]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv6/ip6_fib.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-jammy-kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 /*
17 * Changes:
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
20 * routing table.
21 * Ville Nuorvala: Fixed routing subtrees.
22 */
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
31
32 #ifdef CONFIG_PROC_FS
33 #include <linux/proc_fs.h>
34 #endif
35
36 #include <net/ipv6.h>
37 #include <net/ndisc.h>
38 #include <net/addrconf.h>
39
40 #include <net/ip6_fib.h>
41 #include <net/ip6_route.h>
42
43 #define RT6_DEBUG 2
44
45 #if RT6_DEBUG >= 3
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
47 #else
48 #define RT6_TRACE(x...) do { ; } while (0)
49 #endif
50
51 struct rt6_statistics rt6_stats;
52
53 static kmem_cache_t * fib6_node_kmem __read_mostly;
54
55 enum fib_walk_state_t
56 {
57 #ifdef CONFIG_IPV6_SUBTREES
58 FWS_S,
59 #endif
60 FWS_L,
61 FWS_R,
62 FWS_C,
63 FWS_U
64 };
65
66 struct fib6_cleaner_t
67 {
68 struct fib6_walker_t w;
69 int (*func)(struct rt6_info *, void *arg);
70 void *arg;
71 };
72
73 static DEFINE_RWLOCK(fib6_walker_lock);
74
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
77 #else
78 #define FWS_INIT FWS_L
79 #endif
80
81 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt);
82 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn);
83 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn);
84 static int fib6_walk(struct fib6_walker_t *w);
85 static int fib6_walk_continue(struct fib6_walker_t *w);
86
87 /*
88 * A routing update causes an increase of the serial number on the
89 * affected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
92 */
93
94 static __u32 rt_sernum;
95
96 static DEFINE_TIMER(ip6_fib_timer, fib6_run_gc, 0, 0);
97
98 static struct fib6_walker_t fib6_walker_list = {
99 .prev = &fib6_walker_list,
100 .next = &fib6_walker_list,
101 };
102
103 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
104
105 static inline void fib6_walker_link(struct fib6_walker_t *w)
106 {
107 write_lock_bh(&fib6_walker_lock);
108 w->next = fib6_walker_list.next;
109 w->prev = &fib6_walker_list;
110 w->next->prev = w;
111 w->prev->next = w;
112 write_unlock_bh(&fib6_walker_lock);
113 }
114
115 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
116 {
117 write_lock_bh(&fib6_walker_lock);
118 w->next->prev = w->prev;
119 w->prev->next = w->next;
120 w->prev = w->next = w;
121 write_unlock_bh(&fib6_walker_lock);
122 }
123 static __inline__ u32 fib6_new_sernum(void)
124 {
125 u32 n = ++rt_sernum;
126 if ((__s32)n <= 0)
127 rt_sernum = n = 1;
128 return n;
129 }
130
131 /*
132 * Auxiliary address test functions for the radix tree.
133 *
134 * These assume a 32bit processor (although it will work on
135 * 64bit processors)
136 */
137
138 /*
139 * test bit
140 */
141
142 static __inline__ int addr_bit_set(void *token, int fn_bit)
143 {
144 __u32 *addr = token;
145
146 return htonl(1 << ((~fn_bit)&0x1F)) & addr[fn_bit>>5];
147 }
148
149 static __inline__ struct fib6_node * node_alloc(void)
150 {
151 struct fib6_node *fn;
152
153 if ((fn = kmem_cache_alloc(fib6_node_kmem, SLAB_ATOMIC)) != NULL)
154 memset(fn, 0, sizeof(struct fib6_node));
155
156 return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161 kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166 if (atomic_dec_and_test(&rt->rt6i_ref))
167 dst_free(&rt->u.dst);
168 }
169
170 static struct fib6_table fib6_main_tbl = {
171 .tb6_id = RT6_TABLE_MAIN,
172 .tb6_lock = RW_LOCK_UNLOCKED,
173 .tb6_root = {
174 .leaf = &ip6_null_entry,
175 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
176 },
177 };
178
179 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
180 #define FIB_TABLE_HASHSZ 256
181 #else
182 #define FIB_TABLE_HASHSZ 1
183 #endif
184 static struct hlist_head fib_table_hash[FIB_TABLE_HASHSZ];
185
186 static void fib6_link_table(struct fib6_table *tb)
187 {
188 unsigned int h;
189
190 h = tb->tb6_id & (FIB_TABLE_HASHSZ - 1);
191
192 /*
193 * No protection necessary, this is the only list mutatation
194 * operation, tables never disappear once they exist.
195 */
196 hlist_add_head_rcu(&tb->tb6_hlist, &fib_table_hash[h]);
197 }
198
199 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
200 static struct fib6_table fib6_local_tbl = {
201 .tb6_id = RT6_TABLE_LOCAL,
202 .tb6_lock = RW_LOCK_UNLOCKED,
203 .tb6_root = {
204 .leaf = &ip6_null_entry,
205 .fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO,
206 },
207 };
208
209 static struct fib6_table *fib6_alloc_table(u32 id)
210 {
211 struct fib6_table *table;
212
213 table = kzalloc(sizeof(*table), GFP_ATOMIC);
214 if (table != NULL) {
215 table->tb6_id = id;
216 table->tb6_lock = RW_LOCK_UNLOCKED;
217 table->tb6_root.leaf = &ip6_null_entry;
218 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
219 }
220
221 return table;
222 }
223
224 struct fib6_table *fib6_new_table(u32 id)
225 {
226 struct fib6_table *tb;
227
228 if (id == 0)
229 id = RT6_TABLE_MAIN;
230 tb = fib6_get_table(id);
231 if (tb)
232 return tb;
233
234 tb = fib6_alloc_table(id);
235 if (tb != NULL)
236 fib6_link_table(tb);
237
238 return tb;
239 }
240
241 struct fib6_table *fib6_get_table(u32 id)
242 {
243 struct fib6_table *tb;
244 struct hlist_node *node;
245 unsigned int h;
246
247 if (id == 0)
248 id = RT6_TABLE_MAIN;
249 h = id & (FIB_TABLE_HASHSZ - 1);
250 rcu_read_lock();
251 hlist_for_each_entry_rcu(tb, node, &fib_table_hash[h], tb6_hlist) {
252 if (tb->tb6_id == id) {
253 rcu_read_unlock();
254 return tb;
255 }
256 }
257 rcu_read_unlock();
258
259 return NULL;
260 }
261
262 static void __init fib6_tables_init(void)
263 {
264 fib6_link_table(&fib6_main_tbl);
265 fib6_link_table(&fib6_local_tbl);
266 }
267
268 #else
269
270 struct fib6_table *fib6_new_table(u32 id)
271 {
272 return fib6_get_table(id);
273 }
274
275 struct fib6_table *fib6_get_table(u32 id)
276 {
277 return &fib6_main_tbl;
278 }
279
280 struct dst_entry *fib6_rule_lookup(struct flowi *fl, int flags,
281 pol_lookup_t lookup)
282 {
283 return (struct dst_entry *) lookup(&fib6_main_tbl, fl, flags);
284 }
285
286 static void __init fib6_tables_init(void)
287 {
288 fib6_link_table(&fib6_main_tbl);
289 }
290
291 #endif
292
293 static int fib6_dump_node(struct fib6_walker_t *w)
294 {
295 int res;
296 struct rt6_info *rt;
297
298 for (rt = w->leaf; rt; rt = rt->u.next) {
299 res = rt6_dump_route(rt, w->args);
300 if (res < 0) {
301 /* Frame is full, suspend walking */
302 w->leaf = rt;
303 return 1;
304 }
305 BUG_TRAP(res!=0);
306 }
307 w->leaf = NULL;
308 return 0;
309 }
310
311 static void fib6_dump_end(struct netlink_callback *cb)
312 {
313 struct fib6_walker_t *w = (void*)cb->args[2];
314
315 if (w) {
316 cb->args[2] = 0;
317 kfree(w);
318 }
319 cb->done = (void*)cb->args[3];
320 cb->args[1] = 3;
321 }
322
323 static int fib6_dump_done(struct netlink_callback *cb)
324 {
325 fib6_dump_end(cb);
326 return cb->done ? cb->done(cb) : 0;
327 }
328
329 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
330 struct netlink_callback *cb)
331 {
332 struct fib6_walker_t *w;
333 int res;
334
335 w = (void *)cb->args[2];
336 w->root = &table->tb6_root;
337
338 if (cb->args[4] == 0) {
339 read_lock_bh(&table->tb6_lock);
340 res = fib6_walk(w);
341 read_unlock_bh(&table->tb6_lock);
342 if (res > 0)
343 cb->args[4] = 1;
344 } else {
345 read_lock_bh(&table->tb6_lock);
346 res = fib6_walk_continue(w);
347 read_unlock_bh(&table->tb6_lock);
348 if (res != 0) {
349 if (res < 0)
350 fib6_walker_unlink(w);
351 goto end;
352 }
353 fib6_walker_unlink(w);
354 cb->args[4] = 0;
355 }
356 end:
357 return res;
358 }
359
360 int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
361 {
362 unsigned int h, s_h;
363 unsigned int e = 0, s_e;
364 struct rt6_rtnl_dump_arg arg;
365 struct fib6_walker_t *w;
366 struct fib6_table *tb;
367 struct hlist_node *node;
368 int res = 0;
369
370 s_h = cb->args[0];
371 s_e = cb->args[1];
372
373 w = (void *)cb->args[2];
374 if (w == NULL) {
375 /* New dump:
376 *
377 * 1. hook callback destructor.
378 */
379 cb->args[3] = (long)cb->done;
380 cb->done = fib6_dump_done;
381
382 /*
383 * 2. allocate and initialize walker.
384 */
385 w = kzalloc(sizeof(*w), GFP_ATOMIC);
386 if (w == NULL)
387 return -ENOMEM;
388 w->func = fib6_dump_node;
389 cb->args[2] = (long)w;
390 }
391
392 arg.skb = skb;
393 arg.cb = cb;
394 w->args = &arg;
395
396 for (h = s_h; h < FIB_TABLE_HASHSZ; h++, s_e = 0) {
397 e = 0;
398 hlist_for_each_entry(tb, node, &fib_table_hash[h], tb6_hlist) {
399 if (e < s_e)
400 goto next;
401 res = fib6_dump_table(tb, skb, cb);
402 if (res != 0)
403 goto out;
404 next:
405 e++;
406 }
407 }
408 out:
409 cb->args[1] = e;
410 cb->args[0] = h;
411
412 res = res < 0 ? res : skb->len;
413 if (res <= 0)
414 fib6_dump_end(cb);
415 return res;
416 }
417
418 /*
419 * Routing Table
420 *
421 * return the appropriate node for a routing tree "add" operation
422 * by either creating and inserting or by returning an existing
423 * node.
424 */
425
426 static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427 int addrlen, int plen,
428 int offset)
429 {
430 struct fib6_node *fn, *in, *ln;
431 struct fib6_node *pn = NULL;
432 struct rt6key *key;
433 int bit;
434 int dir = 0;
435 __u32 sernum = fib6_new_sernum();
436
437 RT6_TRACE("fib6_add_1\n");
438
439 /* insert node in tree */
440
441 fn = root;
442
443 do {
444 key = (struct rt6key *)((u8 *)fn->leaf + offset);
445
446 /*
447 * Prefix match
448 */
449 if (plen < fn->fn_bit ||
450 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
451 goto insert_above;
452
453 /*
454 * Exact match ?
455 */
456
457 if (plen == fn->fn_bit) {
458 /* clean up an intermediate node */
459 if ((fn->fn_flags & RTN_RTINFO) == 0) {
460 rt6_release(fn->leaf);
461 fn->leaf = NULL;
462 }
463
464 fn->fn_sernum = sernum;
465
466 return fn;
467 }
468
469 /*
470 * We have more bits to go
471 */
472
473 /* Try to walk down on tree. */
474 fn->fn_sernum = sernum;
475 dir = addr_bit_set(addr, fn->fn_bit);
476 pn = fn;
477 fn = dir ? fn->right: fn->left;
478 } while (fn);
479
480 /*
481 * We walked to the bottom of tree.
482 * Create new leaf node without children.
483 */
484
485 ln = node_alloc();
486
487 if (ln == NULL)
488 return NULL;
489 ln->fn_bit = plen;
490
491 ln->parent = pn;
492 ln->fn_sernum = sernum;
493
494 if (dir)
495 pn->right = ln;
496 else
497 pn->left = ln;
498
499 return ln;
500
501
502 insert_above:
503 /*
504 * split since we don't have a common prefix anymore or
505 * we have a less significant route.
506 * we've to insert an intermediate node on the list
507 * this new node will point to the one we need to create
508 * and the current
509 */
510
511 pn = fn->parent;
512
513 /* find 1st bit in difference between the 2 addrs.
514
515 See comment in __ipv6_addr_diff: bit may be an invalid value,
516 but if it is >= plen, the value is ignored in any case.
517 */
518
519 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
520
521 /*
522 * (intermediate)[in]
523 * / \
524 * (new leaf node)[ln] (old node)[fn]
525 */
526 if (plen > bit) {
527 in = node_alloc();
528 ln = node_alloc();
529
530 if (in == NULL || ln == NULL) {
531 if (in)
532 node_free(in);
533 if (ln)
534 node_free(ln);
535 return NULL;
536 }
537
538 /*
539 * new intermediate node.
540 * RTN_RTINFO will
541 * be off since that an address that chooses one of
542 * the branches would not match less specific routes
543 * in the other branch
544 */
545
546 in->fn_bit = bit;
547
548 in->parent = pn;
549 in->leaf = fn->leaf;
550 atomic_inc(&in->leaf->rt6i_ref);
551
552 in->fn_sernum = sernum;
553
554 /* update parent pointer */
555 if (dir)
556 pn->right = in;
557 else
558 pn->left = in;
559
560 ln->fn_bit = plen;
561
562 ln->parent = in;
563 fn->parent = in;
564
565 ln->fn_sernum = sernum;
566
567 if (addr_bit_set(addr, bit)) {
568 in->right = ln;
569 in->left = fn;
570 } else {
571 in->left = ln;
572 in->right = fn;
573 }
574 } else { /* plen <= bit */
575
576 /*
577 * (new leaf node)[ln]
578 * / \
579 * (old node)[fn] NULL
580 */
581
582 ln = node_alloc();
583
584 if (ln == NULL)
585 return NULL;
586
587 ln->fn_bit = plen;
588
589 ln->parent = pn;
590
591 ln->fn_sernum = sernum;
592
593 if (dir)
594 pn->right = ln;
595 else
596 pn->left = ln;
597
598 if (addr_bit_set(&key->addr, plen))
599 ln->right = fn;
600 else
601 ln->left = fn;
602
603 fn->parent = ln;
604 }
605 return ln;
606 }
607
608 /*
609 * Insert routing information in a node.
610 */
611
612 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
613 struct nl_info *info)
614 {
615 struct rt6_info *iter = NULL;
616 struct rt6_info **ins;
617
618 ins = &fn->leaf;
619
620 if (fn->fn_flags&RTN_TL_ROOT &&
621 fn->leaf == &ip6_null_entry &&
622 !(rt->rt6i_flags & (RTF_DEFAULT | RTF_ADDRCONF)) ){
623 fn->leaf = rt;
624 rt->u.next = NULL;
625 goto out;
626 }
627
628 for (iter = fn->leaf; iter; iter=iter->u.next) {
629 /*
630 * Search for duplicates
631 */
632
633 if (iter->rt6i_metric == rt->rt6i_metric) {
634 /*
635 * Same priority level
636 */
637
638 if (iter->rt6i_dev == rt->rt6i_dev &&
639 iter->rt6i_idev == rt->rt6i_idev &&
640 ipv6_addr_equal(&iter->rt6i_gateway,
641 &rt->rt6i_gateway)) {
642 if (!(iter->rt6i_flags&RTF_EXPIRES))
643 return -EEXIST;
644 iter->rt6i_expires = rt->rt6i_expires;
645 if (!(rt->rt6i_flags&RTF_EXPIRES)) {
646 iter->rt6i_flags &= ~RTF_EXPIRES;
647 iter->rt6i_expires = 0;
648 }
649 return -EEXIST;
650 }
651 }
652
653 if (iter->rt6i_metric > rt->rt6i_metric)
654 break;
655
656 ins = &iter->u.next;
657 }
658
659 /*
660 * insert node
661 */
662
663 out:
664 rt->u.next = iter;
665 *ins = rt;
666 rt->rt6i_node = fn;
667 atomic_inc(&rt->rt6i_ref);
668 inet6_rt_notify(RTM_NEWROUTE, rt, info);
669 rt6_stats.fib_rt_entries++;
670
671 if ((fn->fn_flags & RTN_RTINFO) == 0) {
672 rt6_stats.fib_route_nodes++;
673 fn->fn_flags |= RTN_RTINFO;
674 }
675
676 return 0;
677 }
678
679 static __inline__ void fib6_start_gc(struct rt6_info *rt)
680 {
681 if (ip6_fib_timer.expires == 0 &&
682 (rt->rt6i_flags & (RTF_EXPIRES|RTF_CACHE)))
683 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
684 }
685
686 void fib6_force_start_gc(void)
687 {
688 if (ip6_fib_timer.expires == 0)
689 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
690 }
691
692 /*
693 * Add routing information to the routing tree.
694 * <destination addr>/<source addr>
695 * with source addr info in sub-trees
696 */
697
698 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
699 {
700 struct fib6_node *fn, *pn = NULL;
701 int err = -ENOMEM;
702
703 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
704 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst));
705
706 if (fn == NULL)
707 goto out;
708
709 pn = fn;
710
711 #ifdef CONFIG_IPV6_SUBTREES
712 if (rt->rt6i_src.plen) {
713 struct fib6_node *sn;
714
715 if (fn->subtree == NULL) {
716 struct fib6_node *sfn;
717
718 /*
719 * Create subtree.
720 *
721 * fn[main tree]
722 * |
723 * sfn[subtree root]
724 * \
725 * sn[new leaf node]
726 */
727
728 /* Create subtree root node */
729 sfn = node_alloc();
730 if (sfn == NULL)
731 goto st_failure;
732
733 sfn->leaf = &ip6_null_entry;
734 atomic_inc(&ip6_null_entry.rt6i_ref);
735 sfn->fn_flags = RTN_ROOT;
736 sfn->fn_sernum = fib6_new_sernum();
737
738 /* Now add the first leaf node to new subtree */
739
740 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
741 sizeof(struct in6_addr), rt->rt6i_src.plen,
742 offsetof(struct rt6_info, rt6i_src));
743
744 if (sn == NULL) {
745 /* If it is failed, discard just allocated
746 root, and then (in st_failure) stale node
747 in main tree.
748 */
749 node_free(sfn);
750 goto st_failure;
751 }
752
753 /* Now link new subtree to main tree */
754 sfn->parent = fn;
755 fn->subtree = sfn;
756 } else {
757 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
758 sizeof(struct in6_addr), rt->rt6i_src.plen,
759 offsetof(struct rt6_info, rt6i_src));
760
761 if (sn == NULL)
762 goto st_failure;
763 }
764
765 if (fn->leaf == NULL) {
766 fn->leaf = rt;
767 atomic_inc(&rt->rt6i_ref);
768 }
769 fn = sn;
770 }
771 #endif
772
773 err = fib6_add_rt2node(fn, rt, info);
774
775 if (err == 0) {
776 fib6_start_gc(rt);
777 if (!(rt->rt6i_flags&RTF_CACHE))
778 fib6_prune_clones(pn, rt);
779 }
780
781 out:
782 if (err) {
783 #ifdef CONFIG_IPV6_SUBTREES
784 /*
785 * If fib6_add_1 has cleared the old leaf pointer in the
786 * super-tree leaf node we have to find a new one for it.
787 */
788 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
789 pn->leaf = fib6_find_prefix(pn);
790 #if RT6_DEBUG >= 2
791 if (!pn->leaf) {
792 BUG_TRAP(pn->leaf != NULL);
793 pn->leaf = &ip6_null_entry;
794 }
795 #endif
796 atomic_inc(&pn->leaf->rt6i_ref);
797 }
798 #endif
799 dst_free(&rt->u.dst);
800 }
801 return err;
802
803 #ifdef CONFIG_IPV6_SUBTREES
804 /* Subtree creation failed, probably main tree node
805 is orphan. If it is, shoot it.
806 */
807 st_failure:
808 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
809 fib6_repair_tree(fn);
810 dst_free(&rt->u.dst);
811 return err;
812 #endif
813 }
814
815 /*
816 * Routing tree lookup
817 *
818 */
819
820 struct lookup_args {
821 int offset; /* key offset on rt6_info */
822 struct in6_addr *addr; /* search key */
823 };
824
825 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
826 struct lookup_args *args)
827 {
828 struct fib6_node *fn;
829 int dir;
830
831 if (unlikely(args->offset == 0))
832 return NULL;
833
834 /*
835 * Descend on a tree
836 */
837
838 fn = root;
839
840 for (;;) {
841 struct fib6_node *next;
842
843 dir = addr_bit_set(args->addr, fn->fn_bit);
844
845 next = dir ? fn->right : fn->left;
846
847 if (next) {
848 fn = next;
849 continue;
850 }
851
852 break;
853 }
854
855 while(fn) {
856 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
857 struct rt6key *key;
858
859 key = (struct rt6key *) ((u8 *) fn->leaf +
860 args->offset);
861
862 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
863 #ifdef CONFIG_IPV6_SUBTREES
864 if (fn->subtree)
865 fn = fib6_lookup_1(fn->subtree, args + 1);
866 #endif
867 if (!fn || fn->fn_flags & RTN_RTINFO)
868 return fn;
869 }
870 }
871
872 if (fn->fn_flags & RTN_ROOT)
873 break;
874
875 fn = fn->parent;
876 }
877
878 return NULL;
879 }
880
881 struct fib6_node * fib6_lookup(struct fib6_node *root, struct in6_addr *daddr,
882 struct in6_addr *saddr)
883 {
884 struct fib6_node *fn;
885 struct lookup_args args[] = {
886 {
887 .offset = offsetof(struct rt6_info, rt6i_dst),
888 .addr = daddr,
889 },
890 #ifdef CONFIG_IPV6_SUBTREES
891 {
892 .offset = offsetof(struct rt6_info, rt6i_src),
893 .addr = saddr,
894 },
895 #endif
896 {
897 .offset = 0, /* sentinel */
898 }
899 };
900
901 fn = fib6_lookup_1(root, daddr ? args : args + 1);
902
903 if (fn == NULL || fn->fn_flags & RTN_TL_ROOT)
904 fn = root;
905
906 return fn;
907 }
908
909 /*
910 * Get node with specified destination prefix (and source prefix,
911 * if subtrees are used)
912 */
913
914
915 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
916 struct in6_addr *addr,
917 int plen, int offset)
918 {
919 struct fib6_node *fn;
920
921 for (fn = root; fn ; ) {
922 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
923
924 /*
925 * Prefix match
926 */
927 if (plen < fn->fn_bit ||
928 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
929 return NULL;
930
931 if (plen == fn->fn_bit)
932 return fn;
933
934 /*
935 * We have more bits to go
936 */
937 if (addr_bit_set(addr, fn->fn_bit))
938 fn = fn->right;
939 else
940 fn = fn->left;
941 }
942 return NULL;
943 }
944
945 struct fib6_node * fib6_locate(struct fib6_node *root,
946 struct in6_addr *daddr, int dst_len,
947 struct in6_addr *saddr, int src_len)
948 {
949 struct fib6_node *fn;
950
951 fn = fib6_locate_1(root, daddr, dst_len,
952 offsetof(struct rt6_info, rt6i_dst));
953
954 #ifdef CONFIG_IPV6_SUBTREES
955 if (src_len) {
956 BUG_TRAP(saddr!=NULL);
957 if (fn && fn->subtree)
958 fn = fib6_locate_1(fn->subtree, saddr, src_len,
959 offsetof(struct rt6_info, rt6i_src));
960 }
961 #endif
962
963 if (fn && fn->fn_flags&RTN_RTINFO)
964 return fn;
965
966 return NULL;
967 }
968
969
970 /*
971 * Deletion
972 *
973 */
974
975 static struct rt6_info * fib6_find_prefix(struct fib6_node *fn)
976 {
977 if (fn->fn_flags&RTN_ROOT)
978 return &ip6_null_entry;
979
980 while(fn) {
981 if(fn->left)
982 return fn->left->leaf;
983
984 if(fn->right)
985 return fn->right->leaf;
986
987 fn = FIB6_SUBTREE(fn);
988 }
989 return NULL;
990 }
991
992 /*
993 * Called to trim the tree of intermediate nodes when possible. "fn"
994 * is the node we want to try and remove.
995 */
996
997 static struct fib6_node * fib6_repair_tree(struct fib6_node *fn)
998 {
999 int children;
1000 int nstate;
1001 struct fib6_node *child, *pn;
1002 struct fib6_walker_t *w;
1003 int iter = 0;
1004
1005 for (;;) {
1006 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1007 iter++;
1008
1009 BUG_TRAP(!(fn->fn_flags&RTN_RTINFO));
1010 BUG_TRAP(!(fn->fn_flags&RTN_TL_ROOT));
1011 BUG_TRAP(fn->leaf==NULL);
1012
1013 children = 0;
1014 child = NULL;
1015 if (fn->right) child = fn->right, children |= 1;
1016 if (fn->left) child = fn->left, children |= 2;
1017
1018 if (children == 3 || FIB6_SUBTREE(fn)
1019 #ifdef CONFIG_IPV6_SUBTREES
1020 /* Subtree root (i.e. fn) may have one child */
1021 || (children && fn->fn_flags&RTN_ROOT)
1022 #endif
1023 ) {
1024 fn->leaf = fib6_find_prefix(fn);
1025 #if RT6_DEBUG >= 2
1026 if (fn->leaf==NULL) {
1027 BUG_TRAP(fn->leaf);
1028 fn->leaf = &ip6_null_entry;
1029 }
1030 #endif
1031 atomic_inc(&fn->leaf->rt6i_ref);
1032 return fn->parent;
1033 }
1034
1035 pn = fn->parent;
1036 #ifdef CONFIG_IPV6_SUBTREES
1037 if (FIB6_SUBTREE(pn) == fn) {
1038 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1039 FIB6_SUBTREE(pn) = NULL;
1040 nstate = FWS_L;
1041 } else {
1042 BUG_TRAP(!(fn->fn_flags&RTN_ROOT));
1043 #endif
1044 if (pn->right == fn) pn->right = child;
1045 else if (pn->left == fn) pn->left = child;
1046 #if RT6_DEBUG >= 2
1047 else BUG_TRAP(0);
1048 #endif
1049 if (child)
1050 child->parent = pn;
1051 nstate = FWS_R;
1052 #ifdef CONFIG_IPV6_SUBTREES
1053 }
1054 #endif
1055
1056 read_lock(&fib6_walker_lock);
1057 FOR_WALKERS(w) {
1058 if (child == NULL) {
1059 if (w->root == fn) {
1060 w->root = w->node = NULL;
1061 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1062 } else if (w->node == fn) {
1063 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1064 w->node = pn;
1065 w->state = nstate;
1066 }
1067 } else {
1068 if (w->root == fn) {
1069 w->root = child;
1070 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1071 }
1072 if (w->node == fn) {
1073 w->node = child;
1074 if (children&2) {
1075 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1076 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1077 } else {
1078 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1079 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1080 }
1081 }
1082 }
1083 }
1084 read_unlock(&fib6_walker_lock);
1085
1086 node_free(fn);
1087 if (pn->fn_flags&RTN_RTINFO || FIB6_SUBTREE(pn))
1088 return pn;
1089
1090 rt6_release(pn->leaf);
1091 pn->leaf = NULL;
1092 fn = pn;
1093 }
1094 }
1095
1096 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1097 struct nl_info *info)
1098 {
1099 struct fib6_walker_t *w;
1100 struct rt6_info *rt = *rtp;
1101
1102 RT6_TRACE("fib6_del_route\n");
1103
1104 /* Unlink it */
1105 *rtp = rt->u.next;
1106 rt->rt6i_node = NULL;
1107 rt6_stats.fib_rt_entries--;
1108 rt6_stats.fib_discarded_routes++;
1109
1110 /* Adjust walkers */
1111 read_lock(&fib6_walker_lock);
1112 FOR_WALKERS(w) {
1113 if (w->state == FWS_C && w->leaf == rt) {
1114 RT6_TRACE("walker %p adjusted by delroute\n", w);
1115 w->leaf = rt->u.next;
1116 if (w->leaf == NULL)
1117 w->state = FWS_U;
1118 }
1119 }
1120 read_unlock(&fib6_walker_lock);
1121
1122 rt->u.next = NULL;
1123
1124 if (fn->leaf == NULL && fn->fn_flags&RTN_TL_ROOT)
1125 fn->leaf = &ip6_null_entry;
1126
1127 /* If it was last route, expunge its radix tree node */
1128 if (fn->leaf == NULL) {
1129 fn->fn_flags &= ~RTN_RTINFO;
1130 rt6_stats.fib_route_nodes--;
1131 fn = fib6_repair_tree(fn);
1132 }
1133
1134 if (atomic_read(&rt->rt6i_ref) != 1) {
1135 /* This route is used as dummy address holder in some split
1136 * nodes. It is not leaked, but it still holds other resources,
1137 * which must be released in time. So, scan ascendant nodes
1138 * and replace dummy references to this route with references
1139 * to still alive ones.
1140 */
1141 while (fn) {
1142 if (!(fn->fn_flags&RTN_RTINFO) && fn->leaf == rt) {
1143 fn->leaf = fib6_find_prefix(fn);
1144 atomic_inc(&fn->leaf->rt6i_ref);
1145 rt6_release(rt);
1146 }
1147 fn = fn->parent;
1148 }
1149 /* No more references are possible at this point. */
1150 if (atomic_read(&rt->rt6i_ref) != 1) BUG();
1151 }
1152
1153 inet6_rt_notify(RTM_DELROUTE, rt, info);
1154 rt6_release(rt);
1155 }
1156
1157 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1158 {
1159 struct fib6_node *fn = rt->rt6i_node;
1160 struct rt6_info **rtp;
1161
1162 #if RT6_DEBUG >= 2
1163 if (rt->u.dst.obsolete>0) {
1164 BUG_TRAP(fn==NULL);
1165 return -ENOENT;
1166 }
1167 #endif
1168 if (fn == NULL || rt == &ip6_null_entry)
1169 return -ENOENT;
1170
1171 BUG_TRAP(fn->fn_flags&RTN_RTINFO);
1172
1173 if (!(rt->rt6i_flags&RTF_CACHE)) {
1174 struct fib6_node *pn = fn;
1175 #ifdef CONFIG_IPV6_SUBTREES
1176 /* clones of this route might be in another subtree */
1177 if (rt->rt6i_src.plen) {
1178 while (!(pn->fn_flags&RTN_ROOT))
1179 pn = pn->parent;
1180 pn = pn->parent;
1181 }
1182 #endif
1183 fib6_prune_clones(pn, rt);
1184 }
1185
1186 /*
1187 * Walk the leaf entries looking for ourself
1188 */
1189
1190 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->u.next) {
1191 if (*rtp == rt) {
1192 fib6_del_route(fn, rtp, info);
1193 return 0;
1194 }
1195 }
1196 return -ENOENT;
1197 }
1198
1199 /*
1200 * Tree traversal function.
1201 *
1202 * Certainly, it is not interrupt safe.
1203 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1204 * It means, that we can modify tree during walking
1205 * and use this function for garbage collection, clone pruning,
1206 * cleaning tree when a device goes down etc. etc.
1207 *
1208 * It guarantees that every node will be traversed,
1209 * and that it will be traversed only once.
1210 *
1211 * Callback function w->func may return:
1212 * 0 -> continue walking.
1213 * positive value -> walking is suspended (used by tree dumps,
1214 * and probably by gc, if it will be split to several slices)
1215 * negative value -> terminate walking.
1216 *
1217 * The function itself returns:
1218 * 0 -> walk is complete.
1219 * >0 -> walk is incomplete (i.e. suspended)
1220 * <0 -> walk is terminated by an error.
1221 */
1222
1223 static int fib6_walk_continue(struct fib6_walker_t *w)
1224 {
1225 struct fib6_node *fn, *pn;
1226
1227 for (;;) {
1228 fn = w->node;
1229 if (fn == NULL)
1230 return 0;
1231
1232 if (w->prune && fn != w->root &&
1233 fn->fn_flags&RTN_RTINFO && w->state < FWS_C) {
1234 w->state = FWS_C;
1235 w->leaf = fn->leaf;
1236 }
1237 switch (w->state) {
1238 #ifdef CONFIG_IPV6_SUBTREES
1239 case FWS_S:
1240 if (FIB6_SUBTREE(fn)) {
1241 w->node = FIB6_SUBTREE(fn);
1242 continue;
1243 }
1244 w->state = FWS_L;
1245 #endif
1246 case FWS_L:
1247 if (fn->left) {
1248 w->node = fn->left;
1249 w->state = FWS_INIT;
1250 continue;
1251 }
1252 w->state = FWS_R;
1253 case FWS_R:
1254 if (fn->right) {
1255 w->node = fn->right;
1256 w->state = FWS_INIT;
1257 continue;
1258 }
1259 w->state = FWS_C;
1260 w->leaf = fn->leaf;
1261 case FWS_C:
1262 if (w->leaf && fn->fn_flags&RTN_RTINFO) {
1263 int err = w->func(w);
1264 if (err)
1265 return err;
1266 continue;
1267 }
1268 w->state = FWS_U;
1269 case FWS_U:
1270 if (fn == w->root)
1271 return 0;
1272 pn = fn->parent;
1273 w->node = pn;
1274 #ifdef CONFIG_IPV6_SUBTREES
1275 if (FIB6_SUBTREE(pn) == fn) {
1276 BUG_TRAP(fn->fn_flags&RTN_ROOT);
1277 w->state = FWS_L;
1278 continue;
1279 }
1280 #endif
1281 if (pn->left == fn) {
1282 w->state = FWS_R;
1283 continue;
1284 }
1285 if (pn->right == fn) {
1286 w->state = FWS_C;
1287 w->leaf = w->node->leaf;
1288 continue;
1289 }
1290 #if RT6_DEBUG >= 2
1291 BUG_TRAP(0);
1292 #endif
1293 }
1294 }
1295 }
1296
1297 static int fib6_walk(struct fib6_walker_t *w)
1298 {
1299 int res;
1300
1301 w->state = FWS_INIT;
1302 w->node = w->root;
1303
1304 fib6_walker_link(w);
1305 res = fib6_walk_continue(w);
1306 if (res <= 0)
1307 fib6_walker_unlink(w);
1308 return res;
1309 }
1310
1311 static int fib6_clean_node(struct fib6_walker_t *w)
1312 {
1313 int res;
1314 struct rt6_info *rt;
1315 struct fib6_cleaner_t *c = (struct fib6_cleaner_t*)w;
1316
1317 for (rt = w->leaf; rt; rt = rt->u.next) {
1318 res = c->func(rt, c->arg);
1319 if (res < 0) {
1320 w->leaf = rt;
1321 res = fib6_del(rt, NULL);
1322 if (res) {
1323 #if RT6_DEBUG >= 2
1324 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1325 #endif
1326 continue;
1327 }
1328 return 0;
1329 }
1330 BUG_TRAP(res==0);
1331 }
1332 w->leaf = rt;
1333 return 0;
1334 }
1335
1336 /*
1337 * Convenient frontend to tree walker.
1338 *
1339 * func is called on each route.
1340 * It may return -1 -> delete this route.
1341 * 0 -> continue walking
1342 *
1343 * prune==1 -> only immediate children of node (certainly,
1344 * ignoring pure split nodes) will be scanned.
1345 */
1346
1347 static void fib6_clean_tree(struct fib6_node *root,
1348 int (*func)(struct rt6_info *, void *arg),
1349 int prune, void *arg)
1350 {
1351 struct fib6_cleaner_t c;
1352
1353 c.w.root = root;
1354 c.w.func = fib6_clean_node;
1355 c.w.prune = prune;
1356 c.func = func;
1357 c.arg = arg;
1358
1359 fib6_walk(&c.w);
1360 }
1361
1362 void fib6_clean_all(int (*func)(struct rt6_info *, void *arg),
1363 int prune, void *arg)
1364 {
1365 struct fib6_table *table;
1366 struct hlist_node *node;
1367 unsigned int h;
1368
1369 rcu_read_lock();
1370 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1371 hlist_for_each_entry_rcu(table, node, &fib_table_hash[h],
1372 tb6_hlist) {
1373 write_lock_bh(&table->tb6_lock);
1374 fib6_clean_tree(&table->tb6_root, func, prune, arg);
1375 write_unlock_bh(&table->tb6_lock);
1376 }
1377 }
1378 rcu_read_unlock();
1379 }
1380
1381 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1382 {
1383 if (rt->rt6i_flags & RTF_CACHE) {
1384 RT6_TRACE("pruning clone %p\n", rt);
1385 return -1;
1386 }
1387
1388 return 0;
1389 }
1390
1391 static void fib6_prune_clones(struct fib6_node *fn, struct rt6_info *rt)
1392 {
1393 fib6_clean_tree(fn, fib6_prune_clone, 1, rt);
1394 }
1395
1396 /*
1397 * Garbage collection
1398 */
1399
1400 static struct fib6_gc_args
1401 {
1402 int timeout;
1403 int more;
1404 } gc_args;
1405
1406 static int fib6_age(struct rt6_info *rt, void *arg)
1407 {
1408 unsigned long now = jiffies;
1409
1410 /*
1411 * check addrconf expiration here.
1412 * Routes are expired even if they are in use.
1413 *
1414 * Also age clones. Note, that clones are aged out
1415 * only if they are not in use now.
1416 */
1417
1418 if (rt->rt6i_flags&RTF_EXPIRES && rt->rt6i_expires) {
1419 if (time_after(now, rt->rt6i_expires)) {
1420 RT6_TRACE("expiring %p\n", rt);
1421 return -1;
1422 }
1423 gc_args.more++;
1424 } else if (rt->rt6i_flags & RTF_CACHE) {
1425 if (atomic_read(&rt->u.dst.__refcnt) == 0 &&
1426 time_after_eq(now, rt->u.dst.lastuse + gc_args.timeout)) {
1427 RT6_TRACE("aging clone %p\n", rt);
1428 return -1;
1429 } else if ((rt->rt6i_flags & RTF_GATEWAY) &&
1430 (!(rt->rt6i_nexthop->flags & NTF_ROUTER))) {
1431 RT6_TRACE("purging route %p via non-router but gateway\n",
1432 rt);
1433 return -1;
1434 }
1435 gc_args.more++;
1436 }
1437
1438 return 0;
1439 }
1440
1441 static DEFINE_SPINLOCK(fib6_gc_lock);
1442
1443 void fib6_run_gc(unsigned long dummy)
1444 {
1445 if (dummy != ~0UL) {
1446 spin_lock_bh(&fib6_gc_lock);
1447 gc_args.timeout = dummy ? (int)dummy : ip6_rt_gc_interval;
1448 } else {
1449 local_bh_disable();
1450 if (!spin_trylock(&fib6_gc_lock)) {
1451 mod_timer(&ip6_fib_timer, jiffies + HZ);
1452 local_bh_enable();
1453 return;
1454 }
1455 gc_args.timeout = ip6_rt_gc_interval;
1456 }
1457 gc_args.more = 0;
1458
1459 ndisc_dst_gc(&gc_args.more);
1460 fib6_clean_all(fib6_age, 0, NULL);
1461
1462 if (gc_args.more)
1463 mod_timer(&ip6_fib_timer, jiffies + ip6_rt_gc_interval);
1464 else {
1465 del_timer(&ip6_fib_timer);
1466 ip6_fib_timer.expires = 0;
1467 }
1468 spin_unlock_bh(&fib6_gc_lock);
1469 }
1470
1471 void __init fib6_init(void)
1472 {
1473 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1474 sizeof(struct fib6_node),
1475 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1476 NULL, NULL);
1477
1478 fib6_tables_init();
1479 }
1480
1481 void fib6_gc_cleanup(void)
1482 {
1483 del_timer(&ip6_fib_timer);
1484 kmem_cache_destroy(fib6_node_kmem);
1485 }