]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ipv6/route.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-jammy-kernel.git] / net / ipv6 / route.c
1 /*
2 * Linux INET6 implementation
3 * FIB front-end.
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* Changes:
15 *
16 * YOSHIFUJI Hideaki @USAGI
17 * reworked default router selection.
18 * - respect outgoing interface
19 * - select from (probably) reachable routers (i.e.
20 * routers in REACHABLE, STALE, DELAY or PROBE states).
21 * - always select the same router if it is (probably)
22 * reachable. otherwise, round-robin the list.
23 * Ville Nuorvala
24 * Fixed routing subtrees.
25 */
26
27 #define pr_fmt(fmt) "IPv6: " fmt
28
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72
73 static int ip6_rt_type_to_error(u8 fib6_type);
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79
80 enum rt6_nud_state {
81 RT6_NUD_FAIL_HARD = -3,
82 RT6_NUD_FAIL_PROBE = -2,
83 RT6_NUD_FAIL_DO_RR = -1,
84 RT6_NUD_SUCCEED = 1
85 };
86
87 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void ip6_dst_destroy(struct dst_entry *);
92 static void ip6_dst_ifdown(struct dst_entry *,
93 struct net_device *dev, int how);
94 static int ip6_dst_gc(struct dst_ops *ops);
95
96 static int ip6_pkt_discard(struct sk_buff *skb);
97 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int ip6_pkt_prohibit(struct sk_buff *skb);
99 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void ip6_link_failure(struct sk_buff *skb);
101 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 struct sk_buff *skb, u32 mtu);
103 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 struct fib6_info *rt, struct dst_entry *dst,
109 struct in6_addr *dest, struct in6_addr *src,
110 int iif, int type, u32 portid, u32 seq,
111 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 struct in6_addr *daddr,
114 struct in6_addr *saddr);
115
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 const struct in6_addr *prefix, int prefixlen,
119 const struct in6_addr *gwaddr,
120 struct net_device *dev,
121 unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 const struct in6_addr *prefix, int prefixlen,
124 const struct in6_addr *gwaddr,
125 struct net_device *dev);
126 #endif
127
128 struct uncached_list {
129 spinlock_t lock;
130 struct list_head head;
131 };
132
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138
139 rt->rt6i_uncached_list = ul;
140
141 spin_lock_bh(&ul->lock);
142 list_add_tail(&rt->rt6i_uncached, &ul->head);
143 spin_unlock_bh(&ul->lock);
144 }
145
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 if (!list_empty(&rt->rt6i_uncached)) {
149 struct uncached_list *ul = rt->rt6i_uncached_list;
150 struct net *net = dev_net(rt->dst.dev);
151
152 spin_lock_bh(&ul->lock);
153 list_del(&rt->rt6i_uncached);
154 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 spin_unlock_bh(&ul->lock);
156 }
157 }
158
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 struct net_device *loopback_dev = net->loopback_dev;
162 int cpu;
163
164 if (dev == loopback_dev)
165 return;
166
167 for_each_possible_cpu(cpu) {
168 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 struct rt6_info *rt;
170
171 spin_lock_bh(&ul->lock);
172 list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 struct inet6_dev *rt_idev = rt->rt6i_idev;
174 struct net_device *rt_dev = rt->dst.dev;
175
176 if (rt_idev->dev == dev) {
177 rt->rt6i_idev = in6_dev_get(loopback_dev);
178 in6_dev_put(rt_idev);
179 }
180
181 if (rt_dev == dev) {
182 rt->dst.dev = loopback_dev;
183 dev_hold(rt->dst.dev);
184 dev_put(rt_dev);
185 }
186 }
187 spin_unlock_bh(&ul->lock);
188 }
189 }
190
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 struct sk_buff *skb,
193 const void *daddr)
194 {
195 if (!ipv6_addr_any(p))
196 return (const void *) p;
197 else if (skb)
198 return &ipv6_hdr(skb)->daddr;
199 return daddr;
200 }
201
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 struct net_device *dev,
204 struct sk_buff *skb,
205 const void *daddr)
206 {
207 struct neighbour *n;
208
209 daddr = choose_neigh_daddr(gw, skb, daddr);
210 n = __ipv6_neigh_lookup(dev, daddr);
211 if (n)
212 return n;
213
214 n = neigh_create(&nd_tbl, daddr, dev);
215 return IS_ERR(n) ? NULL : n;
216 }
217
218 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
219 struct sk_buff *skb,
220 const void *daddr)
221 {
222 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
223
224 return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
225 }
226
227 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
228 {
229 struct net_device *dev = dst->dev;
230 struct rt6_info *rt = (struct rt6_info *)dst;
231
232 daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
233 if (!daddr)
234 return;
235 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
236 return;
237 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
238 return;
239 __ipv6_confirm_neigh(dev, daddr);
240 }
241
242 static struct dst_ops ip6_dst_ops_template = {
243 .family = AF_INET6,
244 .gc = ip6_dst_gc,
245 .gc_thresh = 1024,
246 .check = ip6_dst_check,
247 .default_advmss = ip6_default_advmss,
248 .mtu = ip6_mtu,
249 .cow_metrics = dst_cow_metrics_generic,
250 .destroy = ip6_dst_destroy,
251 .ifdown = ip6_dst_ifdown,
252 .negative_advice = ip6_negative_advice,
253 .link_failure = ip6_link_failure,
254 .update_pmtu = ip6_rt_update_pmtu,
255 .redirect = rt6_do_redirect,
256 .local_out = __ip6_local_out,
257 .neigh_lookup = ip6_dst_neigh_lookup,
258 .confirm_neigh = ip6_confirm_neigh,
259 };
260
261 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
262 {
263 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
264
265 return mtu ? : dst->dev->mtu;
266 }
267
268 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
269 struct sk_buff *skb, u32 mtu)
270 {
271 }
272
273 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
274 struct sk_buff *skb)
275 {
276 }
277
278 static struct dst_ops ip6_dst_blackhole_ops = {
279 .family = AF_INET6,
280 .destroy = ip6_dst_destroy,
281 .check = ip6_dst_check,
282 .mtu = ip6_blackhole_mtu,
283 .default_advmss = ip6_default_advmss,
284 .update_pmtu = ip6_rt_blackhole_update_pmtu,
285 .redirect = ip6_rt_blackhole_redirect,
286 .cow_metrics = dst_cow_metrics_generic,
287 .neigh_lookup = ip6_dst_neigh_lookup,
288 };
289
290 static const u32 ip6_template_metrics[RTAX_MAX] = {
291 [RTAX_HOPLIMIT - 1] = 0,
292 };
293
294 static const struct fib6_info fib6_null_entry_template = {
295 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP),
296 .fib6_protocol = RTPROT_KERNEL,
297 .fib6_metric = ~(u32)0,
298 .fib6_ref = ATOMIC_INIT(1),
299 .fib6_type = RTN_UNREACHABLE,
300 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics,
301 };
302
303 static const struct rt6_info ip6_null_entry_template = {
304 .dst = {
305 .__refcnt = ATOMIC_INIT(1),
306 .__use = 1,
307 .obsolete = DST_OBSOLETE_FORCE_CHK,
308 .error = -ENETUNREACH,
309 .input = ip6_pkt_discard,
310 .output = ip6_pkt_discard_out,
311 },
312 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
313 };
314
315 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
316
317 static const struct rt6_info ip6_prohibit_entry_template = {
318 .dst = {
319 .__refcnt = ATOMIC_INIT(1),
320 .__use = 1,
321 .obsolete = DST_OBSOLETE_FORCE_CHK,
322 .error = -EACCES,
323 .input = ip6_pkt_prohibit,
324 .output = ip6_pkt_prohibit_out,
325 },
326 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
327 };
328
329 static const struct rt6_info ip6_blk_hole_entry_template = {
330 .dst = {
331 .__refcnt = ATOMIC_INIT(1),
332 .__use = 1,
333 .obsolete = DST_OBSOLETE_FORCE_CHK,
334 .error = -EINVAL,
335 .input = dst_discard,
336 .output = dst_discard_out,
337 },
338 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
339 };
340
341 #endif
342
343 static void rt6_info_init(struct rt6_info *rt)
344 {
345 struct dst_entry *dst = &rt->dst;
346
347 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
348 INIT_LIST_HEAD(&rt->rt6i_uncached);
349 }
350
351 /* allocate dst with ip6_dst_ops */
352 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
353 int flags)
354 {
355 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
356 1, DST_OBSOLETE_FORCE_CHK, flags);
357
358 if (rt) {
359 rt6_info_init(rt);
360 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
361 }
362
363 return rt;
364 }
365 EXPORT_SYMBOL(ip6_dst_alloc);
366
367 static void ip6_dst_destroy(struct dst_entry *dst)
368 {
369 struct rt6_info *rt = (struct rt6_info *)dst;
370 struct fib6_info *from;
371 struct inet6_dev *idev;
372
373 ip_dst_metrics_put(dst);
374 rt6_uncached_list_del(rt);
375
376 idev = rt->rt6i_idev;
377 if (idev) {
378 rt->rt6i_idev = NULL;
379 in6_dev_put(idev);
380 }
381
382 rcu_read_lock();
383 from = rcu_dereference(rt->from);
384 rcu_assign_pointer(rt->from, NULL);
385 fib6_info_release(from);
386 rcu_read_unlock();
387 }
388
389 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
390 int how)
391 {
392 struct rt6_info *rt = (struct rt6_info *)dst;
393 struct inet6_dev *idev = rt->rt6i_idev;
394 struct net_device *loopback_dev =
395 dev_net(dev)->loopback_dev;
396
397 if (idev && idev->dev != loopback_dev) {
398 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
399 if (loopback_idev) {
400 rt->rt6i_idev = loopback_idev;
401 in6_dev_put(idev);
402 }
403 }
404 }
405
406 static bool __rt6_check_expired(const struct rt6_info *rt)
407 {
408 if (rt->rt6i_flags & RTF_EXPIRES)
409 return time_after(jiffies, rt->dst.expires);
410 else
411 return false;
412 }
413
414 static bool rt6_check_expired(const struct rt6_info *rt)
415 {
416 struct fib6_info *from;
417
418 from = rcu_dereference(rt->from);
419
420 if (rt->rt6i_flags & RTF_EXPIRES) {
421 if (time_after(jiffies, rt->dst.expires))
422 return true;
423 } else if (from) {
424 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
425 fib6_check_expired(from);
426 }
427 return false;
428 }
429
430 struct fib6_info *fib6_multipath_select(const struct net *net,
431 struct fib6_info *match,
432 struct flowi6 *fl6, int oif,
433 const struct sk_buff *skb,
434 int strict)
435 {
436 struct fib6_info *sibling, *next_sibling;
437
438 /* We might have already computed the hash for ICMPv6 errors. In such
439 * case it will always be non-zero. Otherwise now is the time to do it.
440 */
441 if (!fl6->mp_hash)
442 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
443
444 if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
445 return match;
446
447 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
448 fib6_siblings) {
449 int nh_upper_bound;
450
451 nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
452 if (fl6->mp_hash > nh_upper_bound)
453 continue;
454 if (rt6_score_route(sibling, oif, strict) < 0)
455 break;
456 match = sibling;
457 break;
458 }
459
460 return match;
461 }
462
463 /*
464 * Route lookup. rcu_read_lock() should be held.
465 */
466
467 static inline struct fib6_info *rt6_device_match(struct net *net,
468 struct fib6_info *rt,
469 const struct in6_addr *saddr,
470 int oif,
471 int flags)
472 {
473 struct fib6_info *sprt;
474
475 if (!oif && ipv6_addr_any(saddr) &&
476 !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
477 return rt;
478
479 for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
480 const struct net_device *dev = sprt->fib6_nh.nh_dev;
481
482 if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
483 continue;
484
485 if (oif) {
486 if (dev->ifindex == oif)
487 return sprt;
488 } else {
489 if (ipv6_chk_addr(net, saddr, dev,
490 flags & RT6_LOOKUP_F_IFACE))
491 return sprt;
492 }
493 }
494
495 if (oif && flags & RT6_LOOKUP_F_IFACE)
496 return net->ipv6.fib6_null_entry;
497
498 return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
499 }
500
501 #ifdef CONFIG_IPV6_ROUTER_PREF
502 struct __rt6_probe_work {
503 struct work_struct work;
504 struct in6_addr target;
505 struct net_device *dev;
506 };
507
508 static void rt6_probe_deferred(struct work_struct *w)
509 {
510 struct in6_addr mcaddr;
511 struct __rt6_probe_work *work =
512 container_of(w, struct __rt6_probe_work, work);
513
514 addrconf_addr_solict_mult(&work->target, &mcaddr);
515 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
516 dev_put(work->dev);
517 kfree(work);
518 }
519
520 static void rt6_probe(struct fib6_info *rt)
521 {
522 struct __rt6_probe_work *work = NULL;
523 const struct in6_addr *nh_gw;
524 struct neighbour *neigh;
525 struct net_device *dev;
526 struct inet6_dev *idev;
527
528 /*
529 * Okay, this does not seem to be appropriate
530 * for now, however, we need to check if it
531 * is really so; aka Router Reachability Probing.
532 *
533 * Router Reachability Probe MUST be rate-limited
534 * to no more than one per minute.
535 */
536 if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
537 return;
538
539 nh_gw = &rt->fib6_nh.nh_gw;
540 dev = rt->fib6_nh.nh_dev;
541 rcu_read_lock_bh();
542 idev = __in6_dev_get(dev);
543 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
544 if (neigh) {
545 if (neigh->nud_state & NUD_VALID)
546 goto out;
547
548 write_lock(&neigh->lock);
549 if (!(neigh->nud_state & NUD_VALID) &&
550 time_after(jiffies,
551 neigh->updated + idev->cnf.rtr_probe_interval)) {
552 work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 if (work)
554 __neigh_set_probe_once(neigh);
555 }
556 write_unlock(&neigh->lock);
557 } else if (time_after(jiffies, rt->last_probe +
558 idev->cnf.rtr_probe_interval)) {
559 work = kmalloc(sizeof(*work), GFP_ATOMIC);
560 }
561
562 if (work) {
563 rt->last_probe = jiffies;
564 INIT_WORK(&work->work, rt6_probe_deferred);
565 work->target = *nh_gw;
566 dev_hold(dev);
567 work->dev = dev;
568 schedule_work(&work->work);
569 }
570
571 out:
572 rcu_read_unlock_bh();
573 }
574 #else
575 static inline void rt6_probe(struct fib6_info *rt)
576 {
577 }
578 #endif
579
580 /*
581 * Default Router Selection (RFC 2461 6.3.6)
582 */
583 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
584 {
585 const struct net_device *dev = rt->fib6_nh.nh_dev;
586
587 if (!oif || dev->ifindex == oif)
588 return 2;
589 return 0;
590 }
591
592 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
593 {
594 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
595 struct neighbour *neigh;
596
597 if (rt->fib6_flags & RTF_NONEXTHOP ||
598 !(rt->fib6_flags & RTF_GATEWAY))
599 return RT6_NUD_SUCCEED;
600
601 rcu_read_lock_bh();
602 neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
603 &rt->fib6_nh.nh_gw);
604 if (neigh) {
605 read_lock(&neigh->lock);
606 if (neigh->nud_state & NUD_VALID)
607 ret = RT6_NUD_SUCCEED;
608 #ifdef CONFIG_IPV6_ROUTER_PREF
609 else if (!(neigh->nud_state & NUD_FAILED))
610 ret = RT6_NUD_SUCCEED;
611 else
612 ret = RT6_NUD_FAIL_PROBE;
613 #endif
614 read_unlock(&neigh->lock);
615 } else {
616 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
617 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
618 }
619 rcu_read_unlock_bh();
620
621 return ret;
622 }
623
624 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
625 {
626 int m;
627
628 m = rt6_check_dev(rt, oif);
629 if (!m && (strict & RT6_LOOKUP_F_IFACE))
630 return RT6_NUD_FAIL_HARD;
631 #ifdef CONFIG_IPV6_ROUTER_PREF
632 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
633 #endif
634 if (strict & RT6_LOOKUP_F_REACHABLE) {
635 int n = rt6_check_neigh(rt);
636 if (n < 0)
637 return n;
638 }
639 return m;
640 }
641
642 /* called with rc_read_lock held */
643 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
644 {
645 const struct net_device *dev = fib6_info_nh_dev(f6i);
646 bool rc = false;
647
648 if (dev) {
649 const struct inet6_dev *idev = __in6_dev_get(dev);
650
651 rc = !!idev->cnf.ignore_routes_with_linkdown;
652 }
653
654 return rc;
655 }
656
657 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
658 int *mpri, struct fib6_info *match,
659 bool *do_rr)
660 {
661 int m;
662 bool match_do_rr = false;
663
664 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
665 goto out;
666
667 if (fib6_ignore_linkdown(rt) &&
668 rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
669 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
670 goto out;
671
672 if (fib6_check_expired(rt))
673 goto out;
674
675 m = rt6_score_route(rt, oif, strict);
676 if (m == RT6_NUD_FAIL_DO_RR) {
677 match_do_rr = true;
678 m = 0; /* lowest valid score */
679 } else if (m == RT6_NUD_FAIL_HARD) {
680 goto out;
681 }
682
683 if (strict & RT6_LOOKUP_F_REACHABLE)
684 rt6_probe(rt);
685
686 /* note that m can be RT6_NUD_FAIL_PROBE at this point */
687 if (m > *mpri) {
688 *do_rr = match_do_rr;
689 *mpri = m;
690 match = rt;
691 }
692 out:
693 return match;
694 }
695
696 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
697 struct fib6_info *leaf,
698 struct fib6_info *rr_head,
699 u32 metric, int oif, int strict,
700 bool *do_rr)
701 {
702 struct fib6_info *rt, *match, *cont;
703 int mpri = -1;
704
705 match = NULL;
706 cont = NULL;
707 for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
708 if (rt->fib6_metric != metric) {
709 cont = rt;
710 break;
711 }
712
713 match = find_match(rt, oif, strict, &mpri, match, do_rr);
714 }
715
716 for (rt = leaf; rt && rt != rr_head;
717 rt = rcu_dereference(rt->fib6_next)) {
718 if (rt->fib6_metric != metric) {
719 cont = rt;
720 break;
721 }
722
723 match = find_match(rt, oif, strict, &mpri, match, do_rr);
724 }
725
726 if (match || !cont)
727 return match;
728
729 for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
730 match = find_match(rt, oif, strict, &mpri, match, do_rr);
731
732 return match;
733 }
734
735 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
736 int oif, int strict)
737 {
738 struct fib6_info *leaf = rcu_dereference(fn->leaf);
739 struct fib6_info *match, *rt0;
740 bool do_rr = false;
741 int key_plen;
742
743 if (!leaf || leaf == net->ipv6.fib6_null_entry)
744 return net->ipv6.fib6_null_entry;
745
746 rt0 = rcu_dereference(fn->rr_ptr);
747 if (!rt0)
748 rt0 = leaf;
749
750 /* Double check to make sure fn is not an intermediate node
751 * and fn->leaf does not points to its child's leaf
752 * (This might happen if all routes under fn are deleted from
753 * the tree and fib6_repair_tree() is called on the node.)
754 */
755 key_plen = rt0->fib6_dst.plen;
756 #ifdef CONFIG_IPV6_SUBTREES
757 if (rt0->fib6_src.plen)
758 key_plen = rt0->fib6_src.plen;
759 #endif
760 if (fn->fn_bit != key_plen)
761 return net->ipv6.fib6_null_entry;
762
763 match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
764 &do_rr);
765
766 if (do_rr) {
767 struct fib6_info *next = rcu_dereference(rt0->fib6_next);
768
769 /* no entries matched; do round-robin */
770 if (!next || next->fib6_metric != rt0->fib6_metric)
771 next = leaf;
772
773 if (next != rt0) {
774 spin_lock_bh(&leaf->fib6_table->tb6_lock);
775 /* make sure next is not being deleted from the tree */
776 if (next->fib6_node)
777 rcu_assign_pointer(fn->rr_ptr, next);
778 spin_unlock_bh(&leaf->fib6_table->tb6_lock);
779 }
780 }
781
782 return match ? match : net->ipv6.fib6_null_entry;
783 }
784
785 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
786 {
787 return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
788 }
789
790 #ifdef CONFIG_IPV6_ROUTE_INFO
791 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
792 const struct in6_addr *gwaddr)
793 {
794 struct net *net = dev_net(dev);
795 struct route_info *rinfo = (struct route_info *) opt;
796 struct in6_addr prefix_buf, *prefix;
797 unsigned int pref;
798 unsigned long lifetime;
799 struct fib6_info *rt;
800
801 if (len < sizeof(struct route_info)) {
802 return -EINVAL;
803 }
804
805 /* Sanity check for prefix_len and length */
806 if (rinfo->length > 3) {
807 return -EINVAL;
808 } else if (rinfo->prefix_len > 128) {
809 return -EINVAL;
810 } else if (rinfo->prefix_len > 64) {
811 if (rinfo->length < 2) {
812 return -EINVAL;
813 }
814 } else if (rinfo->prefix_len > 0) {
815 if (rinfo->length < 1) {
816 return -EINVAL;
817 }
818 }
819
820 pref = rinfo->route_pref;
821 if (pref == ICMPV6_ROUTER_PREF_INVALID)
822 return -EINVAL;
823
824 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
825
826 if (rinfo->length == 3)
827 prefix = (struct in6_addr *)rinfo->prefix;
828 else {
829 /* this function is safe */
830 ipv6_addr_prefix(&prefix_buf,
831 (struct in6_addr *)rinfo->prefix,
832 rinfo->prefix_len);
833 prefix = &prefix_buf;
834 }
835
836 if (rinfo->prefix_len == 0)
837 rt = rt6_get_dflt_router(net, gwaddr, dev);
838 else
839 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
840 gwaddr, dev);
841
842 if (rt && !lifetime) {
843 ip6_del_rt(net, rt);
844 rt = NULL;
845 }
846
847 if (!rt && lifetime)
848 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
849 dev, pref);
850 else if (rt)
851 rt->fib6_flags = RTF_ROUTEINFO |
852 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
853
854 if (rt) {
855 if (!addrconf_finite_timeout(lifetime))
856 fib6_clean_expires(rt);
857 else
858 fib6_set_expires(rt, jiffies + HZ * lifetime);
859
860 fib6_info_release(rt);
861 }
862 return 0;
863 }
864 #endif
865
866 /*
867 * Misc support functions
868 */
869
870 /* called with rcu_lock held */
871 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
872 {
873 struct net_device *dev = rt->fib6_nh.nh_dev;
874
875 if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
876 /* for copies of local routes, dst->dev needs to be the
877 * device if it is a master device, the master device if
878 * device is enslaved, and the loopback as the default
879 */
880 if (netif_is_l3_slave(dev) &&
881 !rt6_need_strict(&rt->fib6_dst.addr))
882 dev = l3mdev_master_dev_rcu(dev);
883 else if (!netif_is_l3_master(dev))
884 dev = dev_net(dev)->loopback_dev;
885 /* last case is netif_is_l3_master(dev) is true in which
886 * case we want dev returned to be dev
887 */
888 }
889
890 return dev;
891 }
892
893 static const int fib6_prop[RTN_MAX + 1] = {
894 [RTN_UNSPEC] = 0,
895 [RTN_UNICAST] = 0,
896 [RTN_LOCAL] = 0,
897 [RTN_BROADCAST] = 0,
898 [RTN_ANYCAST] = 0,
899 [RTN_MULTICAST] = 0,
900 [RTN_BLACKHOLE] = -EINVAL,
901 [RTN_UNREACHABLE] = -EHOSTUNREACH,
902 [RTN_PROHIBIT] = -EACCES,
903 [RTN_THROW] = -EAGAIN,
904 [RTN_NAT] = -EINVAL,
905 [RTN_XRESOLVE] = -EINVAL,
906 };
907
908 static int ip6_rt_type_to_error(u8 fib6_type)
909 {
910 return fib6_prop[fib6_type];
911 }
912
913 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
914 {
915 unsigned short flags = 0;
916
917 if (rt->dst_nocount)
918 flags |= DST_NOCOUNT;
919 if (rt->dst_nopolicy)
920 flags |= DST_NOPOLICY;
921 if (rt->dst_host)
922 flags |= DST_HOST;
923
924 return flags;
925 }
926
927 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
928 {
929 rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
930
931 switch (ort->fib6_type) {
932 case RTN_BLACKHOLE:
933 rt->dst.output = dst_discard_out;
934 rt->dst.input = dst_discard;
935 break;
936 case RTN_PROHIBIT:
937 rt->dst.output = ip6_pkt_prohibit_out;
938 rt->dst.input = ip6_pkt_prohibit;
939 break;
940 case RTN_THROW:
941 case RTN_UNREACHABLE:
942 default:
943 rt->dst.output = ip6_pkt_discard_out;
944 rt->dst.input = ip6_pkt_discard;
945 break;
946 }
947 }
948
949 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
950 {
951 if (ort->fib6_flags & RTF_REJECT) {
952 ip6_rt_init_dst_reject(rt, ort);
953 return;
954 }
955
956 rt->dst.error = 0;
957 rt->dst.output = ip6_output;
958
959 if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) {
960 rt->dst.input = ip6_input;
961 } else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
962 rt->dst.input = ip6_mc_input;
963 } else {
964 rt->dst.input = ip6_forward;
965 }
966
967 if (ort->fib6_nh.nh_lwtstate) {
968 rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
969 lwtunnel_set_redirect(&rt->dst);
970 }
971
972 rt->dst.lastuse = jiffies;
973 }
974
975 /* Caller must already hold reference to @from */
976 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
977 {
978 rt->rt6i_flags &= ~RTF_EXPIRES;
979 rcu_assign_pointer(rt->from, from);
980 ip_dst_init_metrics(&rt->dst, from->fib6_metrics);
981 }
982
983 /* Caller must already hold reference to @ort */
984 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
985 {
986 struct net_device *dev = fib6_info_nh_dev(ort);
987
988 ip6_rt_init_dst(rt, ort);
989
990 rt->rt6i_dst = ort->fib6_dst;
991 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
992 rt->rt6i_gateway = ort->fib6_nh.nh_gw;
993 rt->rt6i_flags = ort->fib6_flags;
994 rt6_set_from(rt, ort);
995 #ifdef CONFIG_IPV6_SUBTREES
996 rt->rt6i_src = ort->fib6_src;
997 #endif
998 }
999
1000 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
1001 struct in6_addr *saddr)
1002 {
1003 struct fib6_node *pn, *sn;
1004 while (1) {
1005 if (fn->fn_flags & RTN_TL_ROOT)
1006 return NULL;
1007 pn = rcu_dereference(fn->parent);
1008 sn = FIB6_SUBTREE(pn);
1009 if (sn && sn != fn)
1010 fn = fib6_node_lookup(sn, NULL, saddr);
1011 else
1012 fn = pn;
1013 if (fn->fn_flags & RTN_RTINFO)
1014 return fn;
1015 }
1016 }
1017
1018 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1019 bool null_fallback)
1020 {
1021 struct rt6_info *rt = *prt;
1022
1023 if (dst_hold_safe(&rt->dst))
1024 return true;
1025 if (null_fallback) {
1026 rt = net->ipv6.ip6_null_entry;
1027 dst_hold(&rt->dst);
1028 } else {
1029 rt = NULL;
1030 }
1031 *prt = rt;
1032 return false;
1033 }
1034
1035 /* called with rcu_lock held */
1036 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1037 {
1038 unsigned short flags = fib6_info_dst_flags(rt);
1039 struct net_device *dev = rt->fib6_nh.nh_dev;
1040 struct rt6_info *nrt;
1041
1042 if (!fib6_info_hold_safe(rt))
1043 return NULL;
1044
1045 nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1046 if (nrt)
1047 ip6_rt_copy_init(nrt, rt);
1048 else
1049 fib6_info_release(rt);
1050
1051 return nrt;
1052 }
1053
1054 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1055 struct fib6_table *table,
1056 struct flowi6 *fl6,
1057 const struct sk_buff *skb,
1058 int flags)
1059 {
1060 struct fib6_info *f6i;
1061 struct fib6_node *fn;
1062 struct rt6_info *rt;
1063
1064 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1065 flags &= ~RT6_LOOKUP_F_IFACE;
1066
1067 rcu_read_lock();
1068 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1069 restart:
1070 f6i = rcu_dereference(fn->leaf);
1071 if (!f6i) {
1072 f6i = net->ipv6.fib6_null_entry;
1073 } else {
1074 f6i = rt6_device_match(net, f6i, &fl6->saddr,
1075 fl6->flowi6_oif, flags);
1076 if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1077 f6i = fib6_multipath_select(net, f6i, fl6,
1078 fl6->flowi6_oif, skb,
1079 flags);
1080 }
1081 if (f6i == net->ipv6.fib6_null_entry) {
1082 fn = fib6_backtrack(fn, &fl6->saddr);
1083 if (fn)
1084 goto restart;
1085 }
1086
1087 trace_fib6_table_lookup(net, f6i, table, fl6);
1088
1089 /* Search through exception table */
1090 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1091 if (rt) {
1092 if (ip6_hold_safe(net, &rt, true))
1093 dst_use_noref(&rt->dst, jiffies);
1094 } else if (f6i == net->ipv6.fib6_null_entry) {
1095 rt = net->ipv6.ip6_null_entry;
1096 dst_hold(&rt->dst);
1097 } else {
1098 rt = ip6_create_rt_rcu(f6i);
1099 if (!rt) {
1100 rt = net->ipv6.ip6_null_entry;
1101 dst_hold(&rt->dst);
1102 }
1103 }
1104
1105 rcu_read_unlock();
1106
1107 return rt;
1108 }
1109
1110 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1111 const struct sk_buff *skb, int flags)
1112 {
1113 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1114 }
1115 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1116
1117 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1118 const struct in6_addr *saddr, int oif,
1119 const struct sk_buff *skb, int strict)
1120 {
1121 struct flowi6 fl6 = {
1122 .flowi6_oif = oif,
1123 .daddr = *daddr,
1124 };
1125 struct dst_entry *dst;
1126 int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1127
1128 if (saddr) {
1129 memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1130 flags |= RT6_LOOKUP_F_HAS_SADDR;
1131 }
1132
1133 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1134 if (dst->error == 0)
1135 return (struct rt6_info *) dst;
1136
1137 dst_release(dst);
1138
1139 return NULL;
1140 }
1141 EXPORT_SYMBOL(rt6_lookup);
1142
1143 /* ip6_ins_rt is called with FREE table->tb6_lock.
1144 * It takes new route entry, the addition fails by any reason the
1145 * route is released.
1146 * Caller must hold dst before calling it.
1147 */
1148
1149 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1150 struct netlink_ext_ack *extack)
1151 {
1152 int err;
1153 struct fib6_table *table;
1154
1155 table = rt->fib6_table;
1156 spin_lock_bh(&table->tb6_lock);
1157 err = fib6_add(&table->tb6_root, rt, info, extack);
1158 spin_unlock_bh(&table->tb6_lock);
1159
1160 return err;
1161 }
1162
1163 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1164 {
1165 struct nl_info info = { .nl_net = net, };
1166
1167 return __ip6_ins_rt(rt, &info, NULL);
1168 }
1169
1170 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1171 const struct in6_addr *daddr,
1172 const struct in6_addr *saddr)
1173 {
1174 struct net_device *dev;
1175 struct rt6_info *rt;
1176
1177 /*
1178 * Clone the route.
1179 */
1180
1181 if (!fib6_info_hold_safe(ort))
1182 return NULL;
1183
1184 dev = ip6_rt_get_dev_rcu(ort);
1185 rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1186 if (!rt) {
1187 fib6_info_release(ort);
1188 return NULL;
1189 }
1190
1191 ip6_rt_copy_init(rt, ort);
1192 rt->rt6i_flags |= RTF_CACHE;
1193 rt->dst.flags |= DST_HOST;
1194 rt->rt6i_dst.addr = *daddr;
1195 rt->rt6i_dst.plen = 128;
1196
1197 if (!rt6_is_gw_or_nonexthop(ort)) {
1198 if (ort->fib6_dst.plen != 128 &&
1199 ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1200 rt->rt6i_flags |= RTF_ANYCAST;
1201 #ifdef CONFIG_IPV6_SUBTREES
1202 if (rt->rt6i_src.plen && saddr) {
1203 rt->rt6i_src.addr = *saddr;
1204 rt->rt6i_src.plen = 128;
1205 }
1206 #endif
1207 }
1208
1209 return rt;
1210 }
1211
1212 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1213 {
1214 unsigned short flags = fib6_info_dst_flags(rt);
1215 struct net_device *dev;
1216 struct rt6_info *pcpu_rt;
1217
1218 if (!fib6_info_hold_safe(rt))
1219 return NULL;
1220
1221 rcu_read_lock();
1222 dev = ip6_rt_get_dev_rcu(rt);
1223 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1224 rcu_read_unlock();
1225 if (!pcpu_rt) {
1226 fib6_info_release(rt);
1227 return NULL;
1228 }
1229 ip6_rt_copy_init(pcpu_rt, rt);
1230 pcpu_rt->rt6i_flags |= RTF_PCPU;
1231 return pcpu_rt;
1232 }
1233
1234 /* It should be called with rcu_read_lock() acquired */
1235 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1236 {
1237 struct rt6_info *pcpu_rt, **p;
1238
1239 p = this_cpu_ptr(rt->rt6i_pcpu);
1240 pcpu_rt = *p;
1241
1242 if (pcpu_rt)
1243 ip6_hold_safe(NULL, &pcpu_rt, false);
1244
1245 return pcpu_rt;
1246 }
1247
1248 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1249 struct fib6_info *rt)
1250 {
1251 struct rt6_info *pcpu_rt, *prev, **p;
1252
1253 pcpu_rt = ip6_rt_pcpu_alloc(rt);
1254 if (!pcpu_rt) {
1255 dst_hold(&net->ipv6.ip6_null_entry->dst);
1256 return net->ipv6.ip6_null_entry;
1257 }
1258
1259 dst_hold(&pcpu_rt->dst);
1260 p = this_cpu_ptr(rt->rt6i_pcpu);
1261 prev = cmpxchg(p, NULL, pcpu_rt);
1262 BUG_ON(prev);
1263
1264 return pcpu_rt;
1265 }
1266
1267 /* exception hash table implementation
1268 */
1269 static DEFINE_SPINLOCK(rt6_exception_lock);
1270
1271 /* Remove rt6_ex from hash table and free the memory
1272 * Caller must hold rt6_exception_lock
1273 */
1274 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1275 struct rt6_exception *rt6_ex)
1276 {
1277 struct fib6_info *from;
1278 struct net *net;
1279
1280 if (!bucket || !rt6_ex)
1281 return;
1282
1283 net = dev_net(rt6_ex->rt6i->dst.dev);
1284 net->ipv6.rt6_stats->fib_rt_cache--;
1285
1286 /* purge completely the exception to allow releasing the held resources:
1287 * some [sk] cache may keep the dst around for unlimited time
1288 */
1289 from = rcu_dereference_protected(rt6_ex->rt6i->from,
1290 lockdep_is_held(&rt6_exception_lock));
1291 rcu_assign_pointer(rt6_ex->rt6i->from, NULL);
1292 fib6_info_release(from);
1293 dst_dev_put(&rt6_ex->rt6i->dst);
1294
1295 hlist_del_rcu(&rt6_ex->hlist);
1296 dst_release(&rt6_ex->rt6i->dst);
1297 kfree_rcu(rt6_ex, rcu);
1298 WARN_ON_ONCE(!bucket->depth);
1299 bucket->depth--;
1300 }
1301
1302 /* Remove oldest rt6_ex in bucket and free the memory
1303 * Caller must hold rt6_exception_lock
1304 */
1305 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1306 {
1307 struct rt6_exception *rt6_ex, *oldest = NULL;
1308
1309 if (!bucket)
1310 return;
1311
1312 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1313 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1314 oldest = rt6_ex;
1315 }
1316 rt6_remove_exception(bucket, oldest);
1317 }
1318
1319 static u32 rt6_exception_hash(const struct in6_addr *dst,
1320 const struct in6_addr *src)
1321 {
1322 static u32 seed __read_mostly;
1323 u32 val;
1324
1325 net_get_random_once(&seed, sizeof(seed));
1326 val = jhash(dst, sizeof(*dst), seed);
1327
1328 #ifdef CONFIG_IPV6_SUBTREES
1329 if (src)
1330 val = jhash(src, sizeof(*src), val);
1331 #endif
1332 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1333 }
1334
1335 /* Helper function to find the cached rt in the hash table
1336 * and update bucket pointer to point to the bucket for this
1337 * (daddr, saddr) pair
1338 * Caller must hold rt6_exception_lock
1339 */
1340 static struct rt6_exception *
1341 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1342 const struct in6_addr *daddr,
1343 const struct in6_addr *saddr)
1344 {
1345 struct rt6_exception *rt6_ex;
1346 u32 hval;
1347
1348 if (!(*bucket) || !daddr)
1349 return NULL;
1350
1351 hval = rt6_exception_hash(daddr, saddr);
1352 *bucket += hval;
1353
1354 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1355 struct rt6_info *rt6 = rt6_ex->rt6i;
1356 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1357
1358 #ifdef CONFIG_IPV6_SUBTREES
1359 if (matched && saddr)
1360 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1361 #endif
1362 if (matched)
1363 return rt6_ex;
1364 }
1365 return NULL;
1366 }
1367
1368 /* Helper function to find the cached rt in the hash table
1369 * and update bucket pointer to point to the bucket for this
1370 * (daddr, saddr) pair
1371 * Caller must hold rcu_read_lock()
1372 */
1373 static struct rt6_exception *
1374 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1375 const struct in6_addr *daddr,
1376 const struct in6_addr *saddr)
1377 {
1378 struct rt6_exception *rt6_ex;
1379 u32 hval;
1380
1381 WARN_ON_ONCE(!rcu_read_lock_held());
1382
1383 if (!(*bucket) || !daddr)
1384 return NULL;
1385
1386 hval = rt6_exception_hash(daddr, saddr);
1387 *bucket += hval;
1388
1389 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1390 struct rt6_info *rt6 = rt6_ex->rt6i;
1391 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1392
1393 #ifdef CONFIG_IPV6_SUBTREES
1394 if (matched && saddr)
1395 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1396 #endif
1397 if (matched)
1398 return rt6_ex;
1399 }
1400 return NULL;
1401 }
1402
1403 static unsigned int fib6_mtu(const struct fib6_info *rt)
1404 {
1405 unsigned int mtu;
1406
1407 if (rt->fib6_pmtu) {
1408 mtu = rt->fib6_pmtu;
1409 } else {
1410 struct net_device *dev = fib6_info_nh_dev(rt);
1411 struct inet6_dev *idev;
1412
1413 rcu_read_lock();
1414 idev = __in6_dev_get(dev);
1415 mtu = idev->cnf.mtu6;
1416 rcu_read_unlock();
1417 }
1418
1419 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1420
1421 return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1422 }
1423
1424 static int rt6_insert_exception(struct rt6_info *nrt,
1425 struct fib6_info *ort)
1426 {
1427 struct net *net = dev_net(nrt->dst.dev);
1428 struct rt6_exception_bucket *bucket;
1429 struct in6_addr *src_key = NULL;
1430 struct rt6_exception *rt6_ex;
1431 int err = 0;
1432
1433 spin_lock_bh(&rt6_exception_lock);
1434
1435 if (ort->exception_bucket_flushed) {
1436 err = -EINVAL;
1437 goto out;
1438 }
1439
1440 bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1441 lockdep_is_held(&rt6_exception_lock));
1442 if (!bucket) {
1443 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1444 GFP_ATOMIC);
1445 if (!bucket) {
1446 err = -ENOMEM;
1447 goto out;
1448 }
1449 rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1450 }
1451
1452 #ifdef CONFIG_IPV6_SUBTREES
1453 /* rt6i_src.plen != 0 indicates ort is in subtree
1454 * and exception table is indexed by a hash of
1455 * both rt6i_dst and rt6i_src.
1456 * Otherwise, the exception table is indexed by
1457 * a hash of only rt6i_dst.
1458 */
1459 if (ort->fib6_src.plen)
1460 src_key = &nrt->rt6i_src.addr;
1461 #endif
1462 /* rt6_mtu_change() might lower mtu on ort.
1463 * Only insert this exception route if its mtu
1464 * is less than ort's mtu value.
1465 */
1466 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1467 err = -EINVAL;
1468 goto out;
1469 }
1470
1471 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1472 src_key);
1473 if (rt6_ex)
1474 rt6_remove_exception(bucket, rt6_ex);
1475
1476 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1477 if (!rt6_ex) {
1478 err = -ENOMEM;
1479 goto out;
1480 }
1481 rt6_ex->rt6i = nrt;
1482 rt6_ex->stamp = jiffies;
1483 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1484 bucket->depth++;
1485 net->ipv6.rt6_stats->fib_rt_cache++;
1486
1487 if (bucket->depth > FIB6_MAX_DEPTH)
1488 rt6_exception_remove_oldest(bucket);
1489
1490 out:
1491 spin_unlock_bh(&rt6_exception_lock);
1492
1493 /* Update fn->fn_sernum to invalidate all cached dst */
1494 if (!err) {
1495 spin_lock_bh(&ort->fib6_table->tb6_lock);
1496 fib6_update_sernum(net, ort);
1497 spin_unlock_bh(&ort->fib6_table->tb6_lock);
1498 fib6_force_start_gc(net);
1499 }
1500
1501 return err;
1502 }
1503
1504 void rt6_flush_exceptions(struct fib6_info *rt)
1505 {
1506 struct rt6_exception_bucket *bucket;
1507 struct rt6_exception *rt6_ex;
1508 struct hlist_node *tmp;
1509 int i;
1510
1511 spin_lock_bh(&rt6_exception_lock);
1512 /* Prevent rt6_insert_exception() to recreate the bucket list */
1513 rt->exception_bucket_flushed = 1;
1514
1515 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1516 lockdep_is_held(&rt6_exception_lock));
1517 if (!bucket)
1518 goto out;
1519
1520 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1521 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1522 rt6_remove_exception(bucket, rt6_ex);
1523 WARN_ON_ONCE(bucket->depth);
1524 bucket++;
1525 }
1526
1527 out:
1528 spin_unlock_bh(&rt6_exception_lock);
1529 }
1530
1531 /* Find cached rt in the hash table inside passed in rt
1532 * Caller has to hold rcu_read_lock()
1533 */
1534 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1535 struct in6_addr *daddr,
1536 struct in6_addr *saddr)
1537 {
1538 struct rt6_exception_bucket *bucket;
1539 struct in6_addr *src_key = NULL;
1540 struct rt6_exception *rt6_ex;
1541 struct rt6_info *res = NULL;
1542
1543 bucket = rcu_dereference(rt->rt6i_exception_bucket);
1544
1545 #ifdef CONFIG_IPV6_SUBTREES
1546 /* rt6i_src.plen != 0 indicates rt is in subtree
1547 * and exception table is indexed by a hash of
1548 * both rt6i_dst and rt6i_src.
1549 * Otherwise, the exception table is indexed by
1550 * a hash of only rt6i_dst.
1551 */
1552 if (rt->fib6_src.plen)
1553 src_key = saddr;
1554 #endif
1555 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1556
1557 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1558 res = rt6_ex->rt6i;
1559
1560 return res;
1561 }
1562
1563 /* Remove the passed in cached rt from the hash table that contains it */
1564 static int rt6_remove_exception_rt(struct rt6_info *rt)
1565 {
1566 struct rt6_exception_bucket *bucket;
1567 struct in6_addr *src_key = NULL;
1568 struct rt6_exception *rt6_ex;
1569 struct fib6_info *from;
1570 int err;
1571
1572 from = rcu_dereference(rt->from);
1573 if (!from ||
1574 !(rt->rt6i_flags & RTF_CACHE))
1575 return -EINVAL;
1576
1577 if (!rcu_access_pointer(from->rt6i_exception_bucket))
1578 return -ENOENT;
1579
1580 spin_lock_bh(&rt6_exception_lock);
1581 bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1582 lockdep_is_held(&rt6_exception_lock));
1583 #ifdef CONFIG_IPV6_SUBTREES
1584 /* rt6i_src.plen != 0 indicates 'from' is in subtree
1585 * and exception table is indexed by a hash of
1586 * both rt6i_dst and rt6i_src.
1587 * Otherwise, the exception table is indexed by
1588 * a hash of only rt6i_dst.
1589 */
1590 if (from->fib6_src.plen)
1591 src_key = &rt->rt6i_src.addr;
1592 #endif
1593 rt6_ex = __rt6_find_exception_spinlock(&bucket,
1594 &rt->rt6i_dst.addr,
1595 src_key);
1596 if (rt6_ex) {
1597 rt6_remove_exception(bucket, rt6_ex);
1598 err = 0;
1599 } else {
1600 err = -ENOENT;
1601 }
1602
1603 spin_unlock_bh(&rt6_exception_lock);
1604 return err;
1605 }
1606
1607 /* Find rt6_ex which contains the passed in rt cache and
1608 * refresh its stamp
1609 */
1610 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1611 {
1612 struct rt6_exception_bucket *bucket;
1613 struct in6_addr *src_key = NULL;
1614 struct rt6_exception *rt6_ex;
1615 struct fib6_info *from;
1616
1617 rcu_read_lock();
1618 from = rcu_dereference(rt->from);
1619 if (!from || !(rt->rt6i_flags & RTF_CACHE))
1620 goto unlock;
1621
1622 bucket = rcu_dereference(from->rt6i_exception_bucket);
1623
1624 #ifdef CONFIG_IPV6_SUBTREES
1625 /* rt6i_src.plen != 0 indicates 'from' is in subtree
1626 * and exception table is indexed by a hash of
1627 * both rt6i_dst and rt6i_src.
1628 * Otherwise, the exception table is indexed by
1629 * a hash of only rt6i_dst.
1630 */
1631 if (from->fib6_src.plen)
1632 src_key = &rt->rt6i_src.addr;
1633 #endif
1634 rt6_ex = __rt6_find_exception_rcu(&bucket,
1635 &rt->rt6i_dst.addr,
1636 src_key);
1637 if (rt6_ex)
1638 rt6_ex->stamp = jiffies;
1639
1640 unlock:
1641 rcu_read_unlock();
1642 }
1643
1644 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1645 struct rt6_info *rt, int mtu)
1646 {
1647 /* If the new MTU is lower than the route PMTU, this new MTU will be the
1648 * lowest MTU in the path: always allow updating the route PMTU to
1649 * reflect PMTU decreases.
1650 *
1651 * If the new MTU is higher, and the route PMTU is equal to the local
1652 * MTU, this means the old MTU is the lowest in the path, so allow
1653 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1654 * handle this.
1655 */
1656
1657 if (dst_mtu(&rt->dst) >= mtu)
1658 return true;
1659
1660 if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1661 return true;
1662
1663 return false;
1664 }
1665
1666 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1667 struct fib6_info *rt, int mtu)
1668 {
1669 struct rt6_exception_bucket *bucket;
1670 struct rt6_exception *rt6_ex;
1671 int i;
1672
1673 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1674 lockdep_is_held(&rt6_exception_lock));
1675
1676 if (!bucket)
1677 return;
1678
1679 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1680 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1681 struct rt6_info *entry = rt6_ex->rt6i;
1682
1683 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1684 * route), the metrics of its rt->from have already
1685 * been updated.
1686 */
1687 if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1688 rt6_mtu_change_route_allowed(idev, entry, mtu))
1689 dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1690 }
1691 bucket++;
1692 }
1693 }
1694
1695 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE)
1696
1697 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1698 struct in6_addr *gateway)
1699 {
1700 struct rt6_exception_bucket *bucket;
1701 struct rt6_exception *rt6_ex;
1702 struct hlist_node *tmp;
1703 int i;
1704
1705 if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1706 return;
1707
1708 spin_lock_bh(&rt6_exception_lock);
1709 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1710 lockdep_is_held(&rt6_exception_lock));
1711
1712 if (bucket) {
1713 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1714 hlist_for_each_entry_safe(rt6_ex, tmp,
1715 &bucket->chain, hlist) {
1716 struct rt6_info *entry = rt6_ex->rt6i;
1717
1718 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1719 RTF_CACHE_GATEWAY &&
1720 ipv6_addr_equal(gateway,
1721 &entry->rt6i_gateway)) {
1722 rt6_remove_exception(bucket, rt6_ex);
1723 }
1724 }
1725 bucket++;
1726 }
1727 }
1728
1729 spin_unlock_bh(&rt6_exception_lock);
1730 }
1731
1732 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1733 struct rt6_exception *rt6_ex,
1734 struct fib6_gc_args *gc_args,
1735 unsigned long now)
1736 {
1737 struct rt6_info *rt = rt6_ex->rt6i;
1738
1739 /* we are pruning and obsoleting aged-out and non gateway exceptions
1740 * even if others have still references to them, so that on next
1741 * dst_check() such references can be dropped.
1742 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1743 * expired, independently from their aging, as per RFC 8201 section 4
1744 */
1745 if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1746 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1747 RT6_TRACE("aging clone %p\n", rt);
1748 rt6_remove_exception(bucket, rt6_ex);
1749 return;
1750 }
1751 } else if (time_after(jiffies, rt->dst.expires)) {
1752 RT6_TRACE("purging expired route %p\n", rt);
1753 rt6_remove_exception(bucket, rt6_ex);
1754 return;
1755 }
1756
1757 if (rt->rt6i_flags & RTF_GATEWAY) {
1758 struct neighbour *neigh;
1759 __u8 neigh_flags = 0;
1760
1761 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1762 if (neigh)
1763 neigh_flags = neigh->flags;
1764
1765 if (!(neigh_flags & NTF_ROUTER)) {
1766 RT6_TRACE("purging route %p via non-router but gateway\n",
1767 rt);
1768 rt6_remove_exception(bucket, rt6_ex);
1769 return;
1770 }
1771 }
1772
1773 gc_args->more++;
1774 }
1775
1776 void rt6_age_exceptions(struct fib6_info *rt,
1777 struct fib6_gc_args *gc_args,
1778 unsigned long now)
1779 {
1780 struct rt6_exception_bucket *bucket;
1781 struct rt6_exception *rt6_ex;
1782 struct hlist_node *tmp;
1783 int i;
1784
1785 if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1786 return;
1787
1788 rcu_read_lock_bh();
1789 spin_lock(&rt6_exception_lock);
1790 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1791 lockdep_is_held(&rt6_exception_lock));
1792
1793 if (bucket) {
1794 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1795 hlist_for_each_entry_safe(rt6_ex, tmp,
1796 &bucket->chain, hlist) {
1797 rt6_age_examine_exception(bucket, rt6_ex,
1798 gc_args, now);
1799 }
1800 bucket++;
1801 }
1802 }
1803 spin_unlock(&rt6_exception_lock);
1804 rcu_read_unlock_bh();
1805 }
1806
1807 /* must be called with rcu lock held */
1808 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1809 int oif, struct flowi6 *fl6, int strict)
1810 {
1811 struct fib6_node *fn, *saved_fn;
1812 struct fib6_info *f6i;
1813
1814 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1815 saved_fn = fn;
1816
1817 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1818 oif = 0;
1819
1820 redo_rt6_select:
1821 f6i = rt6_select(net, fn, oif, strict);
1822 if (f6i == net->ipv6.fib6_null_entry) {
1823 fn = fib6_backtrack(fn, &fl6->saddr);
1824 if (fn)
1825 goto redo_rt6_select;
1826 else if (strict & RT6_LOOKUP_F_REACHABLE) {
1827 /* also consider unreachable route */
1828 strict &= ~RT6_LOOKUP_F_REACHABLE;
1829 fn = saved_fn;
1830 goto redo_rt6_select;
1831 }
1832 }
1833
1834 trace_fib6_table_lookup(net, f6i, table, fl6);
1835
1836 return f6i;
1837 }
1838
1839 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1840 int oif, struct flowi6 *fl6,
1841 const struct sk_buff *skb, int flags)
1842 {
1843 struct fib6_info *f6i;
1844 struct rt6_info *rt;
1845 int strict = 0;
1846
1847 strict |= flags & RT6_LOOKUP_F_IFACE;
1848 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1849 if (net->ipv6.devconf_all->forwarding == 0)
1850 strict |= RT6_LOOKUP_F_REACHABLE;
1851
1852 rcu_read_lock();
1853
1854 f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1855 if (f6i->fib6_nsiblings)
1856 f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1857
1858 if (f6i == net->ipv6.fib6_null_entry) {
1859 rt = net->ipv6.ip6_null_entry;
1860 rcu_read_unlock();
1861 dst_hold(&rt->dst);
1862 return rt;
1863 }
1864
1865 /*Search through exception table */
1866 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1867 if (rt) {
1868 if (ip6_hold_safe(net, &rt, true))
1869 dst_use_noref(&rt->dst, jiffies);
1870
1871 rcu_read_unlock();
1872 return rt;
1873 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1874 !(f6i->fib6_flags & RTF_GATEWAY))) {
1875 /* Create a RTF_CACHE clone which will not be
1876 * owned by the fib6 tree. It is for the special case where
1877 * the daddr in the skb during the neighbor look-up is different
1878 * from the fl6->daddr used to look-up route here.
1879 */
1880 struct rt6_info *uncached_rt;
1881
1882 uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1883
1884 rcu_read_unlock();
1885
1886 if (uncached_rt) {
1887 /* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1888 * No need for another dst_hold()
1889 */
1890 rt6_uncached_list_add(uncached_rt);
1891 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1892 } else {
1893 uncached_rt = net->ipv6.ip6_null_entry;
1894 dst_hold(&uncached_rt->dst);
1895 }
1896
1897 return uncached_rt;
1898 } else {
1899 /* Get a percpu copy */
1900
1901 struct rt6_info *pcpu_rt;
1902
1903 local_bh_disable();
1904 pcpu_rt = rt6_get_pcpu_route(f6i);
1905
1906 if (!pcpu_rt)
1907 pcpu_rt = rt6_make_pcpu_route(net, f6i);
1908
1909 local_bh_enable();
1910 rcu_read_unlock();
1911
1912 return pcpu_rt;
1913 }
1914 }
1915 EXPORT_SYMBOL_GPL(ip6_pol_route);
1916
1917 static struct rt6_info *ip6_pol_route_input(struct net *net,
1918 struct fib6_table *table,
1919 struct flowi6 *fl6,
1920 const struct sk_buff *skb,
1921 int flags)
1922 {
1923 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1924 }
1925
1926 struct dst_entry *ip6_route_input_lookup(struct net *net,
1927 struct net_device *dev,
1928 struct flowi6 *fl6,
1929 const struct sk_buff *skb,
1930 int flags)
1931 {
1932 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1933 flags |= RT6_LOOKUP_F_IFACE;
1934
1935 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1936 }
1937 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1938
1939 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1940 struct flow_keys *keys,
1941 struct flow_keys *flkeys)
1942 {
1943 const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1944 const struct ipv6hdr *key_iph = outer_iph;
1945 struct flow_keys *_flkeys = flkeys;
1946 const struct ipv6hdr *inner_iph;
1947 const struct icmp6hdr *icmph;
1948 struct ipv6hdr _inner_iph;
1949 struct icmp6hdr _icmph;
1950
1951 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1952 goto out;
1953
1954 icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1955 sizeof(_icmph), &_icmph);
1956 if (!icmph)
1957 goto out;
1958
1959 if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1960 icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1961 icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1962 icmph->icmp6_type != ICMPV6_PARAMPROB)
1963 goto out;
1964
1965 inner_iph = skb_header_pointer(skb,
1966 skb_transport_offset(skb) + sizeof(*icmph),
1967 sizeof(_inner_iph), &_inner_iph);
1968 if (!inner_iph)
1969 goto out;
1970
1971 key_iph = inner_iph;
1972 _flkeys = NULL;
1973 out:
1974 if (_flkeys) {
1975 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1976 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1977 keys->tags.flow_label = _flkeys->tags.flow_label;
1978 keys->basic.ip_proto = _flkeys->basic.ip_proto;
1979 } else {
1980 keys->addrs.v6addrs.src = key_iph->saddr;
1981 keys->addrs.v6addrs.dst = key_iph->daddr;
1982 keys->tags.flow_label = ip6_flowlabel(key_iph);
1983 keys->basic.ip_proto = key_iph->nexthdr;
1984 }
1985 }
1986
1987 /* if skb is set it will be used and fl6 can be NULL */
1988 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
1989 const struct sk_buff *skb, struct flow_keys *flkeys)
1990 {
1991 struct flow_keys hash_keys;
1992 u32 mhash;
1993
1994 switch (ip6_multipath_hash_policy(net)) {
1995 case 0:
1996 memset(&hash_keys, 0, sizeof(hash_keys));
1997 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1998 if (skb) {
1999 ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
2000 } else {
2001 hash_keys.addrs.v6addrs.src = fl6->saddr;
2002 hash_keys.addrs.v6addrs.dst = fl6->daddr;
2003 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
2004 hash_keys.basic.ip_proto = fl6->flowi6_proto;
2005 }
2006 break;
2007 case 1:
2008 if (skb) {
2009 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
2010 struct flow_keys keys;
2011
2012 /* short-circuit if we already have L4 hash present */
2013 if (skb->l4_hash)
2014 return skb_get_hash_raw(skb) >> 1;
2015
2016 memset(&hash_keys, 0, sizeof(hash_keys));
2017
2018 if (!flkeys) {
2019 skb_flow_dissect_flow_keys(skb, &keys, flag);
2020 flkeys = &keys;
2021 }
2022 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2023 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2024 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2025 hash_keys.ports.src = flkeys->ports.src;
2026 hash_keys.ports.dst = flkeys->ports.dst;
2027 hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2028 } else {
2029 memset(&hash_keys, 0, sizeof(hash_keys));
2030 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2031 hash_keys.addrs.v6addrs.src = fl6->saddr;
2032 hash_keys.addrs.v6addrs.dst = fl6->daddr;
2033 hash_keys.ports.src = fl6->fl6_sport;
2034 hash_keys.ports.dst = fl6->fl6_dport;
2035 hash_keys.basic.ip_proto = fl6->flowi6_proto;
2036 }
2037 break;
2038 }
2039 mhash = flow_hash_from_keys(&hash_keys);
2040
2041 return mhash >> 1;
2042 }
2043
2044 void ip6_route_input(struct sk_buff *skb)
2045 {
2046 const struct ipv6hdr *iph = ipv6_hdr(skb);
2047 struct net *net = dev_net(skb->dev);
2048 int flags = RT6_LOOKUP_F_HAS_SADDR;
2049 struct ip_tunnel_info *tun_info;
2050 struct flowi6 fl6 = {
2051 .flowi6_iif = skb->dev->ifindex,
2052 .daddr = iph->daddr,
2053 .saddr = iph->saddr,
2054 .flowlabel = ip6_flowinfo(iph),
2055 .flowi6_mark = skb->mark,
2056 .flowi6_proto = iph->nexthdr,
2057 };
2058 struct flow_keys *flkeys = NULL, _flkeys;
2059
2060 tun_info = skb_tunnel_info(skb);
2061 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2062 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2063
2064 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2065 flkeys = &_flkeys;
2066
2067 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2068 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2069 skb_dst_drop(skb);
2070 skb_dst_set(skb,
2071 ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2072 }
2073
2074 static struct rt6_info *ip6_pol_route_output(struct net *net,
2075 struct fib6_table *table,
2076 struct flowi6 *fl6,
2077 const struct sk_buff *skb,
2078 int flags)
2079 {
2080 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2081 }
2082
2083 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2084 struct flowi6 *fl6, int flags)
2085 {
2086 bool any_src;
2087
2088 if (ipv6_addr_type(&fl6->daddr) &
2089 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) {
2090 struct dst_entry *dst;
2091
2092 dst = l3mdev_link_scope_lookup(net, fl6);
2093 if (dst)
2094 return dst;
2095 }
2096
2097 fl6->flowi6_iif = LOOPBACK_IFINDEX;
2098
2099 any_src = ipv6_addr_any(&fl6->saddr);
2100 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2101 (fl6->flowi6_oif && any_src))
2102 flags |= RT6_LOOKUP_F_IFACE;
2103
2104 if (!any_src)
2105 flags |= RT6_LOOKUP_F_HAS_SADDR;
2106 else if (sk)
2107 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2108
2109 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2110 }
2111 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2112
2113 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2114 {
2115 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2116 struct net_device *loopback_dev = net->loopback_dev;
2117 struct dst_entry *new = NULL;
2118
2119 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2120 DST_OBSOLETE_DEAD, 0);
2121 if (rt) {
2122 rt6_info_init(rt);
2123 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2124
2125 new = &rt->dst;
2126 new->__use = 1;
2127 new->input = dst_discard;
2128 new->output = dst_discard_out;
2129
2130 dst_copy_metrics(new, &ort->dst);
2131
2132 rt->rt6i_idev = in6_dev_get(loopback_dev);
2133 rt->rt6i_gateway = ort->rt6i_gateway;
2134 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2135
2136 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2137 #ifdef CONFIG_IPV6_SUBTREES
2138 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2139 #endif
2140 }
2141
2142 dst_release(dst_orig);
2143 return new ? new : ERR_PTR(-ENOMEM);
2144 }
2145
2146 /*
2147 * Destination cache support functions
2148 */
2149
2150 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2151 {
2152 u32 rt_cookie = 0;
2153
2154 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2155 return false;
2156
2157 if (fib6_check_expired(f6i))
2158 return false;
2159
2160 return true;
2161 }
2162
2163 static struct dst_entry *rt6_check(struct rt6_info *rt,
2164 struct fib6_info *from,
2165 u32 cookie)
2166 {
2167 u32 rt_cookie = 0;
2168
2169 if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2170 rt_cookie != cookie)
2171 return NULL;
2172
2173 if (rt6_check_expired(rt))
2174 return NULL;
2175
2176 return &rt->dst;
2177 }
2178
2179 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2180 struct fib6_info *from,
2181 u32 cookie)
2182 {
2183 if (!__rt6_check_expired(rt) &&
2184 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2185 fib6_check(from, cookie))
2186 return &rt->dst;
2187 else
2188 return NULL;
2189 }
2190
2191 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2192 {
2193 struct dst_entry *dst_ret;
2194 struct fib6_info *from;
2195 struct rt6_info *rt;
2196
2197 rt = container_of(dst, struct rt6_info, dst);
2198
2199 rcu_read_lock();
2200
2201 /* All IPV6 dsts are created with ->obsolete set to the value
2202 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2203 * into this function always.
2204 */
2205
2206 from = rcu_dereference(rt->from);
2207
2208 if (from && (rt->rt6i_flags & RTF_PCPU ||
2209 unlikely(!list_empty(&rt->rt6i_uncached))))
2210 dst_ret = rt6_dst_from_check(rt, from, cookie);
2211 else
2212 dst_ret = rt6_check(rt, from, cookie);
2213
2214 rcu_read_unlock();
2215
2216 return dst_ret;
2217 }
2218
2219 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2220 {
2221 struct rt6_info *rt = (struct rt6_info *) dst;
2222
2223 if (rt) {
2224 if (rt->rt6i_flags & RTF_CACHE) {
2225 rcu_read_lock();
2226 if (rt6_check_expired(rt)) {
2227 rt6_remove_exception_rt(rt);
2228 dst = NULL;
2229 }
2230 rcu_read_unlock();
2231 } else {
2232 dst_release(dst);
2233 dst = NULL;
2234 }
2235 }
2236 return dst;
2237 }
2238
2239 static void ip6_link_failure(struct sk_buff *skb)
2240 {
2241 struct rt6_info *rt;
2242
2243 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2244
2245 rt = (struct rt6_info *) skb_dst(skb);
2246 if (rt) {
2247 rcu_read_lock();
2248 if (rt->rt6i_flags & RTF_CACHE) {
2249 rt6_remove_exception_rt(rt);
2250 } else {
2251 struct fib6_info *from;
2252 struct fib6_node *fn;
2253
2254 from = rcu_dereference(rt->from);
2255 if (from) {
2256 fn = rcu_dereference(from->fib6_node);
2257 if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2258 fn->fn_sernum = -1;
2259 }
2260 }
2261 rcu_read_unlock();
2262 }
2263 }
2264
2265 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2266 {
2267 if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2268 struct fib6_info *from;
2269
2270 rcu_read_lock();
2271 from = rcu_dereference(rt0->from);
2272 if (from)
2273 rt0->dst.expires = from->expires;
2274 rcu_read_unlock();
2275 }
2276
2277 dst_set_expires(&rt0->dst, timeout);
2278 rt0->rt6i_flags |= RTF_EXPIRES;
2279 }
2280
2281 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2282 {
2283 struct net *net = dev_net(rt->dst.dev);
2284
2285 dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2286 rt->rt6i_flags |= RTF_MODIFIED;
2287 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2288 }
2289
2290 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2291 {
2292 return !(rt->rt6i_flags & RTF_CACHE) &&
2293 (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from));
2294 }
2295
2296 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2297 const struct ipv6hdr *iph, u32 mtu)
2298 {
2299 const struct in6_addr *daddr, *saddr;
2300 struct rt6_info *rt6 = (struct rt6_info *)dst;
2301
2302 if (dst_metric_locked(dst, RTAX_MTU))
2303 return;
2304
2305 if (iph) {
2306 daddr = &iph->daddr;
2307 saddr = &iph->saddr;
2308 } else if (sk) {
2309 daddr = &sk->sk_v6_daddr;
2310 saddr = &inet6_sk(sk)->saddr;
2311 } else {
2312 daddr = NULL;
2313 saddr = NULL;
2314 }
2315 dst_confirm_neigh(dst, daddr);
2316 mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2317 if (mtu >= dst_mtu(dst))
2318 return;
2319
2320 if (!rt6_cache_allowed_for_pmtu(rt6)) {
2321 rt6_do_update_pmtu(rt6, mtu);
2322 /* update rt6_ex->stamp for cache */
2323 if (rt6->rt6i_flags & RTF_CACHE)
2324 rt6_update_exception_stamp_rt(rt6);
2325 } else if (daddr) {
2326 struct fib6_info *from;
2327 struct rt6_info *nrt6;
2328
2329 rcu_read_lock();
2330 from = rcu_dereference(rt6->from);
2331 nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2332 if (nrt6) {
2333 rt6_do_update_pmtu(nrt6, mtu);
2334 if (rt6_insert_exception(nrt6, from))
2335 dst_release_immediate(&nrt6->dst);
2336 }
2337 rcu_read_unlock();
2338 }
2339 }
2340
2341 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2342 struct sk_buff *skb, u32 mtu)
2343 {
2344 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2345 }
2346
2347 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2348 int oif, u32 mark, kuid_t uid)
2349 {
2350 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2351 struct dst_entry *dst;
2352 struct flowi6 fl6 = {
2353 .flowi6_oif = oif,
2354 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark),
2355 .daddr = iph->daddr,
2356 .saddr = iph->saddr,
2357 .flowlabel = ip6_flowinfo(iph),
2358 .flowi6_uid = uid,
2359 };
2360
2361 dst = ip6_route_output(net, NULL, &fl6);
2362 if (!dst->error)
2363 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2364 dst_release(dst);
2365 }
2366 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2367
2368 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2369 {
2370 int oif = sk->sk_bound_dev_if;
2371 struct dst_entry *dst;
2372
2373 if (!oif && skb->dev)
2374 oif = l3mdev_master_ifindex(skb->dev);
2375
2376 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid);
2377
2378 dst = __sk_dst_get(sk);
2379 if (!dst || !dst->obsolete ||
2380 dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2381 return;
2382
2383 bh_lock_sock(sk);
2384 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2385 ip6_datagram_dst_update(sk, false);
2386 bh_unlock_sock(sk);
2387 }
2388 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2389
2390 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2391 const struct flowi6 *fl6)
2392 {
2393 #ifdef CONFIG_IPV6_SUBTREES
2394 struct ipv6_pinfo *np = inet6_sk(sk);
2395 #endif
2396
2397 ip6_dst_store(sk, dst,
2398 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2399 &sk->sk_v6_daddr : NULL,
2400 #ifdef CONFIG_IPV6_SUBTREES
2401 ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2402 &np->saddr :
2403 #endif
2404 NULL);
2405 }
2406
2407 /* Handle redirects */
2408 struct ip6rd_flowi {
2409 struct flowi6 fl6;
2410 struct in6_addr gateway;
2411 };
2412
2413 static struct rt6_info *__ip6_route_redirect(struct net *net,
2414 struct fib6_table *table,
2415 struct flowi6 *fl6,
2416 const struct sk_buff *skb,
2417 int flags)
2418 {
2419 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2420 struct rt6_info *ret = NULL, *rt_cache;
2421 struct fib6_info *rt;
2422 struct fib6_node *fn;
2423
2424 /* Get the "current" route for this destination and
2425 * check if the redirect has come from appropriate router.
2426 *
2427 * RFC 4861 specifies that redirects should only be
2428 * accepted if they come from the nexthop to the target.
2429 * Due to the way the routes are chosen, this notion
2430 * is a bit fuzzy and one might need to check all possible
2431 * routes.
2432 */
2433
2434 rcu_read_lock();
2435 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2436 restart:
2437 for_each_fib6_node_rt_rcu(fn) {
2438 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2439 continue;
2440 if (fib6_check_expired(rt))
2441 continue;
2442 if (rt->fib6_flags & RTF_REJECT)
2443 break;
2444 if (!(rt->fib6_flags & RTF_GATEWAY))
2445 continue;
2446 if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2447 continue;
2448 /* rt_cache's gateway might be different from its 'parent'
2449 * in the case of an ip redirect.
2450 * So we keep searching in the exception table if the gateway
2451 * is different.
2452 */
2453 if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2454 rt_cache = rt6_find_cached_rt(rt,
2455 &fl6->daddr,
2456 &fl6->saddr);
2457 if (rt_cache &&
2458 ipv6_addr_equal(&rdfl->gateway,
2459 &rt_cache->rt6i_gateway)) {
2460 ret = rt_cache;
2461 break;
2462 }
2463 continue;
2464 }
2465 break;
2466 }
2467
2468 if (!rt)
2469 rt = net->ipv6.fib6_null_entry;
2470 else if (rt->fib6_flags & RTF_REJECT) {
2471 ret = net->ipv6.ip6_null_entry;
2472 goto out;
2473 }
2474
2475 if (rt == net->ipv6.fib6_null_entry) {
2476 fn = fib6_backtrack(fn, &fl6->saddr);
2477 if (fn)
2478 goto restart;
2479 }
2480
2481 out:
2482 if (ret)
2483 ip6_hold_safe(net, &ret, true);
2484 else
2485 ret = ip6_create_rt_rcu(rt);
2486
2487 rcu_read_unlock();
2488
2489 trace_fib6_table_lookup(net, rt, table, fl6);
2490 return ret;
2491 };
2492
2493 static struct dst_entry *ip6_route_redirect(struct net *net,
2494 const struct flowi6 *fl6,
2495 const struct sk_buff *skb,
2496 const struct in6_addr *gateway)
2497 {
2498 int flags = RT6_LOOKUP_F_HAS_SADDR;
2499 struct ip6rd_flowi rdfl;
2500
2501 rdfl.fl6 = *fl6;
2502 rdfl.gateway = *gateway;
2503
2504 return fib6_rule_lookup(net, &rdfl.fl6, skb,
2505 flags, __ip6_route_redirect);
2506 }
2507
2508 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2509 kuid_t uid)
2510 {
2511 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2512 struct dst_entry *dst;
2513 struct flowi6 fl6 = {
2514 .flowi6_iif = LOOPBACK_IFINDEX,
2515 .flowi6_oif = oif,
2516 .flowi6_mark = mark,
2517 .daddr = iph->daddr,
2518 .saddr = iph->saddr,
2519 .flowlabel = ip6_flowinfo(iph),
2520 .flowi6_uid = uid,
2521 };
2522
2523 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2524 rt6_do_redirect(dst, NULL, skb);
2525 dst_release(dst);
2526 }
2527 EXPORT_SYMBOL_GPL(ip6_redirect);
2528
2529 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif)
2530 {
2531 const struct ipv6hdr *iph = ipv6_hdr(skb);
2532 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2533 struct dst_entry *dst;
2534 struct flowi6 fl6 = {
2535 .flowi6_iif = LOOPBACK_IFINDEX,
2536 .flowi6_oif = oif,
2537 .daddr = msg->dest,
2538 .saddr = iph->daddr,
2539 .flowi6_uid = sock_net_uid(net, NULL),
2540 };
2541
2542 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2543 rt6_do_redirect(dst, NULL, skb);
2544 dst_release(dst);
2545 }
2546
2547 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2548 {
2549 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2550 sk->sk_uid);
2551 }
2552 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2553
2554 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2555 {
2556 struct net_device *dev = dst->dev;
2557 unsigned int mtu = dst_mtu(dst);
2558 struct net *net = dev_net(dev);
2559
2560 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2561
2562 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2563 mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2564
2565 /*
2566 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2567 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2568 * IPV6_MAXPLEN is also valid and means: "any MSS,
2569 * rely only on pmtu discovery"
2570 */
2571 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2572 mtu = IPV6_MAXPLEN;
2573 return mtu;
2574 }
2575
2576 static unsigned int ip6_mtu(const struct dst_entry *dst)
2577 {
2578 struct inet6_dev *idev;
2579 unsigned int mtu;
2580
2581 mtu = dst_metric_raw(dst, RTAX_MTU);
2582 if (mtu)
2583 goto out;
2584
2585 mtu = IPV6_MIN_MTU;
2586
2587 rcu_read_lock();
2588 idev = __in6_dev_get(dst->dev);
2589 if (idev)
2590 mtu = idev->cnf.mtu6;
2591 rcu_read_unlock();
2592
2593 out:
2594 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2595
2596 return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2597 }
2598
2599 /* MTU selection:
2600 * 1. mtu on route is locked - use it
2601 * 2. mtu from nexthop exception
2602 * 3. mtu from egress device
2603 *
2604 * based on ip6_dst_mtu_forward and exception logic of
2605 * rt6_find_cached_rt; called with rcu_read_lock
2606 */
2607 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2608 struct in6_addr *saddr)
2609 {
2610 struct rt6_exception_bucket *bucket;
2611 struct rt6_exception *rt6_ex;
2612 struct in6_addr *src_key;
2613 struct inet6_dev *idev;
2614 u32 mtu = 0;
2615
2616 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2617 mtu = f6i->fib6_pmtu;
2618 if (mtu)
2619 goto out;
2620 }
2621
2622 src_key = NULL;
2623 #ifdef CONFIG_IPV6_SUBTREES
2624 if (f6i->fib6_src.plen)
2625 src_key = saddr;
2626 #endif
2627
2628 bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2629 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2630 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2631 mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2632
2633 if (likely(!mtu)) {
2634 struct net_device *dev = fib6_info_nh_dev(f6i);
2635
2636 mtu = IPV6_MIN_MTU;
2637 idev = __in6_dev_get(dev);
2638 if (idev && idev->cnf.mtu6 > mtu)
2639 mtu = idev->cnf.mtu6;
2640 }
2641
2642 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2643 out:
2644 return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2645 }
2646
2647 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2648 struct flowi6 *fl6)
2649 {
2650 struct dst_entry *dst;
2651 struct rt6_info *rt;
2652 struct inet6_dev *idev = in6_dev_get(dev);
2653 struct net *net = dev_net(dev);
2654
2655 if (unlikely(!idev))
2656 return ERR_PTR(-ENODEV);
2657
2658 rt = ip6_dst_alloc(net, dev, 0);
2659 if (unlikely(!rt)) {
2660 in6_dev_put(idev);
2661 dst = ERR_PTR(-ENOMEM);
2662 goto out;
2663 }
2664
2665 rt->dst.flags |= DST_HOST;
2666 rt->dst.input = ip6_input;
2667 rt->dst.output = ip6_output;
2668 rt->rt6i_gateway = fl6->daddr;
2669 rt->rt6i_dst.addr = fl6->daddr;
2670 rt->rt6i_dst.plen = 128;
2671 rt->rt6i_idev = idev;
2672 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2673
2674 /* Add this dst into uncached_list so that rt6_disable_ip() can
2675 * do proper release of the net_device
2676 */
2677 rt6_uncached_list_add(rt);
2678 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2679
2680 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2681
2682 out:
2683 return dst;
2684 }
2685
2686 static int ip6_dst_gc(struct dst_ops *ops)
2687 {
2688 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2689 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2690 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2691 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2692 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2693 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2694 int entries;
2695
2696 entries = dst_entries_get_fast(ops);
2697 if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2698 entries <= rt_max_size)
2699 goto out;
2700
2701 net->ipv6.ip6_rt_gc_expire++;
2702 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2703 entries = dst_entries_get_slow(ops);
2704 if (entries < ops->gc_thresh)
2705 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2706 out:
2707 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2708 return entries > rt_max_size;
2709 }
2710
2711 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2712 struct fib6_config *cfg,
2713 const struct in6_addr *gw_addr,
2714 u32 tbid, int flags)
2715 {
2716 struct flowi6 fl6 = {
2717 .flowi6_oif = cfg->fc_ifindex,
2718 .daddr = *gw_addr,
2719 .saddr = cfg->fc_prefsrc,
2720 };
2721 struct fib6_table *table;
2722 struct rt6_info *rt;
2723
2724 table = fib6_get_table(net, tbid);
2725 if (!table)
2726 return NULL;
2727
2728 if (!ipv6_addr_any(&cfg->fc_prefsrc))
2729 flags |= RT6_LOOKUP_F_HAS_SADDR;
2730
2731 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2732 rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2733
2734 /* if table lookup failed, fall back to full lookup */
2735 if (rt == net->ipv6.ip6_null_entry) {
2736 ip6_rt_put(rt);
2737 rt = NULL;
2738 }
2739
2740 return rt;
2741 }
2742
2743 static int ip6_route_check_nh_onlink(struct net *net,
2744 struct fib6_config *cfg,
2745 const struct net_device *dev,
2746 struct netlink_ext_ack *extack)
2747 {
2748 u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2749 const struct in6_addr *gw_addr = &cfg->fc_gateway;
2750 u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2751 struct fib6_info *from;
2752 struct rt6_info *grt;
2753 int err;
2754
2755 err = 0;
2756 grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2757 if (grt) {
2758 rcu_read_lock();
2759 from = rcu_dereference(grt->from);
2760 if (!grt->dst.error &&
2761 /* ignore match if it is the default route */
2762 from && !ipv6_addr_any(&from->fib6_dst.addr) &&
2763 (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2764 NL_SET_ERR_MSG(extack,
2765 "Nexthop has invalid gateway or device mismatch");
2766 err = -EINVAL;
2767 }
2768 rcu_read_unlock();
2769
2770 ip6_rt_put(grt);
2771 }
2772
2773 return err;
2774 }
2775
2776 static int ip6_route_check_nh(struct net *net,
2777 struct fib6_config *cfg,
2778 struct net_device **_dev,
2779 struct inet6_dev **idev)
2780 {
2781 const struct in6_addr *gw_addr = &cfg->fc_gateway;
2782 struct net_device *dev = _dev ? *_dev : NULL;
2783 struct rt6_info *grt = NULL;
2784 int err = -EHOSTUNREACH;
2785
2786 if (cfg->fc_table) {
2787 int flags = RT6_LOOKUP_F_IFACE;
2788
2789 grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2790 cfg->fc_table, flags);
2791 if (grt) {
2792 if (grt->rt6i_flags & RTF_GATEWAY ||
2793 (dev && dev != grt->dst.dev)) {
2794 ip6_rt_put(grt);
2795 grt = NULL;
2796 }
2797 }
2798 }
2799
2800 if (!grt)
2801 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2802
2803 if (!grt)
2804 goto out;
2805
2806 if (dev) {
2807 if (dev != grt->dst.dev) {
2808 ip6_rt_put(grt);
2809 goto out;
2810 }
2811 } else {
2812 *_dev = dev = grt->dst.dev;
2813 *idev = grt->rt6i_idev;
2814 dev_hold(dev);
2815 in6_dev_hold(grt->rt6i_idev);
2816 }
2817
2818 if (!(grt->rt6i_flags & RTF_GATEWAY))
2819 err = 0;
2820
2821 ip6_rt_put(grt);
2822
2823 out:
2824 return err;
2825 }
2826
2827 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2828 struct net_device **_dev, struct inet6_dev **idev,
2829 struct netlink_ext_ack *extack)
2830 {
2831 const struct in6_addr *gw_addr = &cfg->fc_gateway;
2832 int gwa_type = ipv6_addr_type(gw_addr);
2833 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2834 const struct net_device *dev = *_dev;
2835 bool need_addr_check = !dev;
2836 int err = -EINVAL;
2837
2838 /* if gw_addr is local we will fail to detect this in case
2839 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2840 * will return already-added prefix route via interface that
2841 * prefix route was assigned to, which might be non-loopback.
2842 */
2843 if (dev &&
2844 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2845 NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2846 goto out;
2847 }
2848
2849 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2850 /* IPv6 strictly inhibits using not link-local
2851 * addresses as nexthop address.
2852 * Otherwise, router will not able to send redirects.
2853 * It is very good, but in some (rare!) circumstances
2854 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2855 * some exceptions. --ANK
2856 * We allow IPv4-mapped nexthops to support RFC4798-type
2857 * addressing
2858 */
2859 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2860 NL_SET_ERR_MSG(extack, "Invalid gateway address");
2861 goto out;
2862 }
2863
2864 if (cfg->fc_flags & RTNH_F_ONLINK)
2865 err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2866 else
2867 err = ip6_route_check_nh(net, cfg, _dev, idev);
2868
2869 if (err)
2870 goto out;
2871 }
2872
2873 /* reload in case device was changed */
2874 dev = *_dev;
2875
2876 err = -EINVAL;
2877 if (!dev) {
2878 NL_SET_ERR_MSG(extack, "Egress device not specified");
2879 goto out;
2880 } else if (dev->flags & IFF_LOOPBACK) {
2881 NL_SET_ERR_MSG(extack,
2882 "Egress device can not be loopback device for this route");
2883 goto out;
2884 }
2885
2886 /* if we did not check gw_addr above, do so now that the
2887 * egress device has been resolved.
2888 */
2889 if (need_addr_check &&
2890 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2891 NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2892 goto out;
2893 }
2894
2895 err = 0;
2896 out:
2897 return err;
2898 }
2899
2900 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2901 gfp_t gfp_flags,
2902 struct netlink_ext_ack *extack)
2903 {
2904 struct net *net = cfg->fc_nlinfo.nl_net;
2905 struct fib6_info *rt = NULL;
2906 struct net_device *dev = NULL;
2907 struct inet6_dev *idev = NULL;
2908 struct fib6_table *table;
2909 int addr_type;
2910 int err = -EINVAL;
2911
2912 /* RTF_PCPU is an internal flag; can not be set by userspace */
2913 if (cfg->fc_flags & RTF_PCPU) {
2914 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2915 goto out;
2916 }
2917
2918 /* RTF_CACHE is an internal flag; can not be set by userspace */
2919 if (cfg->fc_flags & RTF_CACHE) {
2920 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2921 goto out;
2922 }
2923
2924 if (cfg->fc_type > RTN_MAX) {
2925 NL_SET_ERR_MSG(extack, "Invalid route type");
2926 goto out;
2927 }
2928
2929 if (cfg->fc_dst_len > 128) {
2930 NL_SET_ERR_MSG(extack, "Invalid prefix length");
2931 goto out;
2932 }
2933 if (cfg->fc_src_len > 128) {
2934 NL_SET_ERR_MSG(extack, "Invalid source address length");
2935 goto out;
2936 }
2937 #ifndef CONFIG_IPV6_SUBTREES
2938 if (cfg->fc_src_len) {
2939 NL_SET_ERR_MSG(extack,
2940 "Specifying source address requires IPV6_SUBTREES to be enabled");
2941 goto out;
2942 }
2943 #endif
2944 if (cfg->fc_ifindex) {
2945 err = -ENODEV;
2946 dev = dev_get_by_index(net, cfg->fc_ifindex);
2947 if (!dev)
2948 goto out;
2949 idev = in6_dev_get(dev);
2950 if (!idev)
2951 goto out;
2952 }
2953
2954 if (cfg->fc_metric == 0)
2955 cfg->fc_metric = IP6_RT_PRIO_USER;
2956
2957 if (cfg->fc_flags & RTNH_F_ONLINK) {
2958 if (!dev) {
2959 NL_SET_ERR_MSG(extack,
2960 "Nexthop device required for onlink");
2961 err = -ENODEV;
2962 goto out;
2963 }
2964
2965 if (!(dev->flags & IFF_UP)) {
2966 NL_SET_ERR_MSG(extack, "Nexthop device is not up");
2967 err = -ENETDOWN;
2968 goto out;
2969 }
2970 }
2971
2972 err = -ENOBUFS;
2973 if (cfg->fc_nlinfo.nlh &&
2974 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
2975 table = fib6_get_table(net, cfg->fc_table);
2976 if (!table) {
2977 pr_warn("NLM_F_CREATE should be specified when creating new route\n");
2978 table = fib6_new_table(net, cfg->fc_table);
2979 }
2980 } else {
2981 table = fib6_new_table(net, cfg->fc_table);
2982 }
2983
2984 if (!table)
2985 goto out;
2986
2987 err = -ENOMEM;
2988 rt = fib6_info_alloc(gfp_flags);
2989 if (!rt)
2990 goto out;
2991
2992 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len,
2993 extack);
2994 if (IS_ERR(rt->fib6_metrics)) {
2995 err = PTR_ERR(rt->fib6_metrics);
2996 /* Do not leave garbage there. */
2997 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics;
2998 goto out;
2999 }
3000
3001 if (cfg->fc_flags & RTF_ADDRCONF)
3002 rt->dst_nocount = true;
3003
3004 if (cfg->fc_flags & RTF_EXPIRES)
3005 fib6_set_expires(rt, jiffies +
3006 clock_t_to_jiffies(cfg->fc_expires));
3007 else
3008 fib6_clean_expires(rt);
3009
3010 if (cfg->fc_protocol == RTPROT_UNSPEC)
3011 cfg->fc_protocol = RTPROT_BOOT;
3012 rt->fib6_protocol = cfg->fc_protocol;
3013
3014 addr_type = ipv6_addr_type(&cfg->fc_dst);
3015
3016 if (cfg->fc_encap) {
3017 struct lwtunnel_state *lwtstate;
3018
3019 err = lwtunnel_build_state(cfg->fc_encap_type,
3020 cfg->fc_encap, AF_INET6, cfg,
3021 &lwtstate, extack);
3022 if (err)
3023 goto out;
3024 rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3025 }
3026
3027 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3028 rt->fib6_dst.plen = cfg->fc_dst_len;
3029 if (rt->fib6_dst.plen == 128)
3030 rt->dst_host = true;
3031
3032 #ifdef CONFIG_IPV6_SUBTREES
3033 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3034 rt->fib6_src.plen = cfg->fc_src_len;
3035 #endif
3036
3037 rt->fib6_metric = cfg->fc_metric;
3038 rt->fib6_nh.nh_weight = 1;
3039
3040 rt->fib6_type = cfg->fc_type;
3041
3042 /* We cannot add true routes via loopback here,
3043 they would result in kernel looping; promote them to reject routes
3044 */
3045 if ((cfg->fc_flags & RTF_REJECT) ||
3046 (dev && (dev->flags & IFF_LOOPBACK) &&
3047 !(addr_type & IPV6_ADDR_LOOPBACK) &&
3048 !(cfg->fc_flags & RTF_LOCAL))) {
3049 /* hold loopback dev/idev if we haven't done so. */
3050 if (dev != net->loopback_dev) {
3051 if (dev) {
3052 dev_put(dev);
3053 in6_dev_put(idev);
3054 }
3055 dev = net->loopback_dev;
3056 dev_hold(dev);
3057 idev = in6_dev_get(dev);
3058 if (!idev) {
3059 err = -ENODEV;
3060 goto out;
3061 }
3062 }
3063 rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3064 goto install_route;
3065 }
3066
3067 if (cfg->fc_flags & RTF_GATEWAY) {
3068 err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3069 if (err)
3070 goto out;
3071
3072 rt->fib6_nh.nh_gw = cfg->fc_gateway;
3073 }
3074
3075 err = -ENODEV;
3076 if (!dev)
3077 goto out;
3078
3079 if (idev->cnf.disable_ipv6) {
3080 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3081 err = -EACCES;
3082 goto out;
3083 }
3084
3085 if (!(dev->flags & IFF_UP)) {
3086 NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3087 err = -ENETDOWN;
3088 goto out;
3089 }
3090
3091 if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3092 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3093 NL_SET_ERR_MSG(extack, "Invalid source address");
3094 err = -EINVAL;
3095 goto out;
3096 }
3097 rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3098 rt->fib6_prefsrc.plen = 128;
3099 } else
3100 rt->fib6_prefsrc.plen = 0;
3101
3102 rt->fib6_flags = cfg->fc_flags;
3103
3104 install_route:
3105 if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3106 !netif_carrier_ok(dev))
3107 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3108 rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3109 rt->fib6_nh.nh_dev = dev;
3110 rt->fib6_table = table;
3111
3112 if (idev)
3113 in6_dev_put(idev);
3114
3115 return rt;
3116 out:
3117 if (dev)
3118 dev_put(dev);
3119 if (idev)
3120 in6_dev_put(idev);
3121
3122 fib6_info_release(rt);
3123 return ERR_PTR(err);
3124 }
3125
3126 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3127 struct netlink_ext_ack *extack)
3128 {
3129 struct fib6_info *rt;
3130 int err;
3131
3132 rt = ip6_route_info_create(cfg, gfp_flags, extack);
3133 if (IS_ERR(rt))
3134 return PTR_ERR(rt);
3135
3136 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3137 fib6_info_release(rt);
3138
3139 return err;
3140 }
3141
3142 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3143 {
3144 struct net *net = info->nl_net;
3145 struct fib6_table *table;
3146 int err;
3147
3148 if (rt == net->ipv6.fib6_null_entry) {
3149 err = -ENOENT;
3150 goto out;
3151 }
3152
3153 table = rt->fib6_table;
3154 spin_lock_bh(&table->tb6_lock);
3155 err = fib6_del(rt, info);
3156 spin_unlock_bh(&table->tb6_lock);
3157
3158 out:
3159 fib6_info_release(rt);
3160 return err;
3161 }
3162
3163 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3164 {
3165 struct nl_info info = { .nl_net = net };
3166
3167 return __ip6_del_rt(rt, &info);
3168 }
3169
3170 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3171 {
3172 struct nl_info *info = &cfg->fc_nlinfo;
3173 struct net *net = info->nl_net;
3174 struct sk_buff *skb = NULL;
3175 struct fib6_table *table;
3176 int err = -ENOENT;
3177
3178 if (rt == net->ipv6.fib6_null_entry)
3179 goto out_put;
3180 table = rt->fib6_table;
3181 spin_lock_bh(&table->tb6_lock);
3182
3183 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3184 struct fib6_info *sibling, *next_sibling;
3185
3186 /* prefer to send a single notification with all hops */
3187 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3188 if (skb) {
3189 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3190
3191 if (rt6_fill_node(net, skb, rt, NULL,
3192 NULL, NULL, 0, RTM_DELROUTE,
3193 info->portid, seq, 0) < 0) {
3194 kfree_skb(skb);
3195 skb = NULL;
3196 } else
3197 info->skip_notify = 1;
3198 }
3199
3200 list_for_each_entry_safe(sibling, next_sibling,
3201 &rt->fib6_siblings,
3202 fib6_siblings) {
3203 err = fib6_del(sibling, info);
3204 if (err)
3205 goto out_unlock;
3206 }
3207 }
3208
3209 err = fib6_del(rt, info);
3210 out_unlock:
3211 spin_unlock_bh(&table->tb6_lock);
3212 out_put:
3213 fib6_info_release(rt);
3214
3215 if (skb) {
3216 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3217 info->nlh, gfp_any());
3218 }
3219 return err;
3220 }
3221
3222 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3223 {
3224 int rc = -ESRCH;
3225
3226 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3227 goto out;
3228
3229 if (cfg->fc_flags & RTF_GATEWAY &&
3230 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3231 goto out;
3232
3233 rc = rt6_remove_exception_rt(rt);
3234 out:
3235 return rc;
3236 }
3237
3238 static int ip6_route_del(struct fib6_config *cfg,
3239 struct netlink_ext_ack *extack)
3240 {
3241 struct rt6_info *rt_cache;
3242 struct fib6_table *table;
3243 struct fib6_info *rt;
3244 struct fib6_node *fn;
3245 int err = -ESRCH;
3246
3247 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3248 if (!table) {
3249 NL_SET_ERR_MSG(extack, "FIB table does not exist");
3250 return err;
3251 }
3252
3253 rcu_read_lock();
3254
3255 fn = fib6_locate(&table->tb6_root,
3256 &cfg->fc_dst, cfg->fc_dst_len,
3257 &cfg->fc_src, cfg->fc_src_len,
3258 !(cfg->fc_flags & RTF_CACHE));
3259
3260 if (fn) {
3261 for_each_fib6_node_rt_rcu(fn) {
3262 if (cfg->fc_flags & RTF_CACHE) {
3263 int rc;
3264
3265 rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3266 &cfg->fc_src);
3267 if (rt_cache) {
3268 rc = ip6_del_cached_rt(rt_cache, cfg);
3269 if (rc != -ESRCH) {
3270 rcu_read_unlock();
3271 return rc;
3272 }
3273 }
3274 continue;
3275 }
3276 if (cfg->fc_ifindex &&
3277 (!rt->fib6_nh.nh_dev ||
3278 rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3279 continue;
3280 if (cfg->fc_flags & RTF_GATEWAY &&
3281 !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3282 continue;
3283 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3284 continue;
3285 if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3286 continue;
3287 if (!fib6_info_hold_safe(rt))
3288 continue;
3289 rcu_read_unlock();
3290
3291 /* if gateway was specified only delete the one hop */
3292 if (cfg->fc_flags & RTF_GATEWAY)
3293 return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3294
3295 return __ip6_del_rt_siblings(rt, cfg);
3296 }
3297 }
3298 rcu_read_unlock();
3299
3300 return err;
3301 }
3302
3303 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3304 {
3305 struct netevent_redirect netevent;
3306 struct rt6_info *rt, *nrt = NULL;
3307 struct ndisc_options ndopts;
3308 struct inet6_dev *in6_dev;
3309 struct neighbour *neigh;
3310 struct fib6_info *from;
3311 struct rd_msg *msg;
3312 int optlen, on_link;
3313 u8 *lladdr;
3314
3315 optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3316 optlen -= sizeof(*msg);
3317
3318 if (optlen < 0) {
3319 net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3320 return;
3321 }
3322
3323 msg = (struct rd_msg *)icmp6_hdr(skb);
3324
3325 if (ipv6_addr_is_multicast(&msg->dest)) {
3326 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3327 return;
3328 }
3329
3330 on_link = 0;
3331 if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3332 on_link = 1;
3333 } else if (ipv6_addr_type(&msg->target) !=
3334 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3335 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3336 return;
3337 }
3338
3339 in6_dev = __in6_dev_get(skb->dev);
3340 if (!in6_dev)
3341 return;
3342 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3343 return;
3344
3345 /* RFC2461 8.1:
3346 * The IP source address of the Redirect MUST be the same as the current
3347 * first-hop router for the specified ICMP Destination Address.
3348 */
3349
3350 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3351 net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3352 return;
3353 }
3354
3355 lladdr = NULL;
3356 if (ndopts.nd_opts_tgt_lladdr) {
3357 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3358 skb->dev);
3359 if (!lladdr) {
3360 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3361 return;
3362 }
3363 }
3364
3365 rt = (struct rt6_info *) dst;
3366 if (rt->rt6i_flags & RTF_REJECT) {
3367 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3368 return;
3369 }
3370
3371 /* Redirect received -> path was valid.
3372 * Look, redirects are sent only in response to data packets,
3373 * so that this nexthop apparently is reachable. --ANK
3374 */
3375 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3376
3377 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3378 if (!neigh)
3379 return;
3380
3381 /*
3382 * We have finally decided to accept it.
3383 */
3384
3385 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3386 NEIGH_UPDATE_F_WEAK_OVERRIDE|
3387 NEIGH_UPDATE_F_OVERRIDE|
3388 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3389 NEIGH_UPDATE_F_ISROUTER)),
3390 NDISC_REDIRECT, &ndopts);
3391
3392 rcu_read_lock();
3393 from = rcu_dereference(rt->from);
3394 /* This fib6_info_hold() is safe here because we hold reference to rt
3395 * and rt already holds reference to fib6_info.
3396 */
3397 fib6_info_hold(from);
3398 rcu_read_unlock();
3399
3400 nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3401 if (!nrt)
3402 goto out;
3403
3404 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3405 if (on_link)
3406 nrt->rt6i_flags &= ~RTF_GATEWAY;
3407
3408 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3409
3410 /* No need to remove rt from the exception table if rt is
3411 * a cached route because rt6_insert_exception() will
3412 * takes care of it
3413 */
3414 if (rt6_insert_exception(nrt, from)) {
3415 dst_release_immediate(&nrt->dst);
3416 goto out;
3417 }
3418
3419 netevent.old = &rt->dst;
3420 netevent.new = &nrt->dst;
3421 netevent.daddr = &msg->dest;
3422 netevent.neigh = neigh;
3423 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3424
3425 out:
3426 fib6_info_release(from);
3427 neigh_release(neigh);
3428 }
3429
3430 #ifdef CONFIG_IPV6_ROUTE_INFO
3431 static struct fib6_info *rt6_get_route_info(struct net *net,
3432 const struct in6_addr *prefix, int prefixlen,
3433 const struct in6_addr *gwaddr,
3434 struct net_device *dev)
3435 {
3436 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3437 int ifindex = dev->ifindex;
3438 struct fib6_node *fn;
3439 struct fib6_info *rt = NULL;
3440 struct fib6_table *table;
3441
3442 table = fib6_get_table(net, tb_id);
3443 if (!table)
3444 return NULL;
3445
3446 rcu_read_lock();
3447 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3448 if (!fn)
3449 goto out;
3450
3451 for_each_fib6_node_rt_rcu(fn) {
3452 if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3453 continue;
3454 if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3455 continue;
3456 if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3457 continue;
3458 if (!fib6_info_hold_safe(rt))
3459 continue;
3460 break;
3461 }
3462 out:
3463 rcu_read_unlock();
3464 return rt;
3465 }
3466
3467 static struct fib6_info *rt6_add_route_info(struct net *net,
3468 const struct in6_addr *prefix, int prefixlen,
3469 const struct in6_addr *gwaddr,
3470 struct net_device *dev,
3471 unsigned int pref)
3472 {
3473 struct fib6_config cfg = {
3474 .fc_metric = IP6_RT_PRIO_USER,
3475 .fc_ifindex = dev->ifindex,
3476 .fc_dst_len = prefixlen,
3477 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3478 RTF_UP | RTF_PREF(pref),
3479 .fc_protocol = RTPROT_RA,
3480 .fc_type = RTN_UNICAST,
3481 .fc_nlinfo.portid = 0,
3482 .fc_nlinfo.nlh = NULL,
3483 .fc_nlinfo.nl_net = net,
3484 };
3485
3486 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3487 cfg.fc_dst = *prefix;
3488 cfg.fc_gateway = *gwaddr;
3489
3490 /* We should treat it as a default route if prefix length is 0. */
3491 if (!prefixlen)
3492 cfg.fc_flags |= RTF_DEFAULT;
3493
3494 ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3495
3496 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3497 }
3498 #endif
3499
3500 struct fib6_info *rt6_get_dflt_router(struct net *net,
3501 const struct in6_addr *addr,
3502 struct net_device *dev)
3503 {
3504 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3505 struct fib6_info *rt;
3506 struct fib6_table *table;
3507
3508 table = fib6_get_table(net, tb_id);
3509 if (!table)
3510 return NULL;
3511
3512 rcu_read_lock();
3513 for_each_fib6_node_rt_rcu(&table->tb6_root) {
3514 if (dev == rt->fib6_nh.nh_dev &&
3515 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3516 ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3517 break;
3518 }
3519 if (rt && !fib6_info_hold_safe(rt))
3520 rt = NULL;
3521 rcu_read_unlock();
3522 return rt;
3523 }
3524
3525 struct fib6_info *rt6_add_dflt_router(struct net *net,
3526 const struct in6_addr *gwaddr,
3527 struct net_device *dev,
3528 unsigned int pref)
3529 {
3530 struct fib6_config cfg = {
3531 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3532 .fc_metric = IP6_RT_PRIO_USER,
3533 .fc_ifindex = dev->ifindex,
3534 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3535 RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3536 .fc_protocol = RTPROT_RA,
3537 .fc_type = RTN_UNICAST,
3538 .fc_nlinfo.portid = 0,
3539 .fc_nlinfo.nlh = NULL,
3540 .fc_nlinfo.nl_net = net,
3541 };
3542
3543 cfg.fc_gateway = *gwaddr;
3544
3545 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3546 struct fib6_table *table;
3547
3548 table = fib6_get_table(dev_net(dev), cfg.fc_table);
3549 if (table)
3550 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3551 }
3552
3553 return rt6_get_dflt_router(net, gwaddr, dev);
3554 }
3555
3556 static void __rt6_purge_dflt_routers(struct net *net,
3557 struct fib6_table *table)
3558 {
3559 struct fib6_info *rt;
3560
3561 restart:
3562 rcu_read_lock();
3563 for_each_fib6_node_rt_rcu(&table->tb6_root) {
3564 struct net_device *dev = fib6_info_nh_dev(rt);
3565 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3566
3567 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3568 (!idev || idev->cnf.accept_ra != 2) &&
3569 fib6_info_hold_safe(rt)) {
3570 rcu_read_unlock();
3571 ip6_del_rt(net, rt);
3572 goto restart;
3573 }
3574 }
3575 rcu_read_unlock();
3576
3577 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3578 }
3579
3580 void rt6_purge_dflt_routers(struct net *net)
3581 {
3582 struct fib6_table *table;
3583 struct hlist_head *head;
3584 unsigned int h;
3585
3586 rcu_read_lock();
3587
3588 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3589 head = &net->ipv6.fib_table_hash[h];
3590 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3591 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3592 __rt6_purge_dflt_routers(net, table);
3593 }
3594 }
3595
3596 rcu_read_unlock();
3597 }
3598
3599 static void rtmsg_to_fib6_config(struct net *net,
3600 struct in6_rtmsg *rtmsg,
3601 struct fib6_config *cfg)
3602 {
3603 *cfg = (struct fib6_config){
3604 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3605 : RT6_TABLE_MAIN,
3606 .fc_ifindex = rtmsg->rtmsg_ifindex,
3607 .fc_metric = rtmsg->rtmsg_metric,
3608 .fc_expires = rtmsg->rtmsg_info,
3609 .fc_dst_len = rtmsg->rtmsg_dst_len,
3610 .fc_src_len = rtmsg->rtmsg_src_len,
3611 .fc_flags = rtmsg->rtmsg_flags,
3612 .fc_type = rtmsg->rtmsg_type,
3613
3614 .fc_nlinfo.nl_net = net,
3615
3616 .fc_dst = rtmsg->rtmsg_dst,
3617 .fc_src = rtmsg->rtmsg_src,
3618 .fc_gateway = rtmsg->rtmsg_gateway,
3619 };
3620 }
3621
3622 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3623 {
3624 struct fib6_config cfg;
3625 struct in6_rtmsg rtmsg;
3626 int err;
3627
3628 switch (cmd) {
3629 case SIOCADDRT: /* Add a route */
3630 case SIOCDELRT: /* Delete a route */
3631 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3632 return -EPERM;
3633 err = copy_from_user(&rtmsg, arg,
3634 sizeof(struct in6_rtmsg));
3635 if (err)
3636 return -EFAULT;
3637
3638 rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3639
3640 rtnl_lock();
3641 switch (cmd) {
3642 case SIOCADDRT:
3643 err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3644 break;
3645 case SIOCDELRT:
3646 err = ip6_route_del(&cfg, NULL);
3647 break;
3648 default:
3649 err = -EINVAL;
3650 }
3651 rtnl_unlock();
3652
3653 return err;
3654 }
3655
3656 return -EINVAL;
3657 }
3658
3659 /*
3660 * Drop the packet on the floor
3661 */
3662
3663 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3664 {
3665 int type;
3666 struct dst_entry *dst = skb_dst(skb);
3667 switch (ipstats_mib_noroutes) {
3668 case IPSTATS_MIB_INNOROUTES:
3669 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3670 if (type == IPV6_ADDR_ANY) {
3671 IP6_INC_STATS(dev_net(dst->dev),
3672 __in6_dev_get_safely(skb->dev),
3673 IPSTATS_MIB_INADDRERRORS);
3674 break;
3675 }
3676 /* FALLTHROUGH */
3677 case IPSTATS_MIB_OUTNOROUTES:
3678 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3679 ipstats_mib_noroutes);
3680 break;
3681 }
3682 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3683 kfree_skb(skb);
3684 return 0;
3685 }
3686
3687 static int ip6_pkt_discard(struct sk_buff *skb)
3688 {
3689 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3690 }
3691
3692 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3693 {
3694 skb->dev = skb_dst(skb)->dev;
3695 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3696 }
3697
3698 static int ip6_pkt_prohibit(struct sk_buff *skb)
3699 {
3700 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3701 }
3702
3703 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3704 {
3705 skb->dev = skb_dst(skb)->dev;
3706 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3707 }
3708
3709 /*
3710 * Allocate a dst for local (unicast / anycast) address.
3711 */
3712
3713 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3714 struct inet6_dev *idev,
3715 const struct in6_addr *addr,
3716 bool anycast, gfp_t gfp_flags)
3717 {
3718 u32 tb_id;
3719 struct net_device *dev = idev->dev;
3720 struct fib6_info *f6i;
3721
3722 f6i = fib6_info_alloc(gfp_flags);
3723 if (!f6i)
3724 return ERR_PTR(-ENOMEM);
3725
3726 f6i->fib6_metrics = ip_fib_metrics_init(net, NULL, 0, NULL);
3727 f6i->dst_nocount = true;
3728 f6i->dst_host = true;
3729 f6i->fib6_protocol = RTPROT_KERNEL;
3730 f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3731 if (anycast) {
3732 f6i->fib6_type = RTN_ANYCAST;
3733 f6i->fib6_flags |= RTF_ANYCAST;
3734 } else {
3735 f6i->fib6_type = RTN_LOCAL;
3736 f6i->fib6_flags |= RTF_LOCAL;
3737 }
3738
3739 f6i->fib6_nh.nh_gw = *addr;
3740 dev_hold(dev);
3741 f6i->fib6_nh.nh_dev = dev;
3742 f6i->fib6_dst.addr = *addr;
3743 f6i->fib6_dst.plen = 128;
3744 tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3745 f6i->fib6_table = fib6_get_table(net, tb_id);
3746
3747 return f6i;
3748 }
3749
3750 /* remove deleted ip from prefsrc entries */
3751 struct arg_dev_net_ip {
3752 struct net_device *dev;
3753 struct net *net;
3754 struct in6_addr *addr;
3755 };
3756
3757 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3758 {
3759 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3760 struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3761 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3762
3763 if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3764 rt != net->ipv6.fib6_null_entry &&
3765 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3766 spin_lock_bh(&rt6_exception_lock);
3767 /* remove prefsrc entry */
3768 rt->fib6_prefsrc.plen = 0;
3769 spin_unlock_bh(&rt6_exception_lock);
3770 }
3771 return 0;
3772 }
3773
3774 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3775 {
3776 struct net *net = dev_net(ifp->idev->dev);
3777 struct arg_dev_net_ip adni = {
3778 .dev = ifp->idev->dev,
3779 .net = net,
3780 .addr = &ifp->addr,
3781 };
3782 fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3783 }
3784
3785 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3786
3787 /* Remove routers and update dst entries when gateway turn into host. */
3788 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3789 {
3790 struct in6_addr *gateway = (struct in6_addr *)arg;
3791
3792 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3793 ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3794 return -1;
3795 }
3796
3797 /* Further clean up cached routes in exception table.
3798 * This is needed because cached route may have a different
3799 * gateway than its 'parent' in the case of an ip redirect.
3800 */
3801 rt6_exceptions_clean_tohost(rt, gateway);
3802
3803 return 0;
3804 }
3805
3806 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3807 {
3808 fib6_clean_all(net, fib6_clean_tohost, gateway);
3809 }
3810
3811 struct arg_netdev_event {
3812 const struct net_device *dev;
3813 union {
3814 unsigned int nh_flags;
3815 unsigned long event;
3816 };
3817 };
3818
3819 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3820 {
3821 struct fib6_info *iter;
3822 struct fib6_node *fn;
3823
3824 fn = rcu_dereference_protected(rt->fib6_node,
3825 lockdep_is_held(&rt->fib6_table->tb6_lock));
3826 iter = rcu_dereference_protected(fn->leaf,
3827 lockdep_is_held(&rt->fib6_table->tb6_lock));
3828 while (iter) {
3829 if (iter->fib6_metric == rt->fib6_metric &&
3830 rt6_qualify_for_ecmp(iter))
3831 return iter;
3832 iter = rcu_dereference_protected(iter->fib6_next,
3833 lockdep_is_held(&rt->fib6_table->tb6_lock));
3834 }
3835
3836 return NULL;
3837 }
3838
3839 static bool rt6_is_dead(const struct fib6_info *rt)
3840 {
3841 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3842 (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3843 fib6_ignore_linkdown(rt)))
3844 return true;
3845
3846 return false;
3847 }
3848
3849 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3850 {
3851 struct fib6_info *iter;
3852 int total = 0;
3853
3854 if (!rt6_is_dead(rt))
3855 total += rt->fib6_nh.nh_weight;
3856
3857 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3858 if (!rt6_is_dead(iter))
3859 total += iter->fib6_nh.nh_weight;
3860 }
3861
3862 return total;
3863 }
3864
3865 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3866 {
3867 int upper_bound = -1;
3868
3869 if (!rt6_is_dead(rt)) {
3870 *weight += rt->fib6_nh.nh_weight;
3871 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3872 total) - 1;
3873 }
3874 atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3875 }
3876
3877 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3878 {
3879 struct fib6_info *iter;
3880 int weight = 0;
3881
3882 rt6_upper_bound_set(rt, &weight, total);
3883
3884 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3885 rt6_upper_bound_set(iter, &weight, total);
3886 }
3887
3888 void rt6_multipath_rebalance(struct fib6_info *rt)
3889 {
3890 struct fib6_info *first;
3891 int total;
3892
3893 /* In case the entire multipath route was marked for flushing,
3894 * then there is no need to rebalance upon the removal of every
3895 * sibling route.
3896 */
3897 if (!rt->fib6_nsiblings || rt->should_flush)
3898 return;
3899
3900 /* During lookup routes are evaluated in order, so we need to
3901 * make sure upper bounds are assigned from the first sibling
3902 * onwards.
3903 */
3904 first = rt6_multipath_first_sibling(rt);
3905 if (WARN_ON_ONCE(!first))
3906 return;
3907
3908 total = rt6_multipath_total_weight(first);
3909 rt6_multipath_upper_bound_set(first, total);
3910 }
3911
3912 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3913 {
3914 const struct arg_netdev_event *arg = p_arg;
3915 struct net *net = dev_net(arg->dev);
3916
3917 if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3918 rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3919 fib6_update_sernum_upto_root(net, rt);
3920 rt6_multipath_rebalance(rt);
3921 }
3922
3923 return 0;
3924 }
3925
3926 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3927 {
3928 struct arg_netdev_event arg = {
3929 .dev = dev,
3930 {
3931 .nh_flags = nh_flags,
3932 },
3933 };
3934
3935 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3936 arg.nh_flags |= RTNH_F_LINKDOWN;
3937
3938 fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3939 }
3940
3941 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3942 const struct net_device *dev)
3943 {
3944 struct fib6_info *iter;
3945
3946 if (rt->fib6_nh.nh_dev == dev)
3947 return true;
3948 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3949 if (iter->fib6_nh.nh_dev == dev)
3950 return true;
3951
3952 return false;
3953 }
3954
3955 static void rt6_multipath_flush(struct fib6_info *rt)
3956 {
3957 struct fib6_info *iter;
3958
3959 rt->should_flush = 1;
3960 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3961 iter->should_flush = 1;
3962 }
3963
3964 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3965 const struct net_device *down_dev)
3966 {
3967 struct fib6_info *iter;
3968 unsigned int dead = 0;
3969
3970 if (rt->fib6_nh.nh_dev == down_dev ||
3971 rt->fib6_nh.nh_flags & RTNH_F_DEAD)
3972 dead++;
3973 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3974 if (iter->fib6_nh.nh_dev == down_dev ||
3975 iter->fib6_nh.nh_flags & RTNH_F_DEAD)
3976 dead++;
3977
3978 return dead;
3979 }
3980
3981 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
3982 const struct net_device *dev,
3983 unsigned int nh_flags)
3984 {
3985 struct fib6_info *iter;
3986
3987 if (rt->fib6_nh.nh_dev == dev)
3988 rt->fib6_nh.nh_flags |= nh_flags;
3989 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3990 if (iter->fib6_nh.nh_dev == dev)
3991 iter->fib6_nh.nh_flags |= nh_flags;
3992 }
3993
3994 /* called with write lock held for table with rt */
3995 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
3996 {
3997 const struct arg_netdev_event *arg = p_arg;
3998 const struct net_device *dev = arg->dev;
3999 struct net *net = dev_net(dev);
4000
4001 if (rt == net->ipv6.fib6_null_entry)
4002 return 0;
4003
4004 switch (arg->event) {
4005 case NETDEV_UNREGISTER:
4006 return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4007 case NETDEV_DOWN:
4008 if (rt->should_flush)
4009 return -1;
4010 if (!rt->fib6_nsiblings)
4011 return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4012 if (rt6_multipath_uses_dev(rt, dev)) {
4013 unsigned int count;
4014
4015 count = rt6_multipath_dead_count(rt, dev);
4016 if (rt->fib6_nsiblings + 1 == count) {
4017 rt6_multipath_flush(rt);
4018 return -1;
4019 }
4020 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4021 RTNH_F_LINKDOWN);
4022 fib6_update_sernum(net, rt);
4023 rt6_multipath_rebalance(rt);
4024 }
4025 return -2;
4026 case NETDEV_CHANGE:
4027 if (rt->fib6_nh.nh_dev != dev ||
4028 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4029 break;
4030 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4031 rt6_multipath_rebalance(rt);
4032 break;
4033 }
4034
4035 return 0;
4036 }
4037
4038 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4039 {
4040 struct arg_netdev_event arg = {
4041 .dev = dev,
4042 {
4043 .event = event,
4044 },
4045 };
4046 struct net *net = dev_net(dev);
4047
4048 if (net->ipv6.sysctl.skip_notify_on_dev_down)
4049 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg);
4050 else
4051 fib6_clean_all(net, fib6_ifdown, &arg);
4052 }
4053
4054 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4055 {
4056 rt6_sync_down_dev(dev, event);
4057 rt6_uncached_list_flush_dev(dev_net(dev), dev);
4058 neigh_ifdown(&nd_tbl, dev);
4059 }
4060
4061 struct rt6_mtu_change_arg {
4062 struct net_device *dev;
4063 unsigned int mtu;
4064 };
4065
4066 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4067 {
4068 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4069 struct inet6_dev *idev;
4070
4071 /* In IPv6 pmtu discovery is not optional,
4072 so that RTAX_MTU lock cannot disable it.
4073 We still use this lock to block changes
4074 caused by addrconf/ndisc.
4075 */
4076
4077 idev = __in6_dev_get(arg->dev);
4078 if (!idev)
4079 return 0;
4080
4081 /* For administrative MTU increase, there is no way to discover
4082 IPv6 PMTU increase, so PMTU increase should be updated here.
4083 Since RFC 1981 doesn't include administrative MTU increase
4084 update PMTU increase is a MUST. (i.e. jumbo frame)
4085 */
4086 if (rt->fib6_nh.nh_dev == arg->dev &&
4087 !fib6_metric_locked(rt, RTAX_MTU)) {
4088 u32 mtu = rt->fib6_pmtu;
4089
4090 if (mtu >= arg->mtu ||
4091 (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4092 fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4093
4094 spin_lock_bh(&rt6_exception_lock);
4095 rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4096 spin_unlock_bh(&rt6_exception_lock);
4097 }
4098 return 0;
4099 }
4100
4101 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4102 {
4103 struct rt6_mtu_change_arg arg = {
4104 .dev = dev,
4105 .mtu = mtu,
4106 };
4107
4108 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4109 }
4110
4111 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4112 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) },
4113 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) },
4114 [RTA_OIF] = { .type = NLA_U32 },
4115 [RTA_IIF] = { .type = NLA_U32 },
4116 [RTA_PRIORITY] = { .type = NLA_U32 },
4117 [RTA_METRICS] = { .type = NLA_NESTED },
4118 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
4119 [RTA_PREF] = { .type = NLA_U8 },
4120 [RTA_ENCAP_TYPE] = { .type = NLA_U16 },
4121 [RTA_ENCAP] = { .type = NLA_NESTED },
4122 [RTA_EXPIRES] = { .type = NLA_U32 },
4123 [RTA_UID] = { .type = NLA_U32 },
4124 [RTA_MARK] = { .type = NLA_U32 },
4125 [RTA_TABLE] = { .type = NLA_U32 },
4126 [RTA_IP_PROTO] = { .type = NLA_U8 },
4127 [RTA_SPORT] = { .type = NLA_U16 },
4128 [RTA_DPORT] = { .type = NLA_U16 },
4129 };
4130
4131 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4132 struct fib6_config *cfg,
4133 struct netlink_ext_ack *extack)
4134 {
4135 struct rtmsg *rtm;
4136 struct nlattr *tb[RTA_MAX+1];
4137 unsigned int pref;
4138 int err;
4139
4140 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4141 extack);
4142 if (err < 0)
4143 goto errout;
4144
4145 err = -EINVAL;
4146 rtm = nlmsg_data(nlh);
4147
4148 *cfg = (struct fib6_config){
4149 .fc_table = rtm->rtm_table,
4150 .fc_dst_len = rtm->rtm_dst_len,
4151 .fc_src_len = rtm->rtm_src_len,
4152 .fc_flags = RTF_UP,
4153 .fc_protocol = rtm->rtm_protocol,
4154 .fc_type = rtm->rtm_type,
4155
4156 .fc_nlinfo.portid = NETLINK_CB(skb).portid,
4157 .fc_nlinfo.nlh = nlh,
4158 .fc_nlinfo.nl_net = sock_net(skb->sk),
4159 };
4160
4161 if (rtm->rtm_type == RTN_UNREACHABLE ||
4162 rtm->rtm_type == RTN_BLACKHOLE ||
4163 rtm->rtm_type == RTN_PROHIBIT ||
4164 rtm->rtm_type == RTN_THROW)
4165 cfg->fc_flags |= RTF_REJECT;
4166
4167 if (rtm->rtm_type == RTN_LOCAL)
4168 cfg->fc_flags |= RTF_LOCAL;
4169
4170 if (rtm->rtm_flags & RTM_F_CLONED)
4171 cfg->fc_flags |= RTF_CACHE;
4172
4173 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4174
4175 if (tb[RTA_GATEWAY]) {
4176 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4177 cfg->fc_flags |= RTF_GATEWAY;
4178 }
4179
4180 if (tb[RTA_DST]) {
4181 int plen = (rtm->rtm_dst_len + 7) >> 3;
4182
4183 if (nla_len(tb[RTA_DST]) < plen)
4184 goto errout;
4185
4186 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4187 }
4188
4189 if (tb[RTA_SRC]) {
4190 int plen = (rtm->rtm_src_len + 7) >> 3;
4191
4192 if (nla_len(tb[RTA_SRC]) < plen)
4193 goto errout;
4194
4195 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4196 }
4197
4198 if (tb[RTA_PREFSRC])
4199 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4200
4201 if (tb[RTA_OIF])
4202 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4203
4204 if (tb[RTA_PRIORITY])
4205 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4206
4207 if (tb[RTA_METRICS]) {
4208 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4209 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4210 }
4211
4212 if (tb[RTA_TABLE])
4213 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4214
4215 if (tb[RTA_MULTIPATH]) {
4216 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4217 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4218
4219 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4220 cfg->fc_mp_len, extack);
4221 if (err < 0)
4222 goto errout;
4223 }
4224
4225 if (tb[RTA_PREF]) {
4226 pref = nla_get_u8(tb[RTA_PREF]);
4227 if (pref != ICMPV6_ROUTER_PREF_LOW &&
4228 pref != ICMPV6_ROUTER_PREF_HIGH)
4229 pref = ICMPV6_ROUTER_PREF_MEDIUM;
4230 cfg->fc_flags |= RTF_PREF(pref);
4231 }
4232
4233 if (tb[RTA_ENCAP])
4234 cfg->fc_encap = tb[RTA_ENCAP];
4235
4236 if (tb[RTA_ENCAP_TYPE]) {
4237 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4238
4239 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4240 if (err < 0)
4241 goto errout;
4242 }
4243
4244 if (tb[RTA_EXPIRES]) {
4245 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4246
4247 if (addrconf_finite_timeout(timeout)) {
4248 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4249 cfg->fc_flags |= RTF_EXPIRES;
4250 }
4251 }
4252
4253 err = 0;
4254 errout:
4255 return err;
4256 }
4257
4258 struct rt6_nh {
4259 struct fib6_info *fib6_info;
4260 struct fib6_config r_cfg;
4261 struct list_head next;
4262 };
4263
4264 static int ip6_route_info_append(struct net *net,
4265 struct list_head *rt6_nh_list,
4266 struct fib6_info *rt,
4267 struct fib6_config *r_cfg)
4268 {
4269 struct rt6_nh *nh;
4270 int err = -EEXIST;
4271
4272 list_for_each_entry(nh, rt6_nh_list, next) {
4273 /* check if fib6_info already exists */
4274 if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4275 return err;
4276 }
4277
4278 nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4279 if (!nh)
4280 return -ENOMEM;
4281 nh->fib6_info = rt;
4282 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4283 list_add_tail(&nh->next, rt6_nh_list);
4284
4285 return 0;
4286 }
4287
4288 static void ip6_route_mpath_notify(struct fib6_info *rt,
4289 struct fib6_info *rt_last,
4290 struct nl_info *info,
4291 __u16 nlflags)
4292 {
4293 /* if this is an APPEND route, then rt points to the first route
4294 * inserted and rt_last points to last route inserted. Userspace
4295 * wants a consistent dump of the route which starts at the first
4296 * nexthop. Since sibling routes are always added at the end of
4297 * the list, find the first sibling of the last route appended
4298 */
4299 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4300 rt = list_first_entry(&rt_last->fib6_siblings,
4301 struct fib6_info,
4302 fib6_siblings);
4303 }
4304
4305 if (rt)
4306 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4307 }
4308
4309 static int ip6_route_multipath_add(struct fib6_config *cfg,
4310 struct netlink_ext_ack *extack)
4311 {
4312 struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4313 struct nl_info *info = &cfg->fc_nlinfo;
4314 struct fib6_config r_cfg;
4315 struct rtnexthop *rtnh;
4316 struct fib6_info *rt;
4317 struct rt6_nh *err_nh;
4318 struct rt6_nh *nh, *nh_safe;
4319 __u16 nlflags;
4320 int remaining;
4321 int attrlen;
4322 int err = 1;
4323 int nhn = 0;
4324 int replace = (cfg->fc_nlinfo.nlh &&
4325 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4326 LIST_HEAD(rt6_nh_list);
4327
4328 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4329 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4330 nlflags |= NLM_F_APPEND;
4331
4332 remaining = cfg->fc_mp_len;
4333 rtnh = (struct rtnexthop *)cfg->fc_mp;
4334
4335 /* Parse a Multipath Entry and build a list (rt6_nh_list) of
4336 * fib6_info structs per nexthop
4337 */
4338 while (rtnh_ok(rtnh, remaining)) {
4339 memcpy(&r_cfg, cfg, sizeof(*cfg));
4340 if (rtnh->rtnh_ifindex)
4341 r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4342
4343 attrlen = rtnh_attrlen(rtnh);
4344 if (attrlen > 0) {
4345 struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4346
4347 nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4348 if (nla) {
4349 r_cfg.fc_gateway = nla_get_in6_addr(nla);
4350 r_cfg.fc_flags |= RTF_GATEWAY;
4351 }
4352 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4353 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4354 if (nla)
4355 r_cfg.fc_encap_type = nla_get_u16(nla);
4356 }
4357
4358 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4359 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4360 if (IS_ERR(rt)) {
4361 err = PTR_ERR(rt);
4362 rt = NULL;
4363 goto cleanup;
4364 }
4365 if (!rt6_qualify_for_ecmp(rt)) {
4366 err = -EINVAL;
4367 NL_SET_ERR_MSG(extack,
4368 "Device only routes can not be added for IPv6 using the multipath API.");
4369 fib6_info_release(rt);
4370 goto cleanup;
4371 }
4372
4373 rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4374
4375 err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4376 rt, &r_cfg);
4377 if (err) {
4378 fib6_info_release(rt);
4379 goto cleanup;
4380 }
4381
4382 rtnh = rtnh_next(rtnh, &remaining);
4383 }
4384
4385 /* for add and replace send one notification with all nexthops.
4386 * Skip the notification in fib6_add_rt2node and send one with
4387 * the full route when done
4388 */
4389 info->skip_notify = 1;
4390
4391 err_nh = NULL;
4392 list_for_each_entry(nh, &rt6_nh_list, next) {
4393 err = __ip6_ins_rt(nh->fib6_info, info, extack);
4394 fib6_info_release(nh->fib6_info);
4395
4396 if (!err) {
4397 /* save reference to last route successfully inserted */
4398 rt_last = nh->fib6_info;
4399
4400 /* save reference to first route for notification */
4401 if (!rt_notif)
4402 rt_notif = nh->fib6_info;
4403 }
4404
4405 /* nh->fib6_info is used or freed at this point, reset to NULL*/
4406 nh->fib6_info = NULL;
4407 if (err) {
4408 if (replace && nhn)
4409 NL_SET_ERR_MSG_MOD(extack,
4410 "multipath route replace failed (check consistency of installed routes)");
4411 err_nh = nh;
4412 goto add_errout;
4413 }
4414
4415 /* Because each route is added like a single route we remove
4416 * these flags after the first nexthop: if there is a collision,
4417 * we have already failed to add the first nexthop:
4418 * fib6_add_rt2node() has rejected it; when replacing, old
4419 * nexthops have been replaced by first new, the rest should
4420 * be added to it.
4421 */
4422 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4423 NLM_F_REPLACE);
4424 nhn++;
4425 }
4426
4427 /* success ... tell user about new route */
4428 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4429 goto cleanup;
4430
4431 add_errout:
4432 /* send notification for routes that were added so that
4433 * the delete notifications sent by ip6_route_del are
4434 * coherent
4435 */
4436 if (rt_notif)
4437 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4438
4439 /* Delete routes that were already added */
4440 list_for_each_entry(nh, &rt6_nh_list, next) {
4441 if (err_nh == nh)
4442 break;
4443 ip6_route_del(&nh->r_cfg, extack);
4444 }
4445
4446 cleanup:
4447 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4448 if (nh->fib6_info)
4449 fib6_info_release(nh->fib6_info);
4450 list_del(&nh->next);
4451 kfree(nh);
4452 }
4453
4454 return err;
4455 }
4456
4457 static int ip6_route_multipath_del(struct fib6_config *cfg,
4458 struct netlink_ext_ack *extack)
4459 {
4460 struct fib6_config r_cfg;
4461 struct rtnexthop *rtnh;
4462 int remaining;
4463 int attrlen;
4464 int err = 1, last_err = 0;
4465
4466 remaining = cfg->fc_mp_len;
4467 rtnh = (struct rtnexthop *)cfg->fc_mp;
4468
4469 /* Parse a Multipath Entry */
4470 while (rtnh_ok(rtnh, remaining)) {
4471 memcpy(&r_cfg, cfg, sizeof(*cfg));
4472 if (rtnh->rtnh_ifindex)
4473 r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4474
4475 attrlen = rtnh_attrlen(rtnh);
4476 if (attrlen > 0) {
4477 struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4478
4479 nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4480 if (nla) {
4481 nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4482 r_cfg.fc_flags |= RTF_GATEWAY;
4483 }
4484 }
4485 err = ip6_route_del(&r_cfg, extack);
4486 if (err)
4487 last_err = err;
4488
4489 rtnh = rtnh_next(rtnh, &remaining);
4490 }
4491
4492 return last_err;
4493 }
4494
4495 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4496 struct netlink_ext_ack *extack)
4497 {
4498 struct fib6_config cfg;
4499 int err;
4500
4501 err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4502 if (err < 0)
4503 return err;
4504
4505 if (cfg.fc_mp)
4506 return ip6_route_multipath_del(&cfg, extack);
4507 else {
4508 cfg.fc_delete_all_nh = 1;
4509 return ip6_route_del(&cfg, extack);
4510 }
4511 }
4512
4513 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4514 struct netlink_ext_ack *extack)
4515 {
4516 struct fib6_config cfg;
4517 int err;
4518
4519 err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4520 if (err < 0)
4521 return err;
4522
4523 if (cfg.fc_mp)
4524 return ip6_route_multipath_add(&cfg, extack);
4525 else
4526 return ip6_route_add(&cfg, GFP_KERNEL, extack);
4527 }
4528
4529 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4530 {
4531 int nexthop_len = 0;
4532
4533 if (rt->fib6_nsiblings) {
4534 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */
4535 + NLA_ALIGN(sizeof(struct rtnexthop))
4536 + nla_total_size(16) /* RTA_GATEWAY */
4537 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4538
4539 nexthop_len *= rt->fib6_nsiblings;
4540 }
4541
4542 return NLMSG_ALIGN(sizeof(struct rtmsg))
4543 + nla_total_size(16) /* RTA_SRC */
4544 + nla_total_size(16) /* RTA_DST */
4545 + nla_total_size(16) /* RTA_GATEWAY */
4546 + nla_total_size(16) /* RTA_PREFSRC */
4547 + nla_total_size(4) /* RTA_TABLE */
4548 + nla_total_size(4) /* RTA_IIF */
4549 + nla_total_size(4) /* RTA_OIF */
4550 + nla_total_size(4) /* RTA_PRIORITY */
4551 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4552 + nla_total_size(sizeof(struct rta_cacheinfo))
4553 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4554 + nla_total_size(1) /* RTA_PREF */
4555 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4556 + nexthop_len;
4557 }
4558
4559 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4560 unsigned int *flags, bool skip_oif)
4561 {
4562 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4563 *flags |= RTNH_F_DEAD;
4564
4565 if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4566 *flags |= RTNH_F_LINKDOWN;
4567
4568 rcu_read_lock();
4569 if (fib6_ignore_linkdown(rt))
4570 *flags |= RTNH_F_DEAD;
4571 rcu_read_unlock();
4572 }
4573
4574 if (rt->fib6_flags & RTF_GATEWAY) {
4575 if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4576 goto nla_put_failure;
4577 }
4578
4579 *flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4580 if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4581 *flags |= RTNH_F_OFFLOAD;
4582
4583 /* not needed for multipath encoding b/c it has a rtnexthop struct */
4584 if (!skip_oif && rt->fib6_nh.nh_dev &&
4585 nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4586 goto nla_put_failure;
4587
4588 if (rt->fib6_nh.nh_lwtstate &&
4589 lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4590 goto nla_put_failure;
4591
4592 return 0;
4593
4594 nla_put_failure:
4595 return -EMSGSIZE;
4596 }
4597
4598 /* add multipath next hop */
4599 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4600 {
4601 const struct net_device *dev = rt->fib6_nh.nh_dev;
4602 struct rtnexthop *rtnh;
4603 unsigned int flags = 0;
4604
4605 rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4606 if (!rtnh)
4607 goto nla_put_failure;
4608
4609 rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4610 rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4611
4612 if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4613 goto nla_put_failure;
4614
4615 rtnh->rtnh_flags = flags;
4616
4617 /* length of rtnetlink header + attributes */
4618 rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4619
4620 return 0;
4621
4622 nla_put_failure:
4623 return -EMSGSIZE;
4624 }
4625
4626 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4627 struct fib6_info *rt, struct dst_entry *dst,
4628 struct in6_addr *dest, struct in6_addr *src,
4629 int iif, int type, u32 portid, u32 seq,
4630 unsigned int flags)
4631 {
4632 struct rt6_info *rt6 = (struct rt6_info *)dst;
4633 struct rt6key *rt6_dst, *rt6_src;
4634 u32 *pmetrics, table, rt6_flags;
4635 struct nlmsghdr *nlh;
4636 struct rtmsg *rtm;
4637 long expires = 0;
4638
4639 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4640 if (!nlh)
4641 return -EMSGSIZE;
4642
4643 if (rt6) {
4644 rt6_dst = &rt6->rt6i_dst;
4645 rt6_src = &rt6->rt6i_src;
4646 rt6_flags = rt6->rt6i_flags;
4647 } else {
4648 rt6_dst = &rt->fib6_dst;
4649 rt6_src = &rt->fib6_src;
4650 rt6_flags = rt->fib6_flags;
4651 }
4652
4653 rtm = nlmsg_data(nlh);
4654 rtm->rtm_family = AF_INET6;
4655 rtm->rtm_dst_len = rt6_dst->plen;
4656 rtm->rtm_src_len = rt6_src->plen;
4657 rtm->rtm_tos = 0;
4658 if (rt->fib6_table)
4659 table = rt->fib6_table->tb6_id;
4660 else
4661 table = RT6_TABLE_UNSPEC;
4662 rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT;
4663 if (nla_put_u32(skb, RTA_TABLE, table))
4664 goto nla_put_failure;
4665
4666 rtm->rtm_type = rt->fib6_type;
4667 rtm->rtm_flags = 0;
4668 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4669 rtm->rtm_protocol = rt->fib6_protocol;
4670
4671 if (rt6_flags & RTF_CACHE)
4672 rtm->rtm_flags |= RTM_F_CLONED;
4673
4674 if (dest) {
4675 if (nla_put_in6_addr(skb, RTA_DST, dest))
4676 goto nla_put_failure;
4677 rtm->rtm_dst_len = 128;
4678 } else if (rtm->rtm_dst_len)
4679 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr))
4680 goto nla_put_failure;
4681 #ifdef CONFIG_IPV6_SUBTREES
4682 if (src) {
4683 if (nla_put_in6_addr(skb, RTA_SRC, src))
4684 goto nla_put_failure;
4685 rtm->rtm_src_len = 128;
4686 } else if (rtm->rtm_src_len &&
4687 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr))
4688 goto nla_put_failure;
4689 #endif
4690 if (iif) {
4691 #ifdef CONFIG_IPV6_MROUTE
4692 if (ipv6_addr_is_multicast(&rt6_dst->addr)) {
4693 int err = ip6mr_get_route(net, skb, rtm, portid);
4694
4695 if (err == 0)
4696 return 0;
4697 if (err < 0)
4698 goto nla_put_failure;
4699 } else
4700 #endif
4701 if (nla_put_u32(skb, RTA_IIF, iif))
4702 goto nla_put_failure;
4703 } else if (dest) {
4704 struct in6_addr saddr_buf;
4705 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4706 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4707 goto nla_put_failure;
4708 }
4709
4710 if (rt->fib6_prefsrc.plen) {
4711 struct in6_addr saddr_buf;
4712 saddr_buf = rt->fib6_prefsrc.addr;
4713 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4714 goto nla_put_failure;
4715 }
4716
4717 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4718 if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4719 goto nla_put_failure;
4720
4721 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4722 goto nla_put_failure;
4723
4724 /* For multipath routes, walk the siblings list and add
4725 * each as a nexthop within RTA_MULTIPATH.
4726 */
4727 if (rt6) {
4728 if (rt6_flags & RTF_GATEWAY &&
4729 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway))
4730 goto nla_put_failure;
4731
4732 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex))
4733 goto nla_put_failure;
4734 } else if (rt->fib6_nsiblings) {
4735 struct fib6_info *sibling, *next_sibling;
4736 struct nlattr *mp;
4737
4738 mp = nla_nest_start(skb, RTA_MULTIPATH);
4739 if (!mp)
4740 goto nla_put_failure;
4741
4742 if (rt6_add_nexthop(skb, rt) < 0)
4743 goto nla_put_failure;
4744
4745 list_for_each_entry_safe(sibling, next_sibling,
4746 &rt->fib6_siblings, fib6_siblings) {
4747 if (rt6_add_nexthop(skb, sibling) < 0)
4748 goto nla_put_failure;
4749 }
4750
4751 nla_nest_end(skb, mp);
4752 } else {
4753 if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4754 goto nla_put_failure;
4755 }
4756
4757 if (rt6_flags & RTF_EXPIRES) {
4758 expires = dst ? dst->expires : rt->expires;
4759 expires -= jiffies;
4760 }
4761
4762 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4763 goto nla_put_failure;
4764
4765 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags)))
4766 goto nla_put_failure;
4767
4768
4769 nlmsg_end(skb, nlh);
4770 return 0;
4771
4772 nla_put_failure:
4773 nlmsg_cancel(skb, nlh);
4774 return -EMSGSIZE;
4775 }
4776
4777 static bool fib6_info_uses_dev(const struct fib6_info *f6i,
4778 const struct net_device *dev)
4779 {
4780 if (f6i->fib6_nh.nh_dev == dev)
4781 return true;
4782
4783 if (f6i->fib6_nsiblings) {
4784 struct fib6_info *sibling, *next_sibling;
4785
4786 list_for_each_entry_safe(sibling, next_sibling,
4787 &f6i->fib6_siblings, fib6_siblings) {
4788 if (sibling->fib6_nh.nh_dev == dev)
4789 return true;
4790 }
4791 }
4792
4793 return false;
4794 }
4795
4796 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4797 {
4798 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4799 struct fib_dump_filter *filter = &arg->filter;
4800 unsigned int flags = NLM_F_MULTI;
4801 struct net *net = arg->net;
4802
4803 if (rt == net->ipv6.fib6_null_entry)
4804 return 0;
4805
4806 if ((filter->flags & RTM_F_PREFIX) &&
4807 !(rt->fib6_flags & RTF_PREFIX_RT)) {
4808 /* success since this is not a prefix route */
4809 return 1;
4810 }
4811 if (filter->filter_set) {
4812 if ((filter->rt_type && rt->fib6_type != filter->rt_type) ||
4813 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) ||
4814 (filter->protocol && rt->fib6_protocol != filter->protocol)) {
4815 return 1;
4816 }
4817 flags |= NLM_F_DUMP_FILTERED;
4818 }
4819
4820 return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4821 RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4822 arg->cb->nlh->nlmsg_seq, flags);
4823 }
4824
4825 static int inet6_rtm_valid_getroute_req(struct sk_buff *skb,
4826 const struct nlmsghdr *nlh,
4827 struct nlattr **tb,
4828 struct netlink_ext_ack *extack)
4829 {
4830 struct rtmsg *rtm;
4831 int i, err;
4832
4833 if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) {
4834 NL_SET_ERR_MSG_MOD(extack,
4835 "Invalid header for get route request");
4836 return -EINVAL;
4837 }
4838
4839 if (!netlink_strict_get_check(skb))
4840 return nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
4841 rtm_ipv6_policy, extack);
4842
4843 rtm = nlmsg_data(nlh);
4844 if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) ||
4845 (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) ||
4846 rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope ||
4847 rtm->rtm_type) {
4848 NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request");
4849 return -EINVAL;
4850 }
4851 if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) {
4852 NL_SET_ERR_MSG_MOD(extack,
4853 "Invalid flags for get route request");
4854 return -EINVAL;
4855 }
4856
4857 err = nlmsg_parse_strict(nlh, sizeof(*rtm), tb, RTA_MAX,
4858 rtm_ipv6_policy, extack);
4859 if (err)
4860 return err;
4861
4862 if ((tb[RTA_SRC] && !rtm->rtm_src_len) ||
4863 (tb[RTA_DST] && !rtm->rtm_dst_len)) {
4864 NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6");
4865 return -EINVAL;
4866 }
4867
4868 for (i = 0; i <= RTA_MAX; i++) {
4869 if (!tb[i])
4870 continue;
4871
4872 switch (i) {
4873 case RTA_SRC:
4874 case RTA_DST:
4875 case RTA_IIF:
4876 case RTA_OIF:
4877 case RTA_MARK:
4878 case RTA_UID:
4879 case RTA_SPORT:
4880 case RTA_DPORT:
4881 case RTA_IP_PROTO:
4882 break;
4883 default:
4884 NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request");
4885 return -EINVAL;
4886 }
4887 }
4888
4889 return 0;
4890 }
4891
4892 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4893 struct netlink_ext_ack *extack)
4894 {
4895 struct net *net = sock_net(in_skb->sk);
4896 struct nlattr *tb[RTA_MAX+1];
4897 int err, iif = 0, oif = 0;
4898 struct fib6_info *from;
4899 struct dst_entry *dst;
4900 struct rt6_info *rt;
4901 struct sk_buff *skb;
4902 struct rtmsg *rtm;
4903 struct flowi6 fl6 = {};
4904 bool fibmatch;
4905
4906 err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack);
4907 if (err < 0)
4908 goto errout;
4909
4910 err = -EINVAL;
4911 rtm = nlmsg_data(nlh);
4912 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4913 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4914
4915 if (tb[RTA_SRC]) {
4916 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4917 goto errout;
4918
4919 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4920 }
4921
4922 if (tb[RTA_DST]) {
4923 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4924 goto errout;
4925
4926 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4927 }
4928
4929 if (tb[RTA_IIF])
4930 iif = nla_get_u32(tb[RTA_IIF]);
4931
4932 if (tb[RTA_OIF])
4933 oif = nla_get_u32(tb[RTA_OIF]);
4934
4935 if (tb[RTA_MARK])
4936 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4937
4938 if (tb[RTA_UID])
4939 fl6.flowi6_uid = make_kuid(current_user_ns(),
4940 nla_get_u32(tb[RTA_UID]));
4941 else
4942 fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4943
4944 if (tb[RTA_SPORT])
4945 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4946
4947 if (tb[RTA_DPORT])
4948 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4949
4950 if (tb[RTA_IP_PROTO]) {
4951 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4952 &fl6.flowi6_proto, extack);
4953 if (err)
4954 goto errout;
4955 }
4956
4957 if (iif) {
4958 struct net_device *dev;
4959 int flags = 0;
4960
4961 rcu_read_lock();
4962
4963 dev = dev_get_by_index_rcu(net, iif);
4964 if (!dev) {
4965 rcu_read_unlock();
4966 err = -ENODEV;
4967 goto errout;
4968 }
4969
4970 fl6.flowi6_iif = iif;
4971
4972 if (!ipv6_addr_any(&fl6.saddr))
4973 flags |= RT6_LOOKUP_F_HAS_SADDR;
4974
4975 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4976
4977 rcu_read_unlock();
4978 } else {
4979 fl6.flowi6_oif = oif;
4980
4981 dst = ip6_route_output(net, NULL, &fl6);
4982 }
4983
4984
4985 rt = container_of(dst, struct rt6_info, dst);
4986 if (rt->dst.error) {
4987 err = rt->dst.error;
4988 ip6_rt_put(rt);
4989 goto errout;
4990 }
4991
4992 if (rt == net->ipv6.ip6_null_entry) {
4993 err = rt->dst.error;
4994 ip6_rt_put(rt);
4995 goto errout;
4996 }
4997
4998 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4999 if (!skb) {
5000 ip6_rt_put(rt);
5001 err = -ENOBUFS;
5002 goto errout;
5003 }
5004
5005 skb_dst_set(skb, &rt->dst);
5006
5007 rcu_read_lock();
5008 from = rcu_dereference(rt->from);
5009
5010 if (fibmatch)
5011 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
5012 RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
5013 nlh->nlmsg_seq, 0);
5014 else
5015 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
5016 &fl6.saddr, iif, RTM_NEWROUTE,
5017 NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
5018 0);
5019 rcu_read_unlock();
5020
5021 if (err < 0) {
5022 kfree_skb(skb);
5023 goto errout;
5024 }
5025
5026 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
5027 errout:
5028 return err;
5029 }
5030
5031 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
5032 unsigned int nlm_flags)
5033 {
5034 struct sk_buff *skb;
5035 struct net *net = info->nl_net;
5036 u32 seq;
5037 int err;
5038
5039 err = -ENOBUFS;
5040 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
5041
5042 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
5043 if (!skb)
5044 goto errout;
5045
5046 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
5047 event, info->portid, seq, nlm_flags);
5048 if (err < 0) {
5049 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
5050 WARN_ON(err == -EMSGSIZE);
5051 kfree_skb(skb);
5052 goto errout;
5053 }
5054 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
5055 info->nlh, gfp_any());
5056 return;
5057 errout:
5058 if (err < 0)
5059 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
5060 }
5061
5062 static int ip6_route_dev_notify(struct notifier_block *this,
5063 unsigned long event, void *ptr)
5064 {
5065 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
5066 struct net *net = dev_net(dev);
5067
5068 if (!(dev->flags & IFF_LOOPBACK))
5069 return NOTIFY_OK;
5070
5071 if (event == NETDEV_REGISTER) {
5072 net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
5073 net->ipv6.ip6_null_entry->dst.dev = dev;
5074 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
5075 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5076 net->ipv6.ip6_prohibit_entry->dst.dev = dev;
5077 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
5078 net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
5079 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
5080 #endif
5081 } else if (event == NETDEV_UNREGISTER &&
5082 dev->reg_state != NETREG_UNREGISTERED) {
5083 /* NETDEV_UNREGISTER could be fired for multiple times by
5084 * netdev_wait_allrefs(). Make sure we only call this once.
5085 */
5086 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
5087 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5088 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
5089 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
5090 #endif
5091 }
5092
5093 return NOTIFY_OK;
5094 }
5095
5096 /*
5097 * /proc
5098 */
5099
5100 #ifdef CONFIG_PROC_FS
5101 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5102 {
5103 struct net *net = (struct net *)seq->private;
5104 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5105 net->ipv6.rt6_stats->fib_nodes,
5106 net->ipv6.rt6_stats->fib_route_nodes,
5107 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5108 net->ipv6.rt6_stats->fib_rt_entries,
5109 net->ipv6.rt6_stats->fib_rt_cache,
5110 dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5111 net->ipv6.rt6_stats->fib_discarded_routes);
5112
5113 return 0;
5114 }
5115 #endif /* CONFIG_PROC_FS */
5116
5117 #ifdef CONFIG_SYSCTL
5118
5119 static
5120 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5121 void __user *buffer, size_t *lenp, loff_t *ppos)
5122 {
5123 struct net *net;
5124 int delay;
5125 int ret;
5126 if (!write)
5127 return -EINVAL;
5128
5129 net = (struct net *)ctl->extra1;
5130 delay = net->ipv6.sysctl.flush_delay;
5131 ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
5132 if (ret)
5133 return ret;
5134
5135 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5136 return 0;
5137 }
5138
5139 static int zero;
5140 static int one = 1;
5141
5142 static struct ctl_table ipv6_route_table_template[] = {
5143 {
5144 .procname = "flush",
5145 .data = &init_net.ipv6.sysctl.flush_delay,
5146 .maxlen = sizeof(int),
5147 .mode = 0200,
5148 .proc_handler = ipv6_sysctl_rtcache_flush
5149 },
5150 {
5151 .procname = "gc_thresh",
5152 .data = &ip6_dst_ops_template.gc_thresh,
5153 .maxlen = sizeof(int),
5154 .mode = 0644,
5155 .proc_handler = proc_dointvec,
5156 },
5157 {
5158 .procname = "max_size",
5159 .data = &init_net.ipv6.sysctl.ip6_rt_max_size,
5160 .maxlen = sizeof(int),
5161 .mode = 0644,
5162 .proc_handler = proc_dointvec,
5163 },
5164 {
5165 .procname = "gc_min_interval",
5166 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5167 .maxlen = sizeof(int),
5168 .mode = 0644,
5169 .proc_handler = proc_dointvec_jiffies,
5170 },
5171 {
5172 .procname = "gc_timeout",
5173 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5174 .maxlen = sizeof(int),
5175 .mode = 0644,
5176 .proc_handler = proc_dointvec_jiffies,
5177 },
5178 {
5179 .procname = "gc_interval",
5180 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval,
5181 .maxlen = sizeof(int),
5182 .mode = 0644,
5183 .proc_handler = proc_dointvec_jiffies,
5184 },
5185 {
5186 .procname = "gc_elasticity",
5187 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5188 .maxlen = sizeof(int),
5189 .mode = 0644,
5190 .proc_handler = proc_dointvec,
5191 },
5192 {
5193 .procname = "mtu_expires",
5194 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5195 .maxlen = sizeof(int),
5196 .mode = 0644,
5197 .proc_handler = proc_dointvec_jiffies,
5198 },
5199 {
5200 .procname = "min_adv_mss",
5201 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss,
5202 .maxlen = sizeof(int),
5203 .mode = 0644,
5204 .proc_handler = proc_dointvec,
5205 },
5206 {
5207 .procname = "gc_min_interval_ms",
5208 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5209 .maxlen = sizeof(int),
5210 .mode = 0644,
5211 .proc_handler = proc_dointvec_ms_jiffies,
5212 },
5213 {
5214 .procname = "skip_notify_on_dev_down",
5215 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down,
5216 .maxlen = sizeof(int),
5217 .mode = 0644,
5218 .proc_handler = proc_dointvec,
5219 .extra1 = &zero,
5220 .extra2 = &one,
5221 },
5222 { }
5223 };
5224
5225 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5226 {
5227 struct ctl_table *table;
5228
5229 table = kmemdup(ipv6_route_table_template,
5230 sizeof(ipv6_route_table_template),
5231 GFP_KERNEL);
5232
5233 if (table) {
5234 table[0].data = &net->ipv6.sysctl.flush_delay;
5235 table[0].extra1 = net;
5236 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5237 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5238 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5239 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5240 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5241 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5242 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5243 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5244 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5245 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down;
5246
5247 /* Don't export sysctls to unprivileged users */
5248 if (net->user_ns != &init_user_ns)
5249 table[0].procname = NULL;
5250 }
5251
5252 return table;
5253 }
5254 #endif
5255
5256 static int __net_init ip6_route_net_init(struct net *net)
5257 {
5258 int ret = -ENOMEM;
5259
5260 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5261 sizeof(net->ipv6.ip6_dst_ops));
5262
5263 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5264 goto out_ip6_dst_ops;
5265
5266 net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5267 sizeof(*net->ipv6.fib6_null_entry),
5268 GFP_KERNEL);
5269 if (!net->ipv6.fib6_null_entry)
5270 goto out_ip6_dst_entries;
5271
5272 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5273 sizeof(*net->ipv6.ip6_null_entry),
5274 GFP_KERNEL);
5275 if (!net->ipv6.ip6_null_entry)
5276 goto out_fib6_null_entry;
5277 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5278 dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5279 ip6_template_metrics, true);
5280
5281 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5282 net->ipv6.fib6_has_custom_rules = false;
5283 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5284 sizeof(*net->ipv6.ip6_prohibit_entry),
5285 GFP_KERNEL);
5286 if (!net->ipv6.ip6_prohibit_entry)
5287 goto out_ip6_null_entry;
5288 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5289 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5290 ip6_template_metrics, true);
5291
5292 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5293 sizeof(*net->ipv6.ip6_blk_hole_entry),
5294 GFP_KERNEL);
5295 if (!net->ipv6.ip6_blk_hole_entry)
5296 goto out_ip6_prohibit_entry;
5297 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5298 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5299 ip6_template_metrics, true);
5300 #endif
5301
5302 net->ipv6.sysctl.flush_delay = 0;
5303 net->ipv6.sysctl.ip6_rt_max_size = 4096;
5304 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5305 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5306 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5307 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5308 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5309 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5310 net->ipv6.sysctl.skip_notify_on_dev_down = 0;
5311
5312 net->ipv6.ip6_rt_gc_expire = 30*HZ;
5313
5314 ret = 0;
5315 out:
5316 return ret;
5317
5318 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5319 out_ip6_prohibit_entry:
5320 kfree(net->ipv6.ip6_prohibit_entry);
5321 out_ip6_null_entry:
5322 kfree(net->ipv6.ip6_null_entry);
5323 #endif
5324 out_fib6_null_entry:
5325 kfree(net->ipv6.fib6_null_entry);
5326 out_ip6_dst_entries:
5327 dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5328 out_ip6_dst_ops:
5329 goto out;
5330 }
5331
5332 static void __net_exit ip6_route_net_exit(struct net *net)
5333 {
5334 kfree(net->ipv6.fib6_null_entry);
5335 kfree(net->ipv6.ip6_null_entry);
5336 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5337 kfree(net->ipv6.ip6_prohibit_entry);
5338 kfree(net->ipv6.ip6_blk_hole_entry);
5339 #endif
5340 dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5341 }
5342
5343 static int __net_init ip6_route_net_init_late(struct net *net)
5344 {
5345 #ifdef CONFIG_PROC_FS
5346 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5347 sizeof(struct ipv6_route_iter));
5348 proc_create_net_single("rt6_stats", 0444, net->proc_net,
5349 rt6_stats_seq_show, NULL);
5350 #endif
5351 return 0;
5352 }
5353
5354 static void __net_exit ip6_route_net_exit_late(struct net *net)
5355 {
5356 #ifdef CONFIG_PROC_FS
5357 remove_proc_entry("ipv6_route", net->proc_net);
5358 remove_proc_entry("rt6_stats", net->proc_net);
5359 #endif
5360 }
5361
5362 static struct pernet_operations ip6_route_net_ops = {
5363 .init = ip6_route_net_init,
5364 .exit = ip6_route_net_exit,
5365 };
5366
5367 static int __net_init ipv6_inetpeer_init(struct net *net)
5368 {
5369 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5370
5371 if (!bp)
5372 return -ENOMEM;
5373 inet_peer_base_init(bp);
5374 net->ipv6.peers = bp;
5375 return 0;
5376 }
5377
5378 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5379 {
5380 struct inet_peer_base *bp = net->ipv6.peers;
5381
5382 net->ipv6.peers = NULL;
5383 inetpeer_invalidate_tree(bp);
5384 kfree(bp);
5385 }
5386
5387 static struct pernet_operations ipv6_inetpeer_ops = {
5388 .init = ipv6_inetpeer_init,
5389 .exit = ipv6_inetpeer_exit,
5390 };
5391
5392 static struct pernet_operations ip6_route_net_late_ops = {
5393 .init = ip6_route_net_init_late,
5394 .exit = ip6_route_net_exit_late,
5395 };
5396
5397 static struct notifier_block ip6_route_dev_notifier = {
5398 .notifier_call = ip6_route_dev_notify,
5399 .priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5400 };
5401
5402 void __init ip6_route_init_special_entries(void)
5403 {
5404 /* Registering of the loopback is done before this portion of code,
5405 * the loopback reference in rt6_info will not be taken, do it
5406 * manually for init_net */
5407 init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5408 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5409 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5410 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5411 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5412 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5413 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5414 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5415 #endif
5416 }
5417
5418 int __init ip6_route_init(void)
5419 {
5420 int ret;
5421 int cpu;
5422
5423 ret = -ENOMEM;
5424 ip6_dst_ops_template.kmem_cachep =
5425 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5426 SLAB_HWCACHE_ALIGN, NULL);
5427 if (!ip6_dst_ops_template.kmem_cachep)
5428 goto out;
5429
5430 ret = dst_entries_init(&ip6_dst_blackhole_ops);
5431 if (ret)
5432 goto out_kmem_cache;
5433
5434 ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5435 if (ret)
5436 goto out_dst_entries;
5437
5438 ret = register_pernet_subsys(&ip6_route_net_ops);
5439 if (ret)
5440 goto out_register_inetpeer;
5441
5442 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5443
5444 ret = fib6_init();
5445 if (ret)
5446 goto out_register_subsys;
5447
5448 ret = xfrm6_init();
5449 if (ret)
5450 goto out_fib6_init;
5451
5452 ret = fib6_rules_init();
5453 if (ret)
5454 goto xfrm6_init;
5455
5456 ret = register_pernet_subsys(&ip6_route_net_late_ops);
5457 if (ret)
5458 goto fib6_rules_init;
5459
5460 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5461 inet6_rtm_newroute, NULL, 0);
5462 if (ret < 0)
5463 goto out_register_late_subsys;
5464
5465 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5466 inet6_rtm_delroute, NULL, 0);
5467 if (ret < 0)
5468 goto out_register_late_subsys;
5469
5470 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5471 inet6_rtm_getroute, NULL,
5472 RTNL_FLAG_DOIT_UNLOCKED);
5473 if (ret < 0)
5474 goto out_register_late_subsys;
5475
5476 ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5477 if (ret)
5478 goto out_register_late_subsys;
5479
5480 for_each_possible_cpu(cpu) {
5481 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5482
5483 INIT_LIST_HEAD(&ul->head);
5484 spin_lock_init(&ul->lock);
5485 }
5486
5487 out:
5488 return ret;
5489
5490 out_register_late_subsys:
5491 rtnl_unregister_all(PF_INET6);
5492 unregister_pernet_subsys(&ip6_route_net_late_ops);
5493 fib6_rules_init:
5494 fib6_rules_cleanup();
5495 xfrm6_init:
5496 xfrm6_fini();
5497 out_fib6_init:
5498 fib6_gc_cleanup();
5499 out_register_subsys:
5500 unregister_pernet_subsys(&ip6_route_net_ops);
5501 out_register_inetpeer:
5502 unregister_pernet_subsys(&ipv6_inetpeer_ops);
5503 out_dst_entries:
5504 dst_entries_destroy(&ip6_dst_blackhole_ops);
5505 out_kmem_cache:
5506 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5507 goto out;
5508 }
5509
5510 void ip6_route_cleanup(void)
5511 {
5512 unregister_netdevice_notifier(&ip6_route_dev_notifier);
5513 unregister_pernet_subsys(&ip6_route_net_late_ops);
5514 fib6_rules_cleanup();
5515 xfrm6_fini();
5516 fib6_gc_cleanup();
5517 unregister_pernet_subsys(&ipv6_inetpeer_ops);
5518 unregister_pernet_subsys(&ip6_route_net_ops);
5519 dst_entries_destroy(&ip6_dst_blackhole_ops);
5520 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5521 }