]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ipv6/ip6_fib.c
Merge remote-tracking branch 'asoc/fix/dapm' into asoc-linus
[mirror_ubuntu-artful-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35
36 #include <net/ip6_fib.h>
37 #include <net/ip6_route.h>
38
39 #define RT6_DEBUG 2
40
41 #if RT6_DEBUG >= 3
42 #define RT6_TRACE(x...) pr_debug(x)
43 #else
44 #define RT6_TRACE(x...) do { ; } while (0)
45 #endif
46
47 static struct kmem_cache *fib6_node_kmem __read_mostly;
48
49 struct fib6_cleaner {
50 struct fib6_walker w;
51 struct net *net;
52 int (*func)(struct rt6_info *, void *arg);
53 int sernum;
54 void *arg;
55 };
56
57 static DEFINE_RWLOCK(fib6_walker_lock);
58
59 #ifdef CONFIG_IPV6_SUBTREES
60 #define FWS_INIT FWS_S
61 #else
62 #define FWS_INIT FWS_L
63 #endif
64
65 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68 static int fib6_walk(struct fib6_walker *w);
69 static int fib6_walk_continue(struct fib6_walker *w);
70
71 /*
72 * A routing update causes an increase of the serial number on the
73 * affected subtree. This allows for cached routes to be asynchronously
74 * tested when modifications are made to the destination cache as a
75 * result of redirects, path MTU changes, etc.
76 */
77
78 static void fib6_gc_timer_cb(unsigned long arg);
79
80 static LIST_HEAD(fib6_walkers);
81 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
82
83 static void fib6_walker_link(struct fib6_walker *w)
84 {
85 write_lock_bh(&fib6_walker_lock);
86 list_add(&w->lh, &fib6_walkers);
87 write_unlock_bh(&fib6_walker_lock);
88 }
89
90 static void fib6_walker_unlink(struct fib6_walker *w)
91 {
92 write_lock_bh(&fib6_walker_lock);
93 list_del(&w->lh);
94 write_unlock_bh(&fib6_walker_lock);
95 }
96
97 static int fib6_new_sernum(struct net *net)
98 {
99 int new, old;
100
101 do {
102 old = atomic_read(&net->ipv6.fib6_sernum);
103 new = old < INT_MAX ? old + 1 : 1;
104 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105 old, new) != old);
106 return new;
107 }
108
109 enum {
110 FIB6_NO_SERNUM_CHANGE = 0,
111 };
112
113 /*
114 * Auxiliary address test functions for the radix tree.
115 *
116 * These assume a 32bit processor (although it will work on
117 * 64bit processors)
118 */
119
120 /*
121 * test bit
122 */
123 #if defined(__LITTLE_ENDIAN)
124 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
125 #else
126 # define BITOP_BE32_SWIZZLE 0
127 #endif
128
129 static __be32 addr_bit_set(const void *token, int fn_bit)
130 {
131 const __be32 *addr = token;
132 /*
133 * Here,
134 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135 * is optimized version of
136 * htonl(1 << ((~fn_bit)&0x1F))
137 * See include/asm-generic/bitops/le.h.
138 */
139 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140 addr[fn_bit >> 5];
141 }
142
143 static struct fib6_node *node_alloc(void)
144 {
145 struct fib6_node *fn;
146
147 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148
149 return fn;
150 }
151
152 static void node_free(struct fib6_node *fn)
153 {
154 kmem_cache_free(fib6_node_kmem, fn);
155 }
156
157 static void rt6_release(struct rt6_info *rt)
158 {
159 if (atomic_dec_and_test(&rt->rt6i_ref))
160 dst_free(&rt->dst);
161 }
162
163 static void fib6_link_table(struct net *net, struct fib6_table *tb)
164 {
165 unsigned int h;
166
167 /*
168 * Initialize table lock at a single place to give lockdep a key,
169 * tables aren't visible prior to being linked to the list.
170 */
171 rwlock_init(&tb->tb6_lock);
172
173 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
174
175 /*
176 * No protection necessary, this is the only list mutatation
177 * operation, tables never disappear once they exist.
178 */
179 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
180 }
181
182 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
183
184 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
185 {
186 struct fib6_table *table;
187
188 table = kzalloc(sizeof(*table), GFP_ATOMIC);
189 if (table) {
190 table->tb6_id = id;
191 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
192 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
193 inet_peer_base_init(&table->tb6_peers);
194 }
195
196 return table;
197 }
198
199 struct fib6_table *fib6_new_table(struct net *net, u32 id)
200 {
201 struct fib6_table *tb;
202
203 if (id == 0)
204 id = RT6_TABLE_MAIN;
205 tb = fib6_get_table(net, id);
206 if (tb)
207 return tb;
208
209 tb = fib6_alloc_table(net, id);
210 if (tb)
211 fib6_link_table(net, tb);
212
213 return tb;
214 }
215
216 struct fib6_table *fib6_get_table(struct net *net, u32 id)
217 {
218 struct fib6_table *tb;
219 struct hlist_head *head;
220 unsigned int h;
221
222 if (id == 0)
223 id = RT6_TABLE_MAIN;
224 h = id & (FIB6_TABLE_HASHSZ - 1);
225 rcu_read_lock();
226 head = &net->ipv6.fib_table_hash[h];
227 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
228 if (tb->tb6_id == id) {
229 rcu_read_unlock();
230 return tb;
231 }
232 }
233 rcu_read_unlock();
234
235 return NULL;
236 }
237
238 static void __net_init fib6_tables_init(struct net *net)
239 {
240 fib6_link_table(net, net->ipv6.fib6_main_tbl);
241 fib6_link_table(net, net->ipv6.fib6_local_tbl);
242 }
243 #else
244
245 struct fib6_table *fib6_new_table(struct net *net, u32 id)
246 {
247 return fib6_get_table(net, id);
248 }
249
250 struct fib6_table *fib6_get_table(struct net *net, u32 id)
251 {
252 return net->ipv6.fib6_main_tbl;
253 }
254
255 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
256 int flags, pol_lookup_t lookup)
257 {
258 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
259 }
260
261 static void __net_init fib6_tables_init(struct net *net)
262 {
263 fib6_link_table(net, net->ipv6.fib6_main_tbl);
264 }
265
266 #endif
267
268 static int fib6_dump_node(struct fib6_walker *w)
269 {
270 int res;
271 struct rt6_info *rt;
272
273 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
274 res = rt6_dump_route(rt, w->args);
275 if (res < 0) {
276 /* Frame is full, suspend walking */
277 w->leaf = rt;
278 return 1;
279 }
280 }
281 w->leaf = NULL;
282 return 0;
283 }
284
285 static void fib6_dump_end(struct netlink_callback *cb)
286 {
287 struct fib6_walker *w = (void *)cb->args[2];
288
289 if (w) {
290 if (cb->args[4]) {
291 cb->args[4] = 0;
292 fib6_walker_unlink(w);
293 }
294 cb->args[2] = 0;
295 kfree(w);
296 }
297 cb->done = (void *)cb->args[3];
298 cb->args[1] = 3;
299 }
300
301 static int fib6_dump_done(struct netlink_callback *cb)
302 {
303 fib6_dump_end(cb);
304 return cb->done ? cb->done(cb) : 0;
305 }
306
307 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
308 struct netlink_callback *cb)
309 {
310 struct fib6_walker *w;
311 int res;
312
313 w = (void *)cb->args[2];
314 w->root = &table->tb6_root;
315
316 if (cb->args[4] == 0) {
317 w->count = 0;
318 w->skip = 0;
319
320 read_lock_bh(&table->tb6_lock);
321 res = fib6_walk(w);
322 read_unlock_bh(&table->tb6_lock);
323 if (res > 0) {
324 cb->args[4] = 1;
325 cb->args[5] = w->root->fn_sernum;
326 }
327 } else {
328 if (cb->args[5] != w->root->fn_sernum) {
329 /* Begin at the root if the tree changed */
330 cb->args[5] = w->root->fn_sernum;
331 w->state = FWS_INIT;
332 w->node = w->root;
333 w->skip = w->count;
334 } else
335 w->skip = 0;
336
337 read_lock_bh(&table->tb6_lock);
338 res = fib6_walk_continue(w);
339 read_unlock_bh(&table->tb6_lock);
340 if (res <= 0) {
341 fib6_walker_unlink(w);
342 cb->args[4] = 0;
343 }
344 }
345
346 return res;
347 }
348
349 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
350 {
351 struct net *net = sock_net(skb->sk);
352 unsigned int h, s_h;
353 unsigned int e = 0, s_e;
354 struct rt6_rtnl_dump_arg arg;
355 struct fib6_walker *w;
356 struct fib6_table *tb;
357 struct hlist_head *head;
358 int res = 0;
359
360 s_h = cb->args[0];
361 s_e = cb->args[1];
362
363 w = (void *)cb->args[2];
364 if (!w) {
365 /* New dump:
366 *
367 * 1. hook callback destructor.
368 */
369 cb->args[3] = (long)cb->done;
370 cb->done = fib6_dump_done;
371
372 /*
373 * 2. allocate and initialize walker.
374 */
375 w = kzalloc(sizeof(*w), GFP_ATOMIC);
376 if (!w)
377 return -ENOMEM;
378 w->func = fib6_dump_node;
379 cb->args[2] = (long)w;
380 }
381
382 arg.skb = skb;
383 arg.cb = cb;
384 arg.net = net;
385 w->args = &arg;
386
387 rcu_read_lock();
388 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
389 e = 0;
390 head = &net->ipv6.fib_table_hash[h];
391 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
392 if (e < s_e)
393 goto next;
394 res = fib6_dump_table(tb, skb, cb);
395 if (res != 0)
396 goto out;
397 next:
398 e++;
399 }
400 }
401 out:
402 rcu_read_unlock();
403 cb->args[1] = e;
404 cb->args[0] = h;
405
406 res = res < 0 ? res : skb->len;
407 if (res <= 0)
408 fib6_dump_end(cb);
409 return res;
410 }
411
412 /*
413 * Routing Table
414 *
415 * return the appropriate node for a routing tree "add" operation
416 * by either creating and inserting or by returning an existing
417 * node.
418 */
419
420 static struct fib6_node *fib6_add_1(struct fib6_node *root,
421 struct in6_addr *addr, int plen,
422 int offset, int allow_create,
423 int replace_required, int sernum)
424 {
425 struct fib6_node *fn, *in, *ln;
426 struct fib6_node *pn = NULL;
427 struct rt6key *key;
428 int bit;
429 __be32 dir = 0;
430
431 RT6_TRACE("fib6_add_1\n");
432
433 /* insert node in tree */
434
435 fn = root;
436
437 do {
438 key = (struct rt6key *)((u8 *)fn->leaf + offset);
439
440 /*
441 * Prefix match
442 */
443 if (plen < fn->fn_bit ||
444 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
445 if (!allow_create) {
446 if (replace_required) {
447 pr_warn("Can't replace route, no match found\n");
448 return ERR_PTR(-ENOENT);
449 }
450 pr_warn("NLM_F_CREATE should be set when creating new route\n");
451 }
452 goto insert_above;
453 }
454
455 /*
456 * Exact match ?
457 */
458
459 if (plen == fn->fn_bit) {
460 /* clean up an intermediate node */
461 if (!(fn->fn_flags & RTN_RTINFO)) {
462 rt6_release(fn->leaf);
463 fn->leaf = NULL;
464 }
465
466 fn->fn_sernum = sernum;
467
468 return fn;
469 }
470
471 /*
472 * We have more bits to go
473 */
474
475 /* Try to walk down on tree. */
476 fn->fn_sernum = sernum;
477 dir = addr_bit_set(addr, fn->fn_bit);
478 pn = fn;
479 fn = dir ? fn->right : fn->left;
480 } while (fn);
481
482 if (!allow_create) {
483 /* We should not create new node because
484 * NLM_F_REPLACE was specified without NLM_F_CREATE
485 * I assume it is safe to require NLM_F_CREATE when
486 * REPLACE flag is used! Later we may want to remove the
487 * check for replace_required, because according
488 * to netlink specification, NLM_F_CREATE
489 * MUST be specified if new route is created.
490 * That would keep IPv6 consistent with IPv4
491 */
492 if (replace_required) {
493 pr_warn("Can't replace route, no match found\n");
494 return ERR_PTR(-ENOENT);
495 }
496 pr_warn("NLM_F_CREATE should be set when creating new route\n");
497 }
498 /*
499 * We walked to the bottom of tree.
500 * Create new leaf node without children.
501 */
502
503 ln = node_alloc();
504
505 if (!ln)
506 return ERR_PTR(-ENOMEM);
507 ln->fn_bit = plen;
508
509 ln->parent = pn;
510 ln->fn_sernum = sernum;
511
512 if (dir)
513 pn->right = ln;
514 else
515 pn->left = ln;
516
517 return ln;
518
519
520 insert_above:
521 /*
522 * split since we don't have a common prefix anymore or
523 * we have a less significant route.
524 * we've to insert an intermediate node on the list
525 * this new node will point to the one we need to create
526 * and the current
527 */
528
529 pn = fn->parent;
530
531 /* find 1st bit in difference between the 2 addrs.
532
533 See comment in __ipv6_addr_diff: bit may be an invalid value,
534 but if it is >= plen, the value is ignored in any case.
535 */
536
537 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
538
539 /*
540 * (intermediate)[in]
541 * / \
542 * (new leaf node)[ln] (old node)[fn]
543 */
544 if (plen > bit) {
545 in = node_alloc();
546 ln = node_alloc();
547
548 if (!in || !ln) {
549 if (in)
550 node_free(in);
551 if (ln)
552 node_free(ln);
553 return ERR_PTR(-ENOMEM);
554 }
555
556 /*
557 * new intermediate node.
558 * RTN_RTINFO will
559 * be off since that an address that chooses one of
560 * the branches would not match less specific routes
561 * in the other branch
562 */
563
564 in->fn_bit = bit;
565
566 in->parent = pn;
567 in->leaf = fn->leaf;
568 atomic_inc(&in->leaf->rt6i_ref);
569
570 in->fn_sernum = sernum;
571
572 /* update parent pointer */
573 if (dir)
574 pn->right = in;
575 else
576 pn->left = in;
577
578 ln->fn_bit = plen;
579
580 ln->parent = in;
581 fn->parent = in;
582
583 ln->fn_sernum = sernum;
584
585 if (addr_bit_set(addr, bit)) {
586 in->right = ln;
587 in->left = fn;
588 } else {
589 in->left = ln;
590 in->right = fn;
591 }
592 } else { /* plen <= bit */
593
594 /*
595 * (new leaf node)[ln]
596 * / \
597 * (old node)[fn] NULL
598 */
599
600 ln = node_alloc();
601
602 if (!ln)
603 return ERR_PTR(-ENOMEM);
604
605 ln->fn_bit = plen;
606
607 ln->parent = pn;
608
609 ln->fn_sernum = sernum;
610
611 if (dir)
612 pn->right = ln;
613 else
614 pn->left = ln;
615
616 if (addr_bit_set(&key->addr, plen))
617 ln->right = fn;
618 else
619 ln->left = fn;
620
621 fn->parent = ln;
622 }
623 return ln;
624 }
625
626 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
627 {
628 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
629 RTF_GATEWAY;
630 }
631
632 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
633 {
634 int i;
635
636 for (i = 0; i < RTAX_MAX; i++) {
637 if (test_bit(i, mxc->mx_valid))
638 mp[i] = mxc->mx[i];
639 }
640 }
641
642 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
643 {
644 if (!mxc->mx)
645 return 0;
646
647 if (dst->flags & DST_HOST) {
648 u32 *mp = dst_metrics_write_ptr(dst);
649
650 if (unlikely(!mp))
651 return -ENOMEM;
652
653 fib6_copy_metrics(mp, mxc);
654 } else {
655 dst_init_metrics(dst, mxc->mx, false);
656
657 /* We've stolen mx now. */
658 mxc->mx = NULL;
659 }
660
661 return 0;
662 }
663
664 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
665 struct net *net)
666 {
667 if (atomic_read(&rt->rt6i_ref) != 1) {
668 /* This route is used as dummy address holder in some split
669 * nodes. It is not leaked, but it still holds other resources,
670 * which must be released in time. So, scan ascendant nodes
671 * and replace dummy references to this route with references
672 * to still alive ones.
673 */
674 while (fn) {
675 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
676 fn->leaf = fib6_find_prefix(net, fn);
677 atomic_inc(&fn->leaf->rt6i_ref);
678 rt6_release(rt);
679 }
680 fn = fn->parent;
681 }
682 /* No more references are possible at this point. */
683 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
684 }
685 }
686
687 /*
688 * Insert routing information in a node.
689 */
690
691 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
692 struct nl_info *info, struct mx6_config *mxc)
693 {
694 struct rt6_info *iter = NULL;
695 struct rt6_info **ins;
696 int replace = (info->nlh &&
697 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
698 int add = (!info->nlh ||
699 (info->nlh->nlmsg_flags & NLM_F_CREATE));
700 int found = 0;
701 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
702 int err;
703
704 ins = &fn->leaf;
705
706 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
707 /*
708 * Search for duplicates
709 */
710
711 if (iter->rt6i_metric == rt->rt6i_metric) {
712 /*
713 * Same priority level
714 */
715 if (info->nlh &&
716 (info->nlh->nlmsg_flags & NLM_F_EXCL))
717 return -EEXIST;
718 if (replace) {
719 found++;
720 break;
721 }
722
723 if (iter->dst.dev == rt->dst.dev &&
724 iter->rt6i_idev == rt->rt6i_idev &&
725 ipv6_addr_equal(&iter->rt6i_gateway,
726 &rt->rt6i_gateway)) {
727 if (rt->rt6i_nsiblings)
728 rt->rt6i_nsiblings = 0;
729 if (!(iter->rt6i_flags & RTF_EXPIRES))
730 return -EEXIST;
731 if (!(rt->rt6i_flags & RTF_EXPIRES))
732 rt6_clean_expires(iter);
733 else
734 rt6_set_expires(iter, rt->dst.expires);
735 return -EEXIST;
736 }
737 /* If we have the same destination and the same metric,
738 * but not the same gateway, then the route we try to
739 * add is sibling to this route, increment our counter
740 * of siblings, and later we will add our route to the
741 * list.
742 * Only static routes (which don't have flag
743 * RTF_EXPIRES) are used for ECMPv6.
744 *
745 * To avoid long list, we only had siblings if the
746 * route have a gateway.
747 */
748 if (rt_can_ecmp &&
749 rt6_qualify_for_ecmp(iter))
750 rt->rt6i_nsiblings++;
751 }
752
753 if (iter->rt6i_metric > rt->rt6i_metric)
754 break;
755
756 ins = &iter->dst.rt6_next;
757 }
758
759 /* Reset round-robin state, if necessary */
760 if (ins == &fn->leaf)
761 fn->rr_ptr = NULL;
762
763 /* Link this route to others same route. */
764 if (rt->rt6i_nsiblings) {
765 unsigned int rt6i_nsiblings;
766 struct rt6_info *sibling, *temp_sibling;
767
768 /* Find the first route that have the same metric */
769 sibling = fn->leaf;
770 while (sibling) {
771 if (sibling->rt6i_metric == rt->rt6i_metric &&
772 rt6_qualify_for_ecmp(sibling)) {
773 list_add_tail(&rt->rt6i_siblings,
774 &sibling->rt6i_siblings);
775 break;
776 }
777 sibling = sibling->dst.rt6_next;
778 }
779 /* For each sibling in the list, increment the counter of
780 * siblings. BUG() if counters does not match, list of siblings
781 * is broken!
782 */
783 rt6i_nsiblings = 0;
784 list_for_each_entry_safe(sibling, temp_sibling,
785 &rt->rt6i_siblings, rt6i_siblings) {
786 sibling->rt6i_nsiblings++;
787 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
788 rt6i_nsiblings++;
789 }
790 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
791 }
792
793 /*
794 * insert node
795 */
796 if (!replace) {
797 if (!add)
798 pr_warn("NLM_F_CREATE should be set when creating new route\n");
799
800 add:
801 err = fib6_commit_metrics(&rt->dst, mxc);
802 if (err)
803 return err;
804
805 rt->dst.rt6_next = iter;
806 *ins = rt;
807 rt->rt6i_node = fn;
808 atomic_inc(&rt->rt6i_ref);
809 inet6_rt_notify(RTM_NEWROUTE, rt, info);
810 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
811
812 if (!(fn->fn_flags & RTN_RTINFO)) {
813 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
814 fn->fn_flags |= RTN_RTINFO;
815 }
816
817 } else {
818 if (!found) {
819 if (add)
820 goto add;
821 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
822 return -ENOENT;
823 }
824
825 err = fib6_commit_metrics(&rt->dst, mxc);
826 if (err)
827 return err;
828
829 *ins = rt;
830 rt->rt6i_node = fn;
831 rt->dst.rt6_next = iter->dst.rt6_next;
832 atomic_inc(&rt->rt6i_ref);
833 inet6_rt_notify(RTM_NEWROUTE, rt, info);
834 if (!(fn->fn_flags & RTN_RTINFO)) {
835 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
836 fn->fn_flags |= RTN_RTINFO;
837 }
838 fib6_purge_rt(iter, fn, info->nl_net);
839 rt6_release(iter);
840 }
841
842 return 0;
843 }
844
845 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
846 {
847 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
848 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
849 mod_timer(&net->ipv6.ip6_fib_timer,
850 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
851 }
852
853 void fib6_force_start_gc(struct net *net)
854 {
855 if (!timer_pending(&net->ipv6.ip6_fib_timer))
856 mod_timer(&net->ipv6.ip6_fib_timer,
857 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
858 }
859
860 /*
861 * Add routing information to the routing tree.
862 * <destination addr>/<source addr>
863 * with source addr info in sub-trees
864 */
865
866 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
867 struct nl_info *info, struct mx6_config *mxc)
868 {
869 struct fib6_node *fn, *pn = NULL;
870 int err = -ENOMEM;
871 int allow_create = 1;
872 int replace_required = 0;
873 int sernum = fib6_new_sernum(info->nl_net);
874
875 if (info->nlh) {
876 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
877 allow_create = 0;
878 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
879 replace_required = 1;
880 }
881 if (!allow_create && !replace_required)
882 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
883
884 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
885 offsetof(struct rt6_info, rt6i_dst), allow_create,
886 replace_required, sernum);
887 if (IS_ERR(fn)) {
888 err = PTR_ERR(fn);
889 fn = NULL;
890 goto out;
891 }
892
893 pn = fn;
894
895 #ifdef CONFIG_IPV6_SUBTREES
896 if (rt->rt6i_src.plen) {
897 struct fib6_node *sn;
898
899 if (!fn->subtree) {
900 struct fib6_node *sfn;
901
902 /*
903 * Create subtree.
904 *
905 * fn[main tree]
906 * |
907 * sfn[subtree root]
908 * \
909 * sn[new leaf node]
910 */
911
912 /* Create subtree root node */
913 sfn = node_alloc();
914 if (!sfn)
915 goto st_failure;
916
917 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
918 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
919 sfn->fn_flags = RTN_ROOT;
920 sfn->fn_sernum = sernum;
921
922 /* Now add the first leaf node to new subtree */
923
924 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
925 rt->rt6i_src.plen,
926 offsetof(struct rt6_info, rt6i_src),
927 allow_create, replace_required, sernum);
928
929 if (IS_ERR(sn)) {
930 /* If it is failed, discard just allocated
931 root, and then (in st_failure) stale node
932 in main tree.
933 */
934 node_free(sfn);
935 err = PTR_ERR(sn);
936 goto st_failure;
937 }
938
939 /* Now link new subtree to main tree */
940 sfn->parent = fn;
941 fn->subtree = sfn;
942 } else {
943 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
944 rt->rt6i_src.plen,
945 offsetof(struct rt6_info, rt6i_src),
946 allow_create, replace_required, sernum);
947
948 if (IS_ERR(sn)) {
949 err = PTR_ERR(sn);
950 goto st_failure;
951 }
952 }
953
954 if (!fn->leaf) {
955 fn->leaf = rt;
956 atomic_inc(&rt->rt6i_ref);
957 }
958 fn = sn;
959 }
960 #endif
961
962 err = fib6_add_rt2node(fn, rt, info, mxc);
963 if (!err) {
964 fib6_start_gc(info->nl_net, rt);
965 if (!(rt->rt6i_flags & RTF_CACHE))
966 fib6_prune_clones(info->nl_net, pn);
967 }
968
969 out:
970 if (err) {
971 #ifdef CONFIG_IPV6_SUBTREES
972 /*
973 * If fib6_add_1 has cleared the old leaf pointer in the
974 * super-tree leaf node we have to find a new one for it.
975 */
976 if (pn != fn && pn->leaf == rt) {
977 pn->leaf = NULL;
978 atomic_dec(&rt->rt6i_ref);
979 }
980 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
981 pn->leaf = fib6_find_prefix(info->nl_net, pn);
982 #if RT6_DEBUG >= 2
983 if (!pn->leaf) {
984 WARN_ON(pn->leaf == NULL);
985 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
986 }
987 #endif
988 atomic_inc(&pn->leaf->rt6i_ref);
989 }
990 #endif
991 dst_free(&rt->dst);
992 }
993 return err;
994
995 #ifdef CONFIG_IPV6_SUBTREES
996 /* Subtree creation failed, probably main tree node
997 is orphan. If it is, shoot it.
998 */
999 st_failure:
1000 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1001 fib6_repair_tree(info->nl_net, fn);
1002 dst_free(&rt->dst);
1003 return err;
1004 #endif
1005 }
1006
1007 /*
1008 * Routing tree lookup
1009 *
1010 */
1011
1012 struct lookup_args {
1013 int offset; /* key offset on rt6_info */
1014 const struct in6_addr *addr; /* search key */
1015 };
1016
1017 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1018 struct lookup_args *args)
1019 {
1020 struct fib6_node *fn;
1021 __be32 dir;
1022
1023 if (unlikely(args->offset == 0))
1024 return NULL;
1025
1026 /*
1027 * Descend on a tree
1028 */
1029
1030 fn = root;
1031
1032 for (;;) {
1033 struct fib6_node *next;
1034
1035 dir = addr_bit_set(args->addr, fn->fn_bit);
1036
1037 next = dir ? fn->right : fn->left;
1038
1039 if (next) {
1040 fn = next;
1041 continue;
1042 }
1043 break;
1044 }
1045
1046 while (fn) {
1047 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1048 struct rt6key *key;
1049
1050 key = (struct rt6key *) ((u8 *) fn->leaf +
1051 args->offset);
1052
1053 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1054 #ifdef CONFIG_IPV6_SUBTREES
1055 if (fn->subtree) {
1056 struct fib6_node *sfn;
1057 sfn = fib6_lookup_1(fn->subtree,
1058 args + 1);
1059 if (!sfn)
1060 goto backtrack;
1061 fn = sfn;
1062 }
1063 #endif
1064 if (fn->fn_flags & RTN_RTINFO)
1065 return fn;
1066 }
1067 }
1068 #ifdef CONFIG_IPV6_SUBTREES
1069 backtrack:
1070 #endif
1071 if (fn->fn_flags & RTN_ROOT)
1072 break;
1073
1074 fn = fn->parent;
1075 }
1076
1077 return NULL;
1078 }
1079
1080 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1081 const struct in6_addr *saddr)
1082 {
1083 struct fib6_node *fn;
1084 struct lookup_args args[] = {
1085 {
1086 .offset = offsetof(struct rt6_info, rt6i_dst),
1087 .addr = daddr,
1088 },
1089 #ifdef CONFIG_IPV6_SUBTREES
1090 {
1091 .offset = offsetof(struct rt6_info, rt6i_src),
1092 .addr = saddr,
1093 },
1094 #endif
1095 {
1096 .offset = 0, /* sentinel */
1097 }
1098 };
1099
1100 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1101 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1102 fn = root;
1103
1104 return fn;
1105 }
1106
1107 /*
1108 * Get node with specified destination prefix (and source prefix,
1109 * if subtrees are used)
1110 */
1111
1112
1113 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1114 const struct in6_addr *addr,
1115 int plen, int offset)
1116 {
1117 struct fib6_node *fn;
1118
1119 for (fn = root; fn ; ) {
1120 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1121
1122 /*
1123 * Prefix match
1124 */
1125 if (plen < fn->fn_bit ||
1126 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1127 return NULL;
1128
1129 if (plen == fn->fn_bit)
1130 return fn;
1131
1132 /*
1133 * We have more bits to go
1134 */
1135 if (addr_bit_set(addr, fn->fn_bit))
1136 fn = fn->right;
1137 else
1138 fn = fn->left;
1139 }
1140 return NULL;
1141 }
1142
1143 struct fib6_node *fib6_locate(struct fib6_node *root,
1144 const struct in6_addr *daddr, int dst_len,
1145 const struct in6_addr *saddr, int src_len)
1146 {
1147 struct fib6_node *fn;
1148
1149 fn = fib6_locate_1(root, daddr, dst_len,
1150 offsetof(struct rt6_info, rt6i_dst));
1151
1152 #ifdef CONFIG_IPV6_SUBTREES
1153 if (src_len) {
1154 WARN_ON(saddr == NULL);
1155 if (fn && fn->subtree)
1156 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1157 offsetof(struct rt6_info, rt6i_src));
1158 }
1159 #endif
1160
1161 if (fn && fn->fn_flags & RTN_RTINFO)
1162 return fn;
1163
1164 return NULL;
1165 }
1166
1167
1168 /*
1169 * Deletion
1170 *
1171 */
1172
1173 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1174 {
1175 if (fn->fn_flags & RTN_ROOT)
1176 return net->ipv6.ip6_null_entry;
1177
1178 while (fn) {
1179 if (fn->left)
1180 return fn->left->leaf;
1181 if (fn->right)
1182 return fn->right->leaf;
1183
1184 fn = FIB6_SUBTREE(fn);
1185 }
1186 return NULL;
1187 }
1188
1189 /*
1190 * Called to trim the tree of intermediate nodes when possible. "fn"
1191 * is the node we want to try and remove.
1192 */
1193
1194 static struct fib6_node *fib6_repair_tree(struct net *net,
1195 struct fib6_node *fn)
1196 {
1197 int children;
1198 int nstate;
1199 struct fib6_node *child, *pn;
1200 struct fib6_walker *w;
1201 int iter = 0;
1202
1203 for (;;) {
1204 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1205 iter++;
1206
1207 WARN_ON(fn->fn_flags & RTN_RTINFO);
1208 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1209 WARN_ON(fn->leaf);
1210
1211 children = 0;
1212 child = NULL;
1213 if (fn->right)
1214 child = fn->right, children |= 1;
1215 if (fn->left)
1216 child = fn->left, children |= 2;
1217
1218 if (children == 3 || FIB6_SUBTREE(fn)
1219 #ifdef CONFIG_IPV6_SUBTREES
1220 /* Subtree root (i.e. fn) may have one child */
1221 || (children && fn->fn_flags & RTN_ROOT)
1222 #endif
1223 ) {
1224 fn->leaf = fib6_find_prefix(net, fn);
1225 #if RT6_DEBUG >= 2
1226 if (!fn->leaf) {
1227 WARN_ON(!fn->leaf);
1228 fn->leaf = net->ipv6.ip6_null_entry;
1229 }
1230 #endif
1231 atomic_inc(&fn->leaf->rt6i_ref);
1232 return fn->parent;
1233 }
1234
1235 pn = fn->parent;
1236 #ifdef CONFIG_IPV6_SUBTREES
1237 if (FIB6_SUBTREE(pn) == fn) {
1238 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1239 FIB6_SUBTREE(pn) = NULL;
1240 nstate = FWS_L;
1241 } else {
1242 WARN_ON(fn->fn_flags & RTN_ROOT);
1243 #endif
1244 if (pn->right == fn)
1245 pn->right = child;
1246 else if (pn->left == fn)
1247 pn->left = child;
1248 #if RT6_DEBUG >= 2
1249 else
1250 WARN_ON(1);
1251 #endif
1252 if (child)
1253 child->parent = pn;
1254 nstate = FWS_R;
1255 #ifdef CONFIG_IPV6_SUBTREES
1256 }
1257 #endif
1258
1259 read_lock(&fib6_walker_lock);
1260 FOR_WALKERS(w) {
1261 if (!child) {
1262 if (w->root == fn) {
1263 w->root = w->node = NULL;
1264 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1265 } else if (w->node == fn) {
1266 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1267 w->node = pn;
1268 w->state = nstate;
1269 }
1270 } else {
1271 if (w->root == fn) {
1272 w->root = child;
1273 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1274 }
1275 if (w->node == fn) {
1276 w->node = child;
1277 if (children&2) {
1278 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1279 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1280 } else {
1281 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1282 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1283 }
1284 }
1285 }
1286 }
1287 read_unlock(&fib6_walker_lock);
1288
1289 node_free(fn);
1290 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1291 return pn;
1292
1293 rt6_release(pn->leaf);
1294 pn->leaf = NULL;
1295 fn = pn;
1296 }
1297 }
1298
1299 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1300 struct nl_info *info)
1301 {
1302 struct fib6_walker *w;
1303 struct rt6_info *rt = *rtp;
1304 struct net *net = info->nl_net;
1305
1306 RT6_TRACE("fib6_del_route\n");
1307
1308 /* Unlink it */
1309 *rtp = rt->dst.rt6_next;
1310 rt->rt6i_node = NULL;
1311 net->ipv6.rt6_stats->fib_rt_entries--;
1312 net->ipv6.rt6_stats->fib_discarded_routes++;
1313
1314 /* Reset round-robin state, if necessary */
1315 if (fn->rr_ptr == rt)
1316 fn->rr_ptr = NULL;
1317
1318 /* Remove this entry from other siblings */
1319 if (rt->rt6i_nsiblings) {
1320 struct rt6_info *sibling, *next_sibling;
1321
1322 list_for_each_entry_safe(sibling, next_sibling,
1323 &rt->rt6i_siblings, rt6i_siblings)
1324 sibling->rt6i_nsiblings--;
1325 rt->rt6i_nsiblings = 0;
1326 list_del_init(&rt->rt6i_siblings);
1327 }
1328
1329 /* Adjust walkers */
1330 read_lock(&fib6_walker_lock);
1331 FOR_WALKERS(w) {
1332 if (w->state == FWS_C && w->leaf == rt) {
1333 RT6_TRACE("walker %p adjusted by delroute\n", w);
1334 w->leaf = rt->dst.rt6_next;
1335 if (!w->leaf)
1336 w->state = FWS_U;
1337 }
1338 }
1339 read_unlock(&fib6_walker_lock);
1340
1341 rt->dst.rt6_next = NULL;
1342
1343 /* If it was last route, expunge its radix tree node */
1344 if (!fn->leaf) {
1345 fn->fn_flags &= ~RTN_RTINFO;
1346 net->ipv6.rt6_stats->fib_route_nodes--;
1347 fn = fib6_repair_tree(net, fn);
1348 }
1349
1350 fib6_purge_rt(rt, fn, net);
1351
1352 inet6_rt_notify(RTM_DELROUTE, rt, info);
1353 rt6_release(rt);
1354 }
1355
1356 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1357 {
1358 struct net *net = info->nl_net;
1359 struct fib6_node *fn = rt->rt6i_node;
1360 struct rt6_info **rtp;
1361
1362 #if RT6_DEBUG >= 2
1363 if (rt->dst.obsolete > 0) {
1364 WARN_ON(fn);
1365 return -ENOENT;
1366 }
1367 #endif
1368 if (!fn || rt == net->ipv6.ip6_null_entry)
1369 return -ENOENT;
1370
1371 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1372
1373 if (!(rt->rt6i_flags & RTF_CACHE)) {
1374 struct fib6_node *pn = fn;
1375 #ifdef CONFIG_IPV6_SUBTREES
1376 /* clones of this route might be in another subtree */
1377 if (rt->rt6i_src.plen) {
1378 while (!(pn->fn_flags & RTN_ROOT))
1379 pn = pn->parent;
1380 pn = pn->parent;
1381 }
1382 #endif
1383 fib6_prune_clones(info->nl_net, pn);
1384 }
1385
1386 /*
1387 * Walk the leaf entries looking for ourself
1388 */
1389
1390 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1391 if (*rtp == rt) {
1392 fib6_del_route(fn, rtp, info);
1393 return 0;
1394 }
1395 }
1396 return -ENOENT;
1397 }
1398
1399 /*
1400 * Tree traversal function.
1401 *
1402 * Certainly, it is not interrupt safe.
1403 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1404 * It means, that we can modify tree during walking
1405 * and use this function for garbage collection, clone pruning,
1406 * cleaning tree when a device goes down etc. etc.
1407 *
1408 * It guarantees that every node will be traversed,
1409 * and that it will be traversed only once.
1410 *
1411 * Callback function w->func may return:
1412 * 0 -> continue walking.
1413 * positive value -> walking is suspended (used by tree dumps,
1414 * and probably by gc, if it will be split to several slices)
1415 * negative value -> terminate walking.
1416 *
1417 * The function itself returns:
1418 * 0 -> walk is complete.
1419 * >0 -> walk is incomplete (i.e. suspended)
1420 * <0 -> walk is terminated by an error.
1421 */
1422
1423 static int fib6_walk_continue(struct fib6_walker *w)
1424 {
1425 struct fib6_node *fn, *pn;
1426
1427 for (;;) {
1428 fn = w->node;
1429 if (!fn)
1430 return 0;
1431
1432 if (w->prune && fn != w->root &&
1433 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1434 w->state = FWS_C;
1435 w->leaf = fn->leaf;
1436 }
1437 switch (w->state) {
1438 #ifdef CONFIG_IPV6_SUBTREES
1439 case FWS_S:
1440 if (FIB6_SUBTREE(fn)) {
1441 w->node = FIB6_SUBTREE(fn);
1442 continue;
1443 }
1444 w->state = FWS_L;
1445 #endif
1446 case FWS_L:
1447 if (fn->left) {
1448 w->node = fn->left;
1449 w->state = FWS_INIT;
1450 continue;
1451 }
1452 w->state = FWS_R;
1453 case FWS_R:
1454 if (fn->right) {
1455 w->node = fn->right;
1456 w->state = FWS_INIT;
1457 continue;
1458 }
1459 w->state = FWS_C;
1460 w->leaf = fn->leaf;
1461 case FWS_C:
1462 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1463 int err;
1464
1465 if (w->skip) {
1466 w->skip--;
1467 goto skip;
1468 }
1469
1470 err = w->func(w);
1471 if (err)
1472 return err;
1473
1474 w->count++;
1475 continue;
1476 }
1477 skip:
1478 w->state = FWS_U;
1479 case FWS_U:
1480 if (fn == w->root)
1481 return 0;
1482 pn = fn->parent;
1483 w->node = pn;
1484 #ifdef CONFIG_IPV6_SUBTREES
1485 if (FIB6_SUBTREE(pn) == fn) {
1486 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1487 w->state = FWS_L;
1488 continue;
1489 }
1490 #endif
1491 if (pn->left == fn) {
1492 w->state = FWS_R;
1493 continue;
1494 }
1495 if (pn->right == fn) {
1496 w->state = FWS_C;
1497 w->leaf = w->node->leaf;
1498 continue;
1499 }
1500 #if RT6_DEBUG >= 2
1501 WARN_ON(1);
1502 #endif
1503 }
1504 }
1505 }
1506
1507 static int fib6_walk(struct fib6_walker *w)
1508 {
1509 int res;
1510
1511 w->state = FWS_INIT;
1512 w->node = w->root;
1513
1514 fib6_walker_link(w);
1515 res = fib6_walk_continue(w);
1516 if (res <= 0)
1517 fib6_walker_unlink(w);
1518 return res;
1519 }
1520
1521 static int fib6_clean_node(struct fib6_walker *w)
1522 {
1523 int res;
1524 struct rt6_info *rt;
1525 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1526 struct nl_info info = {
1527 .nl_net = c->net,
1528 };
1529
1530 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1531 w->node->fn_sernum != c->sernum)
1532 w->node->fn_sernum = c->sernum;
1533
1534 if (!c->func) {
1535 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1536 w->leaf = NULL;
1537 return 0;
1538 }
1539
1540 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1541 res = c->func(rt, c->arg);
1542 if (res < 0) {
1543 w->leaf = rt;
1544 res = fib6_del(rt, &info);
1545 if (res) {
1546 #if RT6_DEBUG >= 2
1547 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1548 __func__, rt, rt->rt6i_node, res);
1549 #endif
1550 continue;
1551 }
1552 return 0;
1553 }
1554 WARN_ON(res != 0);
1555 }
1556 w->leaf = rt;
1557 return 0;
1558 }
1559
1560 /*
1561 * Convenient frontend to tree walker.
1562 *
1563 * func is called on each route.
1564 * It may return -1 -> delete this route.
1565 * 0 -> continue walking
1566 *
1567 * prune==1 -> only immediate children of node (certainly,
1568 * ignoring pure split nodes) will be scanned.
1569 */
1570
1571 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1572 int (*func)(struct rt6_info *, void *arg),
1573 bool prune, int sernum, void *arg)
1574 {
1575 struct fib6_cleaner c;
1576
1577 c.w.root = root;
1578 c.w.func = fib6_clean_node;
1579 c.w.prune = prune;
1580 c.w.count = 0;
1581 c.w.skip = 0;
1582 c.func = func;
1583 c.sernum = sernum;
1584 c.arg = arg;
1585 c.net = net;
1586
1587 fib6_walk(&c.w);
1588 }
1589
1590 static void __fib6_clean_all(struct net *net,
1591 int (*func)(struct rt6_info *, void *),
1592 int sernum, void *arg)
1593 {
1594 struct fib6_table *table;
1595 struct hlist_head *head;
1596 unsigned int h;
1597
1598 rcu_read_lock();
1599 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1600 head = &net->ipv6.fib_table_hash[h];
1601 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1602 write_lock_bh(&table->tb6_lock);
1603 fib6_clean_tree(net, &table->tb6_root,
1604 func, false, sernum, arg);
1605 write_unlock_bh(&table->tb6_lock);
1606 }
1607 }
1608 rcu_read_unlock();
1609 }
1610
1611 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1612 void *arg)
1613 {
1614 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1615 }
1616
1617 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1618 {
1619 if (rt->rt6i_flags & RTF_CACHE) {
1620 RT6_TRACE("pruning clone %p\n", rt);
1621 return -1;
1622 }
1623
1624 return 0;
1625 }
1626
1627 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1628 {
1629 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1630 FIB6_NO_SERNUM_CHANGE, NULL);
1631 }
1632
1633 static void fib6_flush_trees(struct net *net)
1634 {
1635 int new_sernum = fib6_new_sernum(net);
1636
1637 __fib6_clean_all(net, NULL, new_sernum, NULL);
1638 }
1639
1640 /*
1641 * Garbage collection
1642 */
1643
1644 static struct fib6_gc_args
1645 {
1646 int timeout;
1647 int more;
1648 } gc_args;
1649
1650 static int fib6_age(struct rt6_info *rt, void *arg)
1651 {
1652 unsigned long now = jiffies;
1653
1654 /*
1655 * check addrconf expiration here.
1656 * Routes are expired even if they are in use.
1657 *
1658 * Also age clones. Note, that clones are aged out
1659 * only if they are not in use now.
1660 */
1661
1662 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1663 if (time_after(now, rt->dst.expires)) {
1664 RT6_TRACE("expiring %p\n", rt);
1665 return -1;
1666 }
1667 gc_args.more++;
1668 } else if (rt->rt6i_flags & RTF_CACHE) {
1669 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1670 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1671 RT6_TRACE("aging clone %p\n", rt);
1672 return -1;
1673 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1674 struct neighbour *neigh;
1675 __u8 neigh_flags = 0;
1676
1677 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1678 if (neigh) {
1679 neigh_flags = neigh->flags;
1680 neigh_release(neigh);
1681 }
1682 if (!(neigh_flags & NTF_ROUTER)) {
1683 RT6_TRACE("purging route %p via non-router but gateway\n",
1684 rt);
1685 return -1;
1686 }
1687 }
1688 gc_args.more++;
1689 }
1690
1691 return 0;
1692 }
1693
1694 static DEFINE_SPINLOCK(fib6_gc_lock);
1695
1696 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1697 {
1698 unsigned long now;
1699
1700 if (force) {
1701 spin_lock_bh(&fib6_gc_lock);
1702 } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1703 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1704 return;
1705 }
1706 gc_args.timeout = expires ? (int)expires :
1707 net->ipv6.sysctl.ip6_rt_gc_interval;
1708
1709 gc_args.more = icmp6_dst_gc();
1710
1711 fib6_clean_all(net, fib6_age, NULL);
1712 now = jiffies;
1713 net->ipv6.ip6_rt_last_gc = now;
1714
1715 if (gc_args.more)
1716 mod_timer(&net->ipv6.ip6_fib_timer,
1717 round_jiffies(now
1718 + net->ipv6.sysctl.ip6_rt_gc_interval));
1719 else
1720 del_timer(&net->ipv6.ip6_fib_timer);
1721 spin_unlock_bh(&fib6_gc_lock);
1722 }
1723
1724 static void fib6_gc_timer_cb(unsigned long arg)
1725 {
1726 fib6_run_gc(0, (struct net *)arg, true);
1727 }
1728
1729 static int __net_init fib6_net_init(struct net *net)
1730 {
1731 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1732
1733 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1734
1735 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1736 if (!net->ipv6.rt6_stats)
1737 goto out_timer;
1738
1739 /* Avoid false sharing : Use at least a full cache line */
1740 size = max_t(size_t, size, L1_CACHE_BYTES);
1741
1742 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1743 if (!net->ipv6.fib_table_hash)
1744 goto out_rt6_stats;
1745
1746 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1747 GFP_KERNEL);
1748 if (!net->ipv6.fib6_main_tbl)
1749 goto out_fib_table_hash;
1750
1751 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1752 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1753 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1754 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1755 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1756
1757 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1758 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1759 GFP_KERNEL);
1760 if (!net->ipv6.fib6_local_tbl)
1761 goto out_fib6_main_tbl;
1762 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1763 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1764 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1765 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1766 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1767 #endif
1768 fib6_tables_init(net);
1769
1770 return 0;
1771
1772 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1773 out_fib6_main_tbl:
1774 kfree(net->ipv6.fib6_main_tbl);
1775 #endif
1776 out_fib_table_hash:
1777 kfree(net->ipv6.fib_table_hash);
1778 out_rt6_stats:
1779 kfree(net->ipv6.rt6_stats);
1780 out_timer:
1781 return -ENOMEM;
1782 }
1783
1784 static void fib6_net_exit(struct net *net)
1785 {
1786 rt6_ifdown(net, NULL);
1787 del_timer_sync(&net->ipv6.ip6_fib_timer);
1788
1789 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1790 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1791 kfree(net->ipv6.fib6_local_tbl);
1792 #endif
1793 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1794 kfree(net->ipv6.fib6_main_tbl);
1795 kfree(net->ipv6.fib_table_hash);
1796 kfree(net->ipv6.rt6_stats);
1797 }
1798
1799 static struct pernet_operations fib6_net_ops = {
1800 .init = fib6_net_init,
1801 .exit = fib6_net_exit,
1802 };
1803
1804 int __init fib6_init(void)
1805 {
1806 int ret = -ENOMEM;
1807
1808 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1809 sizeof(struct fib6_node),
1810 0, SLAB_HWCACHE_ALIGN,
1811 NULL);
1812 if (!fib6_node_kmem)
1813 goto out;
1814
1815 ret = register_pernet_subsys(&fib6_net_ops);
1816 if (ret)
1817 goto out_kmem_cache_create;
1818
1819 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1820 NULL);
1821 if (ret)
1822 goto out_unregister_subsys;
1823
1824 __fib6_flush_trees = fib6_flush_trees;
1825 out:
1826 return ret;
1827
1828 out_unregister_subsys:
1829 unregister_pernet_subsys(&fib6_net_ops);
1830 out_kmem_cache_create:
1831 kmem_cache_destroy(fib6_node_kmem);
1832 goto out;
1833 }
1834
1835 void fib6_gc_cleanup(void)
1836 {
1837 unregister_pernet_subsys(&fib6_net_ops);
1838 kmem_cache_destroy(fib6_node_kmem);
1839 }
1840
1841 #ifdef CONFIG_PROC_FS
1842
1843 struct ipv6_route_iter {
1844 struct seq_net_private p;
1845 struct fib6_walker w;
1846 loff_t skip;
1847 struct fib6_table *tbl;
1848 int sernum;
1849 };
1850
1851 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1852 {
1853 struct rt6_info *rt = v;
1854 struct ipv6_route_iter *iter = seq->private;
1855
1856 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1857
1858 #ifdef CONFIG_IPV6_SUBTREES
1859 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1860 #else
1861 seq_puts(seq, "00000000000000000000000000000000 00 ");
1862 #endif
1863 if (rt->rt6i_flags & RTF_GATEWAY)
1864 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1865 else
1866 seq_puts(seq, "00000000000000000000000000000000");
1867
1868 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1869 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1870 rt->dst.__use, rt->rt6i_flags,
1871 rt->dst.dev ? rt->dst.dev->name : "");
1872 iter->w.leaf = NULL;
1873 return 0;
1874 }
1875
1876 static int ipv6_route_yield(struct fib6_walker *w)
1877 {
1878 struct ipv6_route_iter *iter = w->args;
1879
1880 if (!iter->skip)
1881 return 1;
1882
1883 do {
1884 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1885 iter->skip--;
1886 if (!iter->skip && iter->w.leaf)
1887 return 1;
1888 } while (iter->w.leaf);
1889
1890 return 0;
1891 }
1892
1893 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1894 {
1895 memset(&iter->w, 0, sizeof(iter->w));
1896 iter->w.func = ipv6_route_yield;
1897 iter->w.root = &iter->tbl->tb6_root;
1898 iter->w.state = FWS_INIT;
1899 iter->w.node = iter->w.root;
1900 iter->w.args = iter;
1901 iter->sernum = iter->w.root->fn_sernum;
1902 INIT_LIST_HEAD(&iter->w.lh);
1903 fib6_walker_link(&iter->w);
1904 }
1905
1906 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1907 struct net *net)
1908 {
1909 unsigned int h;
1910 struct hlist_node *node;
1911
1912 if (tbl) {
1913 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1914 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1915 } else {
1916 h = 0;
1917 node = NULL;
1918 }
1919
1920 while (!node && h < FIB6_TABLE_HASHSZ) {
1921 node = rcu_dereference_bh(
1922 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1923 }
1924 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1925 }
1926
1927 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1928 {
1929 if (iter->sernum != iter->w.root->fn_sernum) {
1930 iter->sernum = iter->w.root->fn_sernum;
1931 iter->w.state = FWS_INIT;
1932 iter->w.node = iter->w.root;
1933 WARN_ON(iter->w.skip);
1934 iter->w.skip = iter->w.count;
1935 }
1936 }
1937
1938 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1939 {
1940 int r;
1941 struct rt6_info *n;
1942 struct net *net = seq_file_net(seq);
1943 struct ipv6_route_iter *iter = seq->private;
1944
1945 if (!v)
1946 goto iter_table;
1947
1948 n = ((struct rt6_info *)v)->dst.rt6_next;
1949 if (n) {
1950 ++*pos;
1951 return n;
1952 }
1953
1954 iter_table:
1955 ipv6_route_check_sernum(iter);
1956 read_lock(&iter->tbl->tb6_lock);
1957 r = fib6_walk_continue(&iter->w);
1958 read_unlock(&iter->tbl->tb6_lock);
1959 if (r > 0) {
1960 if (v)
1961 ++*pos;
1962 return iter->w.leaf;
1963 } else if (r < 0) {
1964 fib6_walker_unlink(&iter->w);
1965 return NULL;
1966 }
1967 fib6_walker_unlink(&iter->w);
1968
1969 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1970 if (!iter->tbl)
1971 return NULL;
1972
1973 ipv6_route_seq_setup_walk(iter);
1974 goto iter_table;
1975 }
1976
1977 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1978 __acquires(RCU_BH)
1979 {
1980 struct net *net = seq_file_net(seq);
1981 struct ipv6_route_iter *iter = seq->private;
1982
1983 rcu_read_lock_bh();
1984 iter->tbl = ipv6_route_seq_next_table(NULL, net);
1985 iter->skip = *pos;
1986
1987 if (iter->tbl) {
1988 ipv6_route_seq_setup_walk(iter);
1989 return ipv6_route_seq_next(seq, NULL, pos);
1990 } else {
1991 return NULL;
1992 }
1993 }
1994
1995 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1996 {
1997 struct fib6_walker *w = &iter->w;
1998 return w->node && !(w->state == FWS_U && w->node == w->root);
1999 }
2000
2001 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2002 __releases(RCU_BH)
2003 {
2004 struct ipv6_route_iter *iter = seq->private;
2005
2006 if (ipv6_route_iter_active(iter))
2007 fib6_walker_unlink(&iter->w);
2008
2009 rcu_read_unlock_bh();
2010 }
2011
2012 static const struct seq_operations ipv6_route_seq_ops = {
2013 .start = ipv6_route_seq_start,
2014 .next = ipv6_route_seq_next,
2015 .stop = ipv6_route_seq_stop,
2016 .show = ipv6_route_seq_show
2017 };
2018
2019 int ipv6_route_open(struct inode *inode, struct file *file)
2020 {
2021 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2022 sizeof(struct ipv6_route_iter));
2023 }
2024
2025 #endif /* CONFIG_PROC_FS */