]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/ipv6/route.c
Merge tag 'omap-for-v5.0/fixes-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / net / ipv6 / route.c
1 /*
2 * Linux INET6 implementation
3 * FIB front-end.
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* Changes:
15 *
16 * YOSHIFUJI Hideaki @USAGI
17 * reworked default router selection.
18 * - respect outgoing interface
19 * - select from (probably) reachable routers (i.e.
20 * routers in REACHABLE, STALE, DELAY or PROBE states).
21 * - always select the same router if it is (probably)
22 * reachable. otherwise, round-robin the list.
23 * Ville Nuorvala
24 * Fixed routing subtrees.
25 */
26
27 #define pr_fmt(fmt) "IPv6: " fmt
28
29 #include <linux/capability.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/types.h>
33 #include <linux/times.h>
34 #include <linux/socket.h>
35 #include <linux/sockios.h>
36 #include <linux/net.h>
37 #include <linux/route.h>
38 #include <linux/netdevice.h>
39 #include <linux/in6.h>
40 #include <linux/mroute6.h>
41 #include <linux/init.h>
42 #include <linux/if_arp.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/nsproxy.h>
46 #include <linux/slab.h>
47 #include <linux/jhash.h>
48 #include <net/net_namespace.h>
49 #include <net/snmp.h>
50 #include <net/ipv6.h>
51 #include <net/ip6_fib.h>
52 #include <net/ip6_route.h>
53 #include <net/ndisc.h>
54 #include <net/addrconf.h>
55 #include <net/tcp.h>
56 #include <linux/rtnetlink.h>
57 #include <net/dst.h>
58 #include <net/dst_metadata.h>
59 #include <net/xfrm.h>
60 #include <net/netevent.h>
61 #include <net/netlink.h>
62 #include <net/nexthop.h>
63 #include <net/lwtunnel.h>
64 #include <net/ip_tunnels.h>
65 #include <net/l3mdev.h>
66 #include <net/ip.h>
67 #include <linux/uaccess.h>
68
69 #ifdef CONFIG_SYSCTL
70 #include <linux/sysctl.h>
71 #endif
72
73 static int ip6_rt_type_to_error(u8 fib6_type);
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/fib6.h>
77 EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup);
78 #undef CREATE_TRACE_POINTS
79
80 enum rt6_nud_state {
81 RT6_NUD_FAIL_HARD = -3,
82 RT6_NUD_FAIL_PROBE = -2,
83 RT6_NUD_FAIL_DO_RR = -1,
84 RT6_NUD_SUCCEED = 1
85 };
86
87 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie);
88 static unsigned int ip6_default_advmss(const struct dst_entry *dst);
89 static unsigned int ip6_mtu(const struct dst_entry *dst);
90 static struct dst_entry *ip6_negative_advice(struct dst_entry *);
91 static void ip6_dst_destroy(struct dst_entry *);
92 static void ip6_dst_ifdown(struct dst_entry *,
93 struct net_device *dev, int how);
94 static int ip6_dst_gc(struct dst_ops *ops);
95
96 static int ip6_pkt_discard(struct sk_buff *skb);
97 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb);
98 static int ip6_pkt_prohibit(struct sk_buff *skb);
99 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb);
100 static void ip6_link_failure(struct sk_buff *skb);
101 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
102 struct sk_buff *skb, u32 mtu);
103 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk,
104 struct sk_buff *skb);
105 static int rt6_score_route(struct fib6_info *rt, int oif, int strict);
106 static size_t rt6_nlmsg_size(struct fib6_info *rt);
107 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
108 struct fib6_info *rt, struct dst_entry *dst,
109 struct in6_addr *dest, struct in6_addr *src,
110 int iif, int type, u32 portid, u32 seq,
111 unsigned int flags);
112 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
113 struct in6_addr *daddr,
114 struct in6_addr *saddr);
115
116 #ifdef CONFIG_IPV6_ROUTE_INFO
117 static struct fib6_info *rt6_add_route_info(struct net *net,
118 const struct in6_addr *prefix, int prefixlen,
119 const struct in6_addr *gwaddr,
120 struct net_device *dev,
121 unsigned int pref);
122 static struct fib6_info *rt6_get_route_info(struct net *net,
123 const struct in6_addr *prefix, int prefixlen,
124 const struct in6_addr *gwaddr,
125 struct net_device *dev);
126 #endif
127
128 struct uncached_list {
129 spinlock_t lock;
130 struct list_head head;
131 };
132
133 static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list);
134
135 void rt6_uncached_list_add(struct rt6_info *rt)
136 {
137 struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list);
138
139 rt->rt6i_uncached_list = ul;
140
141 spin_lock_bh(&ul->lock);
142 list_add_tail(&rt->rt6i_uncached, &ul->head);
143 spin_unlock_bh(&ul->lock);
144 }
145
146 void rt6_uncached_list_del(struct rt6_info *rt)
147 {
148 if (!list_empty(&rt->rt6i_uncached)) {
149 struct uncached_list *ul = rt->rt6i_uncached_list;
150 struct net *net = dev_net(rt->dst.dev);
151
152 spin_lock_bh(&ul->lock);
153 list_del(&rt->rt6i_uncached);
154 atomic_dec(&net->ipv6.rt6_stats->fib_rt_uncache);
155 spin_unlock_bh(&ul->lock);
156 }
157 }
158
159 static void rt6_uncached_list_flush_dev(struct net *net, struct net_device *dev)
160 {
161 struct net_device *loopback_dev = net->loopback_dev;
162 int cpu;
163
164 if (dev == loopback_dev)
165 return;
166
167 for_each_possible_cpu(cpu) {
168 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
169 struct rt6_info *rt;
170
171 spin_lock_bh(&ul->lock);
172 list_for_each_entry(rt, &ul->head, rt6i_uncached) {
173 struct inet6_dev *rt_idev = rt->rt6i_idev;
174 struct net_device *rt_dev = rt->dst.dev;
175
176 if (rt_idev->dev == dev) {
177 rt->rt6i_idev = in6_dev_get(loopback_dev);
178 in6_dev_put(rt_idev);
179 }
180
181 if (rt_dev == dev) {
182 rt->dst.dev = loopback_dev;
183 dev_hold(rt->dst.dev);
184 dev_put(rt_dev);
185 }
186 }
187 spin_unlock_bh(&ul->lock);
188 }
189 }
190
191 static inline const void *choose_neigh_daddr(const struct in6_addr *p,
192 struct sk_buff *skb,
193 const void *daddr)
194 {
195 if (!ipv6_addr_any(p))
196 return (const void *) p;
197 else if (skb)
198 return &ipv6_hdr(skb)->daddr;
199 return daddr;
200 }
201
202 struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw,
203 struct net_device *dev,
204 struct sk_buff *skb,
205 const void *daddr)
206 {
207 struct neighbour *n;
208
209 daddr = choose_neigh_daddr(gw, skb, daddr);
210 n = __ipv6_neigh_lookup(dev, daddr);
211 if (n)
212 return n;
213
214 n = neigh_create(&nd_tbl, daddr, dev);
215 return IS_ERR(n) ? NULL : n;
216 }
217
218 static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst,
219 struct sk_buff *skb,
220 const void *daddr)
221 {
222 const struct rt6_info *rt = container_of(dst, struct rt6_info, dst);
223
224 return ip6_neigh_lookup(&rt->rt6i_gateway, dst->dev, skb, daddr);
225 }
226
227 static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr)
228 {
229 struct net_device *dev = dst->dev;
230 struct rt6_info *rt = (struct rt6_info *)dst;
231
232 daddr = choose_neigh_daddr(&rt->rt6i_gateway, NULL, daddr);
233 if (!daddr)
234 return;
235 if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
236 return;
237 if (ipv6_addr_is_multicast((const struct in6_addr *)daddr))
238 return;
239 __ipv6_confirm_neigh(dev, daddr);
240 }
241
242 static struct dst_ops ip6_dst_ops_template = {
243 .family = AF_INET6,
244 .gc = ip6_dst_gc,
245 .gc_thresh = 1024,
246 .check = ip6_dst_check,
247 .default_advmss = ip6_default_advmss,
248 .mtu = ip6_mtu,
249 .cow_metrics = dst_cow_metrics_generic,
250 .destroy = ip6_dst_destroy,
251 .ifdown = ip6_dst_ifdown,
252 .negative_advice = ip6_negative_advice,
253 .link_failure = ip6_link_failure,
254 .update_pmtu = ip6_rt_update_pmtu,
255 .redirect = rt6_do_redirect,
256 .local_out = __ip6_local_out,
257 .neigh_lookup = ip6_dst_neigh_lookup,
258 .confirm_neigh = ip6_confirm_neigh,
259 };
260
261 static unsigned int ip6_blackhole_mtu(const struct dst_entry *dst)
262 {
263 unsigned int mtu = dst_metric_raw(dst, RTAX_MTU);
264
265 return mtu ? : dst->dev->mtu;
266 }
267
268 static void ip6_rt_blackhole_update_pmtu(struct dst_entry *dst, struct sock *sk,
269 struct sk_buff *skb, u32 mtu)
270 {
271 }
272
273 static void ip6_rt_blackhole_redirect(struct dst_entry *dst, struct sock *sk,
274 struct sk_buff *skb)
275 {
276 }
277
278 static struct dst_ops ip6_dst_blackhole_ops = {
279 .family = AF_INET6,
280 .destroy = ip6_dst_destroy,
281 .check = ip6_dst_check,
282 .mtu = ip6_blackhole_mtu,
283 .default_advmss = ip6_default_advmss,
284 .update_pmtu = ip6_rt_blackhole_update_pmtu,
285 .redirect = ip6_rt_blackhole_redirect,
286 .cow_metrics = dst_cow_metrics_generic,
287 .neigh_lookup = ip6_dst_neigh_lookup,
288 };
289
290 static const u32 ip6_template_metrics[RTAX_MAX] = {
291 [RTAX_HOPLIMIT - 1] = 0,
292 };
293
294 static const struct fib6_info fib6_null_entry_template = {
295 .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP),
296 .fib6_protocol = RTPROT_KERNEL,
297 .fib6_metric = ~(u32)0,
298 .fib6_ref = ATOMIC_INIT(1),
299 .fib6_type = RTN_UNREACHABLE,
300 .fib6_metrics = (struct dst_metrics *)&dst_default_metrics,
301 };
302
303 static const struct rt6_info ip6_null_entry_template = {
304 .dst = {
305 .__refcnt = ATOMIC_INIT(1),
306 .__use = 1,
307 .obsolete = DST_OBSOLETE_FORCE_CHK,
308 .error = -ENETUNREACH,
309 .input = ip6_pkt_discard,
310 .output = ip6_pkt_discard_out,
311 },
312 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
313 };
314
315 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
316
317 static const struct rt6_info ip6_prohibit_entry_template = {
318 .dst = {
319 .__refcnt = ATOMIC_INIT(1),
320 .__use = 1,
321 .obsolete = DST_OBSOLETE_FORCE_CHK,
322 .error = -EACCES,
323 .input = ip6_pkt_prohibit,
324 .output = ip6_pkt_prohibit_out,
325 },
326 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
327 };
328
329 static const struct rt6_info ip6_blk_hole_entry_template = {
330 .dst = {
331 .__refcnt = ATOMIC_INIT(1),
332 .__use = 1,
333 .obsolete = DST_OBSOLETE_FORCE_CHK,
334 .error = -EINVAL,
335 .input = dst_discard,
336 .output = dst_discard_out,
337 },
338 .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP),
339 };
340
341 #endif
342
343 static void rt6_info_init(struct rt6_info *rt)
344 {
345 struct dst_entry *dst = &rt->dst;
346
347 memset(dst + 1, 0, sizeof(*rt) - sizeof(*dst));
348 INIT_LIST_HEAD(&rt->rt6i_uncached);
349 }
350
351 /* allocate dst with ip6_dst_ops */
352 struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev,
353 int flags)
354 {
355 struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev,
356 1, DST_OBSOLETE_FORCE_CHK, flags);
357
358 if (rt) {
359 rt6_info_init(rt);
360 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
361 }
362
363 return rt;
364 }
365 EXPORT_SYMBOL(ip6_dst_alloc);
366
367 static void ip6_dst_destroy(struct dst_entry *dst)
368 {
369 struct rt6_info *rt = (struct rt6_info *)dst;
370 struct fib6_info *from;
371 struct inet6_dev *idev;
372
373 ip_dst_metrics_put(dst);
374 rt6_uncached_list_del(rt);
375
376 idev = rt->rt6i_idev;
377 if (idev) {
378 rt->rt6i_idev = NULL;
379 in6_dev_put(idev);
380 }
381
382 rcu_read_lock();
383 from = rcu_dereference(rt->from);
384 rcu_assign_pointer(rt->from, NULL);
385 fib6_info_release(from);
386 rcu_read_unlock();
387 }
388
389 static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev,
390 int how)
391 {
392 struct rt6_info *rt = (struct rt6_info *)dst;
393 struct inet6_dev *idev = rt->rt6i_idev;
394 struct net_device *loopback_dev =
395 dev_net(dev)->loopback_dev;
396
397 if (idev && idev->dev != loopback_dev) {
398 struct inet6_dev *loopback_idev = in6_dev_get(loopback_dev);
399 if (loopback_idev) {
400 rt->rt6i_idev = loopback_idev;
401 in6_dev_put(idev);
402 }
403 }
404 }
405
406 static bool __rt6_check_expired(const struct rt6_info *rt)
407 {
408 if (rt->rt6i_flags & RTF_EXPIRES)
409 return time_after(jiffies, rt->dst.expires);
410 else
411 return false;
412 }
413
414 static bool rt6_check_expired(const struct rt6_info *rt)
415 {
416 struct fib6_info *from;
417
418 from = rcu_dereference(rt->from);
419
420 if (rt->rt6i_flags & RTF_EXPIRES) {
421 if (time_after(jiffies, rt->dst.expires))
422 return true;
423 } else if (from) {
424 return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK ||
425 fib6_check_expired(from);
426 }
427 return false;
428 }
429
430 struct fib6_info *fib6_multipath_select(const struct net *net,
431 struct fib6_info *match,
432 struct flowi6 *fl6, int oif,
433 const struct sk_buff *skb,
434 int strict)
435 {
436 struct fib6_info *sibling, *next_sibling;
437
438 /* We might have already computed the hash for ICMPv6 errors. In such
439 * case it will always be non-zero. Otherwise now is the time to do it.
440 */
441 if (!fl6->mp_hash)
442 fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL);
443
444 if (fl6->mp_hash <= atomic_read(&match->fib6_nh.nh_upper_bound))
445 return match;
446
447 list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings,
448 fib6_siblings) {
449 int nh_upper_bound;
450
451 nh_upper_bound = atomic_read(&sibling->fib6_nh.nh_upper_bound);
452 if (fl6->mp_hash > nh_upper_bound)
453 continue;
454 if (rt6_score_route(sibling, oif, strict) < 0)
455 break;
456 match = sibling;
457 break;
458 }
459
460 return match;
461 }
462
463 /*
464 * Route lookup. rcu_read_lock() should be held.
465 */
466
467 static inline struct fib6_info *rt6_device_match(struct net *net,
468 struct fib6_info *rt,
469 const struct in6_addr *saddr,
470 int oif,
471 int flags)
472 {
473 struct fib6_info *sprt;
474
475 if (!oif && ipv6_addr_any(saddr) &&
476 !(rt->fib6_nh.nh_flags & RTNH_F_DEAD))
477 return rt;
478
479 for (sprt = rt; sprt; sprt = rcu_dereference(sprt->fib6_next)) {
480 const struct net_device *dev = sprt->fib6_nh.nh_dev;
481
482 if (sprt->fib6_nh.nh_flags & RTNH_F_DEAD)
483 continue;
484
485 if (oif) {
486 if (dev->ifindex == oif)
487 return sprt;
488 } else {
489 if (ipv6_chk_addr(net, saddr, dev,
490 flags & RT6_LOOKUP_F_IFACE))
491 return sprt;
492 }
493 }
494
495 if (oif && flags & RT6_LOOKUP_F_IFACE)
496 return net->ipv6.fib6_null_entry;
497
498 return rt->fib6_nh.nh_flags & RTNH_F_DEAD ? net->ipv6.fib6_null_entry : rt;
499 }
500
501 #ifdef CONFIG_IPV6_ROUTER_PREF
502 struct __rt6_probe_work {
503 struct work_struct work;
504 struct in6_addr target;
505 struct net_device *dev;
506 };
507
508 static void rt6_probe_deferred(struct work_struct *w)
509 {
510 struct in6_addr mcaddr;
511 struct __rt6_probe_work *work =
512 container_of(w, struct __rt6_probe_work, work);
513
514 addrconf_addr_solict_mult(&work->target, &mcaddr);
515 ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0);
516 dev_put(work->dev);
517 kfree(work);
518 }
519
520 static void rt6_probe(struct fib6_info *rt)
521 {
522 struct __rt6_probe_work *work = NULL;
523 const struct in6_addr *nh_gw;
524 struct neighbour *neigh;
525 struct net_device *dev;
526 struct inet6_dev *idev;
527
528 /*
529 * Okay, this does not seem to be appropriate
530 * for now, however, we need to check if it
531 * is really so; aka Router Reachability Probing.
532 *
533 * Router Reachability Probe MUST be rate-limited
534 * to no more than one per minute.
535 */
536 if (!rt || !(rt->fib6_flags & RTF_GATEWAY))
537 return;
538
539 nh_gw = &rt->fib6_nh.nh_gw;
540 dev = rt->fib6_nh.nh_dev;
541 rcu_read_lock_bh();
542 idev = __in6_dev_get(dev);
543 neigh = __ipv6_neigh_lookup_noref(dev, nh_gw);
544 if (neigh) {
545 if (neigh->nud_state & NUD_VALID)
546 goto out;
547
548 write_lock(&neigh->lock);
549 if (!(neigh->nud_state & NUD_VALID) &&
550 time_after(jiffies,
551 neigh->updated + idev->cnf.rtr_probe_interval)) {
552 work = kmalloc(sizeof(*work), GFP_ATOMIC);
553 if (work)
554 __neigh_set_probe_once(neigh);
555 }
556 write_unlock(&neigh->lock);
557 } else if (time_after(jiffies, rt->last_probe +
558 idev->cnf.rtr_probe_interval)) {
559 work = kmalloc(sizeof(*work), GFP_ATOMIC);
560 }
561
562 if (work) {
563 rt->last_probe = jiffies;
564 INIT_WORK(&work->work, rt6_probe_deferred);
565 work->target = *nh_gw;
566 dev_hold(dev);
567 work->dev = dev;
568 schedule_work(&work->work);
569 }
570
571 out:
572 rcu_read_unlock_bh();
573 }
574 #else
575 static inline void rt6_probe(struct fib6_info *rt)
576 {
577 }
578 #endif
579
580 /*
581 * Default Router Selection (RFC 2461 6.3.6)
582 */
583 static inline int rt6_check_dev(struct fib6_info *rt, int oif)
584 {
585 const struct net_device *dev = rt->fib6_nh.nh_dev;
586
587 if (!oif || dev->ifindex == oif)
588 return 2;
589 return 0;
590 }
591
592 static inline enum rt6_nud_state rt6_check_neigh(struct fib6_info *rt)
593 {
594 enum rt6_nud_state ret = RT6_NUD_FAIL_HARD;
595 struct neighbour *neigh;
596
597 if (rt->fib6_flags & RTF_NONEXTHOP ||
598 !(rt->fib6_flags & RTF_GATEWAY))
599 return RT6_NUD_SUCCEED;
600
601 rcu_read_lock_bh();
602 neigh = __ipv6_neigh_lookup_noref(rt->fib6_nh.nh_dev,
603 &rt->fib6_nh.nh_gw);
604 if (neigh) {
605 read_lock(&neigh->lock);
606 if (neigh->nud_state & NUD_VALID)
607 ret = RT6_NUD_SUCCEED;
608 #ifdef CONFIG_IPV6_ROUTER_PREF
609 else if (!(neigh->nud_state & NUD_FAILED))
610 ret = RT6_NUD_SUCCEED;
611 else
612 ret = RT6_NUD_FAIL_PROBE;
613 #endif
614 read_unlock(&neigh->lock);
615 } else {
616 ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ?
617 RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR;
618 }
619 rcu_read_unlock_bh();
620
621 return ret;
622 }
623
624 static int rt6_score_route(struct fib6_info *rt, int oif, int strict)
625 {
626 int m;
627
628 m = rt6_check_dev(rt, oif);
629 if (!m && (strict & RT6_LOOKUP_F_IFACE))
630 return RT6_NUD_FAIL_HARD;
631 #ifdef CONFIG_IPV6_ROUTER_PREF
632 m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(rt->fib6_flags)) << 2;
633 #endif
634 if (strict & RT6_LOOKUP_F_REACHABLE) {
635 int n = rt6_check_neigh(rt);
636 if (n < 0)
637 return n;
638 }
639 return m;
640 }
641
642 /* called with rc_read_lock held */
643 static inline bool fib6_ignore_linkdown(const struct fib6_info *f6i)
644 {
645 const struct net_device *dev = fib6_info_nh_dev(f6i);
646 bool rc = false;
647
648 if (dev) {
649 const struct inet6_dev *idev = __in6_dev_get(dev);
650
651 rc = !!idev->cnf.ignore_routes_with_linkdown;
652 }
653
654 return rc;
655 }
656
657 static struct fib6_info *find_match(struct fib6_info *rt, int oif, int strict,
658 int *mpri, struct fib6_info *match,
659 bool *do_rr)
660 {
661 int m;
662 bool match_do_rr = false;
663
664 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
665 goto out;
666
667 if (fib6_ignore_linkdown(rt) &&
668 rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
669 !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE))
670 goto out;
671
672 if (fib6_check_expired(rt))
673 goto out;
674
675 m = rt6_score_route(rt, oif, strict);
676 if (m == RT6_NUD_FAIL_DO_RR) {
677 match_do_rr = true;
678 m = 0; /* lowest valid score */
679 } else if (m == RT6_NUD_FAIL_HARD) {
680 goto out;
681 }
682
683 if (strict & RT6_LOOKUP_F_REACHABLE)
684 rt6_probe(rt);
685
686 /* note that m can be RT6_NUD_FAIL_PROBE at this point */
687 if (m > *mpri) {
688 *do_rr = match_do_rr;
689 *mpri = m;
690 match = rt;
691 }
692 out:
693 return match;
694 }
695
696 static struct fib6_info *find_rr_leaf(struct fib6_node *fn,
697 struct fib6_info *leaf,
698 struct fib6_info *rr_head,
699 u32 metric, int oif, int strict,
700 bool *do_rr)
701 {
702 struct fib6_info *rt, *match, *cont;
703 int mpri = -1;
704
705 match = NULL;
706 cont = NULL;
707 for (rt = rr_head; rt; rt = rcu_dereference(rt->fib6_next)) {
708 if (rt->fib6_metric != metric) {
709 cont = rt;
710 break;
711 }
712
713 match = find_match(rt, oif, strict, &mpri, match, do_rr);
714 }
715
716 for (rt = leaf; rt && rt != rr_head;
717 rt = rcu_dereference(rt->fib6_next)) {
718 if (rt->fib6_metric != metric) {
719 cont = rt;
720 break;
721 }
722
723 match = find_match(rt, oif, strict, &mpri, match, do_rr);
724 }
725
726 if (match || !cont)
727 return match;
728
729 for (rt = cont; rt; rt = rcu_dereference(rt->fib6_next))
730 match = find_match(rt, oif, strict, &mpri, match, do_rr);
731
732 return match;
733 }
734
735 static struct fib6_info *rt6_select(struct net *net, struct fib6_node *fn,
736 int oif, int strict)
737 {
738 struct fib6_info *leaf = rcu_dereference(fn->leaf);
739 struct fib6_info *match, *rt0;
740 bool do_rr = false;
741 int key_plen;
742
743 if (!leaf || leaf == net->ipv6.fib6_null_entry)
744 return net->ipv6.fib6_null_entry;
745
746 rt0 = rcu_dereference(fn->rr_ptr);
747 if (!rt0)
748 rt0 = leaf;
749
750 /* Double check to make sure fn is not an intermediate node
751 * and fn->leaf does not points to its child's leaf
752 * (This might happen if all routes under fn are deleted from
753 * the tree and fib6_repair_tree() is called on the node.)
754 */
755 key_plen = rt0->fib6_dst.plen;
756 #ifdef CONFIG_IPV6_SUBTREES
757 if (rt0->fib6_src.plen)
758 key_plen = rt0->fib6_src.plen;
759 #endif
760 if (fn->fn_bit != key_plen)
761 return net->ipv6.fib6_null_entry;
762
763 match = find_rr_leaf(fn, leaf, rt0, rt0->fib6_metric, oif, strict,
764 &do_rr);
765
766 if (do_rr) {
767 struct fib6_info *next = rcu_dereference(rt0->fib6_next);
768
769 /* no entries matched; do round-robin */
770 if (!next || next->fib6_metric != rt0->fib6_metric)
771 next = leaf;
772
773 if (next != rt0) {
774 spin_lock_bh(&leaf->fib6_table->tb6_lock);
775 /* make sure next is not being deleted from the tree */
776 if (next->fib6_node)
777 rcu_assign_pointer(fn->rr_ptr, next);
778 spin_unlock_bh(&leaf->fib6_table->tb6_lock);
779 }
780 }
781
782 return match ? match : net->ipv6.fib6_null_entry;
783 }
784
785 static bool rt6_is_gw_or_nonexthop(const struct fib6_info *rt)
786 {
787 return (rt->fib6_flags & (RTF_NONEXTHOP | RTF_GATEWAY));
788 }
789
790 #ifdef CONFIG_IPV6_ROUTE_INFO
791 int rt6_route_rcv(struct net_device *dev, u8 *opt, int len,
792 const struct in6_addr *gwaddr)
793 {
794 struct net *net = dev_net(dev);
795 struct route_info *rinfo = (struct route_info *) opt;
796 struct in6_addr prefix_buf, *prefix;
797 unsigned int pref;
798 unsigned long lifetime;
799 struct fib6_info *rt;
800
801 if (len < sizeof(struct route_info)) {
802 return -EINVAL;
803 }
804
805 /* Sanity check for prefix_len and length */
806 if (rinfo->length > 3) {
807 return -EINVAL;
808 } else if (rinfo->prefix_len > 128) {
809 return -EINVAL;
810 } else if (rinfo->prefix_len > 64) {
811 if (rinfo->length < 2) {
812 return -EINVAL;
813 }
814 } else if (rinfo->prefix_len > 0) {
815 if (rinfo->length < 1) {
816 return -EINVAL;
817 }
818 }
819
820 pref = rinfo->route_pref;
821 if (pref == ICMPV6_ROUTER_PREF_INVALID)
822 return -EINVAL;
823
824 lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ);
825
826 if (rinfo->length == 3)
827 prefix = (struct in6_addr *)rinfo->prefix;
828 else {
829 /* this function is safe */
830 ipv6_addr_prefix(&prefix_buf,
831 (struct in6_addr *)rinfo->prefix,
832 rinfo->prefix_len);
833 prefix = &prefix_buf;
834 }
835
836 if (rinfo->prefix_len == 0)
837 rt = rt6_get_dflt_router(net, gwaddr, dev);
838 else
839 rt = rt6_get_route_info(net, prefix, rinfo->prefix_len,
840 gwaddr, dev);
841
842 if (rt && !lifetime) {
843 ip6_del_rt(net, rt);
844 rt = NULL;
845 }
846
847 if (!rt && lifetime)
848 rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr,
849 dev, pref);
850 else if (rt)
851 rt->fib6_flags = RTF_ROUTEINFO |
852 (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref);
853
854 if (rt) {
855 if (!addrconf_finite_timeout(lifetime))
856 fib6_clean_expires(rt);
857 else
858 fib6_set_expires(rt, jiffies + HZ * lifetime);
859
860 fib6_info_release(rt);
861 }
862 return 0;
863 }
864 #endif
865
866 /*
867 * Misc support functions
868 */
869
870 /* called with rcu_lock held */
871 static struct net_device *ip6_rt_get_dev_rcu(struct fib6_info *rt)
872 {
873 struct net_device *dev = rt->fib6_nh.nh_dev;
874
875 if (rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) {
876 /* for copies of local routes, dst->dev needs to be the
877 * device if it is a master device, the master device if
878 * device is enslaved, and the loopback as the default
879 */
880 if (netif_is_l3_slave(dev) &&
881 !rt6_need_strict(&rt->fib6_dst.addr))
882 dev = l3mdev_master_dev_rcu(dev);
883 else if (!netif_is_l3_master(dev))
884 dev = dev_net(dev)->loopback_dev;
885 /* last case is netif_is_l3_master(dev) is true in which
886 * case we want dev returned to be dev
887 */
888 }
889
890 return dev;
891 }
892
893 static const int fib6_prop[RTN_MAX + 1] = {
894 [RTN_UNSPEC] = 0,
895 [RTN_UNICAST] = 0,
896 [RTN_LOCAL] = 0,
897 [RTN_BROADCAST] = 0,
898 [RTN_ANYCAST] = 0,
899 [RTN_MULTICAST] = 0,
900 [RTN_BLACKHOLE] = -EINVAL,
901 [RTN_UNREACHABLE] = -EHOSTUNREACH,
902 [RTN_PROHIBIT] = -EACCES,
903 [RTN_THROW] = -EAGAIN,
904 [RTN_NAT] = -EINVAL,
905 [RTN_XRESOLVE] = -EINVAL,
906 };
907
908 static int ip6_rt_type_to_error(u8 fib6_type)
909 {
910 return fib6_prop[fib6_type];
911 }
912
913 static unsigned short fib6_info_dst_flags(struct fib6_info *rt)
914 {
915 unsigned short flags = 0;
916
917 if (rt->dst_nocount)
918 flags |= DST_NOCOUNT;
919 if (rt->dst_nopolicy)
920 flags |= DST_NOPOLICY;
921 if (rt->dst_host)
922 flags |= DST_HOST;
923
924 return flags;
925 }
926
927 static void ip6_rt_init_dst_reject(struct rt6_info *rt, struct fib6_info *ort)
928 {
929 rt->dst.error = ip6_rt_type_to_error(ort->fib6_type);
930
931 switch (ort->fib6_type) {
932 case RTN_BLACKHOLE:
933 rt->dst.output = dst_discard_out;
934 rt->dst.input = dst_discard;
935 break;
936 case RTN_PROHIBIT:
937 rt->dst.output = ip6_pkt_prohibit_out;
938 rt->dst.input = ip6_pkt_prohibit;
939 break;
940 case RTN_THROW:
941 case RTN_UNREACHABLE:
942 default:
943 rt->dst.output = ip6_pkt_discard_out;
944 rt->dst.input = ip6_pkt_discard;
945 break;
946 }
947 }
948
949 static void ip6_rt_init_dst(struct rt6_info *rt, struct fib6_info *ort)
950 {
951 if (ort->fib6_flags & RTF_REJECT) {
952 ip6_rt_init_dst_reject(rt, ort);
953 return;
954 }
955
956 rt->dst.error = 0;
957 rt->dst.output = ip6_output;
958
959 if (ort->fib6_type == RTN_LOCAL || ort->fib6_type == RTN_ANYCAST) {
960 rt->dst.input = ip6_input;
961 } else if (ipv6_addr_type(&ort->fib6_dst.addr) & IPV6_ADDR_MULTICAST) {
962 rt->dst.input = ip6_mc_input;
963 } else {
964 rt->dst.input = ip6_forward;
965 }
966
967 if (ort->fib6_nh.nh_lwtstate) {
968 rt->dst.lwtstate = lwtstate_get(ort->fib6_nh.nh_lwtstate);
969 lwtunnel_set_redirect(&rt->dst);
970 }
971
972 rt->dst.lastuse = jiffies;
973 }
974
975 /* Caller must already hold reference to @from */
976 static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from)
977 {
978 rt->rt6i_flags &= ~RTF_EXPIRES;
979 rcu_assign_pointer(rt->from, from);
980 ip_dst_init_metrics(&rt->dst, from->fib6_metrics);
981 }
982
983 /* Caller must already hold reference to @ort */
984 static void ip6_rt_copy_init(struct rt6_info *rt, struct fib6_info *ort)
985 {
986 struct net_device *dev = fib6_info_nh_dev(ort);
987
988 ip6_rt_init_dst(rt, ort);
989
990 rt->rt6i_dst = ort->fib6_dst;
991 rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL;
992 rt->rt6i_gateway = ort->fib6_nh.nh_gw;
993 rt->rt6i_flags = ort->fib6_flags;
994 rt6_set_from(rt, ort);
995 #ifdef CONFIG_IPV6_SUBTREES
996 rt->rt6i_src = ort->fib6_src;
997 #endif
998 }
999
1000 static struct fib6_node* fib6_backtrack(struct fib6_node *fn,
1001 struct in6_addr *saddr)
1002 {
1003 struct fib6_node *pn, *sn;
1004 while (1) {
1005 if (fn->fn_flags & RTN_TL_ROOT)
1006 return NULL;
1007 pn = rcu_dereference(fn->parent);
1008 sn = FIB6_SUBTREE(pn);
1009 if (sn && sn != fn)
1010 fn = fib6_node_lookup(sn, NULL, saddr);
1011 else
1012 fn = pn;
1013 if (fn->fn_flags & RTN_RTINFO)
1014 return fn;
1015 }
1016 }
1017
1018 static bool ip6_hold_safe(struct net *net, struct rt6_info **prt,
1019 bool null_fallback)
1020 {
1021 struct rt6_info *rt = *prt;
1022
1023 if (dst_hold_safe(&rt->dst))
1024 return true;
1025 if (null_fallback) {
1026 rt = net->ipv6.ip6_null_entry;
1027 dst_hold(&rt->dst);
1028 } else {
1029 rt = NULL;
1030 }
1031 *prt = rt;
1032 return false;
1033 }
1034
1035 /* called with rcu_lock held */
1036 static struct rt6_info *ip6_create_rt_rcu(struct fib6_info *rt)
1037 {
1038 unsigned short flags = fib6_info_dst_flags(rt);
1039 struct net_device *dev = rt->fib6_nh.nh_dev;
1040 struct rt6_info *nrt;
1041
1042 if (!fib6_info_hold_safe(rt))
1043 return NULL;
1044
1045 nrt = ip6_dst_alloc(dev_net(dev), dev, flags);
1046 if (nrt)
1047 ip6_rt_copy_init(nrt, rt);
1048 else
1049 fib6_info_release(rt);
1050
1051 return nrt;
1052 }
1053
1054 static struct rt6_info *ip6_pol_route_lookup(struct net *net,
1055 struct fib6_table *table,
1056 struct flowi6 *fl6,
1057 const struct sk_buff *skb,
1058 int flags)
1059 {
1060 struct fib6_info *f6i;
1061 struct fib6_node *fn;
1062 struct rt6_info *rt;
1063
1064 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1065 flags &= ~RT6_LOOKUP_F_IFACE;
1066
1067 rcu_read_lock();
1068 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1069 restart:
1070 f6i = rcu_dereference(fn->leaf);
1071 if (!f6i) {
1072 f6i = net->ipv6.fib6_null_entry;
1073 } else {
1074 f6i = rt6_device_match(net, f6i, &fl6->saddr,
1075 fl6->flowi6_oif, flags);
1076 if (f6i->fib6_nsiblings && fl6->flowi6_oif == 0)
1077 f6i = fib6_multipath_select(net, f6i, fl6,
1078 fl6->flowi6_oif, skb,
1079 flags);
1080 }
1081 if (f6i == net->ipv6.fib6_null_entry) {
1082 fn = fib6_backtrack(fn, &fl6->saddr);
1083 if (fn)
1084 goto restart;
1085 }
1086
1087 trace_fib6_table_lookup(net, f6i, table, fl6);
1088
1089 /* Search through exception table */
1090 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1091 if (rt) {
1092 if (ip6_hold_safe(net, &rt, true))
1093 dst_use_noref(&rt->dst, jiffies);
1094 } else if (f6i == net->ipv6.fib6_null_entry) {
1095 rt = net->ipv6.ip6_null_entry;
1096 dst_hold(&rt->dst);
1097 } else {
1098 rt = ip6_create_rt_rcu(f6i);
1099 if (!rt) {
1100 rt = net->ipv6.ip6_null_entry;
1101 dst_hold(&rt->dst);
1102 }
1103 }
1104
1105 rcu_read_unlock();
1106
1107 return rt;
1108 }
1109
1110 struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6,
1111 const struct sk_buff *skb, int flags)
1112 {
1113 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup);
1114 }
1115 EXPORT_SYMBOL_GPL(ip6_route_lookup);
1116
1117 struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr,
1118 const struct in6_addr *saddr, int oif,
1119 const struct sk_buff *skb, int strict)
1120 {
1121 struct flowi6 fl6 = {
1122 .flowi6_oif = oif,
1123 .daddr = *daddr,
1124 };
1125 struct dst_entry *dst;
1126 int flags = strict ? RT6_LOOKUP_F_IFACE : 0;
1127
1128 if (saddr) {
1129 memcpy(&fl6.saddr, saddr, sizeof(*saddr));
1130 flags |= RT6_LOOKUP_F_HAS_SADDR;
1131 }
1132
1133 dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup);
1134 if (dst->error == 0)
1135 return (struct rt6_info *) dst;
1136
1137 dst_release(dst);
1138
1139 return NULL;
1140 }
1141 EXPORT_SYMBOL(rt6_lookup);
1142
1143 /* ip6_ins_rt is called with FREE table->tb6_lock.
1144 * It takes new route entry, the addition fails by any reason the
1145 * route is released.
1146 * Caller must hold dst before calling it.
1147 */
1148
1149 static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info,
1150 struct netlink_ext_ack *extack)
1151 {
1152 int err;
1153 struct fib6_table *table;
1154
1155 table = rt->fib6_table;
1156 spin_lock_bh(&table->tb6_lock);
1157 err = fib6_add(&table->tb6_root, rt, info, extack);
1158 spin_unlock_bh(&table->tb6_lock);
1159
1160 return err;
1161 }
1162
1163 int ip6_ins_rt(struct net *net, struct fib6_info *rt)
1164 {
1165 struct nl_info info = { .nl_net = net, };
1166
1167 return __ip6_ins_rt(rt, &info, NULL);
1168 }
1169
1170 static struct rt6_info *ip6_rt_cache_alloc(struct fib6_info *ort,
1171 const struct in6_addr *daddr,
1172 const struct in6_addr *saddr)
1173 {
1174 struct net_device *dev;
1175 struct rt6_info *rt;
1176
1177 /*
1178 * Clone the route.
1179 */
1180
1181 if (!fib6_info_hold_safe(ort))
1182 return NULL;
1183
1184 dev = ip6_rt_get_dev_rcu(ort);
1185 rt = ip6_dst_alloc(dev_net(dev), dev, 0);
1186 if (!rt) {
1187 fib6_info_release(ort);
1188 return NULL;
1189 }
1190
1191 ip6_rt_copy_init(rt, ort);
1192 rt->rt6i_flags |= RTF_CACHE;
1193 rt->dst.flags |= DST_HOST;
1194 rt->rt6i_dst.addr = *daddr;
1195 rt->rt6i_dst.plen = 128;
1196
1197 if (!rt6_is_gw_or_nonexthop(ort)) {
1198 if (ort->fib6_dst.plen != 128 &&
1199 ipv6_addr_equal(&ort->fib6_dst.addr, daddr))
1200 rt->rt6i_flags |= RTF_ANYCAST;
1201 #ifdef CONFIG_IPV6_SUBTREES
1202 if (rt->rt6i_src.plen && saddr) {
1203 rt->rt6i_src.addr = *saddr;
1204 rt->rt6i_src.plen = 128;
1205 }
1206 #endif
1207 }
1208
1209 return rt;
1210 }
1211
1212 static struct rt6_info *ip6_rt_pcpu_alloc(struct fib6_info *rt)
1213 {
1214 unsigned short flags = fib6_info_dst_flags(rt);
1215 struct net_device *dev;
1216 struct rt6_info *pcpu_rt;
1217
1218 if (!fib6_info_hold_safe(rt))
1219 return NULL;
1220
1221 rcu_read_lock();
1222 dev = ip6_rt_get_dev_rcu(rt);
1223 pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags);
1224 rcu_read_unlock();
1225 if (!pcpu_rt) {
1226 fib6_info_release(rt);
1227 return NULL;
1228 }
1229 ip6_rt_copy_init(pcpu_rt, rt);
1230 pcpu_rt->rt6i_flags |= RTF_PCPU;
1231 return pcpu_rt;
1232 }
1233
1234 /* It should be called with rcu_read_lock() acquired */
1235 static struct rt6_info *rt6_get_pcpu_route(struct fib6_info *rt)
1236 {
1237 struct rt6_info *pcpu_rt, **p;
1238
1239 p = this_cpu_ptr(rt->rt6i_pcpu);
1240 pcpu_rt = *p;
1241
1242 if (pcpu_rt)
1243 ip6_hold_safe(NULL, &pcpu_rt, false);
1244
1245 return pcpu_rt;
1246 }
1247
1248 static struct rt6_info *rt6_make_pcpu_route(struct net *net,
1249 struct fib6_info *rt)
1250 {
1251 struct rt6_info *pcpu_rt, *prev, **p;
1252
1253 pcpu_rt = ip6_rt_pcpu_alloc(rt);
1254 if (!pcpu_rt) {
1255 dst_hold(&net->ipv6.ip6_null_entry->dst);
1256 return net->ipv6.ip6_null_entry;
1257 }
1258
1259 dst_hold(&pcpu_rt->dst);
1260 p = this_cpu_ptr(rt->rt6i_pcpu);
1261 prev = cmpxchg(p, NULL, pcpu_rt);
1262 BUG_ON(prev);
1263
1264 return pcpu_rt;
1265 }
1266
1267 /* exception hash table implementation
1268 */
1269 static DEFINE_SPINLOCK(rt6_exception_lock);
1270
1271 /* Remove rt6_ex from hash table and free the memory
1272 * Caller must hold rt6_exception_lock
1273 */
1274 static void rt6_remove_exception(struct rt6_exception_bucket *bucket,
1275 struct rt6_exception *rt6_ex)
1276 {
1277 struct net *net;
1278
1279 if (!bucket || !rt6_ex)
1280 return;
1281
1282 net = dev_net(rt6_ex->rt6i->dst.dev);
1283 hlist_del_rcu(&rt6_ex->hlist);
1284 dst_release(&rt6_ex->rt6i->dst);
1285 kfree_rcu(rt6_ex, rcu);
1286 WARN_ON_ONCE(!bucket->depth);
1287 bucket->depth--;
1288 net->ipv6.rt6_stats->fib_rt_cache--;
1289 }
1290
1291 /* Remove oldest rt6_ex in bucket and free the memory
1292 * Caller must hold rt6_exception_lock
1293 */
1294 static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket)
1295 {
1296 struct rt6_exception *rt6_ex, *oldest = NULL;
1297
1298 if (!bucket)
1299 return;
1300
1301 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1302 if (!oldest || time_before(rt6_ex->stamp, oldest->stamp))
1303 oldest = rt6_ex;
1304 }
1305 rt6_remove_exception(bucket, oldest);
1306 }
1307
1308 static u32 rt6_exception_hash(const struct in6_addr *dst,
1309 const struct in6_addr *src)
1310 {
1311 static u32 seed __read_mostly;
1312 u32 val;
1313
1314 net_get_random_once(&seed, sizeof(seed));
1315 val = jhash(dst, sizeof(*dst), seed);
1316
1317 #ifdef CONFIG_IPV6_SUBTREES
1318 if (src)
1319 val = jhash(src, sizeof(*src), val);
1320 #endif
1321 return hash_32(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT);
1322 }
1323
1324 /* Helper function to find the cached rt in the hash table
1325 * and update bucket pointer to point to the bucket for this
1326 * (daddr, saddr) pair
1327 * Caller must hold rt6_exception_lock
1328 */
1329 static struct rt6_exception *
1330 __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket,
1331 const struct in6_addr *daddr,
1332 const struct in6_addr *saddr)
1333 {
1334 struct rt6_exception *rt6_ex;
1335 u32 hval;
1336
1337 if (!(*bucket) || !daddr)
1338 return NULL;
1339
1340 hval = rt6_exception_hash(daddr, saddr);
1341 *bucket += hval;
1342
1343 hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) {
1344 struct rt6_info *rt6 = rt6_ex->rt6i;
1345 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1346
1347 #ifdef CONFIG_IPV6_SUBTREES
1348 if (matched && saddr)
1349 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1350 #endif
1351 if (matched)
1352 return rt6_ex;
1353 }
1354 return NULL;
1355 }
1356
1357 /* Helper function to find the cached rt in the hash table
1358 * and update bucket pointer to point to the bucket for this
1359 * (daddr, saddr) pair
1360 * Caller must hold rcu_read_lock()
1361 */
1362 static struct rt6_exception *
1363 __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket,
1364 const struct in6_addr *daddr,
1365 const struct in6_addr *saddr)
1366 {
1367 struct rt6_exception *rt6_ex;
1368 u32 hval;
1369
1370 WARN_ON_ONCE(!rcu_read_lock_held());
1371
1372 if (!(*bucket) || !daddr)
1373 return NULL;
1374
1375 hval = rt6_exception_hash(daddr, saddr);
1376 *bucket += hval;
1377
1378 hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) {
1379 struct rt6_info *rt6 = rt6_ex->rt6i;
1380 bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr);
1381
1382 #ifdef CONFIG_IPV6_SUBTREES
1383 if (matched && saddr)
1384 matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr);
1385 #endif
1386 if (matched)
1387 return rt6_ex;
1388 }
1389 return NULL;
1390 }
1391
1392 static unsigned int fib6_mtu(const struct fib6_info *rt)
1393 {
1394 unsigned int mtu;
1395
1396 if (rt->fib6_pmtu) {
1397 mtu = rt->fib6_pmtu;
1398 } else {
1399 struct net_device *dev = fib6_info_nh_dev(rt);
1400 struct inet6_dev *idev;
1401
1402 rcu_read_lock();
1403 idev = __in6_dev_get(dev);
1404 mtu = idev->cnf.mtu6;
1405 rcu_read_unlock();
1406 }
1407
1408 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
1409
1410 return mtu - lwtunnel_headroom(rt->fib6_nh.nh_lwtstate, mtu);
1411 }
1412
1413 static int rt6_insert_exception(struct rt6_info *nrt,
1414 struct fib6_info *ort)
1415 {
1416 struct net *net = dev_net(nrt->dst.dev);
1417 struct rt6_exception_bucket *bucket;
1418 struct in6_addr *src_key = NULL;
1419 struct rt6_exception *rt6_ex;
1420 int err = 0;
1421
1422 spin_lock_bh(&rt6_exception_lock);
1423
1424 if (ort->exception_bucket_flushed) {
1425 err = -EINVAL;
1426 goto out;
1427 }
1428
1429 bucket = rcu_dereference_protected(ort->rt6i_exception_bucket,
1430 lockdep_is_held(&rt6_exception_lock));
1431 if (!bucket) {
1432 bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket),
1433 GFP_ATOMIC);
1434 if (!bucket) {
1435 err = -ENOMEM;
1436 goto out;
1437 }
1438 rcu_assign_pointer(ort->rt6i_exception_bucket, bucket);
1439 }
1440
1441 #ifdef CONFIG_IPV6_SUBTREES
1442 /* rt6i_src.plen != 0 indicates ort is in subtree
1443 * and exception table is indexed by a hash of
1444 * both rt6i_dst and rt6i_src.
1445 * Otherwise, the exception table is indexed by
1446 * a hash of only rt6i_dst.
1447 */
1448 if (ort->fib6_src.plen)
1449 src_key = &nrt->rt6i_src.addr;
1450 #endif
1451 /* rt6_mtu_change() might lower mtu on ort.
1452 * Only insert this exception route if its mtu
1453 * is less than ort's mtu value.
1454 */
1455 if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(ort)) {
1456 err = -EINVAL;
1457 goto out;
1458 }
1459
1460 rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr,
1461 src_key);
1462 if (rt6_ex)
1463 rt6_remove_exception(bucket, rt6_ex);
1464
1465 rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC);
1466 if (!rt6_ex) {
1467 err = -ENOMEM;
1468 goto out;
1469 }
1470 rt6_ex->rt6i = nrt;
1471 rt6_ex->stamp = jiffies;
1472 hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain);
1473 bucket->depth++;
1474 net->ipv6.rt6_stats->fib_rt_cache++;
1475
1476 if (bucket->depth > FIB6_MAX_DEPTH)
1477 rt6_exception_remove_oldest(bucket);
1478
1479 out:
1480 spin_unlock_bh(&rt6_exception_lock);
1481
1482 /* Update fn->fn_sernum to invalidate all cached dst */
1483 if (!err) {
1484 spin_lock_bh(&ort->fib6_table->tb6_lock);
1485 fib6_update_sernum(net, ort);
1486 spin_unlock_bh(&ort->fib6_table->tb6_lock);
1487 fib6_force_start_gc(net);
1488 }
1489
1490 return err;
1491 }
1492
1493 void rt6_flush_exceptions(struct fib6_info *rt)
1494 {
1495 struct rt6_exception_bucket *bucket;
1496 struct rt6_exception *rt6_ex;
1497 struct hlist_node *tmp;
1498 int i;
1499
1500 spin_lock_bh(&rt6_exception_lock);
1501 /* Prevent rt6_insert_exception() to recreate the bucket list */
1502 rt->exception_bucket_flushed = 1;
1503
1504 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1505 lockdep_is_held(&rt6_exception_lock));
1506 if (!bucket)
1507 goto out;
1508
1509 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1510 hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist)
1511 rt6_remove_exception(bucket, rt6_ex);
1512 WARN_ON_ONCE(bucket->depth);
1513 bucket++;
1514 }
1515
1516 out:
1517 spin_unlock_bh(&rt6_exception_lock);
1518 }
1519
1520 /* Find cached rt in the hash table inside passed in rt
1521 * Caller has to hold rcu_read_lock()
1522 */
1523 static struct rt6_info *rt6_find_cached_rt(struct fib6_info *rt,
1524 struct in6_addr *daddr,
1525 struct in6_addr *saddr)
1526 {
1527 struct rt6_exception_bucket *bucket;
1528 struct in6_addr *src_key = NULL;
1529 struct rt6_exception *rt6_ex;
1530 struct rt6_info *res = NULL;
1531
1532 bucket = rcu_dereference(rt->rt6i_exception_bucket);
1533
1534 #ifdef CONFIG_IPV6_SUBTREES
1535 /* rt6i_src.plen != 0 indicates rt is in subtree
1536 * and exception table is indexed by a hash of
1537 * both rt6i_dst and rt6i_src.
1538 * Otherwise, the exception table is indexed by
1539 * a hash of only rt6i_dst.
1540 */
1541 if (rt->fib6_src.plen)
1542 src_key = saddr;
1543 #endif
1544 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
1545
1546 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
1547 res = rt6_ex->rt6i;
1548
1549 return res;
1550 }
1551
1552 /* Remove the passed in cached rt from the hash table that contains it */
1553 static int rt6_remove_exception_rt(struct rt6_info *rt)
1554 {
1555 struct rt6_exception_bucket *bucket;
1556 struct in6_addr *src_key = NULL;
1557 struct rt6_exception *rt6_ex;
1558 struct fib6_info *from;
1559 int err;
1560
1561 from = rcu_dereference(rt->from);
1562 if (!from ||
1563 !(rt->rt6i_flags & RTF_CACHE))
1564 return -EINVAL;
1565
1566 if (!rcu_access_pointer(from->rt6i_exception_bucket))
1567 return -ENOENT;
1568
1569 spin_lock_bh(&rt6_exception_lock);
1570 bucket = rcu_dereference_protected(from->rt6i_exception_bucket,
1571 lockdep_is_held(&rt6_exception_lock));
1572 #ifdef CONFIG_IPV6_SUBTREES
1573 /* rt6i_src.plen != 0 indicates 'from' is in subtree
1574 * and exception table is indexed by a hash of
1575 * both rt6i_dst and rt6i_src.
1576 * Otherwise, the exception table is indexed by
1577 * a hash of only rt6i_dst.
1578 */
1579 if (from->fib6_src.plen)
1580 src_key = &rt->rt6i_src.addr;
1581 #endif
1582 rt6_ex = __rt6_find_exception_spinlock(&bucket,
1583 &rt->rt6i_dst.addr,
1584 src_key);
1585 if (rt6_ex) {
1586 rt6_remove_exception(bucket, rt6_ex);
1587 err = 0;
1588 } else {
1589 err = -ENOENT;
1590 }
1591
1592 spin_unlock_bh(&rt6_exception_lock);
1593 return err;
1594 }
1595
1596 /* Find rt6_ex which contains the passed in rt cache and
1597 * refresh its stamp
1598 */
1599 static void rt6_update_exception_stamp_rt(struct rt6_info *rt)
1600 {
1601 struct rt6_exception_bucket *bucket;
1602 struct fib6_info *from = rt->from;
1603 struct in6_addr *src_key = NULL;
1604 struct rt6_exception *rt6_ex;
1605
1606 if (!from ||
1607 !(rt->rt6i_flags & RTF_CACHE))
1608 return;
1609
1610 rcu_read_lock();
1611 bucket = rcu_dereference(from->rt6i_exception_bucket);
1612
1613 #ifdef CONFIG_IPV6_SUBTREES
1614 /* rt6i_src.plen != 0 indicates 'from' is in subtree
1615 * and exception table is indexed by a hash of
1616 * both rt6i_dst and rt6i_src.
1617 * Otherwise, the exception table is indexed by
1618 * a hash of only rt6i_dst.
1619 */
1620 if (from->fib6_src.plen)
1621 src_key = &rt->rt6i_src.addr;
1622 #endif
1623 rt6_ex = __rt6_find_exception_rcu(&bucket,
1624 &rt->rt6i_dst.addr,
1625 src_key);
1626 if (rt6_ex)
1627 rt6_ex->stamp = jiffies;
1628
1629 rcu_read_unlock();
1630 }
1631
1632 static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev,
1633 struct rt6_info *rt, int mtu)
1634 {
1635 /* If the new MTU is lower than the route PMTU, this new MTU will be the
1636 * lowest MTU in the path: always allow updating the route PMTU to
1637 * reflect PMTU decreases.
1638 *
1639 * If the new MTU is higher, and the route PMTU is equal to the local
1640 * MTU, this means the old MTU is the lowest in the path, so allow
1641 * updating it: if other nodes now have lower MTUs, PMTU discovery will
1642 * handle this.
1643 */
1644
1645 if (dst_mtu(&rt->dst) >= mtu)
1646 return true;
1647
1648 if (dst_mtu(&rt->dst) == idev->cnf.mtu6)
1649 return true;
1650
1651 return false;
1652 }
1653
1654 static void rt6_exceptions_update_pmtu(struct inet6_dev *idev,
1655 struct fib6_info *rt, int mtu)
1656 {
1657 struct rt6_exception_bucket *bucket;
1658 struct rt6_exception *rt6_ex;
1659 int i;
1660
1661 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1662 lockdep_is_held(&rt6_exception_lock));
1663
1664 if (!bucket)
1665 return;
1666
1667 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1668 hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) {
1669 struct rt6_info *entry = rt6_ex->rt6i;
1670
1671 /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected
1672 * route), the metrics of its rt->from have already
1673 * been updated.
1674 */
1675 if (dst_metric_raw(&entry->dst, RTAX_MTU) &&
1676 rt6_mtu_change_route_allowed(idev, entry, mtu))
1677 dst_metric_set(&entry->dst, RTAX_MTU, mtu);
1678 }
1679 bucket++;
1680 }
1681 }
1682
1683 #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE)
1684
1685 static void rt6_exceptions_clean_tohost(struct fib6_info *rt,
1686 struct in6_addr *gateway)
1687 {
1688 struct rt6_exception_bucket *bucket;
1689 struct rt6_exception *rt6_ex;
1690 struct hlist_node *tmp;
1691 int i;
1692
1693 if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1694 return;
1695
1696 spin_lock_bh(&rt6_exception_lock);
1697 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1698 lockdep_is_held(&rt6_exception_lock));
1699
1700 if (bucket) {
1701 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1702 hlist_for_each_entry_safe(rt6_ex, tmp,
1703 &bucket->chain, hlist) {
1704 struct rt6_info *entry = rt6_ex->rt6i;
1705
1706 if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) ==
1707 RTF_CACHE_GATEWAY &&
1708 ipv6_addr_equal(gateway,
1709 &entry->rt6i_gateway)) {
1710 rt6_remove_exception(bucket, rt6_ex);
1711 }
1712 }
1713 bucket++;
1714 }
1715 }
1716
1717 spin_unlock_bh(&rt6_exception_lock);
1718 }
1719
1720 static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket,
1721 struct rt6_exception *rt6_ex,
1722 struct fib6_gc_args *gc_args,
1723 unsigned long now)
1724 {
1725 struct rt6_info *rt = rt6_ex->rt6i;
1726
1727 /* we are pruning and obsoleting aged-out and non gateway exceptions
1728 * even if others have still references to them, so that on next
1729 * dst_check() such references can be dropped.
1730 * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when
1731 * expired, independently from their aging, as per RFC 8201 section 4
1732 */
1733 if (!(rt->rt6i_flags & RTF_EXPIRES)) {
1734 if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1735 RT6_TRACE("aging clone %p\n", rt);
1736 rt6_remove_exception(bucket, rt6_ex);
1737 return;
1738 }
1739 } else if (time_after(jiffies, rt->dst.expires)) {
1740 RT6_TRACE("purging expired route %p\n", rt);
1741 rt6_remove_exception(bucket, rt6_ex);
1742 return;
1743 }
1744
1745 if (rt->rt6i_flags & RTF_GATEWAY) {
1746 struct neighbour *neigh;
1747 __u8 neigh_flags = 0;
1748
1749 neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway);
1750 if (neigh)
1751 neigh_flags = neigh->flags;
1752
1753 if (!(neigh_flags & NTF_ROUTER)) {
1754 RT6_TRACE("purging route %p via non-router but gateway\n",
1755 rt);
1756 rt6_remove_exception(bucket, rt6_ex);
1757 return;
1758 }
1759 }
1760
1761 gc_args->more++;
1762 }
1763
1764 void rt6_age_exceptions(struct fib6_info *rt,
1765 struct fib6_gc_args *gc_args,
1766 unsigned long now)
1767 {
1768 struct rt6_exception_bucket *bucket;
1769 struct rt6_exception *rt6_ex;
1770 struct hlist_node *tmp;
1771 int i;
1772
1773 if (!rcu_access_pointer(rt->rt6i_exception_bucket))
1774 return;
1775
1776 rcu_read_lock_bh();
1777 spin_lock(&rt6_exception_lock);
1778 bucket = rcu_dereference_protected(rt->rt6i_exception_bucket,
1779 lockdep_is_held(&rt6_exception_lock));
1780
1781 if (bucket) {
1782 for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) {
1783 hlist_for_each_entry_safe(rt6_ex, tmp,
1784 &bucket->chain, hlist) {
1785 rt6_age_examine_exception(bucket, rt6_ex,
1786 gc_args, now);
1787 }
1788 bucket++;
1789 }
1790 }
1791 spin_unlock(&rt6_exception_lock);
1792 rcu_read_unlock_bh();
1793 }
1794
1795 /* must be called with rcu lock held */
1796 struct fib6_info *fib6_table_lookup(struct net *net, struct fib6_table *table,
1797 int oif, struct flowi6 *fl6, int strict)
1798 {
1799 struct fib6_node *fn, *saved_fn;
1800 struct fib6_info *f6i;
1801
1802 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
1803 saved_fn = fn;
1804
1805 if (fl6->flowi6_flags & FLOWI_FLAG_SKIP_NH_OIF)
1806 oif = 0;
1807
1808 redo_rt6_select:
1809 f6i = rt6_select(net, fn, oif, strict);
1810 if (f6i == net->ipv6.fib6_null_entry) {
1811 fn = fib6_backtrack(fn, &fl6->saddr);
1812 if (fn)
1813 goto redo_rt6_select;
1814 else if (strict & RT6_LOOKUP_F_REACHABLE) {
1815 /* also consider unreachable route */
1816 strict &= ~RT6_LOOKUP_F_REACHABLE;
1817 fn = saved_fn;
1818 goto redo_rt6_select;
1819 }
1820 }
1821
1822 trace_fib6_table_lookup(net, f6i, table, fl6);
1823
1824 return f6i;
1825 }
1826
1827 struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table,
1828 int oif, struct flowi6 *fl6,
1829 const struct sk_buff *skb, int flags)
1830 {
1831 struct fib6_info *f6i;
1832 struct rt6_info *rt;
1833 int strict = 0;
1834
1835 strict |= flags & RT6_LOOKUP_F_IFACE;
1836 strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE;
1837 if (net->ipv6.devconf_all->forwarding == 0)
1838 strict |= RT6_LOOKUP_F_REACHABLE;
1839
1840 rcu_read_lock();
1841
1842 f6i = fib6_table_lookup(net, table, oif, fl6, strict);
1843 if (f6i->fib6_nsiblings)
1844 f6i = fib6_multipath_select(net, f6i, fl6, oif, skb, strict);
1845
1846 if (f6i == net->ipv6.fib6_null_entry) {
1847 rt = net->ipv6.ip6_null_entry;
1848 rcu_read_unlock();
1849 dst_hold(&rt->dst);
1850 return rt;
1851 }
1852
1853 /*Search through exception table */
1854 rt = rt6_find_cached_rt(f6i, &fl6->daddr, &fl6->saddr);
1855 if (rt) {
1856 if (ip6_hold_safe(net, &rt, true))
1857 dst_use_noref(&rt->dst, jiffies);
1858
1859 rcu_read_unlock();
1860 return rt;
1861 } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) &&
1862 !(f6i->fib6_flags & RTF_GATEWAY))) {
1863 /* Create a RTF_CACHE clone which will not be
1864 * owned by the fib6 tree. It is for the special case where
1865 * the daddr in the skb during the neighbor look-up is different
1866 * from the fl6->daddr used to look-up route here.
1867 */
1868 struct rt6_info *uncached_rt;
1869
1870 uncached_rt = ip6_rt_cache_alloc(f6i, &fl6->daddr, NULL);
1871
1872 rcu_read_unlock();
1873
1874 if (uncached_rt) {
1875 /* Uncached_rt's refcnt is taken during ip6_rt_cache_alloc()
1876 * No need for another dst_hold()
1877 */
1878 rt6_uncached_list_add(uncached_rt);
1879 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
1880 } else {
1881 uncached_rt = net->ipv6.ip6_null_entry;
1882 dst_hold(&uncached_rt->dst);
1883 }
1884
1885 return uncached_rt;
1886 } else {
1887 /* Get a percpu copy */
1888
1889 struct rt6_info *pcpu_rt;
1890
1891 local_bh_disable();
1892 pcpu_rt = rt6_get_pcpu_route(f6i);
1893
1894 if (!pcpu_rt)
1895 pcpu_rt = rt6_make_pcpu_route(net, f6i);
1896
1897 local_bh_enable();
1898 rcu_read_unlock();
1899
1900 return pcpu_rt;
1901 }
1902 }
1903 EXPORT_SYMBOL_GPL(ip6_pol_route);
1904
1905 static struct rt6_info *ip6_pol_route_input(struct net *net,
1906 struct fib6_table *table,
1907 struct flowi6 *fl6,
1908 const struct sk_buff *skb,
1909 int flags)
1910 {
1911 return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags);
1912 }
1913
1914 struct dst_entry *ip6_route_input_lookup(struct net *net,
1915 struct net_device *dev,
1916 struct flowi6 *fl6,
1917 const struct sk_buff *skb,
1918 int flags)
1919 {
1920 if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG)
1921 flags |= RT6_LOOKUP_F_IFACE;
1922
1923 return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input);
1924 }
1925 EXPORT_SYMBOL_GPL(ip6_route_input_lookup);
1926
1927 static void ip6_multipath_l3_keys(const struct sk_buff *skb,
1928 struct flow_keys *keys,
1929 struct flow_keys *flkeys)
1930 {
1931 const struct ipv6hdr *outer_iph = ipv6_hdr(skb);
1932 const struct ipv6hdr *key_iph = outer_iph;
1933 struct flow_keys *_flkeys = flkeys;
1934 const struct ipv6hdr *inner_iph;
1935 const struct icmp6hdr *icmph;
1936 struct ipv6hdr _inner_iph;
1937 struct icmp6hdr _icmph;
1938
1939 if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6))
1940 goto out;
1941
1942 icmph = skb_header_pointer(skb, skb_transport_offset(skb),
1943 sizeof(_icmph), &_icmph);
1944 if (!icmph)
1945 goto out;
1946
1947 if (icmph->icmp6_type != ICMPV6_DEST_UNREACH &&
1948 icmph->icmp6_type != ICMPV6_PKT_TOOBIG &&
1949 icmph->icmp6_type != ICMPV6_TIME_EXCEED &&
1950 icmph->icmp6_type != ICMPV6_PARAMPROB)
1951 goto out;
1952
1953 inner_iph = skb_header_pointer(skb,
1954 skb_transport_offset(skb) + sizeof(*icmph),
1955 sizeof(_inner_iph), &_inner_iph);
1956 if (!inner_iph)
1957 goto out;
1958
1959 key_iph = inner_iph;
1960 _flkeys = NULL;
1961 out:
1962 if (_flkeys) {
1963 keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src;
1964 keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst;
1965 keys->tags.flow_label = _flkeys->tags.flow_label;
1966 keys->basic.ip_proto = _flkeys->basic.ip_proto;
1967 } else {
1968 keys->addrs.v6addrs.src = key_iph->saddr;
1969 keys->addrs.v6addrs.dst = key_iph->daddr;
1970 keys->tags.flow_label = ip6_flowlabel(key_iph);
1971 keys->basic.ip_proto = key_iph->nexthdr;
1972 }
1973 }
1974
1975 /* if skb is set it will be used and fl6 can be NULL */
1976 u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6,
1977 const struct sk_buff *skb, struct flow_keys *flkeys)
1978 {
1979 struct flow_keys hash_keys;
1980 u32 mhash;
1981
1982 switch (ip6_multipath_hash_policy(net)) {
1983 case 0:
1984 memset(&hash_keys, 0, sizeof(hash_keys));
1985 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1986 if (skb) {
1987 ip6_multipath_l3_keys(skb, &hash_keys, flkeys);
1988 } else {
1989 hash_keys.addrs.v6addrs.src = fl6->saddr;
1990 hash_keys.addrs.v6addrs.dst = fl6->daddr;
1991 hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1992 hash_keys.basic.ip_proto = fl6->flowi6_proto;
1993 }
1994 break;
1995 case 1:
1996 if (skb) {
1997 unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP;
1998 struct flow_keys keys;
1999
2000 /* short-circuit if we already have L4 hash present */
2001 if (skb->l4_hash)
2002 return skb_get_hash_raw(skb) >> 1;
2003
2004 memset(&hash_keys, 0, sizeof(hash_keys));
2005
2006 if (!flkeys) {
2007 skb_flow_dissect_flow_keys(skb, &keys, flag);
2008 flkeys = &keys;
2009 }
2010 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2011 hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src;
2012 hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst;
2013 hash_keys.ports.src = flkeys->ports.src;
2014 hash_keys.ports.dst = flkeys->ports.dst;
2015 hash_keys.basic.ip_proto = flkeys->basic.ip_proto;
2016 } else {
2017 memset(&hash_keys, 0, sizeof(hash_keys));
2018 hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
2019 hash_keys.addrs.v6addrs.src = fl6->saddr;
2020 hash_keys.addrs.v6addrs.dst = fl6->daddr;
2021 hash_keys.ports.src = fl6->fl6_sport;
2022 hash_keys.ports.dst = fl6->fl6_dport;
2023 hash_keys.basic.ip_proto = fl6->flowi6_proto;
2024 }
2025 break;
2026 }
2027 mhash = flow_hash_from_keys(&hash_keys);
2028
2029 return mhash >> 1;
2030 }
2031
2032 void ip6_route_input(struct sk_buff *skb)
2033 {
2034 const struct ipv6hdr *iph = ipv6_hdr(skb);
2035 struct net *net = dev_net(skb->dev);
2036 int flags = RT6_LOOKUP_F_HAS_SADDR;
2037 struct ip_tunnel_info *tun_info;
2038 struct flowi6 fl6 = {
2039 .flowi6_iif = skb->dev->ifindex,
2040 .daddr = iph->daddr,
2041 .saddr = iph->saddr,
2042 .flowlabel = ip6_flowinfo(iph),
2043 .flowi6_mark = skb->mark,
2044 .flowi6_proto = iph->nexthdr,
2045 };
2046 struct flow_keys *flkeys = NULL, _flkeys;
2047
2048 tun_info = skb_tunnel_info(skb);
2049 if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX))
2050 fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id;
2051
2052 if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys))
2053 flkeys = &_flkeys;
2054
2055 if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6))
2056 fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys);
2057 skb_dst_drop(skb);
2058 skb_dst_set(skb,
2059 ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags));
2060 }
2061
2062 static struct rt6_info *ip6_pol_route_output(struct net *net,
2063 struct fib6_table *table,
2064 struct flowi6 *fl6,
2065 const struct sk_buff *skb,
2066 int flags)
2067 {
2068 return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags);
2069 }
2070
2071 struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk,
2072 struct flowi6 *fl6, int flags)
2073 {
2074 bool any_src;
2075
2076 if (ipv6_addr_type(&fl6->daddr) &
2077 (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) {
2078 struct dst_entry *dst;
2079
2080 dst = l3mdev_link_scope_lookup(net, fl6);
2081 if (dst)
2082 return dst;
2083 }
2084
2085 fl6->flowi6_iif = LOOPBACK_IFINDEX;
2086
2087 any_src = ipv6_addr_any(&fl6->saddr);
2088 if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) ||
2089 (fl6->flowi6_oif && any_src))
2090 flags |= RT6_LOOKUP_F_IFACE;
2091
2092 if (!any_src)
2093 flags |= RT6_LOOKUP_F_HAS_SADDR;
2094 else if (sk)
2095 flags |= rt6_srcprefs2flags(inet6_sk(sk)->srcprefs);
2096
2097 return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output);
2098 }
2099 EXPORT_SYMBOL_GPL(ip6_route_output_flags);
2100
2101 struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig)
2102 {
2103 struct rt6_info *rt, *ort = (struct rt6_info *) dst_orig;
2104 struct net_device *loopback_dev = net->loopback_dev;
2105 struct dst_entry *new = NULL;
2106
2107 rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, 1,
2108 DST_OBSOLETE_DEAD, 0);
2109 if (rt) {
2110 rt6_info_init(rt);
2111 atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc);
2112
2113 new = &rt->dst;
2114 new->__use = 1;
2115 new->input = dst_discard;
2116 new->output = dst_discard_out;
2117
2118 dst_copy_metrics(new, &ort->dst);
2119
2120 rt->rt6i_idev = in6_dev_get(loopback_dev);
2121 rt->rt6i_gateway = ort->rt6i_gateway;
2122 rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU;
2123
2124 memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key));
2125 #ifdef CONFIG_IPV6_SUBTREES
2126 memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key));
2127 #endif
2128 }
2129
2130 dst_release(dst_orig);
2131 return new ? new : ERR_PTR(-ENOMEM);
2132 }
2133
2134 /*
2135 * Destination cache support functions
2136 */
2137
2138 static bool fib6_check(struct fib6_info *f6i, u32 cookie)
2139 {
2140 u32 rt_cookie = 0;
2141
2142 if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie)
2143 return false;
2144
2145 if (fib6_check_expired(f6i))
2146 return false;
2147
2148 return true;
2149 }
2150
2151 static struct dst_entry *rt6_check(struct rt6_info *rt,
2152 struct fib6_info *from,
2153 u32 cookie)
2154 {
2155 u32 rt_cookie = 0;
2156
2157 if ((from && !fib6_get_cookie_safe(from, &rt_cookie)) ||
2158 rt_cookie != cookie)
2159 return NULL;
2160
2161 if (rt6_check_expired(rt))
2162 return NULL;
2163
2164 return &rt->dst;
2165 }
2166
2167 static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt,
2168 struct fib6_info *from,
2169 u32 cookie)
2170 {
2171 if (!__rt6_check_expired(rt) &&
2172 rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK &&
2173 fib6_check(from, cookie))
2174 return &rt->dst;
2175 else
2176 return NULL;
2177 }
2178
2179 static struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie)
2180 {
2181 struct dst_entry *dst_ret;
2182 struct fib6_info *from;
2183 struct rt6_info *rt;
2184
2185 rt = container_of(dst, struct rt6_info, dst);
2186
2187 rcu_read_lock();
2188
2189 /* All IPV6 dsts are created with ->obsolete set to the value
2190 * DST_OBSOLETE_FORCE_CHK which forces validation calls down
2191 * into this function always.
2192 */
2193
2194 from = rcu_dereference(rt->from);
2195
2196 if (from && (rt->rt6i_flags & RTF_PCPU ||
2197 unlikely(!list_empty(&rt->rt6i_uncached))))
2198 dst_ret = rt6_dst_from_check(rt, from, cookie);
2199 else
2200 dst_ret = rt6_check(rt, from, cookie);
2201
2202 rcu_read_unlock();
2203
2204 return dst_ret;
2205 }
2206
2207 static struct dst_entry *ip6_negative_advice(struct dst_entry *dst)
2208 {
2209 struct rt6_info *rt = (struct rt6_info *) dst;
2210
2211 if (rt) {
2212 if (rt->rt6i_flags & RTF_CACHE) {
2213 rcu_read_lock();
2214 if (rt6_check_expired(rt)) {
2215 rt6_remove_exception_rt(rt);
2216 dst = NULL;
2217 }
2218 rcu_read_unlock();
2219 } else {
2220 dst_release(dst);
2221 dst = NULL;
2222 }
2223 }
2224 return dst;
2225 }
2226
2227 static void ip6_link_failure(struct sk_buff *skb)
2228 {
2229 struct rt6_info *rt;
2230
2231 icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
2232
2233 rt = (struct rt6_info *) skb_dst(skb);
2234 if (rt) {
2235 rcu_read_lock();
2236 if (rt->rt6i_flags & RTF_CACHE) {
2237 rt6_remove_exception_rt(rt);
2238 } else {
2239 struct fib6_info *from;
2240 struct fib6_node *fn;
2241
2242 from = rcu_dereference(rt->from);
2243 if (from) {
2244 fn = rcu_dereference(from->fib6_node);
2245 if (fn && (rt->rt6i_flags & RTF_DEFAULT))
2246 fn->fn_sernum = -1;
2247 }
2248 }
2249 rcu_read_unlock();
2250 }
2251 }
2252
2253 static void rt6_update_expires(struct rt6_info *rt0, int timeout)
2254 {
2255 if (!(rt0->rt6i_flags & RTF_EXPIRES)) {
2256 struct fib6_info *from;
2257
2258 rcu_read_lock();
2259 from = rcu_dereference(rt0->from);
2260 if (from)
2261 rt0->dst.expires = from->expires;
2262 rcu_read_unlock();
2263 }
2264
2265 dst_set_expires(&rt0->dst, timeout);
2266 rt0->rt6i_flags |= RTF_EXPIRES;
2267 }
2268
2269 static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu)
2270 {
2271 struct net *net = dev_net(rt->dst.dev);
2272
2273 dst_metric_set(&rt->dst, RTAX_MTU, mtu);
2274 rt->rt6i_flags |= RTF_MODIFIED;
2275 rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires);
2276 }
2277
2278 static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt)
2279 {
2280 bool from_set;
2281
2282 rcu_read_lock();
2283 from_set = !!rcu_dereference(rt->from);
2284 rcu_read_unlock();
2285
2286 return !(rt->rt6i_flags & RTF_CACHE) &&
2287 (rt->rt6i_flags & RTF_PCPU || from_set);
2288 }
2289
2290 static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk,
2291 const struct ipv6hdr *iph, u32 mtu)
2292 {
2293 const struct in6_addr *daddr, *saddr;
2294 struct rt6_info *rt6 = (struct rt6_info *)dst;
2295
2296 if (dst_metric_locked(dst, RTAX_MTU))
2297 return;
2298
2299 if (iph) {
2300 daddr = &iph->daddr;
2301 saddr = &iph->saddr;
2302 } else if (sk) {
2303 daddr = &sk->sk_v6_daddr;
2304 saddr = &inet6_sk(sk)->saddr;
2305 } else {
2306 daddr = NULL;
2307 saddr = NULL;
2308 }
2309 dst_confirm_neigh(dst, daddr);
2310 mtu = max_t(u32, mtu, IPV6_MIN_MTU);
2311 if (mtu >= dst_mtu(dst))
2312 return;
2313
2314 if (!rt6_cache_allowed_for_pmtu(rt6)) {
2315 rt6_do_update_pmtu(rt6, mtu);
2316 /* update rt6_ex->stamp for cache */
2317 if (rt6->rt6i_flags & RTF_CACHE)
2318 rt6_update_exception_stamp_rt(rt6);
2319 } else if (daddr) {
2320 struct fib6_info *from;
2321 struct rt6_info *nrt6;
2322
2323 rcu_read_lock();
2324 from = rcu_dereference(rt6->from);
2325 nrt6 = ip6_rt_cache_alloc(from, daddr, saddr);
2326 if (nrt6) {
2327 rt6_do_update_pmtu(nrt6, mtu);
2328 if (rt6_insert_exception(nrt6, from))
2329 dst_release_immediate(&nrt6->dst);
2330 }
2331 rcu_read_unlock();
2332 }
2333 }
2334
2335 static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk,
2336 struct sk_buff *skb, u32 mtu)
2337 {
2338 __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu);
2339 }
2340
2341 void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu,
2342 int oif, u32 mark, kuid_t uid)
2343 {
2344 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2345 struct dst_entry *dst;
2346 struct flowi6 fl6 = {
2347 .flowi6_oif = oif,
2348 .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark),
2349 .daddr = iph->daddr,
2350 .saddr = iph->saddr,
2351 .flowlabel = ip6_flowinfo(iph),
2352 .flowi6_uid = uid,
2353 };
2354
2355 dst = ip6_route_output(net, NULL, &fl6);
2356 if (!dst->error)
2357 __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu));
2358 dst_release(dst);
2359 }
2360 EXPORT_SYMBOL_GPL(ip6_update_pmtu);
2361
2362 void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu)
2363 {
2364 int oif = sk->sk_bound_dev_if;
2365 struct dst_entry *dst;
2366
2367 if (!oif && skb->dev)
2368 oif = l3mdev_master_ifindex(skb->dev);
2369
2370 ip6_update_pmtu(skb, sock_net(sk), mtu, oif, sk->sk_mark, sk->sk_uid);
2371
2372 dst = __sk_dst_get(sk);
2373 if (!dst || !dst->obsolete ||
2374 dst->ops->check(dst, inet6_sk(sk)->dst_cookie))
2375 return;
2376
2377 bh_lock_sock(sk);
2378 if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr))
2379 ip6_datagram_dst_update(sk, false);
2380 bh_unlock_sock(sk);
2381 }
2382 EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu);
2383
2384 void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst,
2385 const struct flowi6 *fl6)
2386 {
2387 #ifdef CONFIG_IPV6_SUBTREES
2388 struct ipv6_pinfo *np = inet6_sk(sk);
2389 #endif
2390
2391 ip6_dst_store(sk, dst,
2392 ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ?
2393 &sk->sk_v6_daddr : NULL,
2394 #ifdef CONFIG_IPV6_SUBTREES
2395 ipv6_addr_equal(&fl6->saddr, &np->saddr) ?
2396 &np->saddr :
2397 #endif
2398 NULL);
2399 }
2400
2401 /* Handle redirects */
2402 struct ip6rd_flowi {
2403 struct flowi6 fl6;
2404 struct in6_addr gateway;
2405 };
2406
2407 static struct rt6_info *__ip6_route_redirect(struct net *net,
2408 struct fib6_table *table,
2409 struct flowi6 *fl6,
2410 const struct sk_buff *skb,
2411 int flags)
2412 {
2413 struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6;
2414 struct rt6_info *ret = NULL, *rt_cache;
2415 struct fib6_info *rt;
2416 struct fib6_node *fn;
2417
2418 /* Get the "current" route for this destination and
2419 * check if the redirect has come from appropriate router.
2420 *
2421 * RFC 4861 specifies that redirects should only be
2422 * accepted if they come from the nexthop to the target.
2423 * Due to the way the routes are chosen, this notion
2424 * is a bit fuzzy and one might need to check all possible
2425 * routes.
2426 */
2427
2428 rcu_read_lock();
2429 fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr);
2430 restart:
2431 for_each_fib6_node_rt_rcu(fn) {
2432 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
2433 continue;
2434 if (fib6_check_expired(rt))
2435 continue;
2436 if (rt->fib6_flags & RTF_REJECT)
2437 break;
2438 if (!(rt->fib6_flags & RTF_GATEWAY))
2439 continue;
2440 if (fl6->flowi6_oif != rt->fib6_nh.nh_dev->ifindex)
2441 continue;
2442 /* rt_cache's gateway might be different from its 'parent'
2443 * in the case of an ip redirect.
2444 * So we keep searching in the exception table if the gateway
2445 * is different.
2446 */
2447 if (!ipv6_addr_equal(&rdfl->gateway, &rt->fib6_nh.nh_gw)) {
2448 rt_cache = rt6_find_cached_rt(rt,
2449 &fl6->daddr,
2450 &fl6->saddr);
2451 if (rt_cache &&
2452 ipv6_addr_equal(&rdfl->gateway,
2453 &rt_cache->rt6i_gateway)) {
2454 ret = rt_cache;
2455 break;
2456 }
2457 continue;
2458 }
2459 break;
2460 }
2461
2462 if (!rt)
2463 rt = net->ipv6.fib6_null_entry;
2464 else if (rt->fib6_flags & RTF_REJECT) {
2465 ret = net->ipv6.ip6_null_entry;
2466 goto out;
2467 }
2468
2469 if (rt == net->ipv6.fib6_null_entry) {
2470 fn = fib6_backtrack(fn, &fl6->saddr);
2471 if (fn)
2472 goto restart;
2473 }
2474
2475 out:
2476 if (ret)
2477 ip6_hold_safe(net, &ret, true);
2478 else
2479 ret = ip6_create_rt_rcu(rt);
2480
2481 rcu_read_unlock();
2482
2483 trace_fib6_table_lookup(net, rt, table, fl6);
2484 return ret;
2485 };
2486
2487 static struct dst_entry *ip6_route_redirect(struct net *net,
2488 const struct flowi6 *fl6,
2489 const struct sk_buff *skb,
2490 const struct in6_addr *gateway)
2491 {
2492 int flags = RT6_LOOKUP_F_HAS_SADDR;
2493 struct ip6rd_flowi rdfl;
2494
2495 rdfl.fl6 = *fl6;
2496 rdfl.gateway = *gateway;
2497
2498 return fib6_rule_lookup(net, &rdfl.fl6, skb,
2499 flags, __ip6_route_redirect);
2500 }
2501
2502 void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark,
2503 kuid_t uid)
2504 {
2505 const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data;
2506 struct dst_entry *dst;
2507 struct flowi6 fl6 = {
2508 .flowi6_iif = LOOPBACK_IFINDEX,
2509 .flowi6_oif = oif,
2510 .flowi6_mark = mark,
2511 .daddr = iph->daddr,
2512 .saddr = iph->saddr,
2513 .flowlabel = ip6_flowinfo(iph),
2514 .flowi6_uid = uid,
2515 };
2516
2517 dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr);
2518 rt6_do_redirect(dst, NULL, skb);
2519 dst_release(dst);
2520 }
2521 EXPORT_SYMBOL_GPL(ip6_redirect);
2522
2523 void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif)
2524 {
2525 const struct ipv6hdr *iph = ipv6_hdr(skb);
2526 const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb);
2527 struct dst_entry *dst;
2528 struct flowi6 fl6 = {
2529 .flowi6_iif = LOOPBACK_IFINDEX,
2530 .flowi6_oif = oif,
2531 .daddr = msg->dest,
2532 .saddr = iph->daddr,
2533 .flowi6_uid = sock_net_uid(net, NULL),
2534 };
2535
2536 dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr);
2537 rt6_do_redirect(dst, NULL, skb);
2538 dst_release(dst);
2539 }
2540
2541 void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk)
2542 {
2543 ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, sk->sk_mark,
2544 sk->sk_uid);
2545 }
2546 EXPORT_SYMBOL_GPL(ip6_sk_redirect);
2547
2548 static unsigned int ip6_default_advmss(const struct dst_entry *dst)
2549 {
2550 struct net_device *dev = dst->dev;
2551 unsigned int mtu = dst_mtu(dst);
2552 struct net *net = dev_net(dev);
2553
2554 mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr);
2555
2556 if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss)
2557 mtu = net->ipv6.sysctl.ip6_rt_min_advmss;
2558
2559 /*
2560 * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and
2561 * corresponding MSS is IPV6_MAXPLEN - tcp_header_size.
2562 * IPV6_MAXPLEN is also valid and means: "any MSS,
2563 * rely only on pmtu discovery"
2564 */
2565 if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr))
2566 mtu = IPV6_MAXPLEN;
2567 return mtu;
2568 }
2569
2570 static unsigned int ip6_mtu(const struct dst_entry *dst)
2571 {
2572 struct inet6_dev *idev;
2573 unsigned int mtu;
2574
2575 mtu = dst_metric_raw(dst, RTAX_MTU);
2576 if (mtu)
2577 goto out;
2578
2579 mtu = IPV6_MIN_MTU;
2580
2581 rcu_read_lock();
2582 idev = __in6_dev_get(dst->dev);
2583 if (idev)
2584 mtu = idev->cnf.mtu6;
2585 rcu_read_unlock();
2586
2587 out:
2588 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2589
2590 return mtu - lwtunnel_headroom(dst->lwtstate, mtu);
2591 }
2592
2593 /* MTU selection:
2594 * 1. mtu on route is locked - use it
2595 * 2. mtu from nexthop exception
2596 * 3. mtu from egress device
2597 *
2598 * based on ip6_dst_mtu_forward and exception logic of
2599 * rt6_find_cached_rt; called with rcu_read_lock
2600 */
2601 u32 ip6_mtu_from_fib6(struct fib6_info *f6i, struct in6_addr *daddr,
2602 struct in6_addr *saddr)
2603 {
2604 struct rt6_exception_bucket *bucket;
2605 struct rt6_exception *rt6_ex;
2606 struct in6_addr *src_key;
2607 struct inet6_dev *idev;
2608 u32 mtu = 0;
2609
2610 if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) {
2611 mtu = f6i->fib6_pmtu;
2612 if (mtu)
2613 goto out;
2614 }
2615
2616 src_key = NULL;
2617 #ifdef CONFIG_IPV6_SUBTREES
2618 if (f6i->fib6_src.plen)
2619 src_key = saddr;
2620 #endif
2621
2622 bucket = rcu_dereference(f6i->rt6i_exception_bucket);
2623 rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key);
2624 if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i))
2625 mtu = dst_metric_raw(&rt6_ex->rt6i->dst, RTAX_MTU);
2626
2627 if (likely(!mtu)) {
2628 struct net_device *dev = fib6_info_nh_dev(f6i);
2629
2630 mtu = IPV6_MIN_MTU;
2631 idev = __in6_dev_get(dev);
2632 if (idev && idev->cnf.mtu6 > mtu)
2633 mtu = idev->cnf.mtu6;
2634 }
2635
2636 mtu = min_t(unsigned int, mtu, IP6_MAX_MTU);
2637 out:
2638 return mtu - lwtunnel_headroom(fib6_info_nh_lwt(f6i), mtu);
2639 }
2640
2641 struct dst_entry *icmp6_dst_alloc(struct net_device *dev,
2642 struct flowi6 *fl6)
2643 {
2644 struct dst_entry *dst;
2645 struct rt6_info *rt;
2646 struct inet6_dev *idev = in6_dev_get(dev);
2647 struct net *net = dev_net(dev);
2648
2649 if (unlikely(!idev))
2650 return ERR_PTR(-ENODEV);
2651
2652 rt = ip6_dst_alloc(net, dev, 0);
2653 if (unlikely(!rt)) {
2654 in6_dev_put(idev);
2655 dst = ERR_PTR(-ENOMEM);
2656 goto out;
2657 }
2658
2659 rt->dst.flags |= DST_HOST;
2660 rt->dst.input = ip6_input;
2661 rt->dst.output = ip6_output;
2662 rt->rt6i_gateway = fl6->daddr;
2663 rt->rt6i_dst.addr = fl6->daddr;
2664 rt->rt6i_dst.plen = 128;
2665 rt->rt6i_idev = idev;
2666 dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0);
2667
2668 /* Add this dst into uncached_list so that rt6_disable_ip() can
2669 * do proper release of the net_device
2670 */
2671 rt6_uncached_list_add(rt);
2672 atomic_inc(&net->ipv6.rt6_stats->fib_rt_uncache);
2673
2674 dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0);
2675
2676 out:
2677 return dst;
2678 }
2679
2680 static int ip6_dst_gc(struct dst_ops *ops)
2681 {
2682 struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops);
2683 int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval;
2684 int rt_max_size = net->ipv6.sysctl.ip6_rt_max_size;
2685 int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity;
2686 int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout;
2687 unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc;
2688 int entries;
2689
2690 entries = dst_entries_get_fast(ops);
2691 if (time_after(rt_last_gc + rt_min_interval, jiffies) &&
2692 entries <= rt_max_size)
2693 goto out;
2694
2695 net->ipv6.ip6_rt_gc_expire++;
2696 fib6_run_gc(net->ipv6.ip6_rt_gc_expire, net, true);
2697 entries = dst_entries_get_slow(ops);
2698 if (entries < ops->gc_thresh)
2699 net->ipv6.ip6_rt_gc_expire = rt_gc_timeout>>1;
2700 out:
2701 net->ipv6.ip6_rt_gc_expire -= net->ipv6.ip6_rt_gc_expire>>rt_elasticity;
2702 return entries > rt_max_size;
2703 }
2704
2705 static struct rt6_info *ip6_nh_lookup_table(struct net *net,
2706 struct fib6_config *cfg,
2707 const struct in6_addr *gw_addr,
2708 u32 tbid, int flags)
2709 {
2710 struct flowi6 fl6 = {
2711 .flowi6_oif = cfg->fc_ifindex,
2712 .daddr = *gw_addr,
2713 .saddr = cfg->fc_prefsrc,
2714 };
2715 struct fib6_table *table;
2716 struct rt6_info *rt;
2717
2718 table = fib6_get_table(net, tbid);
2719 if (!table)
2720 return NULL;
2721
2722 if (!ipv6_addr_any(&cfg->fc_prefsrc))
2723 flags |= RT6_LOOKUP_F_HAS_SADDR;
2724
2725 flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE;
2726 rt = ip6_pol_route(net, table, cfg->fc_ifindex, &fl6, NULL, flags);
2727
2728 /* if table lookup failed, fall back to full lookup */
2729 if (rt == net->ipv6.ip6_null_entry) {
2730 ip6_rt_put(rt);
2731 rt = NULL;
2732 }
2733
2734 return rt;
2735 }
2736
2737 static int ip6_route_check_nh_onlink(struct net *net,
2738 struct fib6_config *cfg,
2739 const struct net_device *dev,
2740 struct netlink_ext_ack *extack)
2741 {
2742 u32 tbid = l3mdev_fib_table(dev) ? : RT_TABLE_MAIN;
2743 const struct in6_addr *gw_addr = &cfg->fc_gateway;
2744 u32 flags = RTF_LOCAL | RTF_ANYCAST | RTF_REJECT;
2745 struct rt6_info *grt;
2746 int err;
2747
2748 err = 0;
2749 grt = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0);
2750 if (grt) {
2751 if (!grt->dst.error &&
2752 /* ignore match if it is the default route */
2753 grt->from && !ipv6_addr_any(&grt->from->fib6_dst.addr) &&
2754 (grt->rt6i_flags & flags || dev != grt->dst.dev)) {
2755 NL_SET_ERR_MSG(extack,
2756 "Nexthop has invalid gateway or device mismatch");
2757 err = -EINVAL;
2758 }
2759
2760 ip6_rt_put(grt);
2761 }
2762
2763 return err;
2764 }
2765
2766 static int ip6_route_check_nh(struct net *net,
2767 struct fib6_config *cfg,
2768 struct net_device **_dev,
2769 struct inet6_dev **idev)
2770 {
2771 const struct in6_addr *gw_addr = &cfg->fc_gateway;
2772 struct net_device *dev = _dev ? *_dev : NULL;
2773 struct rt6_info *grt = NULL;
2774 int err = -EHOSTUNREACH;
2775
2776 if (cfg->fc_table) {
2777 int flags = RT6_LOOKUP_F_IFACE;
2778
2779 grt = ip6_nh_lookup_table(net, cfg, gw_addr,
2780 cfg->fc_table, flags);
2781 if (grt) {
2782 if (grt->rt6i_flags & RTF_GATEWAY ||
2783 (dev && dev != grt->dst.dev)) {
2784 ip6_rt_put(grt);
2785 grt = NULL;
2786 }
2787 }
2788 }
2789
2790 if (!grt)
2791 grt = rt6_lookup(net, gw_addr, NULL, cfg->fc_ifindex, NULL, 1);
2792
2793 if (!grt)
2794 goto out;
2795
2796 if (dev) {
2797 if (dev != grt->dst.dev) {
2798 ip6_rt_put(grt);
2799 goto out;
2800 }
2801 } else {
2802 *_dev = dev = grt->dst.dev;
2803 *idev = grt->rt6i_idev;
2804 dev_hold(dev);
2805 in6_dev_hold(grt->rt6i_idev);
2806 }
2807
2808 if (!(grt->rt6i_flags & RTF_GATEWAY))
2809 err = 0;
2810
2811 ip6_rt_put(grt);
2812
2813 out:
2814 return err;
2815 }
2816
2817 static int ip6_validate_gw(struct net *net, struct fib6_config *cfg,
2818 struct net_device **_dev, struct inet6_dev **idev,
2819 struct netlink_ext_ack *extack)
2820 {
2821 const struct in6_addr *gw_addr = &cfg->fc_gateway;
2822 int gwa_type = ipv6_addr_type(gw_addr);
2823 bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true;
2824 const struct net_device *dev = *_dev;
2825 bool need_addr_check = !dev;
2826 int err = -EINVAL;
2827
2828 /* if gw_addr is local we will fail to detect this in case
2829 * address is still TENTATIVE (DAD in progress). rt6_lookup()
2830 * will return already-added prefix route via interface that
2831 * prefix route was assigned to, which might be non-loopback.
2832 */
2833 if (dev &&
2834 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2835 NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2836 goto out;
2837 }
2838
2839 if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) {
2840 /* IPv6 strictly inhibits using not link-local
2841 * addresses as nexthop address.
2842 * Otherwise, router will not able to send redirects.
2843 * It is very good, but in some (rare!) circumstances
2844 * (SIT, PtP, NBMA NOARP links) it is handy to allow
2845 * some exceptions. --ANK
2846 * We allow IPv4-mapped nexthops to support RFC4798-type
2847 * addressing
2848 */
2849 if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) {
2850 NL_SET_ERR_MSG(extack, "Invalid gateway address");
2851 goto out;
2852 }
2853
2854 if (cfg->fc_flags & RTNH_F_ONLINK)
2855 err = ip6_route_check_nh_onlink(net, cfg, dev, extack);
2856 else
2857 err = ip6_route_check_nh(net, cfg, _dev, idev);
2858
2859 if (err)
2860 goto out;
2861 }
2862
2863 /* reload in case device was changed */
2864 dev = *_dev;
2865
2866 err = -EINVAL;
2867 if (!dev) {
2868 NL_SET_ERR_MSG(extack, "Egress device not specified");
2869 goto out;
2870 } else if (dev->flags & IFF_LOOPBACK) {
2871 NL_SET_ERR_MSG(extack,
2872 "Egress device can not be loopback device for this route");
2873 goto out;
2874 }
2875
2876 /* if we did not check gw_addr above, do so now that the
2877 * egress device has been resolved.
2878 */
2879 if (need_addr_check &&
2880 ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) {
2881 NL_SET_ERR_MSG(extack, "Gateway can not be a local address");
2882 goto out;
2883 }
2884
2885 err = 0;
2886 out:
2887 return err;
2888 }
2889
2890 static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg,
2891 gfp_t gfp_flags,
2892 struct netlink_ext_ack *extack)
2893 {
2894 struct net *net = cfg->fc_nlinfo.nl_net;
2895 struct fib6_info *rt = NULL;
2896 struct net_device *dev = NULL;
2897 struct inet6_dev *idev = NULL;
2898 struct fib6_table *table;
2899 int addr_type;
2900 int err = -EINVAL;
2901
2902 /* RTF_PCPU is an internal flag; can not be set by userspace */
2903 if (cfg->fc_flags & RTF_PCPU) {
2904 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU");
2905 goto out;
2906 }
2907
2908 /* RTF_CACHE is an internal flag; can not be set by userspace */
2909 if (cfg->fc_flags & RTF_CACHE) {
2910 NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE");
2911 goto out;
2912 }
2913
2914 if (cfg->fc_type > RTN_MAX) {
2915 NL_SET_ERR_MSG(extack, "Invalid route type");
2916 goto out;
2917 }
2918
2919 if (cfg->fc_dst_len > 128) {
2920 NL_SET_ERR_MSG(extack, "Invalid prefix length");
2921 goto out;
2922 }
2923 if (cfg->fc_src_len > 128) {
2924 NL_SET_ERR_MSG(extack, "Invalid source address length");
2925 goto out;
2926 }
2927 #ifndef CONFIG_IPV6_SUBTREES
2928 if (cfg->fc_src_len) {
2929 NL_SET_ERR_MSG(extack,
2930 "Specifying source address requires IPV6_SUBTREES to be enabled");
2931 goto out;
2932 }
2933 #endif
2934 if (cfg->fc_ifindex) {
2935 err = -ENODEV;
2936 dev = dev_get_by_index(net, cfg->fc_ifindex);
2937 if (!dev)
2938 goto out;
2939 idev = in6_dev_get(dev);
2940 if (!idev)
2941 goto out;
2942 }
2943
2944 if (cfg->fc_metric == 0)
2945 cfg->fc_metric = IP6_RT_PRIO_USER;
2946
2947 if (cfg->fc_flags & RTNH_F_ONLINK) {
2948 if (!dev) {
2949 NL_SET_ERR_MSG(extack,
2950 "Nexthop device required for onlink");
2951 err = -ENODEV;
2952 goto out;
2953 }
2954
2955 if (!(dev->flags & IFF_UP)) {
2956 NL_SET_ERR_MSG(extack, "Nexthop device is not up");
2957 err = -ENETDOWN;
2958 goto out;
2959 }
2960 }
2961
2962 err = -ENOBUFS;
2963 if (cfg->fc_nlinfo.nlh &&
2964 !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) {
2965 table = fib6_get_table(net, cfg->fc_table);
2966 if (!table) {
2967 pr_warn("NLM_F_CREATE should be specified when creating new route\n");
2968 table = fib6_new_table(net, cfg->fc_table);
2969 }
2970 } else {
2971 table = fib6_new_table(net, cfg->fc_table);
2972 }
2973
2974 if (!table)
2975 goto out;
2976
2977 err = -ENOMEM;
2978 rt = fib6_info_alloc(gfp_flags);
2979 if (!rt)
2980 goto out;
2981
2982 rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len,
2983 extack);
2984 if (IS_ERR(rt->fib6_metrics)) {
2985 err = PTR_ERR(rt->fib6_metrics);
2986 /* Do not leave garbage there. */
2987 rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics;
2988 goto out;
2989 }
2990
2991 if (cfg->fc_flags & RTF_ADDRCONF)
2992 rt->dst_nocount = true;
2993
2994 if (cfg->fc_flags & RTF_EXPIRES)
2995 fib6_set_expires(rt, jiffies +
2996 clock_t_to_jiffies(cfg->fc_expires));
2997 else
2998 fib6_clean_expires(rt);
2999
3000 if (cfg->fc_protocol == RTPROT_UNSPEC)
3001 cfg->fc_protocol = RTPROT_BOOT;
3002 rt->fib6_protocol = cfg->fc_protocol;
3003
3004 addr_type = ipv6_addr_type(&cfg->fc_dst);
3005
3006 if (cfg->fc_encap) {
3007 struct lwtunnel_state *lwtstate;
3008
3009 err = lwtunnel_build_state(cfg->fc_encap_type,
3010 cfg->fc_encap, AF_INET6, cfg,
3011 &lwtstate, extack);
3012 if (err)
3013 goto out;
3014 rt->fib6_nh.nh_lwtstate = lwtstate_get(lwtstate);
3015 }
3016
3017 ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len);
3018 rt->fib6_dst.plen = cfg->fc_dst_len;
3019 if (rt->fib6_dst.plen == 128)
3020 rt->dst_host = true;
3021
3022 #ifdef CONFIG_IPV6_SUBTREES
3023 ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len);
3024 rt->fib6_src.plen = cfg->fc_src_len;
3025 #endif
3026
3027 rt->fib6_metric = cfg->fc_metric;
3028 rt->fib6_nh.nh_weight = 1;
3029
3030 rt->fib6_type = cfg->fc_type;
3031
3032 /* We cannot add true routes via loopback here,
3033 they would result in kernel looping; promote them to reject routes
3034 */
3035 if ((cfg->fc_flags & RTF_REJECT) ||
3036 (dev && (dev->flags & IFF_LOOPBACK) &&
3037 !(addr_type & IPV6_ADDR_LOOPBACK) &&
3038 !(cfg->fc_flags & RTF_LOCAL))) {
3039 /* hold loopback dev/idev if we haven't done so. */
3040 if (dev != net->loopback_dev) {
3041 if (dev) {
3042 dev_put(dev);
3043 in6_dev_put(idev);
3044 }
3045 dev = net->loopback_dev;
3046 dev_hold(dev);
3047 idev = in6_dev_get(dev);
3048 if (!idev) {
3049 err = -ENODEV;
3050 goto out;
3051 }
3052 }
3053 rt->fib6_flags = RTF_REJECT|RTF_NONEXTHOP;
3054 goto install_route;
3055 }
3056
3057 if (cfg->fc_flags & RTF_GATEWAY) {
3058 err = ip6_validate_gw(net, cfg, &dev, &idev, extack);
3059 if (err)
3060 goto out;
3061
3062 rt->fib6_nh.nh_gw = cfg->fc_gateway;
3063 }
3064
3065 err = -ENODEV;
3066 if (!dev)
3067 goto out;
3068
3069 if (idev->cnf.disable_ipv6) {
3070 NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device");
3071 err = -EACCES;
3072 goto out;
3073 }
3074
3075 if (!(dev->flags & IFF_UP)) {
3076 NL_SET_ERR_MSG(extack, "Nexthop device is not up");
3077 err = -ENETDOWN;
3078 goto out;
3079 }
3080
3081 if (!ipv6_addr_any(&cfg->fc_prefsrc)) {
3082 if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) {
3083 NL_SET_ERR_MSG(extack, "Invalid source address");
3084 err = -EINVAL;
3085 goto out;
3086 }
3087 rt->fib6_prefsrc.addr = cfg->fc_prefsrc;
3088 rt->fib6_prefsrc.plen = 128;
3089 } else
3090 rt->fib6_prefsrc.plen = 0;
3091
3092 rt->fib6_flags = cfg->fc_flags;
3093
3094 install_route:
3095 if (!(rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) &&
3096 !netif_carrier_ok(dev))
3097 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
3098 rt->fib6_nh.nh_flags |= (cfg->fc_flags & RTNH_F_ONLINK);
3099 rt->fib6_nh.nh_dev = dev;
3100 rt->fib6_table = table;
3101
3102 if (idev)
3103 in6_dev_put(idev);
3104
3105 return rt;
3106 out:
3107 if (dev)
3108 dev_put(dev);
3109 if (idev)
3110 in6_dev_put(idev);
3111
3112 fib6_info_release(rt);
3113 return ERR_PTR(err);
3114 }
3115
3116 int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags,
3117 struct netlink_ext_ack *extack)
3118 {
3119 struct fib6_info *rt;
3120 int err;
3121
3122 rt = ip6_route_info_create(cfg, gfp_flags, extack);
3123 if (IS_ERR(rt))
3124 return PTR_ERR(rt);
3125
3126 err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack);
3127 fib6_info_release(rt);
3128
3129 return err;
3130 }
3131
3132 static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info)
3133 {
3134 struct net *net = info->nl_net;
3135 struct fib6_table *table;
3136 int err;
3137
3138 if (rt == net->ipv6.fib6_null_entry) {
3139 err = -ENOENT;
3140 goto out;
3141 }
3142
3143 table = rt->fib6_table;
3144 spin_lock_bh(&table->tb6_lock);
3145 err = fib6_del(rt, info);
3146 spin_unlock_bh(&table->tb6_lock);
3147
3148 out:
3149 fib6_info_release(rt);
3150 return err;
3151 }
3152
3153 int ip6_del_rt(struct net *net, struct fib6_info *rt)
3154 {
3155 struct nl_info info = { .nl_net = net };
3156
3157 return __ip6_del_rt(rt, &info);
3158 }
3159
3160 static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg)
3161 {
3162 struct nl_info *info = &cfg->fc_nlinfo;
3163 struct net *net = info->nl_net;
3164 struct sk_buff *skb = NULL;
3165 struct fib6_table *table;
3166 int err = -ENOENT;
3167
3168 if (rt == net->ipv6.fib6_null_entry)
3169 goto out_put;
3170 table = rt->fib6_table;
3171 spin_lock_bh(&table->tb6_lock);
3172
3173 if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) {
3174 struct fib6_info *sibling, *next_sibling;
3175
3176 /* prefer to send a single notification with all hops */
3177 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
3178 if (skb) {
3179 u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
3180
3181 if (rt6_fill_node(net, skb, rt, NULL,
3182 NULL, NULL, 0, RTM_DELROUTE,
3183 info->portid, seq, 0) < 0) {
3184 kfree_skb(skb);
3185 skb = NULL;
3186 } else
3187 info->skip_notify = 1;
3188 }
3189
3190 list_for_each_entry_safe(sibling, next_sibling,
3191 &rt->fib6_siblings,
3192 fib6_siblings) {
3193 err = fib6_del(sibling, info);
3194 if (err)
3195 goto out_unlock;
3196 }
3197 }
3198
3199 err = fib6_del(rt, info);
3200 out_unlock:
3201 spin_unlock_bh(&table->tb6_lock);
3202 out_put:
3203 fib6_info_release(rt);
3204
3205 if (skb) {
3206 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
3207 info->nlh, gfp_any());
3208 }
3209 return err;
3210 }
3211
3212 static int ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg)
3213 {
3214 int rc = -ESRCH;
3215
3216 if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex)
3217 goto out;
3218
3219 if (cfg->fc_flags & RTF_GATEWAY &&
3220 !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway))
3221 goto out;
3222
3223 rc = rt6_remove_exception_rt(rt);
3224 out:
3225 return rc;
3226 }
3227
3228 static int ip6_route_del(struct fib6_config *cfg,
3229 struct netlink_ext_ack *extack)
3230 {
3231 struct rt6_info *rt_cache;
3232 struct fib6_table *table;
3233 struct fib6_info *rt;
3234 struct fib6_node *fn;
3235 int err = -ESRCH;
3236
3237 table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table);
3238 if (!table) {
3239 NL_SET_ERR_MSG(extack, "FIB table does not exist");
3240 return err;
3241 }
3242
3243 rcu_read_lock();
3244
3245 fn = fib6_locate(&table->tb6_root,
3246 &cfg->fc_dst, cfg->fc_dst_len,
3247 &cfg->fc_src, cfg->fc_src_len,
3248 !(cfg->fc_flags & RTF_CACHE));
3249
3250 if (fn) {
3251 for_each_fib6_node_rt_rcu(fn) {
3252 if (cfg->fc_flags & RTF_CACHE) {
3253 int rc;
3254
3255 rt_cache = rt6_find_cached_rt(rt, &cfg->fc_dst,
3256 &cfg->fc_src);
3257 if (rt_cache) {
3258 rc = ip6_del_cached_rt(rt_cache, cfg);
3259 if (rc != -ESRCH) {
3260 rcu_read_unlock();
3261 return rc;
3262 }
3263 }
3264 continue;
3265 }
3266 if (cfg->fc_ifindex &&
3267 (!rt->fib6_nh.nh_dev ||
3268 rt->fib6_nh.nh_dev->ifindex != cfg->fc_ifindex))
3269 continue;
3270 if (cfg->fc_flags & RTF_GATEWAY &&
3271 !ipv6_addr_equal(&cfg->fc_gateway, &rt->fib6_nh.nh_gw))
3272 continue;
3273 if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric)
3274 continue;
3275 if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol)
3276 continue;
3277 if (!fib6_info_hold_safe(rt))
3278 continue;
3279 rcu_read_unlock();
3280
3281 /* if gateway was specified only delete the one hop */
3282 if (cfg->fc_flags & RTF_GATEWAY)
3283 return __ip6_del_rt(rt, &cfg->fc_nlinfo);
3284
3285 return __ip6_del_rt_siblings(rt, cfg);
3286 }
3287 }
3288 rcu_read_unlock();
3289
3290 return err;
3291 }
3292
3293 static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb)
3294 {
3295 struct netevent_redirect netevent;
3296 struct rt6_info *rt, *nrt = NULL;
3297 struct ndisc_options ndopts;
3298 struct inet6_dev *in6_dev;
3299 struct neighbour *neigh;
3300 struct fib6_info *from;
3301 struct rd_msg *msg;
3302 int optlen, on_link;
3303 u8 *lladdr;
3304
3305 optlen = skb_tail_pointer(skb) - skb_transport_header(skb);
3306 optlen -= sizeof(*msg);
3307
3308 if (optlen < 0) {
3309 net_dbg_ratelimited("rt6_do_redirect: packet too short\n");
3310 return;
3311 }
3312
3313 msg = (struct rd_msg *)icmp6_hdr(skb);
3314
3315 if (ipv6_addr_is_multicast(&msg->dest)) {
3316 net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n");
3317 return;
3318 }
3319
3320 on_link = 0;
3321 if (ipv6_addr_equal(&msg->dest, &msg->target)) {
3322 on_link = 1;
3323 } else if (ipv6_addr_type(&msg->target) !=
3324 (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) {
3325 net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n");
3326 return;
3327 }
3328
3329 in6_dev = __in6_dev_get(skb->dev);
3330 if (!in6_dev)
3331 return;
3332 if (in6_dev->cnf.forwarding || !in6_dev->cnf.accept_redirects)
3333 return;
3334
3335 /* RFC2461 8.1:
3336 * The IP source address of the Redirect MUST be the same as the current
3337 * first-hop router for the specified ICMP Destination Address.
3338 */
3339
3340 if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) {
3341 net_dbg_ratelimited("rt6_redirect: invalid ND options\n");
3342 return;
3343 }
3344
3345 lladdr = NULL;
3346 if (ndopts.nd_opts_tgt_lladdr) {
3347 lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr,
3348 skb->dev);
3349 if (!lladdr) {
3350 net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n");
3351 return;
3352 }
3353 }
3354
3355 rt = (struct rt6_info *) dst;
3356 if (rt->rt6i_flags & RTF_REJECT) {
3357 net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n");
3358 return;
3359 }
3360
3361 /* Redirect received -> path was valid.
3362 * Look, redirects are sent only in response to data packets,
3363 * so that this nexthop apparently is reachable. --ANK
3364 */
3365 dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr);
3366
3367 neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1);
3368 if (!neigh)
3369 return;
3370
3371 /*
3372 * We have finally decided to accept it.
3373 */
3374
3375 ndisc_update(skb->dev, neigh, lladdr, NUD_STALE,
3376 NEIGH_UPDATE_F_WEAK_OVERRIDE|
3377 NEIGH_UPDATE_F_OVERRIDE|
3378 (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
3379 NEIGH_UPDATE_F_ISROUTER)),
3380 NDISC_REDIRECT, &ndopts);
3381
3382 rcu_read_lock();
3383 from = rcu_dereference(rt->from);
3384 /* This fib6_info_hold() is safe here because we hold reference to rt
3385 * and rt already holds reference to fib6_info.
3386 */
3387 fib6_info_hold(from);
3388 rcu_read_unlock();
3389
3390 nrt = ip6_rt_cache_alloc(from, &msg->dest, NULL);
3391 if (!nrt)
3392 goto out;
3393
3394 nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE;
3395 if (on_link)
3396 nrt->rt6i_flags &= ~RTF_GATEWAY;
3397
3398 nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key;
3399
3400 /* No need to remove rt from the exception table if rt is
3401 * a cached route because rt6_insert_exception() will
3402 * takes care of it
3403 */
3404 if (rt6_insert_exception(nrt, from)) {
3405 dst_release_immediate(&nrt->dst);
3406 goto out;
3407 }
3408
3409 netevent.old = &rt->dst;
3410 netevent.new = &nrt->dst;
3411 netevent.daddr = &msg->dest;
3412 netevent.neigh = neigh;
3413 call_netevent_notifiers(NETEVENT_REDIRECT, &netevent);
3414
3415 out:
3416 fib6_info_release(from);
3417 neigh_release(neigh);
3418 }
3419
3420 #ifdef CONFIG_IPV6_ROUTE_INFO
3421 static struct fib6_info *rt6_get_route_info(struct net *net,
3422 const struct in6_addr *prefix, int prefixlen,
3423 const struct in6_addr *gwaddr,
3424 struct net_device *dev)
3425 {
3426 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO;
3427 int ifindex = dev->ifindex;
3428 struct fib6_node *fn;
3429 struct fib6_info *rt = NULL;
3430 struct fib6_table *table;
3431
3432 table = fib6_get_table(net, tb_id);
3433 if (!table)
3434 return NULL;
3435
3436 rcu_read_lock();
3437 fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true);
3438 if (!fn)
3439 goto out;
3440
3441 for_each_fib6_node_rt_rcu(fn) {
3442 if (rt->fib6_nh.nh_dev->ifindex != ifindex)
3443 continue;
3444 if ((rt->fib6_flags & (RTF_ROUTEINFO|RTF_GATEWAY)) != (RTF_ROUTEINFO|RTF_GATEWAY))
3445 continue;
3446 if (!ipv6_addr_equal(&rt->fib6_nh.nh_gw, gwaddr))
3447 continue;
3448 if (!fib6_info_hold_safe(rt))
3449 continue;
3450 break;
3451 }
3452 out:
3453 rcu_read_unlock();
3454 return rt;
3455 }
3456
3457 static struct fib6_info *rt6_add_route_info(struct net *net,
3458 const struct in6_addr *prefix, int prefixlen,
3459 const struct in6_addr *gwaddr,
3460 struct net_device *dev,
3461 unsigned int pref)
3462 {
3463 struct fib6_config cfg = {
3464 .fc_metric = IP6_RT_PRIO_USER,
3465 .fc_ifindex = dev->ifindex,
3466 .fc_dst_len = prefixlen,
3467 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO |
3468 RTF_UP | RTF_PREF(pref),
3469 .fc_protocol = RTPROT_RA,
3470 .fc_type = RTN_UNICAST,
3471 .fc_nlinfo.portid = 0,
3472 .fc_nlinfo.nlh = NULL,
3473 .fc_nlinfo.nl_net = net,
3474 };
3475
3476 cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO,
3477 cfg.fc_dst = *prefix;
3478 cfg.fc_gateway = *gwaddr;
3479
3480 /* We should treat it as a default route if prefix length is 0. */
3481 if (!prefixlen)
3482 cfg.fc_flags |= RTF_DEFAULT;
3483
3484 ip6_route_add(&cfg, GFP_ATOMIC, NULL);
3485
3486 return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev);
3487 }
3488 #endif
3489
3490 struct fib6_info *rt6_get_dflt_router(struct net *net,
3491 const struct in6_addr *addr,
3492 struct net_device *dev)
3493 {
3494 u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT;
3495 struct fib6_info *rt;
3496 struct fib6_table *table;
3497
3498 table = fib6_get_table(net, tb_id);
3499 if (!table)
3500 return NULL;
3501
3502 rcu_read_lock();
3503 for_each_fib6_node_rt_rcu(&table->tb6_root) {
3504 if (dev == rt->fib6_nh.nh_dev &&
3505 ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) &&
3506 ipv6_addr_equal(&rt->fib6_nh.nh_gw, addr))
3507 break;
3508 }
3509 if (rt && !fib6_info_hold_safe(rt))
3510 rt = NULL;
3511 rcu_read_unlock();
3512 return rt;
3513 }
3514
3515 struct fib6_info *rt6_add_dflt_router(struct net *net,
3516 const struct in6_addr *gwaddr,
3517 struct net_device *dev,
3518 unsigned int pref)
3519 {
3520 struct fib6_config cfg = {
3521 .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT,
3522 .fc_metric = IP6_RT_PRIO_USER,
3523 .fc_ifindex = dev->ifindex,
3524 .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT |
3525 RTF_UP | RTF_EXPIRES | RTF_PREF(pref),
3526 .fc_protocol = RTPROT_RA,
3527 .fc_type = RTN_UNICAST,
3528 .fc_nlinfo.portid = 0,
3529 .fc_nlinfo.nlh = NULL,
3530 .fc_nlinfo.nl_net = net,
3531 };
3532
3533 cfg.fc_gateway = *gwaddr;
3534
3535 if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) {
3536 struct fib6_table *table;
3537
3538 table = fib6_get_table(dev_net(dev), cfg.fc_table);
3539 if (table)
3540 table->flags |= RT6_TABLE_HAS_DFLT_ROUTER;
3541 }
3542
3543 return rt6_get_dflt_router(net, gwaddr, dev);
3544 }
3545
3546 static void __rt6_purge_dflt_routers(struct net *net,
3547 struct fib6_table *table)
3548 {
3549 struct fib6_info *rt;
3550
3551 restart:
3552 rcu_read_lock();
3553 for_each_fib6_node_rt_rcu(&table->tb6_root) {
3554 struct net_device *dev = fib6_info_nh_dev(rt);
3555 struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL;
3556
3557 if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) &&
3558 (!idev || idev->cnf.accept_ra != 2) &&
3559 fib6_info_hold_safe(rt)) {
3560 rcu_read_unlock();
3561 ip6_del_rt(net, rt);
3562 goto restart;
3563 }
3564 }
3565 rcu_read_unlock();
3566
3567 table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER;
3568 }
3569
3570 void rt6_purge_dflt_routers(struct net *net)
3571 {
3572 struct fib6_table *table;
3573 struct hlist_head *head;
3574 unsigned int h;
3575
3576 rcu_read_lock();
3577
3578 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
3579 head = &net->ipv6.fib_table_hash[h];
3580 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
3581 if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER)
3582 __rt6_purge_dflt_routers(net, table);
3583 }
3584 }
3585
3586 rcu_read_unlock();
3587 }
3588
3589 static void rtmsg_to_fib6_config(struct net *net,
3590 struct in6_rtmsg *rtmsg,
3591 struct fib6_config *cfg)
3592 {
3593 *cfg = (struct fib6_config){
3594 .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ?
3595 : RT6_TABLE_MAIN,
3596 .fc_ifindex = rtmsg->rtmsg_ifindex,
3597 .fc_metric = rtmsg->rtmsg_metric,
3598 .fc_expires = rtmsg->rtmsg_info,
3599 .fc_dst_len = rtmsg->rtmsg_dst_len,
3600 .fc_src_len = rtmsg->rtmsg_src_len,
3601 .fc_flags = rtmsg->rtmsg_flags,
3602 .fc_type = rtmsg->rtmsg_type,
3603
3604 .fc_nlinfo.nl_net = net,
3605
3606 .fc_dst = rtmsg->rtmsg_dst,
3607 .fc_src = rtmsg->rtmsg_src,
3608 .fc_gateway = rtmsg->rtmsg_gateway,
3609 };
3610 }
3611
3612 int ipv6_route_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3613 {
3614 struct fib6_config cfg;
3615 struct in6_rtmsg rtmsg;
3616 int err;
3617
3618 switch (cmd) {
3619 case SIOCADDRT: /* Add a route */
3620 case SIOCDELRT: /* Delete a route */
3621 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
3622 return -EPERM;
3623 err = copy_from_user(&rtmsg, arg,
3624 sizeof(struct in6_rtmsg));
3625 if (err)
3626 return -EFAULT;
3627
3628 rtmsg_to_fib6_config(net, &rtmsg, &cfg);
3629
3630 rtnl_lock();
3631 switch (cmd) {
3632 case SIOCADDRT:
3633 err = ip6_route_add(&cfg, GFP_KERNEL, NULL);
3634 break;
3635 case SIOCDELRT:
3636 err = ip6_route_del(&cfg, NULL);
3637 break;
3638 default:
3639 err = -EINVAL;
3640 }
3641 rtnl_unlock();
3642
3643 return err;
3644 }
3645
3646 return -EINVAL;
3647 }
3648
3649 /*
3650 * Drop the packet on the floor
3651 */
3652
3653 static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes)
3654 {
3655 int type;
3656 struct dst_entry *dst = skb_dst(skb);
3657 switch (ipstats_mib_noroutes) {
3658 case IPSTATS_MIB_INNOROUTES:
3659 type = ipv6_addr_type(&ipv6_hdr(skb)->daddr);
3660 if (type == IPV6_ADDR_ANY) {
3661 IP6_INC_STATS(dev_net(dst->dev),
3662 __in6_dev_get_safely(skb->dev),
3663 IPSTATS_MIB_INADDRERRORS);
3664 break;
3665 }
3666 /* FALLTHROUGH */
3667 case IPSTATS_MIB_OUTNOROUTES:
3668 IP6_INC_STATS(dev_net(dst->dev), ip6_dst_idev(dst),
3669 ipstats_mib_noroutes);
3670 break;
3671 }
3672 icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0);
3673 kfree_skb(skb);
3674 return 0;
3675 }
3676
3677 static int ip6_pkt_discard(struct sk_buff *skb)
3678 {
3679 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES);
3680 }
3681
3682 static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3683 {
3684 skb->dev = skb_dst(skb)->dev;
3685 return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES);
3686 }
3687
3688 static int ip6_pkt_prohibit(struct sk_buff *skb)
3689 {
3690 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES);
3691 }
3692
3693 static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb)
3694 {
3695 skb->dev = skb_dst(skb)->dev;
3696 return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES);
3697 }
3698
3699 /*
3700 * Allocate a dst for local (unicast / anycast) address.
3701 */
3702
3703 struct fib6_info *addrconf_f6i_alloc(struct net *net,
3704 struct inet6_dev *idev,
3705 const struct in6_addr *addr,
3706 bool anycast, gfp_t gfp_flags)
3707 {
3708 u32 tb_id;
3709 struct net_device *dev = idev->dev;
3710 struct fib6_info *f6i;
3711
3712 f6i = fib6_info_alloc(gfp_flags);
3713 if (!f6i)
3714 return ERR_PTR(-ENOMEM);
3715
3716 f6i->fib6_metrics = ip_fib_metrics_init(net, NULL, 0, NULL);
3717 f6i->dst_nocount = true;
3718 f6i->dst_host = true;
3719 f6i->fib6_protocol = RTPROT_KERNEL;
3720 f6i->fib6_flags = RTF_UP | RTF_NONEXTHOP;
3721 if (anycast) {
3722 f6i->fib6_type = RTN_ANYCAST;
3723 f6i->fib6_flags |= RTF_ANYCAST;
3724 } else {
3725 f6i->fib6_type = RTN_LOCAL;
3726 f6i->fib6_flags |= RTF_LOCAL;
3727 }
3728
3729 f6i->fib6_nh.nh_gw = *addr;
3730 dev_hold(dev);
3731 f6i->fib6_nh.nh_dev = dev;
3732 f6i->fib6_dst.addr = *addr;
3733 f6i->fib6_dst.plen = 128;
3734 tb_id = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL;
3735 f6i->fib6_table = fib6_get_table(net, tb_id);
3736
3737 return f6i;
3738 }
3739
3740 /* remove deleted ip from prefsrc entries */
3741 struct arg_dev_net_ip {
3742 struct net_device *dev;
3743 struct net *net;
3744 struct in6_addr *addr;
3745 };
3746
3747 static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg)
3748 {
3749 struct net_device *dev = ((struct arg_dev_net_ip *)arg)->dev;
3750 struct net *net = ((struct arg_dev_net_ip *)arg)->net;
3751 struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr;
3752
3753 if (((void *)rt->fib6_nh.nh_dev == dev || !dev) &&
3754 rt != net->ipv6.fib6_null_entry &&
3755 ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr)) {
3756 spin_lock_bh(&rt6_exception_lock);
3757 /* remove prefsrc entry */
3758 rt->fib6_prefsrc.plen = 0;
3759 spin_unlock_bh(&rt6_exception_lock);
3760 }
3761 return 0;
3762 }
3763
3764 void rt6_remove_prefsrc(struct inet6_ifaddr *ifp)
3765 {
3766 struct net *net = dev_net(ifp->idev->dev);
3767 struct arg_dev_net_ip adni = {
3768 .dev = ifp->idev->dev,
3769 .net = net,
3770 .addr = &ifp->addr,
3771 };
3772 fib6_clean_all(net, fib6_remove_prefsrc, &adni);
3773 }
3774
3775 #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT | RTF_GATEWAY)
3776
3777 /* Remove routers and update dst entries when gateway turn into host. */
3778 static int fib6_clean_tohost(struct fib6_info *rt, void *arg)
3779 {
3780 struct in6_addr *gateway = (struct in6_addr *)arg;
3781
3782 if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) &&
3783 ipv6_addr_equal(gateway, &rt->fib6_nh.nh_gw)) {
3784 return -1;
3785 }
3786
3787 /* Further clean up cached routes in exception table.
3788 * This is needed because cached route may have a different
3789 * gateway than its 'parent' in the case of an ip redirect.
3790 */
3791 rt6_exceptions_clean_tohost(rt, gateway);
3792
3793 return 0;
3794 }
3795
3796 void rt6_clean_tohost(struct net *net, struct in6_addr *gateway)
3797 {
3798 fib6_clean_all(net, fib6_clean_tohost, gateway);
3799 }
3800
3801 struct arg_netdev_event {
3802 const struct net_device *dev;
3803 union {
3804 unsigned int nh_flags;
3805 unsigned long event;
3806 };
3807 };
3808
3809 static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt)
3810 {
3811 struct fib6_info *iter;
3812 struct fib6_node *fn;
3813
3814 fn = rcu_dereference_protected(rt->fib6_node,
3815 lockdep_is_held(&rt->fib6_table->tb6_lock));
3816 iter = rcu_dereference_protected(fn->leaf,
3817 lockdep_is_held(&rt->fib6_table->tb6_lock));
3818 while (iter) {
3819 if (iter->fib6_metric == rt->fib6_metric &&
3820 rt6_qualify_for_ecmp(iter))
3821 return iter;
3822 iter = rcu_dereference_protected(iter->fib6_next,
3823 lockdep_is_held(&rt->fib6_table->tb6_lock));
3824 }
3825
3826 return NULL;
3827 }
3828
3829 static bool rt6_is_dead(const struct fib6_info *rt)
3830 {
3831 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD ||
3832 (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN &&
3833 fib6_ignore_linkdown(rt)))
3834 return true;
3835
3836 return false;
3837 }
3838
3839 static int rt6_multipath_total_weight(const struct fib6_info *rt)
3840 {
3841 struct fib6_info *iter;
3842 int total = 0;
3843
3844 if (!rt6_is_dead(rt))
3845 total += rt->fib6_nh.nh_weight;
3846
3847 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) {
3848 if (!rt6_is_dead(iter))
3849 total += iter->fib6_nh.nh_weight;
3850 }
3851
3852 return total;
3853 }
3854
3855 static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total)
3856 {
3857 int upper_bound = -1;
3858
3859 if (!rt6_is_dead(rt)) {
3860 *weight += rt->fib6_nh.nh_weight;
3861 upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31,
3862 total) - 1;
3863 }
3864 atomic_set(&rt->fib6_nh.nh_upper_bound, upper_bound);
3865 }
3866
3867 static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total)
3868 {
3869 struct fib6_info *iter;
3870 int weight = 0;
3871
3872 rt6_upper_bound_set(rt, &weight, total);
3873
3874 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3875 rt6_upper_bound_set(iter, &weight, total);
3876 }
3877
3878 void rt6_multipath_rebalance(struct fib6_info *rt)
3879 {
3880 struct fib6_info *first;
3881 int total;
3882
3883 /* In case the entire multipath route was marked for flushing,
3884 * then there is no need to rebalance upon the removal of every
3885 * sibling route.
3886 */
3887 if (!rt->fib6_nsiblings || rt->should_flush)
3888 return;
3889
3890 /* During lookup routes are evaluated in order, so we need to
3891 * make sure upper bounds are assigned from the first sibling
3892 * onwards.
3893 */
3894 first = rt6_multipath_first_sibling(rt);
3895 if (WARN_ON_ONCE(!first))
3896 return;
3897
3898 total = rt6_multipath_total_weight(first);
3899 rt6_multipath_upper_bound_set(first, total);
3900 }
3901
3902 static int fib6_ifup(struct fib6_info *rt, void *p_arg)
3903 {
3904 const struct arg_netdev_event *arg = p_arg;
3905 struct net *net = dev_net(arg->dev);
3906
3907 if (rt != net->ipv6.fib6_null_entry && rt->fib6_nh.nh_dev == arg->dev) {
3908 rt->fib6_nh.nh_flags &= ~arg->nh_flags;
3909 fib6_update_sernum_upto_root(net, rt);
3910 rt6_multipath_rebalance(rt);
3911 }
3912
3913 return 0;
3914 }
3915
3916 void rt6_sync_up(struct net_device *dev, unsigned int nh_flags)
3917 {
3918 struct arg_netdev_event arg = {
3919 .dev = dev,
3920 {
3921 .nh_flags = nh_flags,
3922 },
3923 };
3924
3925 if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev))
3926 arg.nh_flags |= RTNH_F_LINKDOWN;
3927
3928 fib6_clean_all(dev_net(dev), fib6_ifup, &arg);
3929 }
3930
3931 static bool rt6_multipath_uses_dev(const struct fib6_info *rt,
3932 const struct net_device *dev)
3933 {
3934 struct fib6_info *iter;
3935
3936 if (rt->fib6_nh.nh_dev == dev)
3937 return true;
3938 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3939 if (iter->fib6_nh.nh_dev == dev)
3940 return true;
3941
3942 return false;
3943 }
3944
3945 static void rt6_multipath_flush(struct fib6_info *rt)
3946 {
3947 struct fib6_info *iter;
3948
3949 rt->should_flush = 1;
3950 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3951 iter->should_flush = 1;
3952 }
3953
3954 static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt,
3955 const struct net_device *down_dev)
3956 {
3957 struct fib6_info *iter;
3958 unsigned int dead = 0;
3959
3960 if (rt->fib6_nh.nh_dev == down_dev ||
3961 rt->fib6_nh.nh_flags & RTNH_F_DEAD)
3962 dead++;
3963 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3964 if (iter->fib6_nh.nh_dev == down_dev ||
3965 iter->fib6_nh.nh_flags & RTNH_F_DEAD)
3966 dead++;
3967
3968 return dead;
3969 }
3970
3971 static void rt6_multipath_nh_flags_set(struct fib6_info *rt,
3972 const struct net_device *dev,
3973 unsigned int nh_flags)
3974 {
3975 struct fib6_info *iter;
3976
3977 if (rt->fib6_nh.nh_dev == dev)
3978 rt->fib6_nh.nh_flags |= nh_flags;
3979 list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings)
3980 if (iter->fib6_nh.nh_dev == dev)
3981 iter->fib6_nh.nh_flags |= nh_flags;
3982 }
3983
3984 /* called with write lock held for table with rt */
3985 static int fib6_ifdown(struct fib6_info *rt, void *p_arg)
3986 {
3987 const struct arg_netdev_event *arg = p_arg;
3988 const struct net_device *dev = arg->dev;
3989 struct net *net = dev_net(dev);
3990
3991 if (rt == net->ipv6.fib6_null_entry)
3992 return 0;
3993
3994 switch (arg->event) {
3995 case NETDEV_UNREGISTER:
3996 return rt->fib6_nh.nh_dev == dev ? -1 : 0;
3997 case NETDEV_DOWN:
3998 if (rt->should_flush)
3999 return -1;
4000 if (!rt->fib6_nsiblings)
4001 return rt->fib6_nh.nh_dev == dev ? -1 : 0;
4002 if (rt6_multipath_uses_dev(rt, dev)) {
4003 unsigned int count;
4004
4005 count = rt6_multipath_dead_count(rt, dev);
4006 if (rt->fib6_nsiblings + 1 == count) {
4007 rt6_multipath_flush(rt);
4008 return -1;
4009 }
4010 rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD |
4011 RTNH_F_LINKDOWN);
4012 fib6_update_sernum(net, rt);
4013 rt6_multipath_rebalance(rt);
4014 }
4015 return -2;
4016 case NETDEV_CHANGE:
4017 if (rt->fib6_nh.nh_dev != dev ||
4018 rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST))
4019 break;
4020 rt->fib6_nh.nh_flags |= RTNH_F_LINKDOWN;
4021 rt6_multipath_rebalance(rt);
4022 break;
4023 }
4024
4025 return 0;
4026 }
4027
4028 void rt6_sync_down_dev(struct net_device *dev, unsigned long event)
4029 {
4030 struct arg_netdev_event arg = {
4031 .dev = dev,
4032 {
4033 .event = event,
4034 },
4035 };
4036 struct net *net = dev_net(dev);
4037
4038 if (net->ipv6.sysctl.skip_notify_on_dev_down)
4039 fib6_clean_all_skip_notify(net, fib6_ifdown, &arg);
4040 else
4041 fib6_clean_all(net, fib6_ifdown, &arg);
4042 }
4043
4044 void rt6_disable_ip(struct net_device *dev, unsigned long event)
4045 {
4046 rt6_sync_down_dev(dev, event);
4047 rt6_uncached_list_flush_dev(dev_net(dev), dev);
4048 neigh_ifdown(&nd_tbl, dev);
4049 }
4050
4051 struct rt6_mtu_change_arg {
4052 struct net_device *dev;
4053 unsigned int mtu;
4054 };
4055
4056 static int rt6_mtu_change_route(struct fib6_info *rt, void *p_arg)
4057 {
4058 struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg;
4059 struct inet6_dev *idev;
4060
4061 /* In IPv6 pmtu discovery is not optional,
4062 so that RTAX_MTU lock cannot disable it.
4063 We still use this lock to block changes
4064 caused by addrconf/ndisc.
4065 */
4066
4067 idev = __in6_dev_get(arg->dev);
4068 if (!idev)
4069 return 0;
4070
4071 /* For administrative MTU increase, there is no way to discover
4072 IPv6 PMTU increase, so PMTU increase should be updated here.
4073 Since RFC 1981 doesn't include administrative MTU increase
4074 update PMTU increase is a MUST. (i.e. jumbo frame)
4075 */
4076 if (rt->fib6_nh.nh_dev == arg->dev &&
4077 !fib6_metric_locked(rt, RTAX_MTU)) {
4078 u32 mtu = rt->fib6_pmtu;
4079
4080 if (mtu >= arg->mtu ||
4081 (mtu < arg->mtu && mtu == idev->cnf.mtu6))
4082 fib6_metric_set(rt, RTAX_MTU, arg->mtu);
4083
4084 spin_lock_bh(&rt6_exception_lock);
4085 rt6_exceptions_update_pmtu(idev, rt, arg->mtu);
4086 spin_unlock_bh(&rt6_exception_lock);
4087 }
4088 return 0;
4089 }
4090
4091 void rt6_mtu_change(struct net_device *dev, unsigned int mtu)
4092 {
4093 struct rt6_mtu_change_arg arg = {
4094 .dev = dev,
4095 .mtu = mtu,
4096 };
4097
4098 fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg);
4099 }
4100
4101 static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = {
4102 [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) },
4103 [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) },
4104 [RTA_OIF] = { .type = NLA_U32 },
4105 [RTA_IIF] = { .type = NLA_U32 },
4106 [RTA_PRIORITY] = { .type = NLA_U32 },
4107 [RTA_METRICS] = { .type = NLA_NESTED },
4108 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
4109 [RTA_PREF] = { .type = NLA_U8 },
4110 [RTA_ENCAP_TYPE] = { .type = NLA_U16 },
4111 [RTA_ENCAP] = { .type = NLA_NESTED },
4112 [RTA_EXPIRES] = { .type = NLA_U32 },
4113 [RTA_UID] = { .type = NLA_U32 },
4114 [RTA_MARK] = { .type = NLA_U32 },
4115 [RTA_TABLE] = { .type = NLA_U32 },
4116 [RTA_IP_PROTO] = { .type = NLA_U8 },
4117 [RTA_SPORT] = { .type = NLA_U16 },
4118 [RTA_DPORT] = { .type = NLA_U16 },
4119 };
4120
4121 static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh,
4122 struct fib6_config *cfg,
4123 struct netlink_ext_ack *extack)
4124 {
4125 struct rtmsg *rtm;
4126 struct nlattr *tb[RTA_MAX+1];
4127 unsigned int pref;
4128 int err;
4129
4130 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4131 extack);
4132 if (err < 0)
4133 goto errout;
4134
4135 err = -EINVAL;
4136 rtm = nlmsg_data(nlh);
4137
4138 *cfg = (struct fib6_config){
4139 .fc_table = rtm->rtm_table,
4140 .fc_dst_len = rtm->rtm_dst_len,
4141 .fc_src_len = rtm->rtm_src_len,
4142 .fc_flags = RTF_UP,
4143 .fc_protocol = rtm->rtm_protocol,
4144 .fc_type = rtm->rtm_type,
4145
4146 .fc_nlinfo.portid = NETLINK_CB(skb).portid,
4147 .fc_nlinfo.nlh = nlh,
4148 .fc_nlinfo.nl_net = sock_net(skb->sk),
4149 };
4150
4151 if (rtm->rtm_type == RTN_UNREACHABLE ||
4152 rtm->rtm_type == RTN_BLACKHOLE ||
4153 rtm->rtm_type == RTN_PROHIBIT ||
4154 rtm->rtm_type == RTN_THROW)
4155 cfg->fc_flags |= RTF_REJECT;
4156
4157 if (rtm->rtm_type == RTN_LOCAL)
4158 cfg->fc_flags |= RTF_LOCAL;
4159
4160 if (rtm->rtm_flags & RTM_F_CLONED)
4161 cfg->fc_flags |= RTF_CACHE;
4162
4163 cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK);
4164
4165 if (tb[RTA_GATEWAY]) {
4166 cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]);
4167 cfg->fc_flags |= RTF_GATEWAY;
4168 }
4169
4170 if (tb[RTA_DST]) {
4171 int plen = (rtm->rtm_dst_len + 7) >> 3;
4172
4173 if (nla_len(tb[RTA_DST]) < plen)
4174 goto errout;
4175
4176 nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen);
4177 }
4178
4179 if (tb[RTA_SRC]) {
4180 int plen = (rtm->rtm_src_len + 7) >> 3;
4181
4182 if (nla_len(tb[RTA_SRC]) < plen)
4183 goto errout;
4184
4185 nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen);
4186 }
4187
4188 if (tb[RTA_PREFSRC])
4189 cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]);
4190
4191 if (tb[RTA_OIF])
4192 cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]);
4193
4194 if (tb[RTA_PRIORITY])
4195 cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]);
4196
4197 if (tb[RTA_METRICS]) {
4198 cfg->fc_mx = nla_data(tb[RTA_METRICS]);
4199 cfg->fc_mx_len = nla_len(tb[RTA_METRICS]);
4200 }
4201
4202 if (tb[RTA_TABLE])
4203 cfg->fc_table = nla_get_u32(tb[RTA_TABLE]);
4204
4205 if (tb[RTA_MULTIPATH]) {
4206 cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]);
4207 cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]);
4208
4209 err = lwtunnel_valid_encap_type_attr(cfg->fc_mp,
4210 cfg->fc_mp_len, extack);
4211 if (err < 0)
4212 goto errout;
4213 }
4214
4215 if (tb[RTA_PREF]) {
4216 pref = nla_get_u8(tb[RTA_PREF]);
4217 if (pref != ICMPV6_ROUTER_PREF_LOW &&
4218 pref != ICMPV6_ROUTER_PREF_HIGH)
4219 pref = ICMPV6_ROUTER_PREF_MEDIUM;
4220 cfg->fc_flags |= RTF_PREF(pref);
4221 }
4222
4223 if (tb[RTA_ENCAP])
4224 cfg->fc_encap = tb[RTA_ENCAP];
4225
4226 if (tb[RTA_ENCAP_TYPE]) {
4227 cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]);
4228
4229 err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack);
4230 if (err < 0)
4231 goto errout;
4232 }
4233
4234 if (tb[RTA_EXPIRES]) {
4235 unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ);
4236
4237 if (addrconf_finite_timeout(timeout)) {
4238 cfg->fc_expires = jiffies_to_clock_t(timeout * HZ);
4239 cfg->fc_flags |= RTF_EXPIRES;
4240 }
4241 }
4242
4243 err = 0;
4244 errout:
4245 return err;
4246 }
4247
4248 struct rt6_nh {
4249 struct fib6_info *fib6_info;
4250 struct fib6_config r_cfg;
4251 struct list_head next;
4252 };
4253
4254 static int ip6_route_info_append(struct net *net,
4255 struct list_head *rt6_nh_list,
4256 struct fib6_info *rt,
4257 struct fib6_config *r_cfg)
4258 {
4259 struct rt6_nh *nh;
4260 int err = -EEXIST;
4261
4262 list_for_each_entry(nh, rt6_nh_list, next) {
4263 /* check if fib6_info already exists */
4264 if (rt6_duplicate_nexthop(nh->fib6_info, rt))
4265 return err;
4266 }
4267
4268 nh = kzalloc(sizeof(*nh), GFP_KERNEL);
4269 if (!nh)
4270 return -ENOMEM;
4271 nh->fib6_info = rt;
4272 memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg));
4273 list_add_tail(&nh->next, rt6_nh_list);
4274
4275 return 0;
4276 }
4277
4278 static void ip6_route_mpath_notify(struct fib6_info *rt,
4279 struct fib6_info *rt_last,
4280 struct nl_info *info,
4281 __u16 nlflags)
4282 {
4283 /* if this is an APPEND route, then rt points to the first route
4284 * inserted and rt_last points to last route inserted. Userspace
4285 * wants a consistent dump of the route which starts at the first
4286 * nexthop. Since sibling routes are always added at the end of
4287 * the list, find the first sibling of the last route appended
4288 */
4289 if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) {
4290 rt = list_first_entry(&rt_last->fib6_siblings,
4291 struct fib6_info,
4292 fib6_siblings);
4293 }
4294
4295 if (rt)
4296 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
4297 }
4298
4299 static int ip6_route_multipath_add(struct fib6_config *cfg,
4300 struct netlink_ext_ack *extack)
4301 {
4302 struct fib6_info *rt_notif = NULL, *rt_last = NULL;
4303 struct nl_info *info = &cfg->fc_nlinfo;
4304 struct fib6_config r_cfg;
4305 struct rtnexthop *rtnh;
4306 struct fib6_info *rt;
4307 struct rt6_nh *err_nh;
4308 struct rt6_nh *nh, *nh_safe;
4309 __u16 nlflags;
4310 int remaining;
4311 int attrlen;
4312 int err = 1;
4313 int nhn = 0;
4314 int replace = (cfg->fc_nlinfo.nlh &&
4315 (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE));
4316 LIST_HEAD(rt6_nh_list);
4317
4318 nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE;
4319 if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND)
4320 nlflags |= NLM_F_APPEND;
4321
4322 remaining = cfg->fc_mp_len;
4323 rtnh = (struct rtnexthop *)cfg->fc_mp;
4324
4325 /* Parse a Multipath Entry and build a list (rt6_nh_list) of
4326 * fib6_info structs per nexthop
4327 */
4328 while (rtnh_ok(rtnh, remaining)) {
4329 memcpy(&r_cfg, cfg, sizeof(*cfg));
4330 if (rtnh->rtnh_ifindex)
4331 r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4332
4333 attrlen = rtnh_attrlen(rtnh);
4334 if (attrlen > 0) {
4335 struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4336
4337 nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4338 if (nla) {
4339 r_cfg.fc_gateway = nla_get_in6_addr(nla);
4340 r_cfg.fc_flags |= RTF_GATEWAY;
4341 }
4342 r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP);
4343 nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE);
4344 if (nla)
4345 r_cfg.fc_encap_type = nla_get_u16(nla);
4346 }
4347
4348 r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK);
4349 rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack);
4350 if (IS_ERR(rt)) {
4351 err = PTR_ERR(rt);
4352 rt = NULL;
4353 goto cleanup;
4354 }
4355 if (!rt6_qualify_for_ecmp(rt)) {
4356 err = -EINVAL;
4357 NL_SET_ERR_MSG(extack,
4358 "Device only routes can not be added for IPv6 using the multipath API.");
4359 fib6_info_release(rt);
4360 goto cleanup;
4361 }
4362
4363 rt->fib6_nh.nh_weight = rtnh->rtnh_hops + 1;
4364
4365 err = ip6_route_info_append(info->nl_net, &rt6_nh_list,
4366 rt, &r_cfg);
4367 if (err) {
4368 fib6_info_release(rt);
4369 goto cleanup;
4370 }
4371
4372 rtnh = rtnh_next(rtnh, &remaining);
4373 }
4374
4375 /* for add and replace send one notification with all nexthops.
4376 * Skip the notification in fib6_add_rt2node and send one with
4377 * the full route when done
4378 */
4379 info->skip_notify = 1;
4380
4381 err_nh = NULL;
4382 list_for_each_entry(nh, &rt6_nh_list, next) {
4383 err = __ip6_ins_rt(nh->fib6_info, info, extack);
4384 fib6_info_release(nh->fib6_info);
4385
4386 if (!err) {
4387 /* save reference to last route successfully inserted */
4388 rt_last = nh->fib6_info;
4389
4390 /* save reference to first route for notification */
4391 if (!rt_notif)
4392 rt_notif = nh->fib6_info;
4393 }
4394
4395 /* nh->fib6_info is used or freed at this point, reset to NULL*/
4396 nh->fib6_info = NULL;
4397 if (err) {
4398 if (replace && nhn)
4399 NL_SET_ERR_MSG_MOD(extack,
4400 "multipath route replace failed (check consistency of installed routes)");
4401 err_nh = nh;
4402 goto add_errout;
4403 }
4404
4405 /* Because each route is added like a single route we remove
4406 * these flags after the first nexthop: if there is a collision,
4407 * we have already failed to add the first nexthop:
4408 * fib6_add_rt2node() has rejected it; when replacing, old
4409 * nexthops have been replaced by first new, the rest should
4410 * be added to it.
4411 */
4412 cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL |
4413 NLM_F_REPLACE);
4414 nhn++;
4415 }
4416
4417 /* success ... tell user about new route */
4418 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4419 goto cleanup;
4420
4421 add_errout:
4422 /* send notification for routes that were added so that
4423 * the delete notifications sent by ip6_route_del are
4424 * coherent
4425 */
4426 if (rt_notif)
4427 ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags);
4428
4429 /* Delete routes that were already added */
4430 list_for_each_entry(nh, &rt6_nh_list, next) {
4431 if (err_nh == nh)
4432 break;
4433 ip6_route_del(&nh->r_cfg, extack);
4434 }
4435
4436 cleanup:
4437 list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) {
4438 if (nh->fib6_info)
4439 fib6_info_release(nh->fib6_info);
4440 list_del(&nh->next);
4441 kfree(nh);
4442 }
4443
4444 return err;
4445 }
4446
4447 static int ip6_route_multipath_del(struct fib6_config *cfg,
4448 struct netlink_ext_ack *extack)
4449 {
4450 struct fib6_config r_cfg;
4451 struct rtnexthop *rtnh;
4452 int remaining;
4453 int attrlen;
4454 int err = 1, last_err = 0;
4455
4456 remaining = cfg->fc_mp_len;
4457 rtnh = (struct rtnexthop *)cfg->fc_mp;
4458
4459 /* Parse a Multipath Entry */
4460 while (rtnh_ok(rtnh, remaining)) {
4461 memcpy(&r_cfg, cfg, sizeof(*cfg));
4462 if (rtnh->rtnh_ifindex)
4463 r_cfg.fc_ifindex = rtnh->rtnh_ifindex;
4464
4465 attrlen = rtnh_attrlen(rtnh);
4466 if (attrlen > 0) {
4467 struct nlattr *nla, *attrs = rtnh_attrs(rtnh);
4468
4469 nla = nla_find(attrs, attrlen, RTA_GATEWAY);
4470 if (nla) {
4471 nla_memcpy(&r_cfg.fc_gateway, nla, 16);
4472 r_cfg.fc_flags |= RTF_GATEWAY;
4473 }
4474 }
4475 err = ip6_route_del(&r_cfg, extack);
4476 if (err)
4477 last_err = err;
4478
4479 rtnh = rtnh_next(rtnh, &remaining);
4480 }
4481
4482 return last_err;
4483 }
4484
4485 static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4486 struct netlink_ext_ack *extack)
4487 {
4488 struct fib6_config cfg;
4489 int err;
4490
4491 err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4492 if (err < 0)
4493 return err;
4494
4495 if (cfg.fc_mp)
4496 return ip6_route_multipath_del(&cfg, extack);
4497 else {
4498 cfg.fc_delete_all_nh = 1;
4499 return ip6_route_del(&cfg, extack);
4500 }
4501 }
4502
4503 static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
4504 struct netlink_ext_ack *extack)
4505 {
4506 struct fib6_config cfg;
4507 int err;
4508
4509 err = rtm_to_fib6_config(skb, nlh, &cfg, extack);
4510 if (err < 0)
4511 return err;
4512
4513 if (cfg.fc_mp)
4514 return ip6_route_multipath_add(&cfg, extack);
4515 else
4516 return ip6_route_add(&cfg, GFP_KERNEL, extack);
4517 }
4518
4519 static size_t rt6_nlmsg_size(struct fib6_info *rt)
4520 {
4521 int nexthop_len = 0;
4522
4523 if (rt->fib6_nsiblings) {
4524 nexthop_len = nla_total_size(0) /* RTA_MULTIPATH */
4525 + NLA_ALIGN(sizeof(struct rtnexthop))
4526 + nla_total_size(16) /* RTA_GATEWAY */
4527 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate);
4528
4529 nexthop_len *= rt->fib6_nsiblings;
4530 }
4531
4532 return NLMSG_ALIGN(sizeof(struct rtmsg))
4533 + nla_total_size(16) /* RTA_SRC */
4534 + nla_total_size(16) /* RTA_DST */
4535 + nla_total_size(16) /* RTA_GATEWAY */
4536 + nla_total_size(16) /* RTA_PREFSRC */
4537 + nla_total_size(4) /* RTA_TABLE */
4538 + nla_total_size(4) /* RTA_IIF */
4539 + nla_total_size(4) /* RTA_OIF */
4540 + nla_total_size(4) /* RTA_PRIORITY */
4541 + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */
4542 + nla_total_size(sizeof(struct rta_cacheinfo))
4543 + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */
4544 + nla_total_size(1) /* RTA_PREF */
4545 + lwtunnel_get_encap_size(rt->fib6_nh.nh_lwtstate)
4546 + nexthop_len;
4547 }
4548
4549 static int rt6_nexthop_info(struct sk_buff *skb, struct fib6_info *rt,
4550 unsigned int *flags, bool skip_oif)
4551 {
4552 if (rt->fib6_nh.nh_flags & RTNH_F_DEAD)
4553 *flags |= RTNH_F_DEAD;
4554
4555 if (rt->fib6_nh.nh_flags & RTNH_F_LINKDOWN) {
4556 *flags |= RTNH_F_LINKDOWN;
4557
4558 rcu_read_lock();
4559 if (fib6_ignore_linkdown(rt))
4560 *flags |= RTNH_F_DEAD;
4561 rcu_read_unlock();
4562 }
4563
4564 if (rt->fib6_flags & RTF_GATEWAY) {
4565 if (nla_put_in6_addr(skb, RTA_GATEWAY, &rt->fib6_nh.nh_gw) < 0)
4566 goto nla_put_failure;
4567 }
4568
4569 *flags |= (rt->fib6_nh.nh_flags & RTNH_F_ONLINK);
4570 if (rt->fib6_nh.nh_flags & RTNH_F_OFFLOAD)
4571 *flags |= RTNH_F_OFFLOAD;
4572
4573 /* not needed for multipath encoding b/c it has a rtnexthop struct */
4574 if (!skip_oif && rt->fib6_nh.nh_dev &&
4575 nla_put_u32(skb, RTA_OIF, rt->fib6_nh.nh_dev->ifindex))
4576 goto nla_put_failure;
4577
4578 if (rt->fib6_nh.nh_lwtstate &&
4579 lwtunnel_fill_encap(skb, rt->fib6_nh.nh_lwtstate) < 0)
4580 goto nla_put_failure;
4581
4582 return 0;
4583
4584 nla_put_failure:
4585 return -EMSGSIZE;
4586 }
4587
4588 /* add multipath next hop */
4589 static int rt6_add_nexthop(struct sk_buff *skb, struct fib6_info *rt)
4590 {
4591 const struct net_device *dev = rt->fib6_nh.nh_dev;
4592 struct rtnexthop *rtnh;
4593 unsigned int flags = 0;
4594
4595 rtnh = nla_reserve_nohdr(skb, sizeof(*rtnh));
4596 if (!rtnh)
4597 goto nla_put_failure;
4598
4599 rtnh->rtnh_hops = rt->fib6_nh.nh_weight - 1;
4600 rtnh->rtnh_ifindex = dev ? dev->ifindex : 0;
4601
4602 if (rt6_nexthop_info(skb, rt, &flags, true) < 0)
4603 goto nla_put_failure;
4604
4605 rtnh->rtnh_flags = flags;
4606
4607 /* length of rtnetlink header + attributes */
4608 rtnh->rtnh_len = nlmsg_get_pos(skb) - (void *)rtnh;
4609
4610 return 0;
4611
4612 nla_put_failure:
4613 return -EMSGSIZE;
4614 }
4615
4616 static int rt6_fill_node(struct net *net, struct sk_buff *skb,
4617 struct fib6_info *rt, struct dst_entry *dst,
4618 struct in6_addr *dest, struct in6_addr *src,
4619 int iif, int type, u32 portid, u32 seq,
4620 unsigned int flags)
4621 {
4622 struct rt6_info *rt6 = (struct rt6_info *)dst;
4623 struct rt6key *rt6_dst, *rt6_src;
4624 u32 *pmetrics, table, rt6_flags;
4625 struct nlmsghdr *nlh;
4626 struct rtmsg *rtm;
4627 long expires = 0;
4628
4629 nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags);
4630 if (!nlh)
4631 return -EMSGSIZE;
4632
4633 if (rt6) {
4634 rt6_dst = &rt6->rt6i_dst;
4635 rt6_src = &rt6->rt6i_src;
4636 rt6_flags = rt6->rt6i_flags;
4637 } else {
4638 rt6_dst = &rt->fib6_dst;
4639 rt6_src = &rt->fib6_src;
4640 rt6_flags = rt->fib6_flags;
4641 }
4642
4643 rtm = nlmsg_data(nlh);
4644 rtm->rtm_family = AF_INET6;
4645 rtm->rtm_dst_len = rt6_dst->plen;
4646 rtm->rtm_src_len = rt6_src->plen;
4647 rtm->rtm_tos = 0;
4648 if (rt->fib6_table)
4649 table = rt->fib6_table->tb6_id;
4650 else
4651 table = RT6_TABLE_UNSPEC;
4652 rtm->rtm_table = table;
4653 if (nla_put_u32(skb, RTA_TABLE, table))
4654 goto nla_put_failure;
4655
4656 rtm->rtm_type = rt->fib6_type;
4657 rtm->rtm_flags = 0;
4658 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
4659 rtm->rtm_protocol = rt->fib6_protocol;
4660
4661 if (rt6_flags & RTF_CACHE)
4662 rtm->rtm_flags |= RTM_F_CLONED;
4663
4664 if (dest) {
4665 if (nla_put_in6_addr(skb, RTA_DST, dest))
4666 goto nla_put_failure;
4667 rtm->rtm_dst_len = 128;
4668 } else if (rtm->rtm_dst_len)
4669 if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr))
4670 goto nla_put_failure;
4671 #ifdef CONFIG_IPV6_SUBTREES
4672 if (src) {
4673 if (nla_put_in6_addr(skb, RTA_SRC, src))
4674 goto nla_put_failure;
4675 rtm->rtm_src_len = 128;
4676 } else if (rtm->rtm_src_len &&
4677 nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr))
4678 goto nla_put_failure;
4679 #endif
4680 if (iif) {
4681 #ifdef CONFIG_IPV6_MROUTE
4682 if (ipv6_addr_is_multicast(&rt6_dst->addr)) {
4683 int err = ip6mr_get_route(net, skb, rtm, portid);
4684
4685 if (err == 0)
4686 return 0;
4687 if (err < 0)
4688 goto nla_put_failure;
4689 } else
4690 #endif
4691 if (nla_put_u32(skb, RTA_IIF, iif))
4692 goto nla_put_failure;
4693 } else if (dest) {
4694 struct in6_addr saddr_buf;
4695 if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 &&
4696 nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4697 goto nla_put_failure;
4698 }
4699
4700 if (rt->fib6_prefsrc.plen) {
4701 struct in6_addr saddr_buf;
4702 saddr_buf = rt->fib6_prefsrc.addr;
4703 if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf))
4704 goto nla_put_failure;
4705 }
4706
4707 pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics;
4708 if (rtnetlink_put_metrics(skb, pmetrics) < 0)
4709 goto nla_put_failure;
4710
4711 if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric))
4712 goto nla_put_failure;
4713
4714 /* For multipath routes, walk the siblings list and add
4715 * each as a nexthop within RTA_MULTIPATH.
4716 */
4717 if (rt6) {
4718 if (rt6_flags & RTF_GATEWAY &&
4719 nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway))
4720 goto nla_put_failure;
4721
4722 if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex))
4723 goto nla_put_failure;
4724 } else if (rt->fib6_nsiblings) {
4725 struct fib6_info *sibling, *next_sibling;
4726 struct nlattr *mp;
4727
4728 mp = nla_nest_start(skb, RTA_MULTIPATH);
4729 if (!mp)
4730 goto nla_put_failure;
4731
4732 if (rt6_add_nexthop(skb, rt) < 0)
4733 goto nla_put_failure;
4734
4735 list_for_each_entry_safe(sibling, next_sibling,
4736 &rt->fib6_siblings, fib6_siblings) {
4737 if (rt6_add_nexthop(skb, sibling) < 0)
4738 goto nla_put_failure;
4739 }
4740
4741 nla_nest_end(skb, mp);
4742 } else {
4743 if (rt6_nexthop_info(skb, rt, &rtm->rtm_flags, false) < 0)
4744 goto nla_put_failure;
4745 }
4746
4747 if (rt6_flags & RTF_EXPIRES) {
4748 expires = dst ? dst->expires : rt->expires;
4749 expires -= jiffies;
4750 }
4751
4752 if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0)
4753 goto nla_put_failure;
4754
4755 if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags)))
4756 goto nla_put_failure;
4757
4758
4759 nlmsg_end(skb, nlh);
4760 return 0;
4761
4762 nla_put_failure:
4763 nlmsg_cancel(skb, nlh);
4764 return -EMSGSIZE;
4765 }
4766
4767 static bool fib6_info_uses_dev(const struct fib6_info *f6i,
4768 const struct net_device *dev)
4769 {
4770 if (f6i->fib6_nh.nh_dev == dev)
4771 return true;
4772
4773 if (f6i->fib6_nsiblings) {
4774 struct fib6_info *sibling, *next_sibling;
4775
4776 list_for_each_entry_safe(sibling, next_sibling,
4777 &f6i->fib6_siblings, fib6_siblings) {
4778 if (sibling->fib6_nh.nh_dev == dev)
4779 return true;
4780 }
4781 }
4782
4783 return false;
4784 }
4785
4786 int rt6_dump_route(struct fib6_info *rt, void *p_arg)
4787 {
4788 struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg;
4789 struct fib_dump_filter *filter = &arg->filter;
4790 unsigned int flags = NLM_F_MULTI;
4791 struct net *net = arg->net;
4792
4793 if (rt == net->ipv6.fib6_null_entry)
4794 return 0;
4795
4796 if ((filter->flags & RTM_F_PREFIX) &&
4797 !(rt->fib6_flags & RTF_PREFIX_RT)) {
4798 /* success since this is not a prefix route */
4799 return 1;
4800 }
4801 if (filter->filter_set) {
4802 if ((filter->rt_type && rt->fib6_type != filter->rt_type) ||
4803 (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) ||
4804 (filter->protocol && rt->fib6_protocol != filter->protocol)) {
4805 return 1;
4806 }
4807 flags |= NLM_F_DUMP_FILTERED;
4808 }
4809
4810 return rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0,
4811 RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid,
4812 arg->cb->nlh->nlmsg_seq, flags);
4813 }
4814
4815 static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
4816 struct netlink_ext_ack *extack)
4817 {
4818 struct net *net = sock_net(in_skb->sk);
4819 struct nlattr *tb[RTA_MAX+1];
4820 int err, iif = 0, oif = 0;
4821 struct fib6_info *from;
4822 struct dst_entry *dst;
4823 struct rt6_info *rt;
4824 struct sk_buff *skb;
4825 struct rtmsg *rtm;
4826 struct flowi6 fl6 = {};
4827 bool fibmatch;
4828
4829 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy,
4830 extack);
4831 if (err < 0)
4832 goto errout;
4833
4834 err = -EINVAL;
4835 rtm = nlmsg_data(nlh);
4836 fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0);
4837 fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH);
4838
4839 if (tb[RTA_SRC]) {
4840 if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
4841 goto errout;
4842
4843 fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
4844 }
4845
4846 if (tb[RTA_DST]) {
4847 if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
4848 goto errout;
4849
4850 fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
4851 }
4852
4853 if (tb[RTA_IIF])
4854 iif = nla_get_u32(tb[RTA_IIF]);
4855
4856 if (tb[RTA_OIF])
4857 oif = nla_get_u32(tb[RTA_OIF]);
4858
4859 if (tb[RTA_MARK])
4860 fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]);
4861
4862 if (tb[RTA_UID])
4863 fl6.flowi6_uid = make_kuid(current_user_ns(),
4864 nla_get_u32(tb[RTA_UID]));
4865 else
4866 fl6.flowi6_uid = iif ? INVALID_UID : current_uid();
4867
4868 if (tb[RTA_SPORT])
4869 fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]);
4870
4871 if (tb[RTA_DPORT])
4872 fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]);
4873
4874 if (tb[RTA_IP_PROTO]) {
4875 err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO],
4876 &fl6.flowi6_proto, extack);
4877 if (err)
4878 goto errout;
4879 }
4880
4881 if (iif) {
4882 struct net_device *dev;
4883 int flags = 0;
4884
4885 rcu_read_lock();
4886
4887 dev = dev_get_by_index_rcu(net, iif);
4888 if (!dev) {
4889 rcu_read_unlock();
4890 err = -ENODEV;
4891 goto errout;
4892 }
4893
4894 fl6.flowi6_iif = iif;
4895
4896 if (!ipv6_addr_any(&fl6.saddr))
4897 flags |= RT6_LOOKUP_F_HAS_SADDR;
4898
4899 dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags);
4900
4901 rcu_read_unlock();
4902 } else {
4903 fl6.flowi6_oif = oif;
4904
4905 dst = ip6_route_output(net, NULL, &fl6);
4906 }
4907
4908
4909 rt = container_of(dst, struct rt6_info, dst);
4910 if (rt->dst.error) {
4911 err = rt->dst.error;
4912 ip6_rt_put(rt);
4913 goto errout;
4914 }
4915
4916 if (rt == net->ipv6.ip6_null_entry) {
4917 err = rt->dst.error;
4918 ip6_rt_put(rt);
4919 goto errout;
4920 }
4921
4922 skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
4923 if (!skb) {
4924 ip6_rt_put(rt);
4925 err = -ENOBUFS;
4926 goto errout;
4927 }
4928
4929 skb_dst_set(skb, &rt->dst);
4930
4931 rcu_read_lock();
4932 from = rcu_dereference(rt->from);
4933
4934 if (fibmatch)
4935 err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif,
4936 RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
4937 nlh->nlmsg_seq, 0);
4938 else
4939 err = rt6_fill_node(net, skb, from, dst, &fl6.daddr,
4940 &fl6.saddr, iif, RTM_NEWROUTE,
4941 NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
4942 0);
4943 rcu_read_unlock();
4944
4945 if (err < 0) {
4946 kfree_skb(skb);
4947 goto errout;
4948 }
4949
4950 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
4951 errout:
4952 return err;
4953 }
4954
4955 void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info,
4956 unsigned int nlm_flags)
4957 {
4958 struct sk_buff *skb;
4959 struct net *net = info->nl_net;
4960 u32 seq;
4961 int err;
4962
4963 err = -ENOBUFS;
4964 seq = info->nlh ? info->nlh->nlmsg_seq : 0;
4965
4966 skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any());
4967 if (!skb)
4968 goto errout;
4969
4970 err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0,
4971 event, info->portid, seq, nlm_flags);
4972 if (err < 0) {
4973 /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */
4974 WARN_ON(err == -EMSGSIZE);
4975 kfree_skb(skb);
4976 goto errout;
4977 }
4978 rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE,
4979 info->nlh, gfp_any());
4980 return;
4981 errout:
4982 if (err < 0)
4983 rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err);
4984 }
4985
4986 static int ip6_route_dev_notify(struct notifier_block *this,
4987 unsigned long event, void *ptr)
4988 {
4989 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4990 struct net *net = dev_net(dev);
4991
4992 if (!(dev->flags & IFF_LOOPBACK))
4993 return NOTIFY_OK;
4994
4995 if (event == NETDEV_REGISTER) {
4996 net->ipv6.fib6_null_entry->fib6_nh.nh_dev = dev;
4997 net->ipv6.ip6_null_entry->dst.dev = dev;
4998 net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev);
4999 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5000 net->ipv6.ip6_prohibit_entry->dst.dev = dev;
5001 net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev);
5002 net->ipv6.ip6_blk_hole_entry->dst.dev = dev;
5003 net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev);
5004 #endif
5005 } else if (event == NETDEV_UNREGISTER &&
5006 dev->reg_state != NETREG_UNREGISTERED) {
5007 /* NETDEV_UNREGISTER could be fired for multiple times by
5008 * netdev_wait_allrefs(). Make sure we only call this once.
5009 */
5010 in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev);
5011 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5012 in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev);
5013 in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev);
5014 #endif
5015 }
5016
5017 return NOTIFY_OK;
5018 }
5019
5020 /*
5021 * /proc
5022 */
5023
5024 #ifdef CONFIG_PROC_FS
5025 static int rt6_stats_seq_show(struct seq_file *seq, void *v)
5026 {
5027 struct net *net = (struct net *)seq->private;
5028 seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n",
5029 net->ipv6.rt6_stats->fib_nodes,
5030 net->ipv6.rt6_stats->fib_route_nodes,
5031 atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc),
5032 net->ipv6.rt6_stats->fib_rt_entries,
5033 net->ipv6.rt6_stats->fib_rt_cache,
5034 dst_entries_get_slow(&net->ipv6.ip6_dst_ops),
5035 net->ipv6.rt6_stats->fib_discarded_routes);
5036
5037 return 0;
5038 }
5039 #endif /* CONFIG_PROC_FS */
5040
5041 #ifdef CONFIG_SYSCTL
5042
5043 static
5044 int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write,
5045 void __user *buffer, size_t *lenp, loff_t *ppos)
5046 {
5047 struct net *net;
5048 int delay;
5049 int ret;
5050 if (!write)
5051 return -EINVAL;
5052
5053 net = (struct net *)ctl->extra1;
5054 delay = net->ipv6.sysctl.flush_delay;
5055 ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
5056 if (ret)
5057 return ret;
5058
5059 fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0);
5060 return 0;
5061 }
5062
5063 static int zero;
5064 static int one = 1;
5065
5066 static struct ctl_table ipv6_route_table_template[] = {
5067 {
5068 .procname = "flush",
5069 .data = &init_net.ipv6.sysctl.flush_delay,
5070 .maxlen = sizeof(int),
5071 .mode = 0200,
5072 .proc_handler = ipv6_sysctl_rtcache_flush
5073 },
5074 {
5075 .procname = "gc_thresh",
5076 .data = &ip6_dst_ops_template.gc_thresh,
5077 .maxlen = sizeof(int),
5078 .mode = 0644,
5079 .proc_handler = proc_dointvec,
5080 },
5081 {
5082 .procname = "max_size",
5083 .data = &init_net.ipv6.sysctl.ip6_rt_max_size,
5084 .maxlen = sizeof(int),
5085 .mode = 0644,
5086 .proc_handler = proc_dointvec,
5087 },
5088 {
5089 .procname = "gc_min_interval",
5090 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5091 .maxlen = sizeof(int),
5092 .mode = 0644,
5093 .proc_handler = proc_dointvec_jiffies,
5094 },
5095 {
5096 .procname = "gc_timeout",
5097 .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout,
5098 .maxlen = sizeof(int),
5099 .mode = 0644,
5100 .proc_handler = proc_dointvec_jiffies,
5101 },
5102 {
5103 .procname = "gc_interval",
5104 .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval,
5105 .maxlen = sizeof(int),
5106 .mode = 0644,
5107 .proc_handler = proc_dointvec_jiffies,
5108 },
5109 {
5110 .procname = "gc_elasticity",
5111 .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity,
5112 .maxlen = sizeof(int),
5113 .mode = 0644,
5114 .proc_handler = proc_dointvec,
5115 },
5116 {
5117 .procname = "mtu_expires",
5118 .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires,
5119 .maxlen = sizeof(int),
5120 .mode = 0644,
5121 .proc_handler = proc_dointvec_jiffies,
5122 },
5123 {
5124 .procname = "min_adv_mss",
5125 .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss,
5126 .maxlen = sizeof(int),
5127 .mode = 0644,
5128 .proc_handler = proc_dointvec,
5129 },
5130 {
5131 .procname = "gc_min_interval_ms",
5132 .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval,
5133 .maxlen = sizeof(int),
5134 .mode = 0644,
5135 .proc_handler = proc_dointvec_ms_jiffies,
5136 },
5137 {
5138 .procname = "skip_notify_on_dev_down",
5139 .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down,
5140 .maxlen = sizeof(int),
5141 .mode = 0644,
5142 .proc_handler = proc_dointvec,
5143 .extra1 = &zero,
5144 .extra2 = &one,
5145 },
5146 { }
5147 };
5148
5149 struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net)
5150 {
5151 struct ctl_table *table;
5152
5153 table = kmemdup(ipv6_route_table_template,
5154 sizeof(ipv6_route_table_template),
5155 GFP_KERNEL);
5156
5157 if (table) {
5158 table[0].data = &net->ipv6.sysctl.flush_delay;
5159 table[0].extra1 = net;
5160 table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh;
5161 table[2].data = &net->ipv6.sysctl.ip6_rt_max_size;
5162 table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5163 table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout;
5164 table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval;
5165 table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity;
5166 table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires;
5167 table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss;
5168 table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval;
5169 table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down;
5170
5171 /* Don't export sysctls to unprivileged users */
5172 if (net->user_ns != &init_user_ns)
5173 table[0].procname = NULL;
5174 }
5175
5176 return table;
5177 }
5178 #endif
5179
5180 static int __net_init ip6_route_net_init(struct net *net)
5181 {
5182 int ret = -ENOMEM;
5183
5184 memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template,
5185 sizeof(net->ipv6.ip6_dst_ops));
5186
5187 if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0)
5188 goto out_ip6_dst_ops;
5189
5190 net->ipv6.fib6_null_entry = kmemdup(&fib6_null_entry_template,
5191 sizeof(*net->ipv6.fib6_null_entry),
5192 GFP_KERNEL);
5193 if (!net->ipv6.fib6_null_entry)
5194 goto out_ip6_dst_entries;
5195
5196 net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template,
5197 sizeof(*net->ipv6.ip6_null_entry),
5198 GFP_KERNEL);
5199 if (!net->ipv6.ip6_null_entry)
5200 goto out_fib6_null_entry;
5201 net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5202 dst_init_metrics(&net->ipv6.ip6_null_entry->dst,
5203 ip6_template_metrics, true);
5204
5205 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5206 net->ipv6.fib6_has_custom_rules = false;
5207 net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template,
5208 sizeof(*net->ipv6.ip6_prohibit_entry),
5209 GFP_KERNEL);
5210 if (!net->ipv6.ip6_prohibit_entry)
5211 goto out_ip6_null_entry;
5212 net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5213 dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst,
5214 ip6_template_metrics, true);
5215
5216 net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template,
5217 sizeof(*net->ipv6.ip6_blk_hole_entry),
5218 GFP_KERNEL);
5219 if (!net->ipv6.ip6_blk_hole_entry)
5220 goto out_ip6_prohibit_entry;
5221 net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops;
5222 dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst,
5223 ip6_template_metrics, true);
5224 #endif
5225
5226 net->ipv6.sysctl.flush_delay = 0;
5227 net->ipv6.sysctl.ip6_rt_max_size = 4096;
5228 net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2;
5229 net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ;
5230 net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ;
5231 net->ipv6.sysctl.ip6_rt_gc_elasticity = 9;
5232 net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ;
5233 net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40;
5234 net->ipv6.sysctl.skip_notify_on_dev_down = 0;
5235
5236 net->ipv6.ip6_rt_gc_expire = 30*HZ;
5237
5238 ret = 0;
5239 out:
5240 return ret;
5241
5242 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5243 out_ip6_prohibit_entry:
5244 kfree(net->ipv6.ip6_prohibit_entry);
5245 out_ip6_null_entry:
5246 kfree(net->ipv6.ip6_null_entry);
5247 #endif
5248 out_fib6_null_entry:
5249 kfree(net->ipv6.fib6_null_entry);
5250 out_ip6_dst_entries:
5251 dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5252 out_ip6_dst_ops:
5253 goto out;
5254 }
5255
5256 static void __net_exit ip6_route_net_exit(struct net *net)
5257 {
5258 kfree(net->ipv6.fib6_null_entry);
5259 kfree(net->ipv6.ip6_null_entry);
5260 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5261 kfree(net->ipv6.ip6_prohibit_entry);
5262 kfree(net->ipv6.ip6_blk_hole_entry);
5263 #endif
5264 dst_entries_destroy(&net->ipv6.ip6_dst_ops);
5265 }
5266
5267 static int __net_init ip6_route_net_init_late(struct net *net)
5268 {
5269 #ifdef CONFIG_PROC_FS
5270 proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops,
5271 sizeof(struct ipv6_route_iter));
5272 proc_create_net_single("rt6_stats", 0444, net->proc_net,
5273 rt6_stats_seq_show, NULL);
5274 #endif
5275 return 0;
5276 }
5277
5278 static void __net_exit ip6_route_net_exit_late(struct net *net)
5279 {
5280 #ifdef CONFIG_PROC_FS
5281 remove_proc_entry("ipv6_route", net->proc_net);
5282 remove_proc_entry("rt6_stats", net->proc_net);
5283 #endif
5284 }
5285
5286 static struct pernet_operations ip6_route_net_ops = {
5287 .init = ip6_route_net_init,
5288 .exit = ip6_route_net_exit,
5289 };
5290
5291 static int __net_init ipv6_inetpeer_init(struct net *net)
5292 {
5293 struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL);
5294
5295 if (!bp)
5296 return -ENOMEM;
5297 inet_peer_base_init(bp);
5298 net->ipv6.peers = bp;
5299 return 0;
5300 }
5301
5302 static void __net_exit ipv6_inetpeer_exit(struct net *net)
5303 {
5304 struct inet_peer_base *bp = net->ipv6.peers;
5305
5306 net->ipv6.peers = NULL;
5307 inetpeer_invalidate_tree(bp);
5308 kfree(bp);
5309 }
5310
5311 static struct pernet_operations ipv6_inetpeer_ops = {
5312 .init = ipv6_inetpeer_init,
5313 .exit = ipv6_inetpeer_exit,
5314 };
5315
5316 static struct pernet_operations ip6_route_net_late_ops = {
5317 .init = ip6_route_net_init_late,
5318 .exit = ip6_route_net_exit_late,
5319 };
5320
5321 static struct notifier_block ip6_route_dev_notifier = {
5322 .notifier_call = ip6_route_dev_notify,
5323 .priority = ADDRCONF_NOTIFY_PRIORITY - 10,
5324 };
5325
5326 void __init ip6_route_init_special_entries(void)
5327 {
5328 /* Registering of the loopback is done before this portion of code,
5329 * the loopback reference in rt6_info will not be taken, do it
5330 * manually for init_net */
5331 init_net.ipv6.fib6_null_entry->fib6_nh.nh_dev = init_net.loopback_dev;
5332 init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev;
5333 init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5334 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
5335 init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev;
5336 init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5337 init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev;
5338 init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev);
5339 #endif
5340 }
5341
5342 int __init ip6_route_init(void)
5343 {
5344 int ret;
5345 int cpu;
5346
5347 ret = -ENOMEM;
5348 ip6_dst_ops_template.kmem_cachep =
5349 kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0,
5350 SLAB_HWCACHE_ALIGN, NULL);
5351 if (!ip6_dst_ops_template.kmem_cachep)
5352 goto out;
5353
5354 ret = dst_entries_init(&ip6_dst_blackhole_ops);
5355 if (ret)
5356 goto out_kmem_cache;
5357
5358 ret = register_pernet_subsys(&ipv6_inetpeer_ops);
5359 if (ret)
5360 goto out_dst_entries;
5361
5362 ret = register_pernet_subsys(&ip6_route_net_ops);
5363 if (ret)
5364 goto out_register_inetpeer;
5365
5366 ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep;
5367
5368 ret = fib6_init();
5369 if (ret)
5370 goto out_register_subsys;
5371
5372 ret = xfrm6_init();
5373 if (ret)
5374 goto out_fib6_init;
5375
5376 ret = fib6_rules_init();
5377 if (ret)
5378 goto xfrm6_init;
5379
5380 ret = register_pernet_subsys(&ip6_route_net_late_ops);
5381 if (ret)
5382 goto fib6_rules_init;
5383
5384 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE,
5385 inet6_rtm_newroute, NULL, 0);
5386 if (ret < 0)
5387 goto out_register_late_subsys;
5388
5389 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE,
5390 inet6_rtm_delroute, NULL, 0);
5391 if (ret < 0)
5392 goto out_register_late_subsys;
5393
5394 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE,
5395 inet6_rtm_getroute, NULL,
5396 RTNL_FLAG_DOIT_UNLOCKED);
5397 if (ret < 0)
5398 goto out_register_late_subsys;
5399
5400 ret = register_netdevice_notifier(&ip6_route_dev_notifier);
5401 if (ret)
5402 goto out_register_late_subsys;
5403
5404 for_each_possible_cpu(cpu) {
5405 struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu);
5406
5407 INIT_LIST_HEAD(&ul->head);
5408 spin_lock_init(&ul->lock);
5409 }
5410
5411 out:
5412 return ret;
5413
5414 out_register_late_subsys:
5415 rtnl_unregister_all(PF_INET6);
5416 unregister_pernet_subsys(&ip6_route_net_late_ops);
5417 fib6_rules_init:
5418 fib6_rules_cleanup();
5419 xfrm6_init:
5420 xfrm6_fini();
5421 out_fib6_init:
5422 fib6_gc_cleanup();
5423 out_register_subsys:
5424 unregister_pernet_subsys(&ip6_route_net_ops);
5425 out_register_inetpeer:
5426 unregister_pernet_subsys(&ipv6_inetpeer_ops);
5427 out_dst_entries:
5428 dst_entries_destroy(&ip6_dst_blackhole_ops);
5429 out_kmem_cache:
5430 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5431 goto out;
5432 }
5433
5434 void ip6_route_cleanup(void)
5435 {
5436 unregister_netdevice_notifier(&ip6_route_dev_notifier);
5437 unregister_pernet_subsys(&ip6_route_net_late_ops);
5438 fib6_rules_cleanup();
5439 xfrm6_fini();
5440 fib6_gc_cleanup();
5441 unregister_pernet_subsys(&ipv6_inetpeer_ops);
5442 unregister_pernet_subsys(&ip6_route_net_ops);
5443 dst_entries_destroy(&ip6_dst_blackhole_ops);
5444 kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep);
5445 }