
1256 {
1257 struct fib6_node *fn;
1258
1259 fn = fib6_locate_1(root, daddr, dst_len,
1260 offsetof(struct rt6_info, rt6i_dst));
1261
1262 #ifdef CONFIG_IPV6_SUBTREES
1263 if (src_len) {
1264 WARN_ON(saddr == NULL);
1265 if (fn && fn->subtree)
1266 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1267 offsetof(struct rt6_info, rt6i_src));
1268 }
1269 #endif
1270
1271 if (fn && fn->fn_flags & RTN_RTINFO)
1272 return fn;
1273
1274 return NULL;
1275 }
1276
1277
1278 /*
1279 * Deletion
1280 *
1281 */
1282
1283 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1284 {
1285 if (fn->fn_flags & RTN_ROOT)
1286 return net->ipv6.ip6_null_entry;
1287
1288 while (fn) {
1289 if (fn->left)
1290 return fn->left->leaf;
1291 if (fn->right)
1292 return fn->right->leaf;
1293
1294 fn = FIB6_SUBTREE(fn);
1295 }
1296 return NULL;
1297 }
1298
1299 /*
1300 * Called to trim the tree of intermediate nodes when possible. "fn"
1301 * is the node we want to try and remove.
1302 */
1303
1304 static struct fib6_node *fib6_repair_tree(struct net *net,
1305 struct fib6_node *fn)
1306 {
1307 int children;
1308 int nstate;
1309 struct fib6_node *child, *pn;
1310 struct fib6_walker *w;
1311 int iter = 0;
1312
1313 for (;;) {
1314 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1315 iter++;
1316
1317 WARN_ON(fn->fn_flags & RTN_RTINFO);
1318 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1319 WARN_ON(fn->leaf);
1320
1321 children = 0;
1322 child = NULL;
1323 if (fn->right)
1324 child = fn->right, children |= 1;
1325 if (fn->left)
1326 child = fn->left, children |= 2;
1327
1328 if (children == 3 || FIB6_SUBTREE(fn)
1329 #ifdef CONFIG_IPV6_SUBTREES
1330 /* Subtree root (i.e. fn) may have one child */
1331 || (children && fn->fn_flags & RTN_ROOT)
1332 #endif
1333 ) {
1334 fn->leaf = fib6_find_prefix(net, fn);
1335 #if RT6_DEBUG >= 2
1336 if (!fn->leaf) {
1337 WARN_ON(!fn->leaf);
1338 fn->leaf = net->ipv6.ip6_null_entry;
1339 }
1340 #endif
1341 atomic_inc(&fn->leaf->rt6i_ref);
1342 return fn->parent;
1343 }
1344
1345 pn = fn->parent;
1346 #ifdef CONFIG_IPV6_SUBTREES
1347 if (FIB6_SUBTREE(pn) == fn) {
1348 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1349 FIB6_SUBTREE(pn) = NULL;
1350 nstate = FWS_L;
1351 } else {
1352 WARN_ON(fn->fn_flags & RTN_ROOT);
1353 #endif
1354 if (pn->right == fn)
1355 pn->right = child;
1356 else if (pn->left == fn)
1357 pn->left = child;
1358 #if RT6_DEBUG >= 2
1359 else
1360 WARN_ON(1);
1361 #endif
1362 if (child)
1363 child->parent = pn;
1364 nstate = FWS_R;
1365 #ifdef CONFIG_IPV6_SUBTREES
1366 }
1367 #endif
1368
1369 read_lock(&net->ipv6.fib6_walker_lock);
1370 FOR_WALKERS(net, w) {
1371 if (!child) {
1372 if (w->root == fn) {
1373 w->root = w->node = NULL;
1374 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1375 } else if (w->node == fn) {
1376 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1377 w->node = pn;
1378 w->state = nstate;
1379 }
1380 } else {
1381 if (w->root == fn) {
1382 w->root = child;
1383 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1384 }
1385 if (w->node == fn) {
1386 w->node = child;
1387 if (children&2) {
1388 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1389 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1390 } else {
1391 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1392 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1393 }
1394 }
1395 }
1396 }
1397 read_unlock(&net->ipv6.fib6_walker_lock);
1398
1399 node_free(fn);
1400 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1401 return pn;
1402
1403 rt6_release(pn->leaf);
1404 pn->leaf = NULL;
1405 fn = pn;
1406 }
1407 }
1408
1409 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1410 struct nl_info *info)
1411 {
1412 struct fib6_walker *w;
1413 struct rt6_info *rt = *rtp;
1414 struct net *net = info->nl_net;
1415
1416 RT6_TRACE("fib6_del_route\n");
1417
1418 /* Unlink it */
1419 *rtp = rt->dst.rt6_next;
1420 rt->rt6i_node = NULL;
1421 net->ipv6.rt6_stats->fib_rt_entries--;
1422 net->ipv6.rt6_stats->fib_discarded_routes++;
1423
1424 /* Reset round-robin state, if necessary */
1425 if (fn->rr_ptr == rt)
1426 fn->rr_ptr = NULL;
1427
1428 /* Remove this entry from other siblings */
1429 if (rt->rt6i_nsiblings) {
1430 struct rt6_info *sibling, *next_sibling;
1431
1432 list_for_each_entry_safe(sibling, next_sibling,
1433 &rt->rt6i_siblings, rt6i_siblings)
1434 sibling->rt6i_nsiblings--;
1435 rt->rt6i_nsiblings = 0;
1436 list_del_init(&rt->rt6i_siblings);
1437 }
1438
1439 /* Adjust walkers */
1440 read_lock(&net->ipv6.fib6_walker_lock);
1441 FOR_WALKERS(net, w) {
1442 if (w->state == FWS_C && w->leaf == rt) {
1443 RT6_TRACE("walker %p adjusted by delroute\n", w);
1444 w->leaf = rt->dst.rt6_next;
1445 if (!w->leaf)
1446 w->state = FWS_U;
1447 }
1448 }
1449 read_unlock(&net->ipv6.fib6_walker_lock);
1450
1451 rt->dst.rt6_next = NULL;
1452
1453 /* If it was last route, expunge its radix tree node */
1454 if (!fn->leaf) {
1455 fn->fn_flags &= ~RTN_RTINFO;
1456 net->ipv6.rt6_stats->fib_route_nodes--;
1457 fn = fib6_repair_tree(net, fn);
1458 }
1459
1460 fib6_purge_rt(rt, fn, net);
1461
1462 if (!info->skip_notify)
1463 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1464 rt6_release(rt);
1465 }
1466
1467 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1468 {
1469 struct net *net = info->nl_net;
1470 struct fib6_node *fn = rt->rt6i_node;
1471 struct rt6_info **rtp;
1472
1473 #if RT6_DEBUG >= 2
1474 if (rt->dst.obsolete > 0) {
1475 WARN_ON(fn);
1476 return -ENOENT;
1477 }
1478 #endif
1479 if (!fn || rt == net->ipv6.ip6_null_entry)
1480 return -ENOENT;
1481
1482 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1483
1484 if (!(rt->rt6i_flags & RTF_CACHE)) {
1485 struct fib6_node *pn = fn;
1486 #ifdef CONFIG_IPV6_SUBTREES
1487 /* clones of this route might be in another subtree */
1488 if (rt->rt6i_src.plen) {
1489 while (!(pn->fn_flags & RTN_ROOT))
1490 pn = pn->parent;
1491 pn = pn->parent;
1492 }
1493 #endif
1494 fib6_prune_clones(info->nl_net, pn);
1495 }
1496
1497 /*
1498 * Walk the leaf entries looking for ourself
1499 */
1500
1501 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1502 if (*rtp == rt) {
1503 fib6_del_route(fn, rtp, info);
1504 return 0;
1505 }
1506 }
1507 return -ENOENT;
1508 }
1509
1510 /*
1511 * Tree traversal function.
1512 *
1513 * Certainly, it is not interrupt safe.
1514 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1515 * It means, that we can modify tree during walking
1516 * and use this function for garbage collection, clone pruning,
1517 * cleaning tree when a device goes down etc. etc.
1518 *
1519 * It guarantees that every node will be traversed,
1520 * and that it will be traversed only once.
1521 *
1522 * Callback function w->func may return:
1523 * 0 -> continue walking.
1524 * positive value -> walking is suspended (used by tree dumps,
1525 * and probably by gc, if it will be split to several slices)
1526 * negative value -> terminate walking.
1527 *
1528 * The function itself returns:
1529 * 0 -> walk is complete.
1530 * >0 -> walk is incomplete (i.e. suspended)
1531 * <0 -> walk is terminated by an error.
1532 */
1533
1534 static int fib6_walk_continue(struct fib6_walker *w)
1535 {
1536 struct fib6_node *fn, *pn;
1537
1538 for (;;) {
1539 fn = w->node;
1540 if (!fn)
1541 return 0;
1542
1543 if (w->prune && fn != w->root &&
1544 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1545 w->state = FWS_C;
1546 w->leaf = fn->leaf;
1547 }
1548 switch (w->state) {
1549 #ifdef CONFIG_IPV6_SUBTREES
1550 case FWS_S:
1551 if (FIB6_SUBTREE(fn)) {
1552 w->node = FIB6_SUBTREE(fn);
1553 continue;
1554 }
1555 w->state = FWS_L;
1556 #endif
1557 case FWS_L:
1558 if (fn->left) {
1559 w->node = fn->left;
1560 w->state = FWS_INIT;
1561 continue;
1562 }
1563 w->state = FWS_R;
1564 case FWS_R:
1565 if (fn->right) {
1566 w->node = fn->right;
1567 w->state = FWS_INIT;
1568 continue;
1569 }
1570 w->state = FWS_C;
1571 w->leaf = fn->leaf;
1572 case FWS_C:
1573 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1574 int err;
1575
1576 if (w->skip) {
1577 w->skip--;
1578 goto skip;
1579 }
1580
1581 err = w->func(w);
1582 if (err)
1583 return err;
1584
1585 w->count++;
1586 continue;
1587 }
1588 skip:
1589 w->state = FWS_U;
1590 case FWS_U:
1591 if (fn == w->root)
1592 return 0;
1593 pn = fn->parent;
1594 w->node = pn;
1595 #ifdef CONFIG_IPV6_SUBTREES
1596 if (FIB6_SUBTREE(pn) == fn) {
1597 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1598 w->state = FWS_L;
1599 continue;
1600 }
1601 #endif
1602 if (pn->left == fn) {
1603 w->state = FWS_R;
1604 continue;
1605 }
1606 if (pn->right == fn) {
1607 w->state = FWS_C;
1608 w->leaf = w->node->leaf;
1609 continue;
1610 }
1611 #if RT6_DEBUG >= 2
1612 WARN_ON(1);
1613 #endif
1614 }
1615 }
1616 }
1617
1618 static int fib6_walk(struct net *net, struct fib6_walker *w)
1619 {
1620 int res;
1621
1622 w->state = FWS_INIT;
1623 w->node = w->root;
1624
1625 fib6_walker_link(net, w);
1626 res = fib6_walk_continue(w);
1627 if (res <= 0)
1628 fib6_walker_unlink(net, w);
1629 return res;
1630 }
1631
1632 static int fib6_clean_node(struct fib6_walker *w)
1633 {
1634 int res;
1635 struct rt6_info *rt;
1636 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1637 struct nl_info info = {
1638 .nl_net = c->net,
1639 };
1640
1641 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1642 w->node->fn_sernum != c->sernum)
1643 w->node->fn_sernum = c->sernum;
1644
1645 if (!c->func) {
1646 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1647 w->leaf = NULL;
1648 return 0;
1649 }
1650
1651 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1652 res = c->func(rt, c->arg);
1653 if (res < 0) {
1654 w->leaf = rt;
1655 res = fib6_del(rt, &info);
1656 if (res) {
1657 #if RT6_DEBUG >= 2
1658 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1659 __func__, rt, rt->rt6i_node, res);
1660 #endif
1661 continue;
1662 }
1663 return 0;
1664 }
1665 WARN_ON(res != 0);
1666 }
1667 w->leaf = rt;
1668 return 0;
1669 }
1670
1671 /*
1672 * Convenient frontend to tree walker.
1673 *
1674 * func is called on each route.
1675 * It may return -1 -> delete this route.
1676 * 0 -> continue walking
1677 *
1678 * prune==1 -> only immediate children of node (certainly,
1679 * ignoring pure split nodes) will be scanned.
1680 */
1681
1682 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1683 int (*func)(struct rt6_info *, void *arg),
1684 bool prune, int sernum, void *arg)
1685 {
1686 struct fib6_cleaner c;
1687
1688 c.w.root = root;
1689 c.w.func = fib6_clean_node;
1690 c.w.prune = prune;
1691 c.w.count = 0;
1692 c.w.skip = 0;
1693 c.func = func;
1694 c.sernum = sernum;
1695 c.arg = arg;
1696 c.net = net;
1697
1698 fib6_walk(net, &c.w);
1699 }
1700
1701 static void __fib6_clean_all(struct net *net,
1702 int (*func)(struct rt6_info *, void *),
1703 int sernum, void *arg)
1704 {
1705 struct fib6_table *table;
1706 struct hlist_head *head;
1707 unsigned int h;
1708
1709 rcu_read_lock();
1710 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1711 head = &net->ipv6.fib_table_hash[h];
1712 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1713 write_lock_bh(&table->tb6_lock);
1714 fib6_clean_tree(net, &table->tb6_root,
1715 func, false, sernum, arg);
1716 write_unlock_bh(&table->tb6_lock);
1717 }
1718 }
1719 rcu_read_unlock();
1720 }
1721
1722 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1723 void *arg)
1724 {
1725 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1726 }
1727
1728 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1729 {
1730 if (rt->rt6i_flags & RTF_CACHE) {
1731 RT6_TRACE("pruning clone %p\n", rt);
1732 return -1;
1733 }
1734
1735 return 0;
1736 }
1737
1738 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1739 {
1740 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1741 FIB6_NO_SERNUM_CHANGE, NULL);
1742 }
1743
1744 static void fib6_flush_trees(struct net *net)
1745 {
1746 int new_sernum = fib6_new_sernum(net);
1747
1748 __fib6_clean_all(net, NULL, new_sernum, NULL);
1749 }
1750
1751 /*
1752 * Garbage collection
1753 */
1754
1755 struct fib6_gc_args
1756 {
1757 int timeout;
1758 int more;
1759 };
1760
1761 static int fib6_age(struct rt6_info *rt, void *arg)
1762 {
1763 struct fib6_gc_args *gc_args = arg;
1764 unsigned long now = jiffies;
1765
1766 /*
1767 * check addrconf expiration here.
1768 * Routes are expired even if they are in use.
1769 *
1770 * Also age clones. Note, that clones are aged out
1771 * only if they are not in use now.
1772 */
1773
1774 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1775 if (time_after(now, rt->dst.expires)) {
1776 RT6_TRACE("expiring %p\n", rt);
1777 return -1;
1778 }
1779 gc_args->more++;
1780 } else if (rt->rt6i_flags & RTF_CACHE) {
1781 if (atomic_read(&rt->dst.__refcnt) == 1 &&
1782 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1783 RT6_TRACE("aging clone %p\n", rt);
1784 return -1;
1785 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1786 struct neighbour *neigh;
1787 __u8 neigh_flags = 0;
1788
1789 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1790 if (neigh) {
1791 neigh_flags = neigh->flags;
1792 neigh_release(neigh);
1793 }
1794 if (!(neigh_flags & NTF_ROUTER)) {
1795 RT6_TRACE("purging route %p via non-router but gateway\n",
1796 rt);
1797 return -1;
1798 }
1799 }
1800 gc_args->more++;
1801 }
1802
1803 return 0;
1804 }
1805
1806 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1807 {
1808 struct fib6_gc_args gc_args;
1809 unsigned long now;
1810
1811 if (force) {
1812 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1813 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1814 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1815 return;
1816 }
1817 gc_args.timeout = expires ? (int)expires :
1818 net->ipv6.sysctl.ip6_rt_gc_interval;
1819 gc_args.more = 0;
1820
1821 fib6_clean_all(net, fib6_age, &gc_args);
1822 now = jiffies;
1823 net->ipv6.ip6_rt_last_gc = now;
1824
1825 if (gc_args.more)
1826 mod_timer(&net->ipv6.ip6_fib_timer,
1827 round_jiffies(now
1828 + net->ipv6.sysctl.ip6_rt_gc_interval));
1829 else
1830 del_timer(&net->ipv6.ip6_fib_timer);
1831 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1832 }
1833
1834 static void fib6_gc_timer_cb(unsigned long arg)
1835 {
1836 fib6_run_gc(0, (struct net *)arg, true);
1837 }
1838
1839 static int __net_init fib6_net_init(struct net *net)
1840 {
1841 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1842
1843 spin_lock_init(&net->ipv6.fib6_gc_lock);
1844 rwlock_init(&net->ipv6.fib6_walker_lock);
1845 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1846 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1847
1848 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1849 if (!net->ipv6.rt6_stats)
1850 goto out_timer;
1851
1852 /* Avoid false sharing : Use at least a full cache line */
1853 size = max_t(size_t, size, L1_CACHE_BYTES);
1854
1855 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1856 if (!net->ipv6.fib_table_hash)
1857 goto out_rt6_stats;
1858
1859 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1860 GFP_KERNEL);
1861 if (!net->ipv6.fib6_main_tbl)
1862 goto out_fib_table_hash;
1863
1864 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1865 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1866 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1867 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1868 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1869
1870 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1871 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1872 GFP_KERNEL);
1873 if (!net->ipv6.fib6_local_tbl)
1874 goto out_fib6_main_tbl;
1875 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1876 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1877 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1878 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1879 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1880 #endif
1881 fib6_tables_init(net);
1882
1883 return 0;
1884
1885 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1886 out_fib6_main_tbl:
1887 kfree(net->ipv6.fib6_main_tbl);
1888 #endif
1889 out_fib_table_hash:
1890 kfree(net->ipv6.fib_table_hash);
1891 out_rt6_stats:
1892 kfree(net->ipv6.rt6_stats);
1893 out_timer:
1894 return -ENOMEM;
1895 }
1896
1897 static void fib6_net_exit(struct net *net)
1898 {
1899 rt6_ifdown(net, NULL);
1900 del_timer_sync(&net->ipv6.ip6_fib_timer);
1901
1902 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1903 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1904 kfree(net->ipv6.fib6_local_tbl);
1905 #endif
1906 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1907 kfree(net->ipv6.fib6_main_tbl);
1908 kfree(net->ipv6.fib_table_hash);
1909 kfree(net->ipv6.rt6_stats);
1910 }
1911
1912 static struct pernet_operations fib6_net_ops = {
1913 .init = fib6_net_init,
1914 .exit = fib6_net_exit,
1915 };
1916
1917 int __init fib6_init(void)
1918 {
1919 int ret = -ENOMEM;
1920
1921 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1922 sizeof(struct fib6_node),
1923 0, SLAB_HWCACHE_ALIGN,
1924 NULL);
1925 if (!fib6_node_kmem)
1926 goto out;
1927
1928 ret = register_pernet_subsys(&fib6_net_ops);
1929 if (ret)
1930 goto out_kmem_cache_create;
1931
1932 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1933 NULL);
1934 if (ret)
1935 goto out_unregister_subsys;
1936
1937 __fib6_flush_trees = fib6_flush_trees;
1938 out:
1939 return ret;
1940
1941 out_unregister_subsys:
1942 unregister_pernet_subsys(&fib6_net_ops);
1943 out_kmem_cache_create:
1944 kmem_cache_destroy(fib6_node_kmem);
1945 goto out;
1946 }
1947
1948 void fib6_gc_cleanup(void)
1949 {
1950 unregister_pernet_subsys(&fib6_net_ops);
1951 kmem_cache_destroy(fib6_node_kmem);
1952 }
1953
1954 #ifdef CONFIG_PROC_FS
1955
1956 struct ipv6_route_iter {
1957 struct seq_net_private p;
1958 struct fib6_walker w;
1959 loff_t skip;
1960 struct fib6_table *tbl;
1961 int sernum;
1962 };
1963
1964 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1965 {
1966 struct rt6_info *rt = v;
1967 struct ipv6_route_iter *iter = seq->private;
1968
1969 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1970
1971 #ifdef CONFIG_IPV6_SUBTREES
1972 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1973 #else
1974 seq_puts(seq, "00000000000000000000000000000000 00 ");
1975 #endif
1976 if (rt->rt6i_flags & RTF_GATEWAY)
1977 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1978 else
1979 seq_puts(seq, "00000000000000000000000000000000");
1980
1981 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1982 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1983 rt->dst.__use, rt->rt6i_flags,
1984 rt->dst.dev ? rt->dst.dev->name : "");
1985 iter->w.leaf = NULL;
1986 return 0;
1987 }
1988
1989 static int ipv6_route_yield(struct fib6_walker *w)
1990 {
1991 struct ipv6_route_iter *iter = w->args;
1992
1993 if (!iter->skip)
1994 return 1;
1995
1996 do {
1997 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1998 iter->skip--;
1999 if (!iter->skip && iter->w.leaf)
2000 return 1;
2001 } while (iter->w.leaf);
2002
2003 return 0;
2004 }
2005
2006 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2007 struct net *net)
2008 {
2009 memset(&iter->w, 0, sizeof(iter->w));
2010 iter->w.func = ipv6_route_yield;
2011 iter->w.root = &iter->tbl->tb6_root;
2012 iter->w.state = FWS_INIT;
2013 iter->w.node = iter->w.root;
2014 iter->w.args = iter;
2015 iter->sernum = iter->w.root->fn_sernum;
2016 INIT_LIST_HEAD(&iter->w.lh);
2017 fib6_walker_link(net, &iter->w);
2018 }
2019
2020 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2021 struct net *net)
2022 {
2023 unsigned int h;
2024 struct hlist_node *node;
2025
2026 if (tbl) {
2027 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2028 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2029 } else {
2030 h = 0;
2031 node = NULL;
2032 }
2033
2034 while (!node && h < FIB6_TABLE_HASHSZ) {
2035 node = rcu_dereference_bh(
2036 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2037 }
2038 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2039 }
2040
2041 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2042 {
2043 if (iter->sernum != iter->w.root->fn_sernum) {
2044 iter->sernum = iter->w.root->fn_sernum;
2045 iter->w.state = FWS_INIT;
2046 iter->w.node = iter->w.root;
2047 WARN_ON(iter->w.skip);
2048 iter->w.skip = iter->w.count;
2049 }
2050 }
2051
2052 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2053 {
2054 int r;
2055 struct rt6_info *n;
2056 struct net *net = seq_file_net(seq);
2057 struct ipv6_route_iter *iter = seq->private;
2058
2059 if (!v)
2060 goto iter_table;
2061
2062 n = ((struct rt6_info *)v)->dst.rt6_next;
2063 if (n) {
2064 ++*pos;
2065 return n;
2066 }
2067
2068 iter_table:
2069 ipv6_route_check_sernum(iter);
2070 read_lock(&iter->tbl->tb6_lock);
2071 r = fib6_walk_continue(&iter->w);
2072 read_unlock(&iter->tbl->tb6_lock);
2073 if (r > 0) {
2074 if (v)
2075 ++*pos;
2076 return iter->w.leaf;
2077 } else if (r < 0) {
2078 fib6_walker_unlink(net, &iter->w);
2079 return NULL;
2080 }
2081 fib6_walker_unlink(net, &iter->w);
2082
2083 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2084 if (!iter->tbl)
2085 return NULL;
2086
2087 ipv6_route_seq_setup_walk(iter, net);
2088 goto iter_table;
2089 }
2090
2091 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2092 __acquires(RCU_BH)
2093 {
2094 struct net *net = seq_file_net(seq);
2095 struct ipv6_route_iter *iter = seq->private;
2096
2097 rcu_read_lock_bh();
2098 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2099 iter->skip = *pos;
2100
2101 if (iter->tbl) {
2102 ipv6_route_seq_setup_walk(iter, net);
2103 return ipv6_route_seq_next(seq, NULL, pos);
2104 } else {
2105 return NULL;
2106 }
2107 }
2108
2109 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2110 {
2111 struct fib6_walker *w = &iter->w;
2112 return w->node && !(w->state == FWS_U && w->node == w->root);
2113 }
2114
2115 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2116 __releases(RCU_BH)
2117 {
2118 struct net *net = seq_file_net(seq);
2119 struct ipv6_route_iter *iter = seq->private;
2120
2121 if (ipv6_route_iter_active(iter))
2122 fib6_walker_unlink(net, &iter->w);
2123
2124 rcu_read_unlock_bh();
2125 }
2126
2127 static const struct seq_operations ipv6_route_seq_ops = {
2128 .start = ipv6_route_seq_start,
2129 .next = ipv6_route_seq_next,
2130 .stop = ipv6_route_seq_stop,
2131 .show = ipv6_route_seq_show
2132 };
2133
2134 int ipv6_route_open(struct inode *inode, struct file *file)
2135 {
2136 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2137 sizeof(struct ipv6_route_iter));
2138 }
2139
2140 #endif /* CONFIG_PROC_FS */