]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/irda/af_irda.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / net / irda / af_irda.c
1 /*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, see <http://www.gnu.org/licenses/>.
29 *
30 * Linux-IrDA now supports four different types of IrDA sockets:
31 *
32 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
33 * max SDU size is 0 for conn. of this type
34 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
35 * fragment the messages, but will preserve
36 * the message boundaries
37 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
38 * (unreliable) transfers
39 * IRDAPROTO_ULTRA: Connectionless and unreliable data
40 *
41 ********************************************************************/
42
43 #include <linux/capability.h>
44 #include <linux/module.h>
45 #include <linux/types.h>
46 #include <linux/socket.h>
47 #include <linux/sockios.h>
48 #include <linux/slab.h>
49 #include <linux/sched/signal.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
54
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <linux/uaccess.h>
57
58 #include <net/sock.h>
59 #include <net/tcp_states.h>
60
61 #include <net/irda/af_irda.h>
62
63 static int irda_create(struct net *net, struct socket *sock, int protocol, int kern);
64
65 static const struct proto_ops irda_stream_ops;
66 static const struct proto_ops irda_seqpacket_ops;
67 static const struct proto_ops irda_dgram_ops;
68
69 #ifdef CONFIG_IRDA_ULTRA
70 static const struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
73
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
75
76 /*
77 * Function irda_data_indication (instance, sap, skb)
78 *
79 * Received some data from TinyTP. Just queue it on the receive queue
80 *
81 */
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
83 {
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
87
88 self = instance;
89 sk = instance;
90
91 err = sock_queue_rcv_skb(sk, skb);
92 if (err) {
93 pr_debug("%s(), error: no more mem!\n", __func__);
94 self->rx_flow = FLOW_STOP;
95
96 /* When we return error, TTP will need to requeue the skb */
97 return err;
98 }
99
100 return 0;
101 }
102
103 /*
104 * Function irda_disconnect_indication (instance, sap, reason, skb)
105 *
106 * Connection has been closed. Check reason to find out why
107 *
108 */
109 static void irda_disconnect_indication(void *instance, void *sap,
110 LM_REASON reason, struct sk_buff *skb)
111 {
112 struct irda_sock *self;
113 struct sock *sk;
114
115 self = instance;
116
117 pr_debug("%s(%p)\n", __func__, self);
118
119 /* Don't care about it, but let's not leak it */
120 if(skb)
121 dev_kfree_skb(skb);
122
123 sk = instance;
124 if (sk == NULL) {
125 pr_debug("%s(%p) : BUG : sk is NULL\n",
126 __func__, self);
127 return;
128 }
129
130 /* Prevent race conditions with irda_release() and irda_shutdown() */
131 bh_lock_sock(sk);
132 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
133 sk->sk_state = TCP_CLOSE;
134 sk->sk_shutdown |= SEND_SHUTDOWN;
135
136 sk->sk_state_change(sk);
137
138 /* Close our TSAP.
139 * If we leave it open, IrLMP put it back into the list of
140 * unconnected LSAPs. The problem is that any incoming request
141 * can then be matched to this socket (and it will be, because
142 * it is at the head of the list). This would prevent any
143 * listening socket waiting on the same TSAP to get those
144 * requests. Some apps forget to close sockets, or hang to it
145 * a bit too long, so we may stay in this dead state long
146 * enough to be noticed...
147 * Note : all socket function do check sk->sk_state, so we are
148 * safe...
149 * Jean II
150 */
151 if (self->tsap) {
152 irttp_close_tsap(self->tsap);
153 self->tsap = NULL;
154 }
155 }
156 bh_unlock_sock(sk);
157
158 /* Note : once we are there, there is not much you want to do
159 * with the socket anymore, apart from closing it.
160 * For example, bind() and connect() won't reset sk->sk_err,
161 * sk->sk_shutdown and sk->sk_flags to valid values...
162 * Jean II
163 */
164 }
165
166 /*
167 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
168 *
169 * Connections has been confirmed by the remote device
170 *
171 */
172 static void irda_connect_confirm(void *instance, void *sap,
173 struct qos_info *qos,
174 __u32 max_sdu_size, __u8 max_header_size,
175 struct sk_buff *skb)
176 {
177 struct irda_sock *self;
178 struct sock *sk;
179
180 self = instance;
181
182 pr_debug("%s(%p)\n", __func__, self);
183
184 sk = instance;
185 if (sk == NULL) {
186 dev_kfree_skb(skb);
187 return;
188 }
189
190 dev_kfree_skb(skb);
191 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
192
193 /* How much header space do we need to reserve */
194 self->max_header_size = max_header_size;
195
196 /* IrTTP max SDU size in transmit direction */
197 self->max_sdu_size_tx = max_sdu_size;
198
199 /* Find out what the largest chunk of data that we can transmit is */
200 switch (sk->sk_type) {
201 case SOCK_STREAM:
202 if (max_sdu_size != 0) {
203 net_err_ratelimited("%s: max_sdu_size must be 0\n",
204 __func__);
205 return;
206 }
207 self->max_data_size = irttp_get_max_seg_size(self->tsap);
208 break;
209 case SOCK_SEQPACKET:
210 if (max_sdu_size == 0) {
211 net_err_ratelimited("%s: max_sdu_size cannot be 0\n",
212 __func__);
213 return;
214 }
215 self->max_data_size = max_sdu_size;
216 break;
217 default:
218 self->max_data_size = irttp_get_max_seg_size(self->tsap);
219 }
220
221 pr_debug("%s(), max_data_size=%d\n", __func__,
222 self->max_data_size);
223
224 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
225
226 /* We are now connected! */
227 sk->sk_state = TCP_ESTABLISHED;
228 sk->sk_state_change(sk);
229 }
230
231 /*
232 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
233 *
234 * Incoming connection
235 *
236 */
237 static void irda_connect_indication(void *instance, void *sap,
238 struct qos_info *qos, __u32 max_sdu_size,
239 __u8 max_header_size, struct sk_buff *skb)
240 {
241 struct irda_sock *self;
242 struct sock *sk;
243
244 self = instance;
245
246 pr_debug("%s(%p)\n", __func__, self);
247
248 sk = instance;
249 if (sk == NULL) {
250 dev_kfree_skb(skb);
251 return;
252 }
253
254 /* How much header space do we need to reserve */
255 self->max_header_size = max_header_size;
256
257 /* IrTTP max SDU size in transmit direction */
258 self->max_sdu_size_tx = max_sdu_size;
259
260 /* Find out what the largest chunk of data that we can transmit is */
261 switch (sk->sk_type) {
262 case SOCK_STREAM:
263 if (max_sdu_size != 0) {
264 net_err_ratelimited("%s: max_sdu_size must be 0\n",
265 __func__);
266 kfree_skb(skb);
267 return;
268 }
269 self->max_data_size = irttp_get_max_seg_size(self->tsap);
270 break;
271 case SOCK_SEQPACKET:
272 if (max_sdu_size == 0) {
273 net_err_ratelimited("%s: max_sdu_size cannot be 0\n",
274 __func__);
275 kfree_skb(skb);
276 return;
277 }
278 self->max_data_size = max_sdu_size;
279 break;
280 default:
281 self->max_data_size = irttp_get_max_seg_size(self->tsap);
282 }
283
284 pr_debug("%s(), max_data_size=%d\n", __func__,
285 self->max_data_size);
286
287 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
288
289 skb_queue_tail(&sk->sk_receive_queue, skb);
290 sk->sk_state_change(sk);
291 }
292
293 /*
294 * Function irda_connect_response (handle)
295 *
296 * Accept incoming connection
297 *
298 */
299 static void irda_connect_response(struct irda_sock *self)
300 {
301 struct sk_buff *skb;
302
303 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER, GFP_KERNEL);
304 if (skb == NULL) {
305 pr_debug("%s() Unable to allocate sk_buff!\n",
306 __func__);
307 return;
308 }
309
310 /* Reserve space for MUX_CONTROL and LAP header */
311 skb_reserve(skb, IRDA_MAX_HEADER);
312
313 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
314 }
315
316 /*
317 * Function irda_flow_indication (instance, sap, flow)
318 *
319 * Used by TinyTP to tell us if it can accept more data or not
320 *
321 */
322 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
323 {
324 struct irda_sock *self;
325 struct sock *sk;
326
327 self = instance;
328 sk = instance;
329 BUG_ON(sk == NULL);
330
331 switch (flow) {
332 case FLOW_STOP:
333 pr_debug("%s(), IrTTP wants us to slow down\n",
334 __func__);
335 self->tx_flow = flow;
336 break;
337 case FLOW_START:
338 self->tx_flow = flow;
339 pr_debug("%s(), IrTTP wants us to start again\n",
340 __func__);
341 wake_up_interruptible(sk_sleep(sk));
342 break;
343 default:
344 pr_debug("%s(), Unknown flow command!\n", __func__);
345 /* Unknown flow command, better stop */
346 self->tx_flow = flow;
347 break;
348 }
349 }
350
351 /*
352 * Function irda_getvalue_confirm (obj_id, value, priv)
353 *
354 * Got answer from remote LM-IAS, just pass object to requester...
355 *
356 * Note : duplicate from above, but we need our own version that
357 * doesn't touch the dtsap_sel and save the full value structure...
358 */
359 static void irda_getvalue_confirm(int result, __u16 obj_id,
360 struct ias_value *value, void *priv)
361 {
362 struct irda_sock *self;
363
364 self = priv;
365 if (!self) {
366 net_warn_ratelimited("%s: lost myself!\n", __func__);
367 return;
368 }
369
370 pr_debug("%s(%p)\n", __func__, self);
371
372 /* We probably don't need to make any more queries */
373 iriap_close(self->iriap);
374 self->iriap = NULL;
375
376 /* Check if request succeeded */
377 if (result != IAS_SUCCESS) {
378 pr_debug("%s(), IAS query failed! (%d)\n", __func__,
379 result);
380
381 self->errno = result; /* We really need it later */
382
383 /* Wake up any processes waiting for result */
384 wake_up_interruptible(&self->query_wait);
385
386 return;
387 }
388
389 /* Pass the object to the caller (so the caller must delete it) */
390 self->ias_result = value;
391 self->errno = 0;
392
393 /* Wake up any processes waiting for result */
394 wake_up_interruptible(&self->query_wait);
395 }
396
397 /*
398 * Function irda_selective_discovery_indication (discovery)
399 *
400 * Got a selective discovery indication from IrLMP.
401 *
402 * IrLMP is telling us that this node is new and matching our hint bit
403 * filter. Wake up any process waiting for answer...
404 */
405 static void irda_selective_discovery_indication(discinfo_t *discovery,
406 DISCOVERY_MODE mode,
407 void *priv)
408 {
409 struct irda_sock *self;
410
411 self = priv;
412 if (!self) {
413 net_warn_ratelimited("%s: lost myself!\n", __func__);
414 return;
415 }
416
417 /* Pass parameter to the caller */
418 self->cachedaddr = discovery->daddr;
419
420 /* Wake up process if its waiting for device to be discovered */
421 wake_up_interruptible(&self->query_wait);
422 }
423
424 /*
425 * Function irda_discovery_timeout (priv)
426 *
427 * Timeout in the selective discovery process
428 *
429 * We were waiting for a node to be discovered, but nothing has come up
430 * so far. Wake up the user and tell him that we failed...
431 */
432 static void irda_discovery_timeout(u_long priv)
433 {
434 struct irda_sock *self;
435
436 self = (struct irda_sock *) priv;
437 BUG_ON(self == NULL);
438
439 /* Nothing for the caller */
440 self->cachelog = NULL;
441 self->cachedaddr = 0;
442 self->errno = -ETIME;
443
444 /* Wake up process if its still waiting... */
445 wake_up_interruptible(&self->query_wait);
446 }
447
448 /*
449 * Function irda_open_tsap (self)
450 *
451 * Open local Transport Service Access Point (TSAP)
452 *
453 */
454 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
455 {
456 notify_t notify;
457
458 if (self->tsap) {
459 pr_debug("%s: busy!\n", __func__);
460 return -EBUSY;
461 }
462
463 /* Initialize callbacks to be used by the IrDA stack */
464 irda_notify_init(&notify);
465 notify.connect_confirm = irda_connect_confirm;
466 notify.connect_indication = irda_connect_indication;
467 notify.disconnect_indication = irda_disconnect_indication;
468 notify.data_indication = irda_data_indication;
469 notify.udata_indication = irda_data_indication;
470 notify.flow_indication = irda_flow_indication;
471 notify.instance = self;
472 strncpy(notify.name, name, NOTIFY_MAX_NAME);
473
474 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
475 &notify);
476 if (self->tsap == NULL) {
477 pr_debug("%s(), Unable to allocate TSAP!\n",
478 __func__);
479 return -ENOMEM;
480 }
481 /* Remember which TSAP selector we actually got */
482 self->stsap_sel = self->tsap->stsap_sel;
483
484 return 0;
485 }
486
487 /*
488 * Function irda_open_lsap (self)
489 *
490 * Open local Link Service Access Point (LSAP). Used for opening Ultra
491 * sockets
492 */
493 #ifdef CONFIG_IRDA_ULTRA
494 static int irda_open_lsap(struct irda_sock *self, int pid)
495 {
496 notify_t notify;
497
498 if (self->lsap) {
499 net_warn_ratelimited("%s(), busy!\n", __func__);
500 return -EBUSY;
501 }
502
503 /* Initialize callbacks to be used by the IrDA stack */
504 irda_notify_init(&notify);
505 notify.udata_indication = irda_data_indication;
506 notify.instance = self;
507 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
508
509 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
510 if (self->lsap == NULL) {
511 pr_debug("%s(), Unable to allocate LSAP!\n", __func__);
512 return -ENOMEM;
513 }
514
515 return 0;
516 }
517 #endif /* CONFIG_IRDA_ULTRA */
518
519 /*
520 * Function irda_find_lsap_sel (self, name)
521 *
522 * Try to lookup LSAP selector in remote LM-IAS
523 *
524 * Basically, we start a IAP query, and then go to sleep. When the query
525 * return, irda_getvalue_confirm will wake us up, and we can examine the
526 * result of the query...
527 * Note that in some case, the query fail even before we go to sleep,
528 * creating some races...
529 */
530 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
531 {
532 pr_debug("%s(%p, %s)\n", __func__, self, name);
533
534 if (self->iriap) {
535 net_warn_ratelimited("%s(): busy with a previous query\n",
536 __func__);
537 return -EBUSY;
538 }
539
540 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
541 irda_getvalue_confirm);
542 if(self->iriap == NULL)
543 return -ENOMEM;
544
545 /* Treat unexpected wakeup as disconnect */
546 self->errno = -EHOSTUNREACH;
547
548 /* Query remote LM-IAS */
549 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
550 name, "IrDA:TinyTP:LsapSel");
551
552 /* Wait for answer, if not yet finished (or failed) */
553 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
554 /* Treat signals as disconnect */
555 return -EHOSTUNREACH;
556
557 /* Check what happened */
558 if (self->errno)
559 {
560 /* Requested object/attribute doesn't exist */
561 if((self->errno == IAS_CLASS_UNKNOWN) ||
562 (self->errno == IAS_ATTRIB_UNKNOWN))
563 return -EADDRNOTAVAIL;
564 else
565 return -EHOSTUNREACH;
566 }
567
568 /* Get the remote TSAP selector */
569 switch (self->ias_result->type) {
570 case IAS_INTEGER:
571 pr_debug("%s() int=%d\n",
572 __func__, self->ias_result->t.integer);
573
574 if (self->ias_result->t.integer != -1)
575 self->dtsap_sel = self->ias_result->t.integer;
576 else
577 self->dtsap_sel = 0;
578 break;
579 default:
580 self->dtsap_sel = 0;
581 pr_debug("%s(), bad type!\n", __func__);
582 break;
583 }
584 if (self->ias_result)
585 irias_delete_value(self->ias_result);
586
587 if (self->dtsap_sel)
588 return 0;
589
590 return -EADDRNOTAVAIL;
591 }
592
593 /*
594 * Function irda_discover_daddr_and_lsap_sel (self, name)
595 *
596 * This try to find a device with the requested service.
597 *
598 * It basically look into the discovery log. For each address in the list,
599 * it queries the LM-IAS of the device to find if this device offer
600 * the requested service.
601 * If there is more than one node supporting the service, we complain
602 * to the user (it should move devices around).
603 * The, we set both the destination address and the lsap selector to point
604 * on the service on the unique device we have found.
605 *
606 * Note : this function fails if there is more than one device in range,
607 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
608 * Moreover, we would need to wait the LAP disconnection...
609 */
610 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
611 {
612 discinfo_t *discoveries; /* Copy of the discovery log */
613 int number; /* Number of nodes in the log */
614 int i;
615 int err = -ENETUNREACH;
616 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
617 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
618
619 pr_debug("%s(), name=%s\n", __func__, name);
620
621 /* Ask lmp for the current discovery log
622 * Note : we have to use irlmp_get_discoveries(), as opposed
623 * to play with the cachelog directly, because while we are
624 * making our ias query, le log might change... */
625 discoveries = irlmp_get_discoveries(&number, self->mask.word,
626 self->nslots);
627 /* Check if the we got some results */
628 if (discoveries == NULL)
629 return -ENETUNREACH; /* No nodes discovered */
630
631 /*
632 * Now, check all discovered devices (if any), and connect
633 * client only about the services that the client is
634 * interested in...
635 */
636 for(i = 0; i < number; i++) {
637 /* Try the address in the log */
638 self->daddr = discoveries[i].daddr;
639 self->saddr = 0x0;
640 pr_debug("%s(), trying daddr = %08x\n",
641 __func__, self->daddr);
642
643 /* Query remote LM-IAS for this service */
644 err = irda_find_lsap_sel(self, name);
645 switch (err) {
646 case 0:
647 /* We found the requested service */
648 if(daddr != DEV_ADDR_ANY) {
649 pr_debug("%s(), discovered service ''%s'' in two different devices !!!\n",
650 __func__, name);
651 self->daddr = DEV_ADDR_ANY;
652 kfree(discoveries);
653 return -ENOTUNIQ;
654 }
655 /* First time we found that one, save it ! */
656 daddr = self->daddr;
657 dtsap_sel = self->dtsap_sel;
658 break;
659 case -EADDRNOTAVAIL:
660 /* Requested service simply doesn't exist on this node */
661 break;
662 default:
663 /* Something bad did happen :-( */
664 pr_debug("%s(), unexpected IAS query failure\n",
665 __func__);
666 self->daddr = DEV_ADDR_ANY;
667 kfree(discoveries);
668 return -EHOSTUNREACH;
669 }
670 }
671 /* Cleanup our copy of the discovery log */
672 kfree(discoveries);
673
674 /* Check out what we found */
675 if(daddr == DEV_ADDR_ANY) {
676 pr_debug("%s(), cannot discover service ''%s'' in any device !!!\n",
677 __func__, name);
678 self->daddr = DEV_ADDR_ANY;
679 return -EADDRNOTAVAIL;
680 }
681
682 /* Revert back to discovered device & service */
683 self->daddr = daddr;
684 self->saddr = 0x0;
685 self->dtsap_sel = dtsap_sel;
686
687 pr_debug("%s(), discovered requested service ''%s'' at address %08x\n",
688 __func__, name, self->daddr);
689
690 return 0;
691 }
692
693 /*
694 * Function irda_getname (sock, uaddr, uaddr_len, peer)
695 *
696 * Return the our own, or peers socket address (sockaddr_irda)
697 *
698 */
699 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
700 int *uaddr_len, int peer)
701 {
702 struct sockaddr_irda saddr;
703 struct sock *sk = sock->sk;
704 struct irda_sock *self = irda_sk(sk);
705
706 memset(&saddr, 0, sizeof(saddr));
707 if (peer) {
708 if (sk->sk_state != TCP_ESTABLISHED)
709 return -ENOTCONN;
710
711 saddr.sir_family = AF_IRDA;
712 saddr.sir_lsap_sel = self->dtsap_sel;
713 saddr.sir_addr = self->daddr;
714 } else {
715 saddr.sir_family = AF_IRDA;
716 saddr.sir_lsap_sel = self->stsap_sel;
717 saddr.sir_addr = self->saddr;
718 }
719
720 pr_debug("%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel);
721 pr_debug("%s(), addr = %08x\n", __func__, saddr.sir_addr);
722
723 /* uaddr_len come to us uninitialised */
724 *uaddr_len = sizeof (struct sockaddr_irda);
725 memcpy(uaddr, &saddr, *uaddr_len);
726
727 return 0;
728 }
729
730 /*
731 * Function irda_listen (sock, backlog)
732 *
733 * Just move to the listen state
734 *
735 */
736 static int irda_listen(struct socket *sock, int backlog)
737 {
738 struct sock *sk = sock->sk;
739 int err = -EOPNOTSUPP;
740
741 lock_sock(sk);
742
743 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
744 (sk->sk_type != SOCK_DGRAM))
745 goto out;
746
747 if (sk->sk_state != TCP_LISTEN) {
748 sk->sk_max_ack_backlog = backlog;
749 sk->sk_state = TCP_LISTEN;
750
751 err = 0;
752 }
753 out:
754 release_sock(sk);
755
756 return err;
757 }
758
759 /*
760 * Function irda_bind (sock, uaddr, addr_len)
761 *
762 * Used by servers to register their well known TSAP
763 *
764 */
765 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
766 {
767 struct sock *sk = sock->sk;
768 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
769 struct irda_sock *self = irda_sk(sk);
770 int err;
771
772 pr_debug("%s(%p)\n", __func__, self);
773
774 if (addr_len != sizeof(struct sockaddr_irda))
775 return -EINVAL;
776
777 lock_sock(sk);
778 #ifdef CONFIG_IRDA_ULTRA
779 /* Special care for Ultra sockets */
780 if ((sk->sk_type == SOCK_DGRAM) &&
781 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
782 self->pid = addr->sir_lsap_sel;
783 err = -EOPNOTSUPP;
784 if (self->pid & 0x80) {
785 pr_debug("%s(), extension in PID not supp!\n",
786 __func__);
787 goto out;
788 }
789 err = irda_open_lsap(self, self->pid);
790 if (err < 0)
791 goto out;
792
793 /* Pretend we are connected */
794 sock->state = SS_CONNECTED;
795 sk->sk_state = TCP_ESTABLISHED;
796 err = 0;
797
798 goto out;
799 }
800 #endif /* CONFIG_IRDA_ULTRA */
801
802 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
803 err = -ENOMEM;
804 if (self->ias_obj == NULL)
805 goto out;
806
807 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
808 if (err < 0) {
809 irias_delete_object(self->ias_obj);
810 self->ias_obj = NULL;
811 goto out;
812 }
813
814 /* Register with LM-IAS */
815 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
816 self->stsap_sel, IAS_KERNEL_ATTR);
817 irias_insert_object(self->ias_obj);
818
819 err = 0;
820 out:
821 release_sock(sk);
822 return err;
823 }
824
825 /*
826 * Function irda_accept (sock, newsock, flags)
827 *
828 * Wait for incoming connection
829 *
830 */
831 static int irda_accept(struct socket *sock, struct socket *newsock, int flags)
832 {
833 struct sock *sk = sock->sk;
834 struct irda_sock *new, *self = irda_sk(sk);
835 struct sock *newsk;
836 struct sk_buff *skb = NULL;
837 int err;
838
839 err = irda_create(sock_net(sk), newsock, sk->sk_protocol, 0);
840 if (err)
841 return err;
842
843 err = -EINVAL;
844
845 lock_sock(sk);
846 if (sock->state != SS_UNCONNECTED)
847 goto out;
848
849 err = -EOPNOTSUPP;
850 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
851 (sk->sk_type != SOCK_DGRAM))
852 goto out;
853
854 err = -EINVAL;
855 if (sk->sk_state != TCP_LISTEN)
856 goto out;
857
858 /*
859 * The read queue this time is holding sockets ready to use
860 * hooked into the SABM we saved
861 */
862
863 /*
864 * We can perform the accept only if there is incoming data
865 * on the listening socket.
866 * So, we will block the caller until we receive any data.
867 * If the caller was waiting on select() or poll() before
868 * calling us, the data is waiting for us ;-)
869 * Jean II
870 */
871 while (1) {
872 skb = skb_dequeue(&sk->sk_receive_queue);
873 if (skb)
874 break;
875
876 /* Non blocking operation */
877 err = -EWOULDBLOCK;
878 if (flags & O_NONBLOCK)
879 goto out;
880
881 err = wait_event_interruptible(*(sk_sleep(sk)),
882 skb_peek(&sk->sk_receive_queue));
883 if (err)
884 goto out;
885 }
886
887 newsk = newsock->sk;
888 err = -EIO;
889 if (newsk == NULL)
890 goto out;
891
892 newsk->sk_state = TCP_ESTABLISHED;
893
894 new = irda_sk(newsk);
895
896 /* Now attach up the new socket */
897 new->tsap = irttp_dup(self->tsap, new);
898 err = -EPERM; /* value does not seem to make sense. -arnd */
899 if (!new->tsap) {
900 pr_debug("%s(), dup failed!\n", __func__);
901 goto out;
902 }
903
904 new->stsap_sel = new->tsap->stsap_sel;
905 new->dtsap_sel = new->tsap->dtsap_sel;
906 new->saddr = irttp_get_saddr(new->tsap);
907 new->daddr = irttp_get_daddr(new->tsap);
908
909 new->max_sdu_size_tx = self->max_sdu_size_tx;
910 new->max_sdu_size_rx = self->max_sdu_size_rx;
911 new->max_data_size = self->max_data_size;
912 new->max_header_size = self->max_header_size;
913
914 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
915
916 /* Clean up the original one to keep it in listen state */
917 irttp_listen(self->tsap);
918
919 sk->sk_ack_backlog--;
920
921 newsock->state = SS_CONNECTED;
922
923 irda_connect_response(new);
924 err = 0;
925 out:
926 kfree_skb(skb);
927 release_sock(sk);
928 return err;
929 }
930
931 /*
932 * Function irda_connect (sock, uaddr, addr_len, flags)
933 *
934 * Connect to a IrDA device
935 *
936 * The main difference with a "standard" connect is that with IrDA we need
937 * to resolve the service name into a TSAP selector (in TCP, port number
938 * doesn't have to be resolved).
939 * Because of this service name resolution, we can offer "auto-connect",
940 * where we connect to a service without specifying a destination address.
941 *
942 * Note : by consulting "errno", the user space caller may learn the cause
943 * of the failure. Most of them are visible in the function, others may come
944 * from subroutines called and are listed here :
945 * o EBUSY : already processing a connect
946 * o EHOSTUNREACH : bad addr->sir_addr argument
947 * o EADDRNOTAVAIL : bad addr->sir_name argument
948 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
949 * o ENETUNREACH : no node found on the network (auto-connect)
950 */
951 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
952 int addr_len, int flags)
953 {
954 struct sock *sk = sock->sk;
955 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
956 struct irda_sock *self = irda_sk(sk);
957 int err;
958
959 pr_debug("%s(%p)\n", __func__, self);
960
961 lock_sock(sk);
962 /* Don't allow connect for Ultra sockets */
963 err = -ESOCKTNOSUPPORT;
964 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
965 goto out;
966
967 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
968 sock->state = SS_CONNECTED;
969 err = 0;
970 goto out; /* Connect completed during a ERESTARTSYS event */
971 }
972
973 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
974 sock->state = SS_UNCONNECTED;
975 err = -ECONNREFUSED;
976 goto out;
977 }
978
979 err = -EISCONN; /* No reconnect on a seqpacket socket */
980 if (sk->sk_state == TCP_ESTABLISHED)
981 goto out;
982
983 sk->sk_state = TCP_CLOSE;
984 sock->state = SS_UNCONNECTED;
985
986 err = -EINVAL;
987 if (addr_len != sizeof(struct sockaddr_irda))
988 goto out;
989
990 /* Check if user supplied any destination device address */
991 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
992 /* Try to find one suitable */
993 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
994 if (err) {
995 pr_debug("%s(), auto-connect failed!\n", __func__);
996 goto out;
997 }
998 } else {
999 /* Use the one provided by the user */
1000 self->daddr = addr->sir_addr;
1001 pr_debug("%s(), daddr = %08x\n", __func__, self->daddr);
1002
1003 /* If we don't have a valid service name, we assume the
1004 * user want to connect on a specific LSAP. Prevent
1005 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1006 if((addr->sir_name[0] != '\0') ||
1007 (addr->sir_lsap_sel >= 0x70)) {
1008 /* Query remote LM-IAS using service name */
1009 err = irda_find_lsap_sel(self, addr->sir_name);
1010 if (err) {
1011 pr_debug("%s(), connect failed!\n", __func__);
1012 goto out;
1013 }
1014 } else {
1015 /* Directly connect to the remote LSAP
1016 * specified by the sir_lsap field.
1017 * Please use with caution, in IrDA LSAPs are
1018 * dynamic and there is no "well-known" LSAP. */
1019 self->dtsap_sel = addr->sir_lsap_sel;
1020 }
1021 }
1022
1023 /* Check if we have opened a local TSAP */
1024 if (!self->tsap) {
1025 err = irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1026 if (err)
1027 goto out;
1028 }
1029
1030 /* Move to connecting socket, start sending Connect Requests */
1031 sock->state = SS_CONNECTING;
1032 sk->sk_state = TCP_SYN_SENT;
1033
1034 /* Connect to remote device */
1035 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1036 self->saddr, self->daddr, NULL,
1037 self->max_sdu_size_rx, NULL);
1038 if (err) {
1039 pr_debug("%s(), connect failed!\n", __func__);
1040 goto out;
1041 }
1042
1043 /* Now the loop */
1044 err = -EINPROGRESS;
1045 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1046 goto out;
1047
1048 err = -ERESTARTSYS;
1049 if (wait_event_interruptible(*(sk_sleep(sk)),
1050 (sk->sk_state != TCP_SYN_SENT)))
1051 goto out;
1052
1053 if (sk->sk_state != TCP_ESTABLISHED) {
1054 sock->state = SS_UNCONNECTED;
1055 err = sock_error(sk);
1056 if (!err)
1057 err = -ECONNRESET;
1058 goto out;
1059 }
1060
1061 sock->state = SS_CONNECTED;
1062
1063 /* At this point, IrLMP has assigned our source address */
1064 self->saddr = irttp_get_saddr(self->tsap);
1065 err = 0;
1066 out:
1067 release_sock(sk);
1068 return err;
1069 }
1070
1071 static struct proto irda_proto = {
1072 .name = "IRDA",
1073 .owner = THIS_MODULE,
1074 .obj_size = sizeof(struct irda_sock),
1075 };
1076
1077 /*
1078 * Function irda_create (sock, protocol)
1079 *
1080 * Create IrDA socket
1081 *
1082 */
1083 static int irda_create(struct net *net, struct socket *sock, int protocol,
1084 int kern)
1085 {
1086 struct sock *sk;
1087 struct irda_sock *self;
1088
1089 if (protocol < 0 || protocol > SK_PROTOCOL_MAX)
1090 return -EINVAL;
1091
1092 if (net != &init_net)
1093 return -EAFNOSUPPORT;
1094
1095 /* Check for valid socket type */
1096 switch (sock->type) {
1097 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1098 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1099 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1100 break;
1101 default:
1102 return -ESOCKTNOSUPPORT;
1103 }
1104
1105 /* Allocate networking socket */
1106 sk = sk_alloc(net, PF_IRDA, GFP_KERNEL, &irda_proto, kern);
1107 if (sk == NULL)
1108 return -ENOMEM;
1109
1110 self = irda_sk(sk);
1111 pr_debug("%s() : self is %p\n", __func__, self);
1112
1113 init_waitqueue_head(&self->query_wait);
1114
1115 switch (sock->type) {
1116 case SOCK_STREAM:
1117 sock->ops = &irda_stream_ops;
1118 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1119 break;
1120 case SOCK_SEQPACKET:
1121 sock->ops = &irda_seqpacket_ops;
1122 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1123 break;
1124 case SOCK_DGRAM:
1125 switch (protocol) {
1126 #ifdef CONFIG_IRDA_ULTRA
1127 case IRDAPROTO_ULTRA:
1128 sock->ops = &irda_ultra_ops;
1129 /* Initialise now, because we may send on unbound
1130 * sockets. Jean II */
1131 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1132 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1133 break;
1134 #endif /* CONFIG_IRDA_ULTRA */
1135 case IRDAPROTO_UNITDATA:
1136 sock->ops = &irda_dgram_ops;
1137 /* We let Unitdata conn. be like seqpack conn. */
1138 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1139 break;
1140 default:
1141 sk_free(sk);
1142 return -ESOCKTNOSUPPORT;
1143 }
1144 break;
1145 default:
1146 sk_free(sk);
1147 return -ESOCKTNOSUPPORT;
1148 }
1149
1150 /* Initialise networking socket struct */
1151 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1152 sk->sk_family = PF_IRDA;
1153 sk->sk_protocol = protocol;
1154
1155 /* Register as a client with IrLMP */
1156 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1157 self->mask.word = 0xffff;
1158 self->rx_flow = self->tx_flow = FLOW_START;
1159 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1160 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1161 self->saddr = 0x0; /* so IrLMP assign us any link */
1162 return 0;
1163 }
1164
1165 /*
1166 * Function irda_destroy_socket (self)
1167 *
1168 * Destroy socket
1169 *
1170 */
1171 static void irda_destroy_socket(struct irda_sock *self)
1172 {
1173 pr_debug("%s(%p)\n", __func__, self);
1174
1175 /* Unregister with IrLMP */
1176 irlmp_unregister_client(self->ckey);
1177 irlmp_unregister_service(self->skey);
1178
1179 /* Unregister with LM-IAS */
1180 if (self->ias_obj) {
1181 irias_delete_object(self->ias_obj);
1182 self->ias_obj = NULL;
1183 }
1184
1185 if (self->iriap) {
1186 iriap_close(self->iriap);
1187 self->iriap = NULL;
1188 }
1189
1190 if (self->tsap) {
1191 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1192 irttp_close_tsap(self->tsap);
1193 self->tsap = NULL;
1194 }
1195 #ifdef CONFIG_IRDA_ULTRA
1196 if (self->lsap) {
1197 irlmp_close_lsap(self->lsap);
1198 self->lsap = NULL;
1199 }
1200 #endif /* CONFIG_IRDA_ULTRA */
1201 }
1202
1203 /*
1204 * Function irda_release (sock)
1205 */
1206 static int irda_release(struct socket *sock)
1207 {
1208 struct sock *sk = sock->sk;
1209
1210 if (sk == NULL)
1211 return 0;
1212
1213 lock_sock(sk);
1214 sk->sk_state = TCP_CLOSE;
1215 sk->sk_shutdown |= SEND_SHUTDOWN;
1216 sk->sk_state_change(sk);
1217
1218 /* Destroy IrDA socket */
1219 irda_destroy_socket(irda_sk(sk));
1220
1221 sock_orphan(sk);
1222 sock->sk = NULL;
1223 release_sock(sk);
1224
1225 /* Purge queues (see sock_init_data()) */
1226 skb_queue_purge(&sk->sk_receive_queue);
1227
1228 /* Destroy networking socket if we are the last reference on it,
1229 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1230 sock_put(sk);
1231
1232 /* Notes on socket locking and deallocation... - Jean II
1233 * In theory we should put pairs of sock_hold() / sock_put() to
1234 * prevent the socket to be destroyed whenever there is an
1235 * outstanding request or outstanding incoming packet or event.
1236 *
1237 * 1) This may include IAS request, both in connect and getsockopt.
1238 * Unfortunately, the situation is a bit more messy than it looks,
1239 * because we close iriap and kfree(self) above.
1240 *
1241 * 2) This may include selective discovery in getsockopt.
1242 * Same stuff as above, irlmp registration and self are gone.
1243 *
1244 * Probably 1 and 2 may not matter, because it's all triggered
1245 * by a process and the socket layer already prevent the
1246 * socket to go away while a process is holding it, through
1247 * sockfd_put() and fput()...
1248 *
1249 * 3) This may include deferred TSAP closure. In particular,
1250 * we may receive a late irda_disconnect_indication()
1251 * Fortunately, (tsap_cb *)->close_pend should protect us
1252 * from that.
1253 *
1254 * I did some testing on SMP, and it looks solid. And the socket
1255 * memory leak is now gone... - Jean II
1256 */
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * Function irda_sendmsg (sock, msg, len)
1263 *
1264 * Send message down to TinyTP. This function is used for both STREAM and
1265 * SEQPACK services. This is possible since it forces the client to
1266 * fragment the message if necessary
1267 */
1268 static int irda_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1269 {
1270 struct sock *sk = sock->sk;
1271 struct irda_sock *self;
1272 struct sk_buff *skb;
1273 int err = -EPIPE;
1274
1275 pr_debug("%s(), len=%zd\n", __func__, len);
1276
1277 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1278 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
1279 MSG_NOSIGNAL)) {
1280 return -EINVAL;
1281 }
1282
1283 lock_sock(sk);
1284
1285 if (sk->sk_shutdown & SEND_SHUTDOWN)
1286 goto out_err;
1287
1288 if (sk->sk_state != TCP_ESTABLISHED) {
1289 err = -ENOTCONN;
1290 goto out;
1291 }
1292
1293 self = irda_sk(sk);
1294
1295 /* Check if IrTTP is wants us to slow down */
1296
1297 if (wait_event_interruptible(*(sk_sleep(sk)),
1298 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) {
1299 err = -ERESTARTSYS;
1300 goto out;
1301 }
1302
1303 /* Check if we are still connected */
1304 if (sk->sk_state != TCP_ESTABLISHED) {
1305 err = -ENOTCONN;
1306 goto out;
1307 }
1308
1309 /* Check that we don't send out too big frames */
1310 if (len > self->max_data_size) {
1311 pr_debug("%s(), Chopping frame from %zd to %d bytes!\n",
1312 __func__, len, self->max_data_size);
1313 len = self->max_data_size;
1314 }
1315
1316 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1317 msg->msg_flags & MSG_DONTWAIT, &err);
1318 if (!skb)
1319 goto out_err;
1320
1321 skb_reserve(skb, self->max_header_size + 16);
1322 skb_reset_transport_header(skb);
1323 skb_put(skb, len);
1324 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1325 if (err) {
1326 kfree_skb(skb);
1327 goto out_err;
1328 }
1329
1330 /*
1331 * Just send the message to TinyTP, and let it deal with possible
1332 * errors. No need to duplicate all that here
1333 */
1334 err = irttp_data_request(self->tsap, skb);
1335 if (err) {
1336 pr_debug("%s(), err=%d\n", __func__, err);
1337 goto out_err;
1338 }
1339
1340 release_sock(sk);
1341 /* Tell client how much data we actually sent */
1342 return len;
1343
1344 out_err:
1345 err = sk_stream_error(sk, msg->msg_flags, err);
1346 out:
1347 release_sock(sk);
1348 return err;
1349
1350 }
1351
1352 /*
1353 * Function irda_recvmsg_dgram (sock, msg, size, flags)
1354 *
1355 * Try to receive message and copy it to user. The frame is discarded
1356 * after being read, regardless of how much the user actually read
1357 */
1358 static int irda_recvmsg_dgram(struct socket *sock, struct msghdr *msg,
1359 size_t size, int flags)
1360 {
1361 struct sock *sk = sock->sk;
1362 struct irda_sock *self = irda_sk(sk);
1363 struct sk_buff *skb;
1364 size_t copied;
1365 int err;
1366
1367 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1368 flags & MSG_DONTWAIT, &err);
1369 if (!skb)
1370 return err;
1371
1372 skb_reset_transport_header(skb);
1373 copied = skb->len;
1374
1375 if (copied > size) {
1376 pr_debug("%s(), Received truncated frame (%zd < %zd)!\n",
1377 __func__, copied, size);
1378 copied = size;
1379 msg->msg_flags |= MSG_TRUNC;
1380 }
1381 skb_copy_datagram_msg(skb, 0, msg, copied);
1382
1383 skb_free_datagram(sk, skb);
1384
1385 /*
1386 * Check if we have previously stopped IrTTP and we know
1387 * have more free space in our rx_queue. If so tell IrTTP
1388 * to start delivering frames again before our rx_queue gets
1389 * empty
1390 */
1391 if (self->rx_flow == FLOW_STOP) {
1392 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1393 pr_debug("%s(), Starting IrTTP\n", __func__);
1394 self->rx_flow = FLOW_START;
1395 irttp_flow_request(self->tsap, FLOW_START);
1396 }
1397 }
1398
1399 return copied;
1400 }
1401
1402 /*
1403 * Function irda_recvmsg_stream (sock, msg, size, flags)
1404 */
1405 static int irda_recvmsg_stream(struct socket *sock, struct msghdr *msg,
1406 size_t size, int flags)
1407 {
1408 struct sock *sk = sock->sk;
1409 struct irda_sock *self = irda_sk(sk);
1410 int noblock = flags & MSG_DONTWAIT;
1411 size_t copied = 0;
1412 int target, err;
1413 long timeo;
1414
1415 if ((err = sock_error(sk)) < 0)
1416 return err;
1417
1418 if (sock->flags & __SO_ACCEPTCON)
1419 return -EINVAL;
1420
1421 err =-EOPNOTSUPP;
1422 if (flags & MSG_OOB)
1423 return -EOPNOTSUPP;
1424
1425 err = 0;
1426 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1427 timeo = sock_rcvtimeo(sk, noblock);
1428
1429 do {
1430 int chunk;
1431 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1432
1433 if (skb == NULL) {
1434 DEFINE_WAIT(wait);
1435 err = 0;
1436
1437 if (copied >= target)
1438 break;
1439
1440 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1441
1442 /*
1443 * POSIX 1003.1g mandates this order.
1444 */
1445 err = sock_error(sk);
1446 if (err)
1447 ;
1448 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1449 ;
1450 else if (noblock)
1451 err = -EAGAIN;
1452 else if (signal_pending(current))
1453 err = sock_intr_errno(timeo);
1454 else if (sk->sk_state != TCP_ESTABLISHED)
1455 err = -ENOTCONN;
1456 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1457 /* Wait process until data arrives */
1458 schedule();
1459
1460 finish_wait(sk_sleep(sk), &wait);
1461
1462 if (err)
1463 return err;
1464 if (sk->sk_shutdown & RCV_SHUTDOWN)
1465 break;
1466
1467 continue;
1468 }
1469
1470 chunk = min_t(unsigned int, skb->len, size);
1471 if (memcpy_to_msg(msg, skb->data, chunk)) {
1472 skb_queue_head(&sk->sk_receive_queue, skb);
1473 if (copied == 0)
1474 copied = -EFAULT;
1475 break;
1476 }
1477 copied += chunk;
1478 size -= chunk;
1479
1480 /* Mark read part of skb as used */
1481 if (!(flags & MSG_PEEK)) {
1482 skb_pull(skb, chunk);
1483
1484 /* put the skb back if we didn't use it up.. */
1485 if (skb->len) {
1486 pr_debug("%s(), back on q!\n",
1487 __func__);
1488 skb_queue_head(&sk->sk_receive_queue, skb);
1489 break;
1490 }
1491
1492 kfree_skb(skb);
1493 } else {
1494 pr_debug("%s() questionable!?\n", __func__);
1495
1496 /* put message back and return */
1497 skb_queue_head(&sk->sk_receive_queue, skb);
1498 break;
1499 }
1500 } while (size);
1501
1502 /*
1503 * Check if we have previously stopped IrTTP and we know
1504 * have more free space in our rx_queue. If so tell IrTTP
1505 * to start delivering frames again before our rx_queue gets
1506 * empty
1507 */
1508 if (self->rx_flow == FLOW_STOP) {
1509 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1510 pr_debug("%s(), Starting IrTTP\n", __func__);
1511 self->rx_flow = FLOW_START;
1512 irttp_flow_request(self->tsap, FLOW_START);
1513 }
1514 }
1515
1516 return copied;
1517 }
1518
1519 /*
1520 * Function irda_sendmsg_dgram (sock, msg, len)
1521 *
1522 * Send message down to TinyTP for the unreliable sequenced
1523 * packet service...
1524 *
1525 */
1526 static int irda_sendmsg_dgram(struct socket *sock, struct msghdr *msg,
1527 size_t len)
1528 {
1529 struct sock *sk = sock->sk;
1530 struct irda_sock *self;
1531 struct sk_buff *skb;
1532 int err;
1533
1534 pr_debug("%s(), len=%zd\n", __func__, len);
1535
1536 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1537 return -EINVAL;
1538
1539 lock_sock(sk);
1540
1541 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1542 send_sig(SIGPIPE, current, 0);
1543 err = -EPIPE;
1544 goto out;
1545 }
1546
1547 err = -ENOTCONN;
1548 if (sk->sk_state != TCP_ESTABLISHED)
1549 goto out;
1550
1551 self = irda_sk(sk);
1552
1553 /*
1554 * Check that we don't send out too big frames. This is an unreliable
1555 * service, so we have no fragmentation and no coalescence
1556 */
1557 if (len > self->max_data_size) {
1558 pr_debug("%s(), Warning too much data! Chopping frame from %zd to %d bytes!\n",
1559 __func__, len, self->max_data_size);
1560 len = self->max_data_size;
1561 }
1562
1563 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1564 msg->msg_flags & MSG_DONTWAIT, &err);
1565 err = -ENOBUFS;
1566 if (!skb)
1567 goto out;
1568
1569 skb_reserve(skb, self->max_header_size);
1570 skb_reset_transport_header(skb);
1571
1572 pr_debug("%s(), appending user data\n", __func__);
1573 skb_put(skb, len);
1574 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1575 if (err) {
1576 kfree_skb(skb);
1577 goto out;
1578 }
1579
1580 /*
1581 * Just send the message to TinyTP, and let it deal with possible
1582 * errors. No need to duplicate all that here
1583 */
1584 err = irttp_udata_request(self->tsap, skb);
1585 if (err) {
1586 pr_debug("%s(), err=%d\n", __func__, err);
1587 goto out;
1588 }
1589
1590 release_sock(sk);
1591 return len;
1592
1593 out:
1594 release_sock(sk);
1595 return err;
1596 }
1597
1598 /*
1599 * Function irda_sendmsg_ultra (sock, msg, len)
1600 *
1601 * Send message down to IrLMP for the unreliable Ultra
1602 * packet service...
1603 */
1604 #ifdef CONFIG_IRDA_ULTRA
1605 static int irda_sendmsg_ultra(struct socket *sock, struct msghdr *msg,
1606 size_t len)
1607 {
1608 struct sock *sk = sock->sk;
1609 struct irda_sock *self;
1610 __u8 pid = 0;
1611 int bound = 0;
1612 struct sk_buff *skb;
1613 int err;
1614
1615 pr_debug("%s(), len=%zd\n", __func__, len);
1616
1617 err = -EINVAL;
1618 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1619 return -EINVAL;
1620
1621 lock_sock(sk);
1622
1623 err = -EPIPE;
1624 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1625 send_sig(SIGPIPE, current, 0);
1626 goto out;
1627 }
1628
1629 self = irda_sk(sk);
1630
1631 /* Check if an address was specified with sendto. Jean II */
1632 if (msg->msg_name) {
1633 DECLARE_SOCKADDR(struct sockaddr_irda *, addr, msg->msg_name);
1634 err = -EINVAL;
1635 /* Check address, extract pid. Jean II */
1636 if (msg->msg_namelen < sizeof(*addr))
1637 goto out;
1638 if (addr->sir_family != AF_IRDA)
1639 goto out;
1640
1641 pid = addr->sir_lsap_sel;
1642 if (pid & 0x80) {
1643 pr_debug("%s(), extension in PID not supp!\n",
1644 __func__);
1645 err = -EOPNOTSUPP;
1646 goto out;
1647 }
1648 } else {
1649 /* Check that the socket is properly bound to an Ultra
1650 * port. Jean II */
1651 if ((self->lsap == NULL) ||
1652 (sk->sk_state != TCP_ESTABLISHED)) {
1653 pr_debug("%s(), socket not bound to Ultra PID.\n",
1654 __func__);
1655 err = -ENOTCONN;
1656 goto out;
1657 }
1658 /* Use PID from socket */
1659 bound = 1;
1660 }
1661
1662 /*
1663 * Check that we don't send out too big frames. This is an unreliable
1664 * service, so we have no fragmentation and no coalescence
1665 */
1666 if (len > self->max_data_size) {
1667 pr_debug("%s(), Warning too much data! Chopping frame from %zd to %d bytes!\n",
1668 __func__, len, self->max_data_size);
1669 len = self->max_data_size;
1670 }
1671
1672 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1673 msg->msg_flags & MSG_DONTWAIT, &err);
1674 err = -ENOBUFS;
1675 if (!skb)
1676 goto out;
1677
1678 skb_reserve(skb, self->max_header_size);
1679 skb_reset_transport_header(skb);
1680
1681 pr_debug("%s(), appending user data\n", __func__);
1682 skb_put(skb, len);
1683 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1684 if (err) {
1685 kfree_skb(skb);
1686 goto out;
1687 }
1688
1689 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1690 skb, pid);
1691 if (err)
1692 pr_debug("%s(), err=%d\n", __func__, err);
1693 out:
1694 release_sock(sk);
1695 return err ? : len;
1696 }
1697 #endif /* CONFIG_IRDA_ULTRA */
1698
1699 /*
1700 * Function irda_shutdown (sk, how)
1701 */
1702 static int irda_shutdown(struct socket *sock, int how)
1703 {
1704 struct sock *sk = sock->sk;
1705 struct irda_sock *self = irda_sk(sk);
1706
1707 pr_debug("%s(%p)\n", __func__, self);
1708
1709 lock_sock(sk);
1710
1711 sk->sk_state = TCP_CLOSE;
1712 sk->sk_shutdown |= SEND_SHUTDOWN;
1713 sk->sk_state_change(sk);
1714
1715 if (self->iriap) {
1716 iriap_close(self->iriap);
1717 self->iriap = NULL;
1718 }
1719
1720 if (self->tsap) {
1721 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1722 irttp_close_tsap(self->tsap);
1723 self->tsap = NULL;
1724 }
1725
1726 /* A few cleanup so the socket look as good as new... */
1727 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1728 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1729 self->saddr = 0x0; /* so IrLMP assign us any link */
1730
1731 release_sock(sk);
1732
1733 return 0;
1734 }
1735
1736 /*
1737 * Function irda_poll (file, sock, wait)
1738 */
1739 static unsigned int irda_poll(struct file * file, struct socket *sock,
1740 poll_table *wait)
1741 {
1742 struct sock *sk = sock->sk;
1743 struct irda_sock *self = irda_sk(sk);
1744 unsigned int mask;
1745
1746 poll_wait(file, sk_sleep(sk), wait);
1747 mask = 0;
1748
1749 /* Exceptional events? */
1750 if (sk->sk_err)
1751 mask |= POLLERR;
1752 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1753 pr_debug("%s(), POLLHUP\n", __func__);
1754 mask |= POLLHUP;
1755 }
1756
1757 /* Readable? */
1758 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1759 pr_debug("Socket is readable\n");
1760 mask |= POLLIN | POLLRDNORM;
1761 }
1762
1763 /* Connection-based need to check for termination and startup */
1764 switch (sk->sk_type) {
1765 case SOCK_STREAM:
1766 if (sk->sk_state == TCP_CLOSE) {
1767 pr_debug("%s(), POLLHUP\n", __func__);
1768 mask |= POLLHUP;
1769 }
1770
1771 if (sk->sk_state == TCP_ESTABLISHED) {
1772 if ((self->tx_flow == FLOW_START) &&
1773 sock_writeable(sk))
1774 {
1775 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1776 }
1777 }
1778 break;
1779 case SOCK_SEQPACKET:
1780 if ((self->tx_flow == FLOW_START) &&
1781 sock_writeable(sk))
1782 {
1783 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1784 }
1785 break;
1786 case SOCK_DGRAM:
1787 if (sock_writeable(sk))
1788 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1789 break;
1790 default:
1791 break;
1792 }
1793
1794 return mask;
1795 }
1796
1797 /*
1798 * Function irda_ioctl (sock, cmd, arg)
1799 */
1800 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1801 {
1802 struct sock *sk = sock->sk;
1803 int err;
1804
1805 pr_debug("%s(), cmd=%#x\n", __func__, cmd);
1806
1807 err = -EINVAL;
1808 switch (cmd) {
1809 case TIOCOUTQ: {
1810 long amount;
1811
1812 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1813 if (amount < 0)
1814 amount = 0;
1815 err = put_user(amount, (unsigned int __user *)arg);
1816 break;
1817 }
1818
1819 case TIOCINQ: {
1820 struct sk_buff *skb;
1821 long amount = 0L;
1822 /* These two are safe on a single CPU system as only user tasks fiddle here */
1823 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1824 amount = skb->len;
1825 err = put_user(amount, (unsigned int __user *)arg);
1826 break;
1827 }
1828
1829 case SIOCGSTAMP:
1830 if (sk != NULL)
1831 err = sock_get_timestamp(sk, (struct timeval __user *)arg);
1832 break;
1833
1834 case SIOCGIFADDR:
1835 case SIOCSIFADDR:
1836 case SIOCGIFDSTADDR:
1837 case SIOCSIFDSTADDR:
1838 case SIOCGIFBRDADDR:
1839 case SIOCSIFBRDADDR:
1840 case SIOCGIFNETMASK:
1841 case SIOCSIFNETMASK:
1842 case SIOCGIFMETRIC:
1843 case SIOCSIFMETRIC:
1844 break;
1845 default:
1846 pr_debug("%s(), doing device ioctl!\n", __func__);
1847 err = -ENOIOCTLCMD;
1848 }
1849
1850 return err;
1851 }
1852
1853 #ifdef CONFIG_COMPAT
1854 /*
1855 * Function irda_ioctl (sock, cmd, arg)
1856 */
1857 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1858 {
1859 /*
1860 * All IRDA's ioctl are standard ones.
1861 */
1862 return -ENOIOCTLCMD;
1863 }
1864 #endif
1865
1866 /*
1867 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1868 *
1869 * Set some options for the socket
1870 *
1871 */
1872 static int irda_setsockopt(struct socket *sock, int level, int optname,
1873 char __user *optval, unsigned int optlen)
1874 {
1875 struct sock *sk = sock->sk;
1876 struct irda_sock *self = irda_sk(sk);
1877 struct irda_ias_set *ias_opt;
1878 struct ias_object *ias_obj;
1879 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1880 int opt, free_ias = 0, err = 0;
1881
1882 pr_debug("%s(%p)\n", __func__, self);
1883
1884 if (level != SOL_IRLMP)
1885 return -ENOPROTOOPT;
1886
1887 lock_sock(sk);
1888
1889 switch (optname) {
1890 case IRLMP_IAS_SET:
1891 /* The user want to add an attribute to an existing IAS object
1892 * (in the IAS database) or to create a new object with this
1893 * attribute.
1894 * We first query IAS to know if the object exist, and then
1895 * create the right attribute...
1896 */
1897
1898 if (optlen != sizeof(struct irda_ias_set)) {
1899 err = -EINVAL;
1900 goto out;
1901 }
1902
1903 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1904 if (ias_opt == NULL) {
1905 err = -ENOMEM;
1906 goto out;
1907 }
1908
1909 /* Copy query to the driver. */
1910 if (copy_from_user(ias_opt, optval, optlen)) {
1911 kfree(ias_opt);
1912 err = -EFAULT;
1913 goto out;
1914 }
1915
1916 /* Find the object we target.
1917 * If the user gives us an empty string, we use the object
1918 * associated with this socket. This will workaround
1919 * duplicated class name - Jean II */
1920 if(ias_opt->irda_class_name[0] == '\0') {
1921 if(self->ias_obj == NULL) {
1922 kfree(ias_opt);
1923 err = -EINVAL;
1924 goto out;
1925 }
1926 ias_obj = self->ias_obj;
1927 } else
1928 ias_obj = irias_find_object(ias_opt->irda_class_name);
1929
1930 /* Only ROOT can mess with the global IAS database.
1931 * Users can only add attributes to the object associated
1932 * with the socket they own - Jean II */
1933 if((!capable(CAP_NET_ADMIN)) &&
1934 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1935 kfree(ias_opt);
1936 err = -EPERM;
1937 goto out;
1938 }
1939
1940 /* If the object doesn't exist, create it */
1941 if(ias_obj == (struct ias_object *) NULL) {
1942 /* Create a new object */
1943 ias_obj = irias_new_object(ias_opt->irda_class_name,
1944 jiffies);
1945 if (ias_obj == NULL) {
1946 kfree(ias_opt);
1947 err = -ENOMEM;
1948 goto out;
1949 }
1950 free_ias = 1;
1951 }
1952
1953 /* Do we have the attribute already ? */
1954 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1955 kfree(ias_opt);
1956 if (free_ias) {
1957 kfree(ias_obj->name);
1958 kfree(ias_obj);
1959 }
1960 err = -EINVAL;
1961 goto out;
1962 }
1963
1964 /* Look at the type */
1965 switch(ias_opt->irda_attrib_type) {
1966 case IAS_INTEGER:
1967 /* Add an integer attribute */
1968 irias_add_integer_attrib(
1969 ias_obj,
1970 ias_opt->irda_attrib_name,
1971 ias_opt->attribute.irda_attrib_int,
1972 IAS_USER_ATTR);
1973 break;
1974 case IAS_OCT_SEQ:
1975 /* Check length */
1976 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1977 IAS_MAX_OCTET_STRING) {
1978 kfree(ias_opt);
1979 if (free_ias) {
1980 kfree(ias_obj->name);
1981 kfree(ias_obj);
1982 }
1983
1984 err = -EINVAL;
1985 goto out;
1986 }
1987 /* Add an octet sequence attribute */
1988 irias_add_octseq_attrib(
1989 ias_obj,
1990 ias_opt->irda_attrib_name,
1991 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1992 ias_opt->attribute.irda_attrib_octet_seq.len,
1993 IAS_USER_ATTR);
1994 break;
1995 case IAS_STRING:
1996 /* Should check charset & co */
1997 /* Check length */
1998 /* The length is encoded in a __u8, and
1999 * IAS_MAX_STRING == 256, so there is no way
2000 * userspace can pass us a string too large.
2001 * Jean II */
2002 /* NULL terminate the string (avoid troubles) */
2003 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
2004 /* Add a string attribute */
2005 irias_add_string_attrib(
2006 ias_obj,
2007 ias_opt->irda_attrib_name,
2008 ias_opt->attribute.irda_attrib_string.string,
2009 IAS_USER_ATTR);
2010 break;
2011 default :
2012 kfree(ias_opt);
2013 if (free_ias) {
2014 kfree(ias_obj->name);
2015 kfree(ias_obj);
2016 }
2017 err = -EINVAL;
2018 goto out;
2019 }
2020 irias_insert_object(ias_obj);
2021 kfree(ias_opt);
2022 break;
2023 case IRLMP_IAS_DEL:
2024 /* The user want to delete an object from our local IAS
2025 * database. We just need to query the IAS, check is the
2026 * object is not owned by the kernel and delete it.
2027 */
2028
2029 if (optlen != sizeof(struct irda_ias_set)) {
2030 err = -EINVAL;
2031 goto out;
2032 }
2033
2034 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2035 if (ias_opt == NULL) {
2036 err = -ENOMEM;
2037 goto out;
2038 }
2039
2040 /* Copy query to the driver. */
2041 if (copy_from_user(ias_opt, optval, optlen)) {
2042 kfree(ias_opt);
2043 err = -EFAULT;
2044 goto out;
2045 }
2046
2047 /* Find the object we target.
2048 * If the user gives us an empty string, we use the object
2049 * associated with this socket. This will workaround
2050 * duplicated class name - Jean II */
2051 if(ias_opt->irda_class_name[0] == '\0')
2052 ias_obj = self->ias_obj;
2053 else
2054 ias_obj = irias_find_object(ias_opt->irda_class_name);
2055 if(ias_obj == (struct ias_object *) NULL) {
2056 kfree(ias_opt);
2057 err = -EINVAL;
2058 goto out;
2059 }
2060
2061 /* Only ROOT can mess with the global IAS database.
2062 * Users can only del attributes from the object associated
2063 * with the socket they own - Jean II */
2064 if((!capable(CAP_NET_ADMIN)) &&
2065 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2066 kfree(ias_opt);
2067 err = -EPERM;
2068 goto out;
2069 }
2070
2071 /* Find the attribute (in the object) we target */
2072 ias_attr = irias_find_attrib(ias_obj,
2073 ias_opt->irda_attrib_name);
2074 if(ias_attr == (struct ias_attrib *) NULL) {
2075 kfree(ias_opt);
2076 err = -EINVAL;
2077 goto out;
2078 }
2079
2080 /* Check is the user space own the object */
2081 if(ias_attr->value->owner != IAS_USER_ATTR) {
2082 pr_debug("%s(), attempting to delete a kernel attribute\n",
2083 __func__);
2084 kfree(ias_opt);
2085 err = -EPERM;
2086 goto out;
2087 }
2088
2089 /* Remove the attribute (and maybe the object) */
2090 irias_delete_attrib(ias_obj, ias_attr, 1);
2091 kfree(ias_opt);
2092 break;
2093 case IRLMP_MAX_SDU_SIZE:
2094 if (optlen < sizeof(int)) {
2095 err = -EINVAL;
2096 goto out;
2097 }
2098
2099 if (get_user(opt, (int __user *)optval)) {
2100 err = -EFAULT;
2101 goto out;
2102 }
2103
2104 /* Only possible for a seqpacket service (TTP with SAR) */
2105 if (sk->sk_type != SOCK_SEQPACKET) {
2106 pr_debug("%s(), setting max_sdu_size = %d\n",
2107 __func__, opt);
2108 self->max_sdu_size_rx = opt;
2109 } else {
2110 net_warn_ratelimited("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2111 __func__);
2112 err = -ENOPROTOOPT;
2113 goto out;
2114 }
2115 break;
2116 case IRLMP_HINTS_SET:
2117 if (optlen < sizeof(int)) {
2118 err = -EINVAL;
2119 goto out;
2120 }
2121
2122 /* The input is really a (__u8 hints[2]), easier as an int */
2123 if (get_user(opt, (int __user *)optval)) {
2124 err = -EFAULT;
2125 goto out;
2126 }
2127
2128 /* Unregister any old registration */
2129 irlmp_unregister_service(self->skey);
2130
2131 self->skey = irlmp_register_service((__u16) opt);
2132 break;
2133 case IRLMP_HINT_MASK_SET:
2134 /* As opposed to the previous case which set the hint bits
2135 * that we advertise, this one set the filter we use when
2136 * making a discovery (nodes which don't match any hint
2137 * bit in the mask are not reported).
2138 */
2139 if (optlen < sizeof(int)) {
2140 err = -EINVAL;
2141 goto out;
2142 }
2143
2144 /* The input is really a (__u8 hints[2]), easier as an int */
2145 if (get_user(opt, (int __user *)optval)) {
2146 err = -EFAULT;
2147 goto out;
2148 }
2149
2150 /* Set the new hint mask */
2151 self->mask.word = (__u16) opt;
2152 /* Mask out extension bits */
2153 self->mask.word &= 0x7f7f;
2154 /* Check if no bits */
2155 if(!self->mask.word)
2156 self->mask.word = 0xFFFF;
2157
2158 break;
2159 default:
2160 err = -ENOPROTOOPT;
2161 break;
2162 }
2163
2164 out:
2165 release_sock(sk);
2166
2167 return err;
2168 }
2169
2170 /*
2171 * Function irda_extract_ias_value(ias_opt, ias_value)
2172 *
2173 * Translate internal IAS value structure to the user space representation
2174 *
2175 * The external representation of IAS values, as we exchange them with
2176 * user space program is quite different from the internal representation,
2177 * as stored in the IAS database (because we need a flat structure for
2178 * crossing kernel boundary).
2179 * This function transform the former in the latter. We also check
2180 * that the value type is valid.
2181 */
2182 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2183 struct ias_value *ias_value)
2184 {
2185 /* Look at the type */
2186 switch (ias_value->type) {
2187 case IAS_INTEGER:
2188 /* Copy the integer */
2189 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2190 break;
2191 case IAS_OCT_SEQ:
2192 /* Set length */
2193 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2194 /* Copy over */
2195 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2196 ias_value->t.oct_seq, ias_value->len);
2197 break;
2198 case IAS_STRING:
2199 /* Set length */
2200 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2201 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2202 /* Copy over */
2203 memcpy(ias_opt->attribute.irda_attrib_string.string,
2204 ias_value->t.string, ias_value->len);
2205 /* NULL terminate the string (avoid troubles) */
2206 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2207 break;
2208 case IAS_MISSING:
2209 default :
2210 return -EINVAL;
2211 }
2212
2213 /* Copy type over */
2214 ias_opt->irda_attrib_type = ias_value->type;
2215
2216 return 0;
2217 }
2218
2219 /*
2220 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2221 */
2222 static int irda_getsockopt(struct socket *sock, int level, int optname,
2223 char __user *optval, int __user *optlen)
2224 {
2225 struct sock *sk = sock->sk;
2226 struct irda_sock *self = irda_sk(sk);
2227 struct irda_device_list list;
2228 struct irda_device_info *discoveries;
2229 struct irda_ias_set * ias_opt; /* IAS get/query params */
2230 struct ias_object * ias_obj; /* Object in IAS */
2231 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2232 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2233 int val = 0;
2234 int len = 0;
2235 int err = 0;
2236 int offset, total;
2237
2238 pr_debug("%s(%p)\n", __func__, self);
2239
2240 if (level != SOL_IRLMP)
2241 return -ENOPROTOOPT;
2242
2243 if (get_user(len, optlen))
2244 return -EFAULT;
2245
2246 if(len < 0)
2247 return -EINVAL;
2248
2249 lock_sock(sk);
2250
2251 switch (optname) {
2252 case IRLMP_ENUMDEVICES:
2253
2254 /* Offset to first device entry */
2255 offset = sizeof(struct irda_device_list) -
2256 sizeof(struct irda_device_info);
2257
2258 if (len < offset) {
2259 err = -EINVAL;
2260 goto out;
2261 }
2262
2263 /* Ask lmp for the current discovery log */
2264 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2265 self->nslots);
2266 /* Check if the we got some results */
2267 if (discoveries == NULL) {
2268 err = -EAGAIN;
2269 goto out; /* Didn't find any devices */
2270 }
2271
2272 /* Write total list length back to client */
2273 if (copy_to_user(optval, &list, offset))
2274 err = -EFAULT;
2275
2276 /* Copy the list itself - watch for overflow */
2277 if (list.len > 2048) {
2278 err = -EINVAL;
2279 goto bed;
2280 }
2281 total = offset + (list.len * sizeof(struct irda_device_info));
2282 if (total > len)
2283 total = len;
2284 if (copy_to_user(optval+offset, discoveries, total - offset))
2285 err = -EFAULT;
2286
2287 /* Write total number of bytes used back to client */
2288 if (put_user(total, optlen))
2289 err = -EFAULT;
2290 bed:
2291 /* Free up our buffer */
2292 kfree(discoveries);
2293 break;
2294 case IRLMP_MAX_SDU_SIZE:
2295 val = self->max_data_size;
2296 len = sizeof(int);
2297 if (put_user(len, optlen)) {
2298 err = -EFAULT;
2299 goto out;
2300 }
2301
2302 if (copy_to_user(optval, &val, len)) {
2303 err = -EFAULT;
2304 goto out;
2305 }
2306
2307 break;
2308 case IRLMP_IAS_GET:
2309 /* The user want an object from our local IAS database.
2310 * We just need to query the IAS and return the value
2311 * that we found */
2312
2313 /* Check that the user has allocated the right space for us */
2314 if (len != sizeof(struct irda_ias_set)) {
2315 err = -EINVAL;
2316 goto out;
2317 }
2318
2319 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2320 if (ias_opt == NULL) {
2321 err = -ENOMEM;
2322 goto out;
2323 }
2324
2325 /* Copy query to the driver. */
2326 if (copy_from_user(ias_opt, optval, len)) {
2327 kfree(ias_opt);
2328 err = -EFAULT;
2329 goto out;
2330 }
2331
2332 /* Find the object we target.
2333 * If the user gives us an empty string, we use the object
2334 * associated with this socket. This will workaround
2335 * duplicated class name - Jean II */
2336 if(ias_opt->irda_class_name[0] == '\0')
2337 ias_obj = self->ias_obj;
2338 else
2339 ias_obj = irias_find_object(ias_opt->irda_class_name);
2340 if(ias_obj == (struct ias_object *) NULL) {
2341 kfree(ias_opt);
2342 err = -EINVAL;
2343 goto out;
2344 }
2345
2346 /* Find the attribute (in the object) we target */
2347 ias_attr = irias_find_attrib(ias_obj,
2348 ias_opt->irda_attrib_name);
2349 if(ias_attr == (struct ias_attrib *) NULL) {
2350 kfree(ias_opt);
2351 err = -EINVAL;
2352 goto out;
2353 }
2354
2355 /* Translate from internal to user structure */
2356 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2357 if(err) {
2358 kfree(ias_opt);
2359 goto out;
2360 }
2361
2362 /* Copy reply to the user */
2363 if (copy_to_user(optval, ias_opt,
2364 sizeof(struct irda_ias_set))) {
2365 kfree(ias_opt);
2366 err = -EFAULT;
2367 goto out;
2368 }
2369 /* Note : don't need to put optlen, we checked it */
2370 kfree(ias_opt);
2371 break;
2372 case IRLMP_IAS_QUERY:
2373 /* The user want an object from a remote IAS database.
2374 * We need to use IAP to query the remote database and
2375 * then wait for the answer to come back. */
2376
2377 /* Check that the user has allocated the right space for us */
2378 if (len != sizeof(struct irda_ias_set)) {
2379 err = -EINVAL;
2380 goto out;
2381 }
2382
2383 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2384 if (ias_opt == NULL) {
2385 err = -ENOMEM;
2386 goto out;
2387 }
2388
2389 /* Copy query to the driver. */
2390 if (copy_from_user(ias_opt, optval, len)) {
2391 kfree(ias_opt);
2392 err = -EFAULT;
2393 goto out;
2394 }
2395
2396 /* At this point, there are two cases...
2397 * 1) the socket is connected - that's the easy case, we
2398 * just query the device we are connected to...
2399 * 2) the socket is not connected - the user doesn't want
2400 * to connect and/or may not have a valid service name
2401 * (so can't create a fake connection). In this case,
2402 * we assume that the user pass us a valid destination
2403 * address in the requesting structure...
2404 */
2405 if(self->daddr != DEV_ADDR_ANY) {
2406 /* We are connected - reuse known daddr */
2407 daddr = self->daddr;
2408 } else {
2409 /* We are not connected, we must specify a valid
2410 * destination address */
2411 daddr = ias_opt->daddr;
2412 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2413 kfree(ias_opt);
2414 err = -EINVAL;
2415 goto out;
2416 }
2417 }
2418
2419 /* Check that we can proceed with IAP */
2420 if (self->iriap) {
2421 net_warn_ratelimited("%s: busy with a previous query\n",
2422 __func__);
2423 kfree(ias_opt);
2424 err = -EBUSY;
2425 goto out;
2426 }
2427
2428 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2429 irda_getvalue_confirm);
2430
2431 if (self->iriap == NULL) {
2432 kfree(ias_opt);
2433 err = -ENOMEM;
2434 goto out;
2435 }
2436
2437 /* Treat unexpected wakeup as disconnect */
2438 self->errno = -EHOSTUNREACH;
2439
2440 /* Query remote LM-IAS */
2441 iriap_getvaluebyclass_request(self->iriap,
2442 self->saddr, daddr,
2443 ias_opt->irda_class_name,
2444 ias_opt->irda_attrib_name);
2445
2446 /* Wait for answer, if not yet finished (or failed) */
2447 if (wait_event_interruptible(self->query_wait,
2448 (self->iriap == NULL))) {
2449 /* pending request uses copy of ias_opt-content
2450 * we can free it regardless! */
2451 kfree(ias_opt);
2452 /* Treat signals as disconnect */
2453 err = -EHOSTUNREACH;
2454 goto out;
2455 }
2456
2457 /* Check what happened */
2458 if (self->errno)
2459 {
2460 kfree(ias_opt);
2461 /* Requested object/attribute doesn't exist */
2462 if((self->errno == IAS_CLASS_UNKNOWN) ||
2463 (self->errno == IAS_ATTRIB_UNKNOWN))
2464 err = -EADDRNOTAVAIL;
2465 else
2466 err = -EHOSTUNREACH;
2467
2468 goto out;
2469 }
2470
2471 /* Translate from internal to user structure */
2472 err = irda_extract_ias_value(ias_opt, self->ias_result);
2473 if (self->ias_result)
2474 irias_delete_value(self->ias_result);
2475 if (err) {
2476 kfree(ias_opt);
2477 goto out;
2478 }
2479
2480 /* Copy reply to the user */
2481 if (copy_to_user(optval, ias_opt,
2482 sizeof(struct irda_ias_set))) {
2483 kfree(ias_opt);
2484 err = -EFAULT;
2485 goto out;
2486 }
2487 /* Note : don't need to put optlen, we checked it */
2488 kfree(ias_opt);
2489 break;
2490 case IRLMP_WAITDEVICE:
2491 /* This function is just another way of seeing life ;-)
2492 * IRLMP_ENUMDEVICES assumes that you have a static network,
2493 * and that you just want to pick one of the devices present.
2494 * On the other hand, in here we assume that no device is
2495 * present and that at some point in the future a device will
2496 * come into range. When this device arrive, we just wake
2497 * up the caller, so that he has time to connect to it before
2498 * the device goes away...
2499 * Note : once the node has been discovered for more than a
2500 * few second, it won't trigger this function, unless it
2501 * goes away and come back changes its hint bits (so we
2502 * might call it IRLMP_WAITNEWDEVICE).
2503 */
2504
2505 /* Check that the user is passing us an int */
2506 if (len != sizeof(int)) {
2507 err = -EINVAL;
2508 goto out;
2509 }
2510 /* Get timeout in ms (max time we block the caller) */
2511 if (get_user(val, (int __user *)optval)) {
2512 err = -EFAULT;
2513 goto out;
2514 }
2515
2516 /* Tell IrLMP we want to be notified */
2517 irlmp_update_client(self->ckey, self->mask.word,
2518 irda_selective_discovery_indication,
2519 NULL, (void *) self);
2520
2521 /* Do some discovery (and also return cached results) */
2522 irlmp_discovery_request(self->nslots);
2523
2524 /* Wait until a node is discovered */
2525 if (!self->cachedaddr) {
2526 pr_debug("%s(), nothing discovered yet, going to sleep...\n",
2527 __func__);
2528
2529 /* Set watchdog timer to expire in <val> ms. */
2530 self->errno = 0;
2531 setup_timer(&self->watchdog, irda_discovery_timeout,
2532 (unsigned long)self);
2533 mod_timer(&self->watchdog,
2534 jiffies + msecs_to_jiffies(val));
2535
2536 /* Wait for IR-LMP to call us back */
2537 err = __wait_event_interruptible(self->query_wait,
2538 (self->cachedaddr != 0 || self->errno == -ETIME));
2539
2540 /* If watchdog is still activated, kill it! */
2541 del_timer(&(self->watchdog));
2542
2543 pr_debug("%s(), ...waking up !\n", __func__);
2544
2545 if (err != 0)
2546 goto out;
2547 }
2548 else
2549 pr_debug("%s(), found immediately !\n",
2550 __func__);
2551
2552 /* Tell IrLMP that we have been notified */
2553 irlmp_update_client(self->ckey, self->mask.word,
2554 NULL, NULL, NULL);
2555
2556 /* Check if the we got some results */
2557 if (!self->cachedaddr) {
2558 err = -EAGAIN; /* Didn't find any devices */
2559 goto out;
2560 }
2561 daddr = self->cachedaddr;
2562 /* Cleanup */
2563 self->cachedaddr = 0;
2564
2565 /* We return the daddr of the device that trigger the
2566 * wakeup. As irlmp pass us only the new devices, we
2567 * are sure that it's not an old device.
2568 * If the user want more details, he should query
2569 * the whole discovery log and pick one device...
2570 */
2571 if (put_user(daddr, (int __user *)optval)) {
2572 err = -EFAULT;
2573 goto out;
2574 }
2575
2576 break;
2577 default:
2578 err = -ENOPROTOOPT;
2579 }
2580
2581 out:
2582
2583 release_sock(sk);
2584
2585 return err;
2586 }
2587
2588 static const struct net_proto_family irda_family_ops = {
2589 .family = PF_IRDA,
2590 .create = irda_create,
2591 .owner = THIS_MODULE,
2592 };
2593
2594 static const struct proto_ops irda_stream_ops = {
2595 .family = PF_IRDA,
2596 .owner = THIS_MODULE,
2597 .release = irda_release,
2598 .bind = irda_bind,
2599 .connect = irda_connect,
2600 .socketpair = sock_no_socketpair,
2601 .accept = irda_accept,
2602 .getname = irda_getname,
2603 .poll = irda_poll,
2604 .ioctl = irda_ioctl,
2605 #ifdef CONFIG_COMPAT
2606 .compat_ioctl = irda_compat_ioctl,
2607 #endif
2608 .listen = irda_listen,
2609 .shutdown = irda_shutdown,
2610 .setsockopt = irda_setsockopt,
2611 .getsockopt = irda_getsockopt,
2612 .sendmsg = irda_sendmsg,
2613 .recvmsg = irda_recvmsg_stream,
2614 .mmap = sock_no_mmap,
2615 .sendpage = sock_no_sendpage,
2616 };
2617
2618 static const struct proto_ops irda_seqpacket_ops = {
2619 .family = PF_IRDA,
2620 .owner = THIS_MODULE,
2621 .release = irda_release,
2622 .bind = irda_bind,
2623 .connect = irda_connect,
2624 .socketpair = sock_no_socketpair,
2625 .accept = irda_accept,
2626 .getname = irda_getname,
2627 .poll = datagram_poll,
2628 .ioctl = irda_ioctl,
2629 #ifdef CONFIG_COMPAT
2630 .compat_ioctl = irda_compat_ioctl,
2631 #endif
2632 .listen = irda_listen,
2633 .shutdown = irda_shutdown,
2634 .setsockopt = irda_setsockopt,
2635 .getsockopt = irda_getsockopt,
2636 .sendmsg = irda_sendmsg,
2637 .recvmsg = irda_recvmsg_dgram,
2638 .mmap = sock_no_mmap,
2639 .sendpage = sock_no_sendpage,
2640 };
2641
2642 static const struct proto_ops irda_dgram_ops = {
2643 .family = PF_IRDA,
2644 .owner = THIS_MODULE,
2645 .release = irda_release,
2646 .bind = irda_bind,
2647 .connect = irda_connect,
2648 .socketpair = sock_no_socketpair,
2649 .accept = irda_accept,
2650 .getname = irda_getname,
2651 .poll = datagram_poll,
2652 .ioctl = irda_ioctl,
2653 #ifdef CONFIG_COMPAT
2654 .compat_ioctl = irda_compat_ioctl,
2655 #endif
2656 .listen = irda_listen,
2657 .shutdown = irda_shutdown,
2658 .setsockopt = irda_setsockopt,
2659 .getsockopt = irda_getsockopt,
2660 .sendmsg = irda_sendmsg_dgram,
2661 .recvmsg = irda_recvmsg_dgram,
2662 .mmap = sock_no_mmap,
2663 .sendpage = sock_no_sendpage,
2664 };
2665
2666 #ifdef CONFIG_IRDA_ULTRA
2667 static const struct proto_ops irda_ultra_ops = {
2668 .family = PF_IRDA,
2669 .owner = THIS_MODULE,
2670 .release = irda_release,
2671 .bind = irda_bind,
2672 .connect = sock_no_connect,
2673 .socketpair = sock_no_socketpair,
2674 .accept = sock_no_accept,
2675 .getname = irda_getname,
2676 .poll = datagram_poll,
2677 .ioctl = irda_ioctl,
2678 #ifdef CONFIG_COMPAT
2679 .compat_ioctl = irda_compat_ioctl,
2680 #endif
2681 .listen = sock_no_listen,
2682 .shutdown = irda_shutdown,
2683 .setsockopt = irda_setsockopt,
2684 .getsockopt = irda_getsockopt,
2685 .sendmsg = irda_sendmsg_ultra,
2686 .recvmsg = irda_recvmsg_dgram,
2687 .mmap = sock_no_mmap,
2688 .sendpage = sock_no_sendpage,
2689 };
2690 #endif /* CONFIG_IRDA_ULTRA */
2691
2692 /*
2693 * Function irsock_init (pro)
2694 *
2695 * Initialize IrDA protocol
2696 *
2697 */
2698 int __init irsock_init(void)
2699 {
2700 int rc = proto_register(&irda_proto, 0);
2701
2702 if (rc == 0)
2703 rc = sock_register(&irda_family_ops);
2704
2705 return rc;
2706 }
2707
2708 /*
2709 * Function irsock_cleanup (void)
2710 *
2711 * Remove IrDA protocol
2712 *
2713 */
2714 void irsock_cleanup(void)
2715 {
2716 sock_unregister(PF_IRDA);
2717 proto_unregister(&irda_proto);
2718 }