]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ipv6/ip6mr.c
ipv6-multicast: Fix memory leak in input path.
[mirror_ubuntu-bionic-kernel.git] / net / ipv6 / ip6mr.c
1 /*
2 * Linux IPv6 multicast routing support for BSD pim6sd
3 * Based on net/ipv4/ipmr.c.
4 *
5 * (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
6 * LSIIT Laboratory, Strasbourg, France
7 * (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
8 * 6WIND, Paris, France
9 * Copyright (C)2007,2008 USAGI/WIDE Project
10 * YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 */
18
19 #include <asm/system.h>
20 #include <asm/uaccess.h>
21 #include <linux/types.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/timer.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <linux/fcntl.h>
28 #include <linux/stat.h>
29 #include <linux/socket.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/inetdevice.h>
33 #include <linux/proc_fs.h>
34 #include <linux/seq_file.h>
35 #include <linux/init.h>
36 #include <linux/slab.h>
37 #include <linux/compat.h>
38 #include <net/protocol.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/raw.h>
42 #include <linux/notifier.h>
43 #include <linux/if_arp.h>
44 #include <net/checksum.h>
45 #include <net/netlink.h>
46 #include <net/fib_rules.h>
47
48 #include <net/ipv6.h>
49 #include <net/ip6_route.h>
50 #include <linux/mroute6.h>
51 #include <linux/pim.h>
52 #include <net/addrconf.h>
53 #include <linux/netfilter_ipv6.h>
54 #include <net/ip6_checksum.h>
55
56 struct mr6_table {
57 struct list_head list;
58 #ifdef CONFIG_NET_NS
59 struct net *net;
60 #endif
61 u32 id;
62 struct sock *mroute6_sk;
63 struct timer_list ipmr_expire_timer;
64 struct list_head mfc6_unres_queue;
65 struct list_head mfc6_cache_array[MFC6_LINES];
66 struct mif_device vif6_table[MAXMIFS];
67 int maxvif;
68 atomic_t cache_resolve_queue_len;
69 int mroute_do_assert;
70 int mroute_do_pim;
71 #ifdef CONFIG_IPV6_PIMSM_V2
72 int mroute_reg_vif_num;
73 #endif
74 };
75
76 struct ip6mr_rule {
77 struct fib_rule common;
78 };
79
80 struct ip6mr_result {
81 struct mr6_table *mrt;
82 };
83
84 /* Big lock, protecting vif table, mrt cache and mroute socket state.
85 Note that the changes are semaphored via rtnl_lock.
86 */
87
88 static DEFINE_RWLOCK(mrt_lock);
89
90 /*
91 * Multicast router control variables
92 */
93
94 #define MIF_EXISTS(_mrt, _idx) ((_mrt)->vif6_table[_idx].dev != NULL)
95
96 /* Special spinlock for queue of unresolved entries */
97 static DEFINE_SPINLOCK(mfc_unres_lock);
98
99 /* We return to original Alan's scheme. Hash table of resolved
100 entries is changed only in process context and protected
101 with weak lock mrt_lock. Queue of unresolved entries is protected
102 with strong spinlock mfc_unres_lock.
103
104 In this case data path is free of exclusive locks at all.
105 */
106
107 static struct kmem_cache *mrt_cachep __read_mostly;
108
109 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id);
110 static void ip6mr_free_table(struct mr6_table *mrt);
111
112 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt,
113 struct sk_buff *skb, struct mfc6_cache *cache);
114 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
115 mifi_t mifi, int assert);
116 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
117 struct mfc6_cache *c, struct rtmsg *rtm);
118 static int ip6mr_rtm_dumproute(struct sk_buff *skb,
119 struct netlink_callback *cb);
120 static void mroute_clean_tables(struct mr6_table *mrt);
121 static void ipmr_expire_process(unsigned long arg);
122
123 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
124 #define ip6mr_for_each_table(mrt, net) \
125 list_for_each_entry_rcu(mrt, &net->ipv6.mr6_tables, list)
126
127 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
128 {
129 struct mr6_table *mrt;
130
131 ip6mr_for_each_table(mrt, net) {
132 if (mrt->id == id)
133 return mrt;
134 }
135 return NULL;
136 }
137
138 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
139 struct mr6_table **mrt)
140 {
141 struct ip6mr_result res;
142 struct fib_lookup_arg arg = { .result = &res, };
143 int err;
144
145 err = fib_rules_lookup(net->ipv6.mr6_rules_ops,
146 flowi6_to_flowi(flp6), 0, &arg);
147 if (err < 0)
148 return err;
149 *mrt = res.mrt;
150 return 0;
151 }
152
153 static int ip6mr_rule_action(struct fib_rule *rule, struct flowi *flp,
154 int flags, struct fib_lookup_arg *arg)
155 {
156 struct ip6mr_result *res = arg->result;
157 struct mr6_table *mrt;
158
159 switch (rule->action) {
160 case FR_ACT_TO_TBL:
161 break;
162 case FR_ACT_UNREACHABLE:
163 return -ENETUNREACH;
164 case FR_ACT_PROHIBIT:
165 return -EACCES;
166 case FR_ACT_BLACKHOLE:
167 default:
168 return -EINVAL;
169 }
170
171 mrt = ip6mr_get_table(rule->fr_net, rule->table);
172 if (mrt == NULL)
173 return -EAGAIN;
174 res->mrt = mrt;
175 return 0;
176 }
177
178 static int ip6mr_rule_match(struct fib_rule *rule, struct flowi *flp, int flags)
179 {
180 return 1;
181 }
182
183 static const struct nla_policy ip6mr_rule_policy[FRA_MAX + 1] = {
184 FRA_GENERIC_POLICY,
185 };
186
187 static int ip6mr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
188 struct fib_rule_hdr *frh, struct nlattr **tb)
189 {
190 return 0;
191 }
192
193 static int ip6mr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
194 struct nlattr **tb)
195 {
196 return 1;
197 }
198
199 static int ip6mr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
200 struct fib_rule_hdr *frh)
201 {
202 frh->dst_len = 0;
203 frh->src_len = 0;
204 frh->tos = 0;
205 return 0;
206 }
207
208 static const struct fib_rules_ops __net_initdata ip6mr_rules_ops_template = {
209 .family = RTNL_FAMILY_IP6MR,
210 .rule_size = sizeof(struct ip6mr_rule),
211 .addr_size = sizeof(struct in6_addr),
212 .action = ip6mr_rule_action,
213 .match = ip6mr_rule_match,
214 .configure = ip6mr_rule_configure,
215 .compare = ip6mr_rule_compare,
216 .default_pref = fib_default_rule_pref,
217 .fill = ip6mr_rule_fill,
218 .nlgroup = RTNLGRP_IPV6_RULE,
219 .policy = ip6mr_rule_policy,
220 .owner = THIS_MODULE,
221 };
222
223 static int __net_init ip6mr_rules_init(struct net *net)
224 {
225 struct fib_rules_ops *ops;
226 struct mr6_table *mrt;
227 int err;
228
229 ops = fib_rules_register(&ip6mr_rules_ops_template, net);
230 if (IS_ERR(ops))
231 return PTR_ERR(ops);
232
233 INIT_LIST_HEAD(&net->ipv6.mr6_tables);
234
235 mrt = ip6mr_new_table(net, RT6_TABLE_DFLT);
236 if (mrt == NULL) {
237 err = -ENOMEM;
238 goto err1;
239 }
240
241 err = fib_default_rule_add(ops, 0x7fff, RT6_TABLE_DFLT, 0);
242 if (err < 0)
243 goto err2;
244
245 net->ipv6.mr6_rules_ops = ops;
246 return 0;
247
248 err2:
249 kfree(mrt);
250 err1:
251 fib_rules_unregister(ops);
252 return err;
253 }
254
255 static void __net_exit ip6mr_rules_exit(struct net *net)
256 {
257 struct mr6_table *mrt, *next;
258
259 list_for_each_entry_safe(mrt, next, &net->ipv6.mr6_tables, list) {
260 list_del(&mrt->list);
261 ip6mr_free_table(mrt);
262 }
263 fib_rules_unregister(net->ipv6.mr6_rules_ops);
264 }
265 #else
266 #define ip6mr_for_each_table(mrt, net) \
267 for (mrt = net->ipv6.mrt6; mrt; mrt = NULL)
268
269 static struct mr6_table *ip6mr_get_table(struct net *net, u32 id)
270 {
271 return net->ipv6.mrt6;
272 }
273
274 static int ip6mr_fib_lookup(struct net *net, struct flowi6 *flp6,
275 struct mr6_table **mrt)
276 {
277 *mrt = net->ipv6.mrt6;
278 return 0;
279 }
280
281 static int __net_init ip6mr_rules_init(struct net *net)
282 {
283 net->ipv6.mrt6 = ip6mr_new_table(net, RT6_TABLE_DFLT);
284 return net->ipv6.mrt6 ? 0 : -ENOMEM;
285 }
286
287 static void __net_exit ip6mr_rules_exit(struct net *net)
288 {
289 ip6mr_free_table(net->ipv6.mrt6);
290 }
291 #endif
292
293 static struct mr6_table *ip6mr_new_table(struct net *net, u32 id)
294 {
295 struct mr6_table *mrt;
296 unsigned int i;
297
298 mrt = ip6mr_get_table(net, id);
299 if (mrt != NULL)
300 return mrt;
301
302 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
303 if (mrt == NULL)
304 return NULL;
305 mrt->id = id;
306 write_pnet(&mrt->net, net);
307
308 /* Forwarding cache */
309 for (i = 0; i < MFC6_LINES; i++)
310 INIT_LIST_HEAD(&mrt->mfc6_cache_array[i]);
311
312 INIT_LIST_HEAD(&mrt->mfc6_unres_queue);
313
314 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
315 (unsigned long)mrt);
316
317 #ifdef CONFIG_IPV6_PIMSM_V2
318 mrt->mroute_reg_vif_num = -1;
319 #endif
320 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
321 list_add_tail_rcu(&mrt->list, &net->ipv6.mr6_tables);
322 #endif
323 return mrt;
324 }
325
326 static void ip6mr_free_table(struct mr6_table *mrt)
327 {
328 del_timer(&mrt->ipmr_expire_timer);
329 mroute_clean_tables(mrt);
330 kfree(mrt);
331 }
332
333 #ifdef CONFIG_PROC_FS
334
335 struct ipmr_mfc_iter {
336 struct seq_net_private p;
337 struct mr6_table *mrt;
338 struct list_head *cache;
339 int ct;
340 };
341
342
343 static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net,
344 struct ipmr_mfc_iter *it, loff_t pos)
345 {
346 struct mr6_table *mrt = it->mrt;
347 struct mfc6_cache *mfc;
348
349 read_lock(&mrt_lock);
350 for (it->ct = 0; it->ct < MFC6_LINES; it->ct++) {
351 it->cache = &mrt->mfc6_cache_array[it->ct];
352 list_for_each_entry(mfc, it->cache, list)
353 if (pos-- == 0)
354 return mfc;
355 }
356 read_unlock(&mrt_lock);
357
358 spin_lock_bh(&mfc_unres_lock);
359 it->cache = &mrt->mfc6_unres_queue;
360 list_for_each_entry(mfc, it->cache, list)
361 if (pos-- == 0)
362 return mfc;
363 spin_unlock_bh(&mfc_unres_lock);
364
365 it->cache = NULL;
366 return NULL;
367 }
368
369 /*
370 * The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif
371 */
372
373 struct ipmr_vif_iter {
374 struct seq_net_private p;
375 struct mr6_table *mrt;
376 int ct;
377 };
378
379 static struct mif_device *ip6mr_vif_seq_idx(struct net *net,
380 struct ipmr_vif_iter *iter,
381 loff_t pos)
382 {
383 struct mr6_table *mrt = iter->mrt;
384
385 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
386 if (!MIF_EXISTS(mrt, iter->ct))
387 continue;
388 if (pos-- == 0)
389 return &mrt->vif6_table[iter->ct];
390 }
391 return NULL;
392 }
393
394 static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
395 __acquires(mrt_lock)
396 {
397 struct ipmr_vif_iter *iter = seq->private;
398 struct net *net = seq_file_net(seq);
399 struct mr6_table *mrt;
400
401 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
402 if (mrt == NULL)
403 return ERR_PTR(-ENOENT);
404
405 iter->mrt = mrt;
406
407 read_lock(&mrt_lock);
408 return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1)
409 : SEQ_START_TOKEN;
410 }
411
412 static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
413 {
414 struct ipmr_vif_iter *iter = seq->private;
415 struct net *net = seq_file_net(seq);
416 struct mr6_table *mrt = iter->mrt;
417
418 ++*pos;
419 if (v == SEQ_START_TOKEN)
420 return ip6mr_vif_seq_idx(net, iter, 0);
421
422 while (++iter->ct < mrt->maxvif) {
423 if (!MIF_EXISTS(mrt, iter->ct))
424 continue;
425 return &mrt->vif6_table[iter->ct];
426 }
427 return NULL;
428 }
429
430 static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
431 __releases(mrt_lock)
432 {
433 read_unlock(&mrt_lock);
434 }
435
436 static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
437 {
438 struct ipmr_vif_iter *iter = seq->private;
439 struct mr6_table *mrt = iter->mrt;
440
441 if (v == SEQ_START_TOKEN) {
442 seq_puts(seq,
443 "Interface BytesIn PktsIn BytesOut PktsOut Flags\n");
444 } else {
445 const struct mif_device *vif = v;
446 const char *name = vif->dev ? vif->dev->name : "none";
447
448 seq_printf(seq,
449 "%2td %-10s %8ld %7ld %8ld %7ld %05X\n",
450 vif - mrt->vif6_table,
451 name, vif->bytes_in, vif->pkt_in,
452 vif->bytes_out, vif->pkt_out,
453 vif->flags);
454 }
455 return 0;
456 }
457
458 static const struct seq_operations ip6mr_vif_seq_ops = {
459 .start = ip6mr_vif_seq_start,
460 .next = ip6mr_vif_seq_next,
461 .stop = ip6mr_vif_seq_stop,
462 .show = ip6mr_vif_seq_show,
463 };
464
465 static int ip6mr_vif_open(struct inode *inode, struct file *file)
466 {
467 return seq_open_net(inode, file, &ip6mr_vif_seq_ops,
468 sizeof(struct ipmr_vif_iter));
469 }
470
471 static const struct file_operations ip6mr_vif_fops = {
472 .owner = THIS_MODULE,
473 .open = ip6mr_vif_open,
474 .read = seq_read,
475 .llseek = seq_lseek,
476 .release = seq_release_net,
477 };
478
479 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
480 {
481 struct ipmr_mfc_iter *it = seq->private;
482 struct net *net = seq_file_net(seq);
483 struct mr6_table *mrt;
484
485 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
486 if (mrt == NULL)
487 return ERR_PTR(-ENOENT);
488
489 it->mrt = mrt;
490 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
491 : SEQ_START_TOKEN;
492 }
493
494 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
495 {
496 struct mfc6_cache *mfc = v;
497 struct ipmr_mfc_iter *it = seq->private;
498 struct net *net = seq_file_net(seq);
499 struct mr6_table *mrt = it->mrt;
500
501 ++*pos;
502
503 if (v == SEQ_START_TOKEN)
504 return ipmr_mfc_seq_idx(net, seq->private, 0);
505
506 if (mfc->list.next != it->cache)
507 return list_entry(mfc->list.next, struct mfc6_cache, list);
508
509 if (it->cache == &mrt->mfc6_unres_queue)
510 goto end_of_list;
511
512 BUG_ON(it->cache != &mrt->mfc6_cache_array[it->ct]);
513
514 while (++it->ct < MFC6_LINES) {
515 it->cache = &mrt->mfc6_cache_array[it->ct];
516 if (list_empty(it->cache))
517 continue;
518 return list_first_entry(it->cache, struct mfc6_cache, list);
519 }
520
521 /* exhausted cache_array, show unresolved */
522 read_unlock(&mrt_lock);
523 it->cache = &mrt->mfc6_unres_queue;
524 it->ct = 0;
525
526 spin_lock_bh(&mfc_unres_lock);
527 if (!list_empty(it->cache))
528 return list_first_entry(it->cache, struct mfc6_cache, list);
529
530 end_of_list:
531 spin_unlock_bh(&mfc_unres_lock);
532 it->cache = NULL;
533
534 return NULL;
535 }
536
537 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
538 {
539 struct ipmr_mfc_iter *it = seq->private;
540 struct mr6_table *mrt = it->mrt;
541
542 if (it->cache == &mrt->mfc6_unres_queue)
543 spin_unlock_bh(&mfc_unres_lock);
544 else if (it->cache == mrt->mfc6_cache_array)
545 read_unlock(&mrt_lock);
546 }
547
548 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
549 {
550 int n;
551
552 if (v == SEQ_START_TOKEN) {
553 seq_puts(seq,
554 "Group "
555 "Origin "
556 "Iif Pkts Bytes Wrong Oifs\n");
557 } else {
558 const struct mfc6_cache *mfc = v;
559 const struct ipmr_mfc_iter *it = seq->private;
560 struct mr6_table *mrt = it->mrt;
561
562 seq_printf(seq, "%pI6 %pI6 %-3hd",
563 &mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
564 mfc->mf6c_parent);
565
566 if (it->cache != &mrt->mfc6_unres_queue) {
567 seq_printf(seq, " %8lu %8lu %8lu",
568 mfc->mfc_un.res.pkt,
569 mfc->mfc_un.res.bytes,
570 mfc->mfc_un.res.wrong_if);
571 for (n = mfc->mfc_un.res.minvif;
572 n < mfc->mfc_un.res.maxvif; n++) {
573 if (MIF_EXISTS(mrt, n) &&
574 mfc->mfc_un.res.ttls[n] < 255)
575 seq_printf(seq,
576 " %2d:%-3d",
577 n, mfc->mfc_un.res.ttls[n]);
578 }
579 } else {
580 /* unresolved mfc_caches don't contain
581 * pkt, bytes and wrong_if values
582 */
583 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
584 }
585 seq_putc(seq, '\n');
586 }
587 return 0;
588 }
589
590 static const struct seq_operations ipmr_mfc_seq_ops = {
591 .start = ipmr_mfc_seq_start,
592 .next = ipmr_mfc_seq_next,
593 .stop = ipmr_mfc_seq_stop,
594 .show = ipmr_mfc_seq_show,
595 };
596
597 static int ipmr_mfc_open(struct inode *inode, struct file *file)
598 {
599 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
600 sizeof(struct ipmr_mfc_iter));
601 }
602
603 static const struct file_operations ip6mr_mfc_fops = {
604 .owner = THIS_MODULE,
605 .open = ipmr_mfc_open,
606 .read = seq_read,
607 .llseek = seq_lseek,
608 .release = seq_release_net,
609 };
610 #endif
611
612 #ifdef CONFIG_IPV6_PIMSM_V2
613
614 static int pim6_rcv(struct sk_buff *skb)
615 {
616 struct pimreghdr *pim;
617 struct ipv6hdr *encap;
618 struct net_device *reg_dev = NULL;
619 struct net *net = dev_net(skb->dev);
620 struct mr6_table *mrt;
621 struct flowi6 fl6 = {
622 .flowi6_iif = skb->dev->ifindex,
623 .flowi6_mark = skb->mark,
624 };
625 int reg_vif_num;
626
627 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
628 goto drop;
629
630 pim = (struct pimreghdr *)skb_transport_header(skb);
631 if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) ||
632 (pim->flags & PIM_NULL_REGISTER) ||
633 (csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
634 sizeof(*pim), IPPROTO_PIM,
635 csum_partial((void *)pim, sizeof(*pim), 0)) &&
636 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
637 goto drop;
638
639 /* check if the inner packet is destined to mcast group */
640 encap = (struct ipv6hdr *)(skb_transport_header(skb) +
641 sizeof(*pim));
642
643 if (!ipv6_addr_is_multicast(&encap->daddr) ||
644 encap->payload_len == 0 ||
645 ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
646 goto drop;
647
648 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
649 goto drop;
650 reg_vif_num = mrt->mroute_reg_vif_num;
651
652 read_lock(&mrt_lock);
653 if (reg_vif_num >= 0)
654 reg_dev = mrt->vif6_table[reg_vif_num].dev;
655 if (reg_dev)
656 dev_hold(reg_dev);
657 read_unlock(&mrt_lock);
658
659 if (reg_dev == NULL)
660 goto drop;
661
662 skb->mac_header = skb->network_header;
663 skb_pull(skb, (u8 *)encap - skb->data);
664 skb_reset_network_header(skb);
665 skb->protocol = htons(ETH_P_IPV6);
666 skb->ip_summed = CHECKSUM_NONE;
667 skb->pkt_type = PACKET_HOST;
668
669 skb_tunnel_rx(skb, reg_dev);
670
671 netif_rx(skb);
672
673 dev_put(reg_dev);
674 return 0;
675 drop:
676 kfree_skb(skb);
677 return 0;
678 }
679
680 static const struct inet6_protocol pim6_protocol = {
681 .handler = pim6_rcv,
682 };
683
684 /* Service routines creating virtual interfaces: PIMREG */
685
686 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
687 struct net_device *dev)
688 {
689 struct net *net = dev_net(dev);
690 struct mr6_table *mrt;
691 struct flowi6 fl6 = {
692 .flowi6_oif = dev->ifindex,
693 .flowi6_iif = skb->skb_iif,
694 .flowi6_mark = skb->mark,
695 };
696 int err;
697
698 err = ip6mr_fib_lookup(net, &fl6, &mrt);
699 if (err < 0)
700 return err;
701
702 read_lock(&mrt_lock);
703 dev->stats.tx_bytes += skb->len;
704 dev->stats.tx_packets++;
705 ip6mr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, MRT6MSG_WHOLEPKT);
706 read_unlock(&mrt_lock);
707 kfree_skb(skb);
708 return NETDEV_TX_OK;
709 }
710
711 static const struct net_device_ops reg_vif_netdev_ops = {
712 .ndo_start_xmit = reg_vif_xmit,
713 };
714
715 static void reg_vif_setup(struct net_device *dev)
716 {
717 dev->type = ARPHRD_PIMREG;
718 dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8;
719 dev->flags = IFF_NOARP;
720 dev->netdev_ops = &reg_vif_netdev_ops;
721 dev->destructor = free_netdev;
722 dev->features |= NETIF_F_NETNS_LOCAL;
723 }
724
725 static struct net_device *ip6mr_reg_vif(struct net *net, struct mr6_table *mrt)
726 {
727 struct net_device *dev;
728 char name[IFNAMSIZ];
729
730 if (mrt->id == RT6_TABLE_DFLT)
731 sprintf(name, "pim6reg");
732 else
733 sprintf(name, "pim6reg%u", mrt->id);
734
735 dev = alloc_netdev(0, name, reg_vif_setup);
736 if (dev == NULL)
737 return NULL;
738
739 dev_net_set(dev, net);
740
741 if (register_netdevice(dev)) {
742 free_netdev(dev);
743 return NULL;
744 }
745 dev->iflink = 0;
746
747 if (dev_open(dev))
748 goto failure;
749
750 dev_hold(dev);
751 return dev;
752
753 failure:
754 /* allow the register to be completed before unregistering. */
755 rtnl_unlock();
756 rtnl_lock();
757
758 unregister_netdevice(dev);
759 return NULL;
760 }
761 #endif
762
763 /*
764 * Delete a VIF entry
765 */
766
767 static int mif6_delete(struct mr6_table *mrt, int vifi, struct list_head *head)
768 {
769 struct mif_device *v;
770 struct net_device *dev;
771 struct inet6_dev *in6_dev;
772
773 if (vifi < 0 || vifi >= mrt->maxvif)
774 return -EADDRNOTAVAIL;
775
776 v = &mrt->vif6_table[vifi];
777
778 write_lock_bh(&mrt_lock);
779 dev = v->dev;
780 v->dev = NULL;
781
782 if (!dev) {
783 write_unlock_bh(&mrt_lock);
784 return -EADDRNOTAVAIL;
785 }
786
787 #ifdef CONFIG_IPV6_PIMSM_V2
788 if (vifi == mrt->mroute_reg_vif_num)
789 mrt->mroute_reg_vif_num = -1;
790 #endif
791
792 if (vifi + 1 == mrt->maxvif) {
793 int tmp;
794 for (tmp = vifi - 1; tmp >= 0; tmp--) {
795 if (MIF_EXISTS(mrt, tmp))
796 break;
797 }
798 mrt->maxvif = tmp + 1;
799 }
800
801 write_unlock_bh(&mrt_lock);
802
803 dev_set_allmulti(dev, -1);
804
805 in6_dev = __in6_dev_get(dev);
806 if (in6_dev)
807 in6_dev->cnf.mc_forwarding--;
808
809 if (v->flags & MIFF_REGISTER)
810 unregister_netdevice_queue(dev, head);
811
812 dev_put(dev);
813 return 0;
814 }
815
816 static inline void ip6mr_cache_free(struct mfc6_cache *c)
817 {
818 kmem_cache_free(mrt_cachep, c);
819 }
820
821 /* Destroy an unresolved cache entry, killing queued skbs
822 and reporting error to netlink readers.
823 */
824
825 static void ip6mr_destroy_unres(struct mr6_table *mrt, struct mfc6_cache *c)
826 {
827 struct net *net = read_pnet(&mrt->net);
828 struct sk_buff *skb;
829
830 atomic_dec(&mrt->cache_resolve_queue_len);
831
832 while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) {
833 if (ipv6_hdr(skb)->version == 0) {
834 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
835 nlh->nlmsg_type = NLMSG_ERROR;
836 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
837 skb_trim(skb, nlh->nlmsg_len);
838 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -ETIMEDOUT;
839 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
840 } else
841 kfree_skb(skb);
842 }
843
844 ip6mr_cache_free(c);
845 }
846
847
848 /* Timer process for all the unresolved queue. */
849
850 static void ipmr_do_expire_process(struct mr6_table *mrt)
851 {
852 unsigned long now = jiffies;
853 unsigned long expires = 10 * HZ;
854 struct mfc6_cache *c, *next;
855
856 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
857 if (time_after(c->mfc_un.unres.expires, now)) {
858 /* not yet... */
859 unsigned long interval = c->mfc_un.unres.expires - now;
860 if (interval < expires)
861 expires = interval;
862 continue;
863 }
864
865 list_del(&c->list);
866 ip6mr_destroy_unres(mrt, c);
867 }
868
869 if (!list_empty(&mrt->mfc6_unres_queue))
870 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
871 }
872
873 static void ipmr_expire_process(unsigned long arg)
874 {
875 struct mr6_table *mrt = (struct mr6_table *)arg;
876
877 if (!spin_trylock(&mfc_unres_lock)) {
878 mod_timer(&mrt->ipmr_expire_timer, jiffies + 1);
879 return;
880 }
881
882 if (!list_empty(&mrt->mfc6_unres_queue))
883 ipmr_do_expire_process(mrt);
884
885 spin_unlock(&mfc_unres_lock);
886 }
887
888 /* Fill oifs list. It is called under write locked mrt_lock. */
889
890 static void ip6mr_update_thresholds(struct mr6_table *mrt, struct mfc6_cache *cache,
891 unsigned char *ttls)
892 {
893 int vifi;
894
895 cache->mfc_un.res.minvif = MAXMIFS;
896 cache->mfc_un.res.maxvif = 0;
897 memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
898
899 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
900 if (MIF_EXISTS(mrt, vifi) &&
901 ttls[vifi] && ttls[vifi] < 255) {
902 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
903 if (cache->mfc_un.res.minvif > vifi)
904 cache->mfc_un.res.minvif = vifi;
905 if (cache->mfc_un.res.maxvif <= vifi)
906 cache->mfc_un.res.maxvif = vifi + 1;
907 }
908 }
909 }
910
911 static int mif6_add(struct net *net, struct mr6_table *mrt,
912 struct mif6ctl *vifc, int mrtsock)
913 {
914 int vifi = vifc->mif6c_mifi;
915 struct mif_device *v = &mrt->vif6_table[vifi];
916 struct net_device *dev;
917 struct inet6_dev *in6_dev;
918 int err;
919
920 /* Is vif busy ? */
921 if (MIF_EXISTS(mrt, vifi))
922 return -EADDRINUSE;
923
924 switch (vifc->mif6c_flags) {
925 #ifdef CONFIG_IPV6_PIMSM_V2
926 case MIFF_REGISTER:
927 /*
928 * Special Purpose VIF in PIM
929 * All the packets will be sent to the daemon
930 */
931 if (mrt->mroute_reg_vif_num >= 0)
932 return -EADDRINUSE;
933 dev = ip6mr_reg_vif(net, mrt);
934 if (!dev)
935 return -ENOBUFS;
936 err = dev_set_allmulti(dev, 1);
937 if (err) {
938 unregister_netdevice(dev);
939 dev_put(dev);
940 return err;
941 }
942 break;
943 #endif
944 case 0:
945 dev = dev_get_by_index(net, vifc->mif6c_pifi);
946 if (!dev)
947 return -EADDRNOTAVAIL;
948 err = dev_set_allmulti(dev, 1);
949 if (err) {
950 dev_put(dev);
951 return err;
952 }
953 break;
954 default:
955 return -EINVAL;
956 }
957
958 in6_dev = __in6_dev_get(dev);
959 if (in6_dev)
960 in6_dev->cnf.mc_forwarding++;
961
962 /*
963 * Fill in the VIF structures
964 */
965 v->rate_limit = vifc->vifc_rate_limit;
966 v->flags = vifc->mif6c_flags;
967 if (!mrtsock)
968 v->flags |= VIFF_STATIC;
969 v->threshold = vifc->vifc_threshold;
970 v->bytes_in = 0;
971 v->bytes_out = 0;
972 v->pkt_in = 0;
973 v->pkt_out = 0;
974 v->link = dev->ifindex;
975 if (v->flags & MIFF_REGISTER)
976 v->link = dev->iflink;
977
978 /* And finish update writing critical data */
979 write_lock_bh(&mrt_lock);
980 v->dev = dev;
981 #ifdef CONFIG_IPV6_PIMSM_V2
982 if (v->flags & MIFF_REGISTER)
983 mrt->mroute_reg_vif_num = vifi;
984 #endif
985 if (vifi + 1 > mrt->maxvif)
986 mrt->maxvif = vifi + 1;
987 write_unlock_bh(&mrt_lock);
988 return 0;
989 }
990
991 static struct mfc6_cache *ip6mr_cache_find(struct mr6_table *mrt,
992 const struct in6_addr *origin,
993 const struct in6_addr *mcastgrp)
994 {
995 int line = MFC6_HASH(mcastgrp, origin);
996 struct mfc6_cache *c;
997
998 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
999 if (ipv6_addr_equal(&c->mf6c_origin, origin) &&
1000 ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp))
1001 return c;
1002 }
1003 return NULL;
1004 }
1005
1006 /*
1007 * Allocate a multicast cache entry
1008 */
1009 static struct mfc6_cache *ip6mr_cache_alloc(void)
1010 {
1011 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
1012 if (c == NULL)
1013 return NULL;
1014 c->mfc_un.res.minvif = MAXMIFS;
1015 return c;
1016 }
1017
1018 static struct mfc6_cache *ip6mr_cache_alloc_unres(void)
1019 {
1020 struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1021 if (c == NULL)
1022 return NULL;
1023 skb_queue_head_init(&c->mfc_un.unres.unresolved);
1024 c->mfc_un.unres.expires = jiffies + 10 * HZ;
1025 return c;
1026 }
1027
1028 /*
1029 * A cache entry has gone into a resolved state from queued
1030 */
1031
1032 static void ip6mr_cache_resolve(struct net *net, struct mr6_table *mrt,
1033 struct mfc6_cache *uc, struct mfc6_cache *c)
1034 {
1035 struct sk_buff *skb;
1036
1037 /*
1038 * Play the pending entries through our router
1039 */
1040
1041 while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
1042 if (ipv6_hdr(skb)->version == 0) {
1043 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
1044
1045 if (__ip6mr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
1046 nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
1047 } else {
1048 nlh->nlmsg_type = NLMSG_ERROR;
1049 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
1050 skb_trim(skb, nlh->nlmsg_len);
1051 ((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -EMSGSIZE;
1052 }
1053 rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
1054 } else
1055 ip6_mr_forward(net, mrt, skb, c);
1056 }
1057 }
1058
1059 /*
1060 * Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd
1061 * expects the following bizarre scheme.
1062 *
1063 * Called under mrt_lock.
1064 */
1065
1066 static int ip6mr_cache_report(struct mr6_table *mrt, struct sk_buff *pkt,
1067 mifi_t mifi, int assert)
1068 {
1069 struct sk_buff *skb;
1070 struct mrt6msg *msg;
1071 int ret;
1072
1073 #ifdef CONFIG_IPV6_PIMSM_V2
1074 if (assert == MRT6MSG_WHOLEPKT)
1075 skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
1076 +sizeof(*msg));
1077 else
1078 #endif
1079 skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
1080
1081 if (!skb)
1082 return -ENOBUFS;
1083
1084 /* I suppose that internal messages
1085 * do not require checksums */
1086
1087 skb->ip_summed = CHECKSUM_UNNECESSARY;
1088
1089 #ifdef CONFIG_IPV6_PIMSM_V2
1090 if (assert == MRT6MSG_WHOLEPKT) {
1091 /* Ugly, but we have no choice with this interface.
1092 Duplicate old header, fix length etc.
1093 And all this only to mangle msg->im6_msgtype and
1094 to set msg->im6_mbz to "mbz" :-)
1095 */
1096 skb_push(skb, -skb_network_offset(pkt));
1097
1098 skb_push(skb, sizeof(*msg));
1099 skb_reset_transport_header(skb);
1100 msg = (struct mrt6msg *)skb_transport_header(skb);
1101 msg->im6_mbz = 0;
1102 msg->im6_msgtype = MRT6MSG_WHOLEPKT;
1103 msg->im6_mif = mrt->mroute_reg_vif_num;
1104 msg->im6_pad = 0;
1105 ipv6_addr_copy(&msg->im6_src, &ipv6_hdr(pkt)->saddr);
1106 ipv6_addr_copy(&msg->im6_dst, &ipv6_hdr(pkt)->daddr);
1107
1108 skb->ip_summed = CHECKSUM_UNNECESSARY;
1109 } else
1110 #endif
1111 {
1112 /*
1113 * Copy the IP header
1114 */
1115
1116 skb_put(skb, sizeof(struct ipv6hdr));
1117 skb_reset_network_header(skb);
1118 skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
1119
1120 /*
1121 * Add our header
1122 */
1123 skb_put(skb, sizeof(*msg));
1124 skb_reset_transport_header(skb);
1125 msg = (struct mrt6msg *)skb_transport_header(skb);
1126
1127 msg->im6_mbz = 0;
1128 msg->im6_msgtype = assert;
1129 msg->im6_mif = mifi;
1130 msg->im6_pad = 0;
1131 ipv6_addr_copy(&msg->im6_src, &ipv6_hdr(pkt)->saddr);
1132 ipv6_addr_copy(&msg->im6_dst, &ipv6_hdr(pkt)->daddr);
1133
1134 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1135 skb->ip_summed = CHECKSUM_UNNECESSARY;
1136 }
1137
1138 if (mrt->mroute6_sk == NULL) {
1139 kfree_skb(skb);
1140 return -EINVAL;
1141 }
1142
1143 /*
1144 * Deliver to user space multicast routing algorithms
1145 */
1146 ret = sock_queue_rcv_skb(mrt->mroute6_sk, skb);
1147 if (ret < 0) {
1148 if (net_ratelimit())
1149 printk(KERN_WARNING "mroute6: pending queue full, dropping entries.\n");
1150 kfree_skb(skb);
1151 }
1152
1153 return ret;
1154 }
1155
1156 /*
1157 * Queue a packet for resolution. It gets locked cache entry!
1158 */
1159
1160 static int
1161 ip6mr_cache_unresolved(struct mr6_table *mrt, mifi_t mifi, struct sk_buff *skb)
1162 {
1163 bool found = false;
1164 int err;
1165 struct mfc6_cache *c;
1166
1167 spin_lock_bh(&mfc_unres_lock);
1168 list_for_each_entry(c, &mrt->mfc6_unres_queue, list) {
1169 if (ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
1170 ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr)) {
1171 found = true;
1172 break;
1173 }
1174 }
1175
1176 if (!found) {
1177 /*
1178 * Create a new entry if allowable
1179 */
1180
1181 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1182 (c = ip6mr_cache_alloc_unres()) == NULL) {
1183 spin_unlock_bh(&mfc_unres_lock);
1184
1185 kfree_skb(skb);
1186 return -ENOBUFS;
1187 }
1188
1189 /*
1190 * Fill in the new cache entry
1191 */
1192 c->mf6c_parent = -1;
1193 c->mf6c_origin = ipv6_hdr(skb)->saddr;
1194 c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
1195
1196 /*
1197 * Reflect first query at pim6sd
1198 */
1199 err = ip6mr_cache_report(mrt, skb, mifi, MRT6MSG_NOCACHE);
1200 if (err < 0) {
1201 /* If the report failed throw the cache entry
1202 out - Brad Parker
1203 */
1204 spin_unlock_bh(&mfc_unres_lock);
1205
1206 ip6mr_cache_free(c);
1207 kfree_skb(skb);
1208 return err;
1209 }
1210
1211 atomic_inc(&mrt->cache_resolve_queue_len);
1212 list_add(&c->list, &mrt->mfc6_unres_queue);
1213
1214 ipmr_do_expire_process(mrt);
1215 }
1216
1217 /*
1218 * See if we can append the packet
1219 */
1220 if (c->mfc_un.unres.unresolved.qlen > 3) {
1221 kfree_skb(skb);
1222 err = -ENOBUFS;
1223 } else {
1224 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1225 err = 0;
1226 }
1227
1228 spin_unlock_bh(&mfc_unres_lock);
1229 return err;
1230 }
1231
1232 /*
1233 * MFC6 cache manipulation by user space
1234 */
1235
1236 static int ip6mr_mfc_delete(struct mr6_table *mrt, struct mf6cctl *mfc)
1237 {
1238 int line;
1239 struct mfc6_cache *c, *next;
1240
1241 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1242
1243 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[line], list) {
1244 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1245 ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
1246 write_lock_bh(&mrt_lock);
1247 list_del(&c->list);
1248 write_unlock_bh(&mrt_lock);
1249
1250 ip6mr_cache_free(c);
1251 return 0;
1252 }
1253 }
1254 return -ENOENT;
1255 }
1256
1257 static int ip6mr_device_event(struct notifier_block *this,
1258 unsigned long event, void *ptr)
1259 {
1260 struct net_device *dev = ptr;
1261 struct net *net = dev_net(dev);
1262 struct mr6_table *mrt;
1263 struct mif_device *v;
1264 int ct;
1265 LIST_HEAD(list);
1266
1267 if (event != NETDEV_UNREGISTER)
1268 return NOTIFY_DONE;
1269
1270 ip6mr_for_each_table(mrt, net) {
1271 v = &mrt->vif6_table[0];
1272 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1273 if (v->dev == dev)
1274 mif6_delete(mrt, ct, &list);
1275 }
1276 }
1277 unregister_netdevice_many(&list);
1278
1279 return NOTIFY_DONE;
1280 }
1281
1282 static struct notifier_block ip6_mr_notifier = {
1283 .notifier_call = ip6mr_device_event
1284 };
1285
1286 /*
1287 * Setup for IP multicast routing
1288 */
1289
1290 static int __net_init ip6mr_net_init(struct net *net)
1291 {
1292 int err;
1293
1294 err = ip6mr_rules_init(net);
1295 if (err < 0)
1296 goto fail;
1297
1298 #ifdef CONFIG_PROC_FS
1299 err = -ENOMEM;
1300 if (!proc_net_fops_create(net, "ip6_mr_vif", 0, &ip6mr_vif_fops))
1301 goto proc_vif_fail;
1302 if (!proc_net_fops_create(net, "ip6_mr_cache", 0, &ip6mr_mfc_fops))
1303 goto proc_cache_fail;
1304 #endif
1305
1306 return 0;
1307
1308 #ifdef CONFIG_PROC_FS
1309 proc_cache_fail:
1310 proc_net_remove(net, "ip6_mr_vif");
1311 proc_vif_fail:
1312 ip6mr_rules_exit(net);
1313 #endif
1314 fail:
1315 return err;
1316 }
1317
1318 static void __net_exit ip6mr_net_exit(struct net *net)
1319 {
1320 #ifdef CONFIG_PROC_FS
1321 proc_net_remove(net, "ip6_mr_cache");
1322 proc_net_remove(net, "ip6_mr_vif");
1323 #endif
1324 ip6mr_rules_exit(net);
1325 }
1326
1327 static struct pernet_operations ip6mr_net_ops = {
1328 .init = ip6mr_net_init,
1329 .exit = ip6mr_net_exit,
1330 };
1331
1332 int __init ip6_mr_init(void)
1333 {
1334 int err;
1335
1336 mrt_cachep = kmem_cache_create("ip6_mrt_cache",
1337 sizeof(struct mfc6_cache),
1338 0, SLAB_HWCACHE_ALIGN,
1339 NULL);
1340 if (!mrt_cachep)
1341 return -ENOMEM;
1342
1343 err = register_pernet_subsys(&ip6mr_net_ops);
1344 if (err)
1345 goto reg_pernet_fail;
1346
1347 err = register_netdevice_notifier(&ip6_mr_notifier);
1348 if (err)
1349 goto reg_notif_fail;
1350 #ifdef CONFIG_IPV6_PIMSM_V2
1351 if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
1352 printk(KERN_ERR "ip6_mr_init: can't add PIM protocol\n");
1353 err = -EAGAIN;
1354 goto add_proto_fail;
1355 }
1356 #endif
1357 rtnl_register(RTNL_FAMILY_IP6MR, RTM_GETROUTE, NULL,
1358 ip6mr_rtm_dumproute, NULL);
1359 return 0;
1360 #ifdef CONFIG_IPV6_PIMSM_V2
1361 add_proto_fail:
1362 unregister_netdevice_notifier(&ip6_mr_notifier);
1363 #endif
1364 reg_notif_fail:
1365 unregister_pernet_subsys(&ip6mr_net_ops);
1366 reg_pernet_fail:
1367 kmem_cache_destroy(mrt_cachep);
1368 return err;
1369 }
1370
1371 void ip6_mr_cleanup(void)
1372 {
1373 unregister_netdevice_notifier(&ip6_mr_notifier);
1374 unregister_pernet_subsys(&ip6mr_net_ops);
1375 kmem_cache_destroy(mrt_cachep);
1376 }
1377
1378 static int ip6mr_mfc_add(struct net *net, struct mr6_table *mrt,
1379 struct mf6cctl *mfc, int mrtsock)
1380 {
1381 bool found = false;
1382 int line;
1383 struct mfc6_cache *uc, *c;
1384 unsigned char ttls[MAXMIFS];
1385 int i;
1386
1387 if (mfc->mf6cc_parent >= MAXMIFS)
1388 return -ENFILE;
1389
1390 memset(ttls, 255, MAXMIFS);
1391 for (i = 0; i < MAXMIFS; i++) {
1392 if (IF_ISSET(i, &mfc->mf6cc_ifset))
1393 ttls[i] = 1;
1394
1395 }
1396
1397 line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
1398
1399 list_for_each_entry(c, &mrt->mfc6_cache_array[line], list) {
1400 if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
1401 ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
1402 found = true;
1403 break;
1404 }
1405 }
1406
1407 if (found) {
1408 write_lock_bh(&mrt_lock);
1409 c->mf6c_parent = mfc->mf6cc_parent;
1410 ip6mr_update_thresholds(mrt, c, ttls);
1411 if (!mrtsock)
1412 c->mfc_flags |= MFC_STATIC;
1413 write_unlock_bh(&mrt_lock);
1414 return 0;
1415 }
1416
1417 if (!ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
1418 return -EINVAL;
1419
1420 c = ip6mr_cache_alloc();
1421 if (c == NULL)
1422 return -ENOMEM;
1423
1424 c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
1425 c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
1426 c->mf6c_parent = mfc->mf6cc_parent;
1427 ip6mr_update_thresholds(mrt, c, ttls);
1428 if (!mrtsock)
1429 c->mfc_flags |= MFC_STATIC;
1430
1431 write_lock_bh(&mrt_lock);
1432 list_add(&c->list, &mrt->mfc6_cache_array[line]);
1433 write_unlock_bh(&mrt_lock);
1434
1435 /*
1436 * Check to see if we resolved a queued list. If so we
1437 * need to send on the frames and tidy up.
1438 */
1439 found = false;
1440 spin_lock_bh(&mfc_unres_lock);
1441 list_for_each_entry(uc, &mrt->mfc6_unres_queue, list) {
1442 if (ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
1443 ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
1444 list_del(&uc->list);
1445 atomic_dec(&mrt->cache_resolve_queue_len);
1446 found = true;
1447 break;
1448 }
1449 }
1450 if (list_empty(&mrt->mfc6_unres_queue))
1451 del_timer(&mrt->ipmr_expire_timer);
1452 spin_unlock_bh(&mfc_unres_lock);
1453
1454 if (found) {
1455 ip6mr_cache_resolve(net, mrt, uc, c);
1456 ip6mr_cache_free(uc);
1457 }
1458 return 0;
1459 }
1460
1461 /*
1462 * Close the multicast socket, and clear the vif tables etc
1463 */
1464
1465 static void mroute_clean_tables(struct mr6_table *mrt)
1466 {
1467 int i;
1468 LIST_HEAD(list);
1469 struct mfc6_cache *c, *next;
1470
1471 /*
1472 * Shut down all active vif entries
1473 */
1474 for (i = 0; i < mrt->maxvif; i++) {
1475 if (!(mrt->vif6_table[i].flags & VIFF_STATIC))
1476 mif6_delete(mrt, i, &list);
1477 }
1478 unregister_netdevice_many(&list);
1479
1480 /*
1481 * Wipe the cache
1482 */
1483 for (i = 0; i < MFC6_LINES; i++) {
1484 list_for_each_entry_safe(c, next, &mrt->mfc6_cache_array[i], list) {
1485 if (c->mfc_flags & MFC_STATIC)
1486 continue;
1487 write_lock_bh(&mrt_lock);
1488 list_del(&c->list);
1489 write_unlock_bh(&mrt_lock);
1490
1491 ip6mr_cache_free(c);
1492 }
1493 }
1494
1495 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1496 spin_lock_bh(&mfc_unres_lock);
1497 list_for_each_entry_safe(c, next, &mrt->mfc6_unres_queue, list) {
1498 list_del(&c->list);
1499 ip6mr_destroy_unres(mrt, c);
1500 }
1501 spin_unlock_bh(&mfc_unres_lock);
1502 }
1503 }
1504
1505 static int ip6mr_sk_init(struct mr6_table *mrt, struct sock *sk)
1506 {
1507 int err = 0;
1508 struct net *net = sock_net(sk);
1509
1510 rtnl_lock();
1511 write_lock_bh(&mrt_lock);
1512 if (likely(mrt->mroute6_sk == NULL)) {
1513 mrt->mroute6_sk = sk;
1514 net->ipv6.devconf_all->mc_forwarding++;
1515 }
1516 else
1517 err = -EADDRINUSE;
1518 write_unlock_bh(&mrt_lock);
1519
1520 rtnl_unlock();
1521
1522 return err;
1523 }
1524
1525 int ip6mr_sk_done(struct sock *sk)
1526 {
1527 int err = -EACCES;
1528 struct net *net = sock_net(sk);
1529 struct mr6_table *mrt;
1530
1531 rtnl_lock();
1532 ip6mr_for_each_table(mrt, net) {
1533 if (sk == mrt->mroute6_sk) {
1534 write_lock_bh(&mrt_lock);
1535 mrt->mroute6_sk = NULL;
1536 net->ipv6.devconf_all->mc_forwarding--;
1537 write_unlock_bh(&mrt_lock);
1538
1539 mroute_clean_tables(mrt);
1540 err = 0;
1541 break;
1542 }
1543 }
1544 rtnl_unlock();
1545
1546 return err;
1547 }
1548
1549 struct sock *mroute6_socket(struct net *net, struct sk_buff *skb)
1550 {
1551 struct mr6_table *mrt;
1552 struct flowi6 fl6 = {
1553 .flowi6_iif = skb->skb_iif,
1554 .flowi6_oif = skb->dev->ifindex,
1555 .flowi6_mark = skb->mark,
1556 };
1557
1558 if (ip6mr_fib_lookup(net, &fl6, &mrt) < 0)
1559 return NULL;
1560
1561 return mrt->mroute6_sk;
1562 }
1563
1564 /*
1565 * Socket options and virtual interface manipulation. The whole
1566 * virtual interface system is a complete heap, but unfortunately
1567 * that's how BSD mrouted happens to think. Maybe one day with a proper
1568 * MOSPF/PIM router set up we can clean this up.
1569 */
1570
1571 int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1572 {
1573 int ret;
1574 struct mif6ctl vif;
1575 struct mf6cctl mfc;
1576 mifi_t mifi;
1577 struct net *net = sock_net(sk);
1578 struct mr6_table *mrt;
1579
1580 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1581 if (mrt == NULL)
1582 return -ENOENT;
1583
1584 if (optname != MRT6_INIT) {
1585 if (sk != mrt->mroute6_sk && !capable(CAP_NET_ADMIN))
1586 return -EACCES;
1587 }
1588
1589 switch (optname) {
1590 case MRT6_INIT:
1591 if (sk->sk_type != SOCK_RAW ||
1592 inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
1593 return -EOPNOTSUPP;
1594 if (optlen < sizeof(int))
1595 return -EINVAL;
1596
1597 return ip6mr_sk_init(mrt, sk);
1598
1599 case MRT6_DONE:
1600 return ip6mr_sk_done(sk);
1601
1602 case MRT6_ADD_MIF:
1603 if (optlen < sizeof(vif))
1604 return -EINVAL;
1605 if (copy_from_user(&vif, optval, sizeof(vif)))
1606 return -EFAULT;
1607 if (vif.mif6c_mifi >= MAXMIFS)
1608 return -ENFILE;
1609 rtnl_lock();
1610 ret = mif6_add(net, mrt, &vif, sk == mrt->mroute6_sk);
1611 rtnl_unlock();
1612 return ret;
1613
1614 case MRT6_DEL_MIF:
1615 if (optlen < sizeof(mifi_t))
1616 return -EINVAL;
1617 if (copy_from_user(&mifi, optval, sizeof(mifi_t)))
1618 return -EFAULT;
1619 rtnl_lock();
1620 ret = mif6_delete(mrt, mifi, NULL);
1621 rtnl_unlock();
1622 return ret;
1623
1624 /*
1625 * Manipulate the forwarding caches. These live
1626 * in a sort of kernel/user symbiosis.
1627 */
1628 case MRT6_ADD_MFC:
1629 case MRT6_DEL_MFC:
1630 if (optlen < sizeof(mfc))
1631 return -EINVAL;
1632 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1633 return -EFAULT;
1634 rtnl_lock();
1635 if (optname == MRT6_DEL_MFC)
1636 ret = ip6mr_mfc_delete(mrt, &mfc);
1637 else
1638 ret = ip6mr_mfc_add(net, mrt, &mfc, sk == mrt->mroute6_sk);
1639 rtnl_unlock();
1640 return ret;
1641
1642 /*
1643 * Control PIM assert (to activate pim will activate assert)
1644 */
1645 case MRT6_ASSERT:
1646 {
1647 int v;
1648 if (get_user(v, (int __user *)optval))
1649 return -EFAULT;
1650 mrt->mroute_do_assert = !!v;
1651 return 0;
1652 }
1653
1654 #ifdef CONFIG_IPV6_PIMSM_V2
1655 case MRT6_PIM:
1656 {
1657 int v;
1658 if (get_user(v, (int __user *)optval))
1659 return -EFAULT;
1660 v = !!v;
1661 rtnl_lock();
1662 ret = 0;
1663 if (v != mrt->mroute_do_pim) {
1664 mrt->mroute_do_pim = v;
1665 mrt->mroute_do_assert = v;
1666 }
1667 rtnl_unlock();
1668 return ret;
1669 }
1670
1671 #endif
1672 #ifdef CONFIG_IPV6_MROUTE_MULTIPLE_TABLES
1673 case MRT6_TABLE:
1674 {
1675 u32 v;
1676
1677 if (optlen != sizeof(u32))
1678 return -EINVAL;
1679 if (get_user(v, (u32 __user *)optval))
1680 return -EFAULT;
1681 if (sk == mrt->mroute6_sk)
1682 return -EBUSY;
1683
1684 rtnl_lock();
1685 ret = 0;
1686 if (!ip6mr_new_table(net, v))
1687 ret = -ENOMEM;
1688 raw6_sk(sk)->ip6mr_table = v;
1689 rtnl_unlock();
1690 return ret;
1691 }
1692 #endif
1693 /*
1694 * Spurious command, or MRT6_VERSION which you cannot
1695 * set.
1696 */
1697 default:
1698 return -ENOPROTOOPT;
1699 }
1700 }
1701
1702 /*
1703 * Getsock opt support for the multicast routing system.
1704 */
1705
1706 int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
1707 int __user *optlen)
1708 {
1709 int olr;
1710 int val;
1711 struct net *net = sock_net(sk);
1712 struct mr6_table *mrt;
1713
1714 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1715 if (mrt == NULL)
1716 return -ENOENT;
1717
1718 switch (optname) {
1719 case MRT6_VERSION:
1720 val = 0x0305;
1721 break;
1722 #ifdef CONFIG_IPV6_PIMSM_V2
1723 case MRT6_PIM:
1724 val = mrt->mroute_do_pim;
1725 break;
1726 #endif
1727 case MRT6_ASSERT:
1728 val = mrt->mroute_do_assert;
1729 break;
1730 default:
1731 return -ENOPROTOOPT;
1732 }
1733
1734 if (get_user(olr, optlen))
1735 return -EFAULT;
1736
1737 olr = min_t(int, olr, sizeof(int));
1738 if (olr < 0)
1739 return -EINVAL;
1740
1741 if (put_user(olr, optlen))
1742 return -EFAULT;
1743 if (copy_to_user(optval, &val, olr))
1744 return -EFAULT;
1745 return 0;
1746 }
1747
1748 /*
1749 * The IP multicast ioctl support routines.
1750 */
1751
1752 int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
1753 {
1754 struct sioc_sg_req6 sr;
1755 struct sioc_mif_req6 vr;
1756 struct mif_device *vif;
1757 struct mfc6_cache *c;
1758 struct net *net = sock_net(sk);
1759 struct mr6_table *mrt;
1760
1761 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1762 if (mrt == NULL)
1763 return -ENOENT;
1764
1765 switch (cmd) {
1766 case SIOCGETMIFCNT_IN6:
1767 if (copy_from_user(&vr, arg, sizeof(vr)))
1768 return -EFAULT;
1769 if (vr.mifi >= mrt->maxvif)
1770 return -EINVAL;
1771 read_lock(&mrt_lock);
1772 vif = &mrt->vif6_table[vr.mifi];
1773 if (MIF_EXISTS(mrt, vr.mifi)) {
1774 vr.icount = vif->pkt_in;
1775 vr.ocount = vif->pkt_out;
1776 vr.ibytes = vif->bytes_in;
1777 vr.obytes = vif->bytes_out;
1778 read_unlock(&mrt_lock);
1779
1780 if (copy_to_user(arg, &vr, sizeof(vr)))
1781 return -EFAULT;
1782 return 0;
1783 }
1784 read_unlock(&mrt_lock);
1785 return -EADDRNOTAVAIL;
1786 case SIOCGETSGCNT_IN6:
1787 if (copy_from_user(&sr, arg, sizeof(sr)))
1788 return -EFAULT;
1789
1790 read_lock(&mrt_lock);
1791 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1792 if (c) {
1793 sr.pktcnt = c->mfc_un.res.pkt;
1794 sr.bytecnt = c->mfc_un.res.bytes;
1795 sr.wrong_if = c->mfc_un.res.wrong_if;
1796 read_unlock(&mrt_lock);
1797
1798 if (copy_to_user(arg, &sr, sizeof(sr)))
1799 return -EFAULT;
1800 return 0;
1801 }
1802 read_unlock(&mrt_lock);
1803 return -EADDRNOTAVAIL;
1804 default:
1805 return -ENOIOCTLCMD;
1806 }
1807 }
1808
1809 #ifdef CONFIG_COMPAT
1810 struct compat_sioc_sg_req6 {
1811 struct sockaddr_in6 src;
1812 struct sockaddr_in6 grp;
1813 compat_ulong_t pktcnt;
1814 compat_ulong_t bytecnt;
1815 compat_ulong_t wrong_if;
1816 };
1817
1818 struct compat_sioc_mif_req6 {
1819 mifi_t mifi;
1820 compat_ulong_t icount;
1821 compat_ulong_t ocount;
1822 compat_ulong_t ibytes;
1823 compat_ulong_t obytes;
1824 };
1825
1826 int ip6mr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1827 {
1828 struct compat_sioc_sg_req6 sr;
1829 struct compat_sioc_mif_req6 vr;
1830 struct mif_device *vif;
1831 struct mfc6_cache *c;
1832 struct net *net = sock_net(sk);
1833 struct mr6_table *mrt;
1834
1835 mrt = ip6mr_get_table(net, raw6_sk(sk)->ip6mr_table ? : RT6_TABLE_DFLT);
1836 if (mrt == NULL)
1837 return -ENOENT;
1838
1839 switch (cmd) {
1840 case SIOCGETMIFCNT_IN6:
1841 if (copy_from_user(&vr, arg, sizeof(vr)))
1842 return -EFAULT;
1843 if (vr.mifi >= mrt->maxvif)
1844 return -EINVAL;
1845 read_lock(&mrt_lock);
1846 vif = &mrt->vif6_table[vr.mifi];
1847 if (MIF_EXISTS(mrt, vr.mifi)) {
1848 vr.icount = vif->pkt_in;
1849 vr.ocount = vif->pkt_out;
1850 vr.ibytes = vif->bytes_in;
1851 vr.obytes = vif->bytes_out;
1852 read_unlock(&mrt_lock);
1853
1854 if (copy_to_user(arg, &vr, sizeof(vr)))
1855 return -EFAULT;
1856 return 0;
1857 }
1858 read_unlock(&mrt_lock);
1859 return -EADDRNOTAVAIL;
1860 case SIOCGETSGCNT_IN6:
1861 if (copy_from_user(&sr, arg, sizeof(sr)))
1862 return -EFAULT;
1863
1864 read_lock(&mrt_lock);
1865 c = ip6mr_cache_find(mrt, &sr.src.sin6_addr, &sr.grp.sin6_addr);
1866 if (c) {
1867 sr.pktcnt = c->mfc_un.res.pkt;
1868 sr.bytecnt = c->mfc_un.res.bytes;
1869 sr.wrong_if = c->mfc_un.res.wrong_if;
1870 read_unlock(&mrt_lock);
1871
1872 if (copy_to_user(arg, &sr, sizeof(sr)))
1873 return -EFAULT;
1874 return 0;
1875 }
1876 read_unlock(&mrt_lock);
1877 return -EADDRNOTAVAIL;
1878 default:
1879 return -ENOIOCTLCMD;
1880 }
1881 }
1882 #endif
1883
1884 static inline int ip6mr_forward2_finish(struct sk_buff *skb)
1885 {
1886 IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
1887 IPSTATS_MIB_OUTFORWDATAGRAMS);
1888 return dst_output(skb);
1889 }
1890
1891 /*
1892 * Processing handlers for ip6mr_forward
1893 */
1894
1895 static int ip6mr_forward2(struct net *net, struct mr6_table *mrt,
1896 struct sk_buff *skb, struct mfc6_cache *c, int vifi)
1897 {
1898 struct ipv6hdr *ipv6h;
1899 struct mif_device *vif = &mrt->vif6_table[vifi];
1900 struct net_device *dev;
1901 struct dst_entry *dst;
1902 struct flowi6 fl6;
1903
1904 if (vif->dev == NULL)
1905 goto out_free;
1906
1907 #ifdef CONFIG_IPV6_PIMSM_V2
1908 if (vif->flags & MIFF_REGISTER) {
1909 vif->pkt_out++;
1910 vif->bytes_out += skb->len;
1911 vif->dev->stats.tx_bytes += skb->len;
1912 vif->dev->stats.tx_packets++;
1913 ip6mr_cache_report(mrt, skb, vifi, MRT6MSG_WHOLEPKT);
1914 goto out_free;
1915 }
1916 #endif
1917
1918 ipv6h = ipv6_hdr(skb);
1919
1920 fl6 = (struct flowi6) {
1921 .flowi6_oif = vif->link,
1922 .daddr = ipv6h->daddr,
1923 };
1924
1925 dst = ip6_route_output(net, NULL, &fl6);
1926 if (!dst)
1927 goto out_free;
1928
1929 skb_dst_drop(skb);
1930 skb_dst_set(skb, dst);
1931
1932 /*
1933 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1934 * not only before forwarding, but after forwarding on all output
1935 * interfaces. It is clear, if mrouter runs a multicasting
1936 * program, it should receive packets not depending to what interface
1937 * program is joined.
1938 * If we will not make it, the program will have to join on all
1939 * interfaces. On the other hand, multihoming host (or router, but
1940 * not mrouter) cannot join to more than one interface - it will
1941 * result in receiving multiple packets.
1942 */
1943 dev = vif->dev;
1944 skb->dev = dev;
1945 vif->pkt_out++;
1946 vif->bytes_out += skb->len;
1947
1948 /* We are about to write */
1949 /* XXX: extension headers? */
1950 if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
1951 goto out_free;
1952
1953 ipv6h = ipv6_hdr(skb);
1954 ipv6h->hop_limit--;
1955
1956 IP6CB(skb)->flags |= IP6SKB_FORWARDED;
1957
1958 return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dev,
1959 ip6mr_forward2_finish);
1960
1961 out_free:
1962 kfree_skb(skb);
1963 return 0;
1964 }
1965
1966 static int ip6mr_find_vif(struct mr6_table *mrt, struct net_device *dev)
1967 {
1968 int ct;
1969
1970 for (ct = mrt->maxvif - 1; ct >= 0; ct--) {
1971 if (mrt->vif6_table[ct].dev == dev)
1972 break;
1973 }
1974 return ct;
1975 }
1976
1977 static int ip6_mr_forward(struct net *net, struct mr6_table *mrt,
1978 struct sk_buff *skb, struct mfc6_cache *cache)
1979 {
1980 int psend = -1;
1981 int vif, ct;
1982
1983 vif = cache->mf6c_parent;
1984 cache->mfc_un.res.pkt++;
1985 cache->mfc_un.res.bytes += skb->len;
1986
1987 /*
1988 * Wrong interface: drop packet and (maybe) send PIM assert.
1989 */
1990 if (mrt->vif6_table[vif].dev != skb->dev) {
1991 int true_vifi;
1992
1993 cache->mfc_un.res.wrong_if++;
1994 true_vifi = ip6mr_find_vif(mrt, skb->dev);
1995
1996 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1997 /* pimsm uses asserts, when switching from RPT to SPT,
1998 so that we cannot check that packet arrived on an oif.
1999 It is bad, but otherwise we would need to move pretty
2000 large chunk of pimd to kernel. Ough... --ANK
2001 */
2002 (mrt->mroute_do_pim ||
2003 cache->mfc_un.res.ttls[true_vifi] < 255) &&
2004 time_after(jiffies,
2005 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
2006 cache->mfc_un.res.last_assert = jiffies;
2007 ip6mr_cache_report(mrt, skb, true_vifi, MRT6MSG_WRONGMIF);
2008 }
2009 goto dont_forward;
2010 }
2011
2012 mrt->vif6_table[vif].pkt_in++;
2013 mrt->vif6_table[vif].bytes_in += skb->len;
2014
2015 /*
2016 * Forward the frame
2017 */
2018 for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) {
2019 if (ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) {
2020 if (psend != -1) {
2021 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2022 if (skb2)
2023 ip6mr_forward2(net, mrt, skb2, cache, psend);
2024 }
2025 psend = ct;
2026 }
2027 }
2028 if (psend != -1) {
2029 ip6mr_forward2(net, mrt, skb, cache, psend);
2030 return 0;
2031 }
2032
2033 dont_forward:
2034 kfree_skb(skb);
2035 return 0;
2036 }
2037
2038
2039 /*
2040 * Multicast packets for forwarding arrive here
2041 */
2042
2043 int ip6_mr_input(struct sk_buff *skb)
2044 {
2045 struct mfc6_cache *cache;
2046 struct net *net = dev_net(skb->dev);
2047 struct mr6_table *mrt;
2048 struct flowi6 fl6 = {
2049 .flowi6_iif = skb->dev->ifindex,
2050 .flowi6_mark = skb->mark,
2051 };
2052 int err;
2053
2054 err = ip6mr_fib_lookup(net, &fl6, &mrt);
2055 if (err < 0) {
2056 kfree_skb(skb);
2057 return err;
2058 }
2059
2060 read_lock(&mrt_lock);
2061 cache = ip6mr_cache_find(mrt,
2062 &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
2063
2064 /*
2065 * No usable cache entry
2066 */
2067 if (cache == NULL) {
2068 int vif;
2069
2070 vif = ip6mr_find_vif(mrt, skb->dev);
2071 if (vif >= 0) {
2072 int err = ip6mr_cache_unresolved(mrt, vif, skb);
2073 read_unlock(&mrt_lock);
2074
2075 return err;
2076 }
2077 read_unlock(&mrt_lock);
2078 kfree_skb(skb);
2079 return -ENODEV;
2080 }
2081
2082 ip6_mr_forward(net, mrt, skb, cache);
2083
2084 read_unlock(&mrt_lock);
2085
2086 return 0;
2087 }
2088
2089
2090 static int __ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2091 struct mfc6_cache *c, struct rtmsg *rtm)
2092 {
2093 int ct;
2094 struct rtnexthop *nhp;
2095 u8 *b = skb_tail_pointer(skb);
2096 struct rtattr *mp_head;
2097
2098 /* If cache is unresolved, don't try to parse IIF and OIF */
2099 if (c->mf6c_parent >= MAXMIFS)
2100 return -ENOENT;
2101
2102 if (MIF_EXISTS(mrt, c->mf6c_parent))
2103 RTA_PUT(skb, RTA_IIF, 4, &mrt->vif6_table[c->mf6c_parent].dev->ifindex);
2104
2105 mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
2106
2107 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2108 if (MIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2109 if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2110 goto rtattr_failure;
2111 nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
2112 nhp->rtnh_flags = 0;
2113 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2114 nhp->rtnh_ifindex = mrt->vif6_table[ct].dev->ifindex;
2115 nhp->rtnh_len = sizeof(*nhp);
2116 }
2117 }
2118 mp_head->rta_type = RTA_MULTIPATH;
2119 mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
2120 rtm->rtm_type = RTN_MULTICAST;
2121 return 1;
2122
2123 rtattr_failure:
2124 nlmsg_trim(skb, b);
2125 return -EMSGSIZE;
2126 }
2127
2128 int ip6mr_get_route(struct net *net,
2129 struct sk_buff *skb, struct rtmsg *rtm, int nowait)
2130 {
2131 int err;
2132 struct mr6_table *mrt;
2133 struct mfc6_cache *cache;
2134 struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
2135
2136 mrt = ip6mr_get_table(net, RT6_TABLE_DFLT);
2137 if (mrt == NULL)
2138 return -ENOENT;
2139
2140 read_lock(&mrt_lock);
2141 cache = ip6mr_cache_find(mrt, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
2142
2143 if (!cache) {
2144 struct sk_buff *skb2;
2145 struct ipv6hdr *iph;
2146 struct net_device *dev;
2147 int vif;
2148
2149 if (nowait) {
2150 read_unlock(&mrt_lock);
2151 return -EAGAIN;
2152 }
2153
2154 dev = skb->dev;
2155 if (dev == NULL || (vif = ip6mr_find_vif(mrt, dev)) < 0) {
2156 read_unlock(&mrt_lock);
2157 return -ENODEV;
2158 }
2159
2160 /* really correct? */
2161 skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
2162 if (!skb2) {
2163 read_unlock(&mrt_lock);
2164 return -ENOMEM;
2165 }
2166
2167 skb_reset_transport_header(skb2);
2168
2169 skb_put(skb2, sizeof(struct ipv6hdr));
2170 skb_reset_network_header(skb2);
2171
2172 iph = ipv6_hdr(skb2);
2173 iph->version = 0;
2174 iph->priority = 0;
2175 iph->flow_lbl[0] = 0;
2176 iph->flow_lbl[1] = 0;
2177 iph->flow_lbl[2] = 0;
2178 iph->payload_len = 0;
2179 iph->nexthdr = IPPROTO_NONE;
2180 iph->hop_limit = 0;
2181 ipv6_addr_copy(&iph->saddr, &rt->rt6i_src.addr);
2182 ipv6_addr_copy(&iph->daddr, &rt->rt6i_dst.addr);
2183
2184 err = ip6mr_cache_unresolved(mrt, vif, skb2);
2185 read_unlock(&mrt_lock);
2186
2187 return err;
2188 }
2189
2190 if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
2191 cache->mfc_flags |= MFC_NOTIFY;
2192
2193 err = __ip6mr_fill_mroute(mrt, skb, cache, rtm);
2194 read_unlock(&mrt_lock);
2195 return err;
2196 }
2197
2198 static int ip6mr_fill_mroute(struct mr6_table *mrt, struct sk_buff *skb,
2199 u32 pid, u32 seq, struct mfc6_cache *c)
2200 {
2201 struct nlmsghdr *nlh;
2202 struct rtmsg *rtm;
2203
2204 nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2205 if (nlh == NULL)
2206 return -EMSGSIZE;
2207
2208 rtm = nlmsg_data(nlh);
2209 rtm->rtm_family = RTNL_FAMILY_IPMR;
2210 rtm->rtm_dst_len = 128;
2211 rtm->rtm_src_len = 128;
2212 rtm->rtm_tos = 0;
2213 rtm->rtm_table = mrt->id;
2214 NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
2215 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2216 rtm->rtm_protocol = RTPROT_UNSPEC;
2217 rtm->rtm_flags = 0;
2218
2219 NLA_PUT(skb, RTA_SRC, 16, &c->mf6c_origin);
2220 NLA_PUT(skb, RTA_DST, 16, &c->mf6c_mcastgrp);
2221
2222 if (__ip6mr_fill_mroute(mrt, skb, c, rtm) < 0)
2223 goto nla_put_failure;
2224
2225 return nlmsg_end(skb, nlh);
2226
2227 nla_put_failure:
2228 nlmsg_cancel(skb, nlh);
2229 return -EMSGSIZE;
2230 }
2231
2232 static int ip6mr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2233 {
2234 struct net *net = sock_net(skb->sk);
2235 struct mr6_table *mrt;
2236 struct mfc6_cache *mfc;
2237 unsigned int t = 0, s_t;
2238 unsigned int h = 0, s_h;
2239 unsigned int e = 0, s_e;
2240
2241 s_t = cb->args[0];
2242 s_h = cb->args[1];
2243 s_e = cb->args[2];
2244
2245 read_lock(&mrt_lock);
2246 ip6mr_for_each_table(mrt, net) {
2247 if (t < s_t)
2248 goto next_table;
2249 if (t > s_t)
2250 s_h = 0;
2251 for (h = s_h; h < MFC6_LINES; h++) {
2252 list_for_each_entry(mfc, &mrt->mfc6_cache_array[h], list) {
2253 if (e < s_e)
2254 goto next_entry;
2255 if (ip6mr_fill_mroute(mrt, skb,
2256 NETLINK_CB(cb->skb).pid,
2257 cb->nlh->nlmsg_seq,
2258 mfc) < 0)
2259 goto done;
2260 next_entry:
2261 e++;
2262 }
2263 e = s_e = 0;
2264 }
2265 s_h = 0;
2266 next_table:
2267 t++;
2268 }
2269 done:
2270 read_unlock(&mrt_lock);
2271
2272 cb->args[2] = e;
2273 cb->args[1] = h;
2274 cb->args[0] = t;
2275
2276 return skb->len;
2277 }