]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/irda/af_irda.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / net / irda / af_irda.c
1 /*********************************************************************
2 *
3 * Filename: af_irda.c
4 * Version: 0.9
5 * Description: IrDA sockets implementation
6 * Status: Stable
7 * Author: Dag Brattli <dagb@cs.uit.no>
8 * Created at: Sun May 31 10:12:43 1998
9 * Modified at: Sat Dec 25 21:10:23 1999
10 * Modified by: Dag Brattli <dag@brattli.net>
11 * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc.
12 *
13 * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no>
14 * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com>
15 * All Rights Reserved.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License as
19 * published by the Free Software Foundation; either version 2 of
20 * the License, or (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, see <http://www.gnu.org/licenses/>.
29 *
30 * Linux-IrDA now supports four different types of IrDA sockets:
31 *
32 * o SOCK_STREAM: TinyTP connections with SAR disabled. The
33 * max SDU size is 0 for conn. of this type
34 * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may
35 * fragment the messages, but will preserve
36 * the message boundaries
37 * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata
38 * (unreliable) transfers
39 * IRDAPROTO_ULTRA: Connectionless and unreliable data
40 *
41 ********************************************************************/
42
43 #include <linux/capability.h>
44 #include <linux/module.h>
45 #include <linux/types.h>
46 #include <linux/socket.h>
47 #include <linux/sockios.h>
48 #include <linux/slab.h>
49 #include <linux/sched/signal.h>
50 #include <linux/init.h>
51 #include <linux/net.h>
52 #include <linux/irda.h>
53 #include <linux/poll.h>
54
55 #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */
56 #include <linux/uaccess.h>
57
58 #include <net/sock.h>
59 #include <net/tcp_states.h>
60
61 #include <net/irda/af_irda.h>
62
63 static int irda_create(struct net *net, struct socket *sock, int protocol, int kern);
64
65 static const struct proto_ops irda_stream_ops;
66 static const struct proto_ops irda_seqpacket_ops;
67 static const struct proto_ops irda_dgram_ops;
68
69 #ifdef CONFIG_IRDA_ULTRA
70 static const struct proto_ops irda_ultra_ops;
71 #define ULTRA_MAX_DATA 382
72 #endif /* CONFIG_IRDA_ULTRA */
73
74 #define IRDA_MAX_HEADER (TTP_MAX_HEADER)
75
76 /*
77 * Function irda_data_indication (instance, sap, skb)
78 *
79 * Received some data from TinyTP. Just queue it on the receive queue
80 *
81 */
82 static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb)
83 {
84 struct irda_sock *self;
85 struct sock *sk;
86 int err;
87
88 self = instance;
89 sk = instance;
90
91 err = sock_queue_rcv_skb(sk, skb);
92 if (err) {
93 pr_debug("%s(), error: no more mem!\n", __func__);
94 self->rx_flow = FLOW_STOP;
95
96 /* When we return error, TTP will need to requeue the skb */
97 return err;
98 }
99
100 return 0;
101 }
102
103 /*
104 * Function irda_disconnect_indication (instance, sap, reason, skb)
105 *
106 * Connection has been closed. Check reason to find out why
107 *
108 */
109 static void irda_disconnect_indication(void *instance, void *sap,
110 LM_REASON reason, struct sk_buff *skb)
111 {
112 struct irda_sock *self;
113 struct sock *sk;
114
115 self = instance;
116
117 pr_debug("%s(%p)\n", __func__, self);
118
119 /* Don't care about it, but let's not leak it */
120 if(skb)
121 dev_kfree_skb(skb);
122
123 sk = instance;
124 if (sk == NULL) {
125 pr_debug("%s(%p) : BUG : sk is NULL\n",
126 __func__, self);
127 return;
128 }
129
130 /* Prevent race conditions with irda_release() and irda_shutdown() */
131 bh_lock_sock(sk);
132 if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) {
133 sk->sk_state = TCP_CLOSE;
134 sk->sk_shutdown |= SEND_SHUTDOWN;
135
136 sk->sk_state_change(sk);
137
138 /* Close our TSAP.
139 * If we leave it open, IrLMP put it back into the list of
140 * unconnected LSAPs. The problem is that any incoming request
141 * can then be matched to this socket (and it will be, because
142 * it is at the head of the list). This would prevent any
143 * listening socket waiting on the same TSAP to get those
144 * requests. Some apps forget to close sockets, or hang to it
145 * a bit too long, so we may stay in this dead state long
146 * enough to be noticed...
147 * Note : all socket function do check sk->sk_state, so we are
148 * safe...
149 * Jean II
150 */
151 if (self->tsap) {
152 irttp_close_tsap(self->tsap);
153 self->tsap = NULL;
154 }
155 }
156 bh_unlock_sock(sk);
157
158 /* Note : once we are there, there is not much you want to do
159 * with the socket anymore, apart from closing it.
160 * For example, bind() and connect() won't reset sk->sk_err,
161 * sk->sk_shutdown and sk->sk_flags to valid values...
162 * Jean II
163 */
164 }
165
166 /*
167 * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb)
168 *
169 * Connections has been confirmed by the remote device
170 *
171 */
172 static void irda_connect_confirm(void *instance, void *sap,
173 struct qos_info *qos,
174 __u32 max_sdu_size, __u8 max_header_size,
175 struct sk_buff *skb)
176 {
177 struct irda_sock *self;
178 struct sock *sk;
179
180 self = instance;
181
182 pr_debug("%s(%p)\n", __func__, self);
183
184 sk = instance;
185 if (sk == NULL) {
186 dev_kfree_skb(skb);
187 return;
188 }
189
190 dev_kfree_skb(skb);
191 // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb);
192
193 /* How much header space do we need to reserve */
194 self->max_header_size = max_header_size;
195
196 /* IrTTP max SDU size in transmit direction */
197 self->max_sdu_size_tx = max_sdu_size;
198
199 /* Find out what the largest chunk of data that we can transmit is */
200 switch (sk->sk_type) {
201 case SOCK_STREAM:
202 if (max_sdu_size != 0) {
203 net_err_ratelimited("%s: max_sdu_size must be 0\n",
204 __func__);
205 return;
206 }
207 self->max_data_size = irttp_get_max_seg_size(self->tsap);
208 break;
209 case SOCK_SEQPACKET:
210 if (max_sdu_size == 0) {
211 net_err_ratelimited("%s: max_sdu_size cannot be 0\n",
212 __func__);
213 return;
214 }
215 self->max_data_size = max_sdu_size;
216 break;
217 default:
218 self->max_data_size = irttp_get_max_seg_size(self->tsap);
219 }
220
221 pr_debug("%s(), max_data_size=%d\n", __func__,
222 self->max_data_size);
223
224 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
225
226 /* We are now connected! */
227 sk->sk_state = TCP_ESTABLISHED;
228 sk->sk_state_change(sk);
229 }
230
231 /*
232 * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata)
233 *
234 * Incoming connection
235 *
236 */
237 static void irda_connect_indication(void *instance, void *sap,
238 struct qos_info *qos, __u32 max_sdu_size,
239 __u8 max_header_size, struct sk_buff *skb)
240 {
241 struct irda_sock *self;
242 struct sock *sk;
243
244 self = instance;
245
246 pr_debug("%s(%p)\n", __func__, self);
247
248 sk = instance;
249 if (sk == NULL) {
250 dev_kfree_skb(skb);
251 return;
252 }
253
254 /* How much header space do we need to reserve */
255 self->max_header_size = max_header_size;
256
257 /* IrTTP max SDU size in transmit direction */
258 self->max_sdu_size_tx = max_sdu_size;
259
260 /* Find out what the largest chunk of data that we can transmit is */
261 switch (sk->sk_type) {
262 case SOCK_STREAM:
263 if (max_sdu_size != 0) {
264 net_err_ratelimited("%s: max_sdu_size must be 0\n",
265 __func__);
266 kfree_skb(skb);
267 return;
268 }
269 self->max_data_size = irttp_get_max_seg_size(self->tsap);
270 break;
271 case SOCK_SEQPACKET:
272 if (max_sdu_size == 0) {
273 net_err_ratelimited("%s: max_sdu_size cannot be 0\n",
274 __func__);
275 kfree_skb(skb);
276 return;
277 }
278 self->max_data_size = max_sdu_size;
279 break;
280 default:
281 self->max_data_size = irttp_get_max_seg_size(self->tsap);
282 }
283
284 pr_debug("%s(), max_data_size=%d\n", __func__,
285 self->max_data_size);
286
287 memcpy(&self->qos_tx, qos, sizeof(struct qos_info));
288
289 skb_queue_tail(&sk->sk_receive_queue, skb);
290 sk->sk_state_change(sk);
291 }
292
293 /*
294 * Function irda_connect_response (handle)
295 *
296 * Accept incoming connection
297 *
298 */
299 static void irda_connect_response(struct irda_sock *self)
300 {
301 struct sk_buff *skb;
302
303 skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER, GFP_KERNEL);
304 if (skb == NULL) {
305 pr_debug("%s() Unable to allocate sk_buff!\n",
306 __func__);
307 return;
308 }
309
310 /* Reserve space for MUX_CONTROL and LAP header */
311 skb_reserve(skb, IRDA_MAX_HEADER);
312
313 irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb);
314 }
315
316 /*
317 * Function irda_flow_indication (instance, sap, flow)
318 *
319 * Used by TinyTP to tell us if it can accept more data or not
320 *
321 */
322 static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
323 {
324 struct irda_sock *self;
325 struct sock *sk;
326
327 self = instance;
328 sk = instance;
329 BUG_ON(sk == NULL);
330
331 switch (flow) {
332 case FLOW_STOP:
333 pr_debug("%s(), IrTTP wants us to slow down\n",
334 __func__);
335 self->tx_flow = flow;
336 break;
337 case FLOW_START:
338 self->tx_flow = flow;
339 pr_debug("%s(), IrTTP wants us to start again\n",
340 __func__);
341 wake_up_interruptible(sk_sleep(sk));
342 break;
343 default:
344 pr_debug("%s(), Unknown flow command!\n", __func__);
345 /* Unknown flow command, better stop */
346 self->tx_flow = flow;
347 break;
348 }
349 }
350
351 /*
352 * Function irda_getvalue_confirm (obj_id, value, priv)
353 *
354 * Got answer from remote LM-IAS, just pass object to requester...
355 *
356 * Note : duplicate from above, but we need our own version that
357 * doesn't touch the dtsap_sel and save the full value structure...
358 */
359 static void irda_getvalue_confirm(int result, __u16 obj_id,
360 struct ias_value *value, void *priv)
361 {
362 struct irda_sock *self;
363
364 self = priv;
365 if (!self) {
366 net_warn_ratelimited("%s: lost myself!\n", __func__);
367 return;
368 }
369
370 pr_debug("%s(%p)\n", __func__, self);
371
372 /* We probably don't need to make any more queries */
373 iriap_close(self->iriap);
374 self->iriap = NULL;
375
376 /* Check if request succeeded */
377 if (result != IAS_SUCCESS) {
378 pr_debug("%s(), IAS query failed! (%d)\n", __func__,
379 result);
380
381 self->errno = result; /* We really need it later */
382
383 /* Wake up any processes waiting for result */
384 wake_up_interruptible(&self->query_wait);
385
386 return;
387 }
388
389 /* Pass the object to the caller (so the caller must delete it) */
390 self->ias_result = value;
391 self->errno = 0;
392
393 /* Wake up any processes waiting for result */
394 wake_up_interruptible(&self->query_wait);
395 }
396
397 /*
398 * Function irda_selective_discovery_indication (discovery)
399 *
400 * Got a selective discovery indication from IrLMP.
401 *
402 * IrLMP is telling us that this node is new and matching our hint bit
403 * filter. Wake up any process waiting for answer...
404 */
405 static void irda_selective_discovery_indication(discinfo_t *discovery,
406 DISCOVERY_MODE mode,
407 void *priv)
408 {
409 struct irda_sock *self;
410
411 self = priv;
412 if (!self) {
413 net_warn_ratelimited("%s: lost myself!\n", __func__);
414 return;
415 }
416
417 /* Pass parameter to the caller */
418 self->cachedaddr = discovery->daddr;
419
420 /* Wake up process if its waiting for device to be discovered */
421 wake_up_interruptible(&self->query_wait);
422 }
423
424 /*
425 * Function irda_discovery_timeout (priv)
426 *
427 * Timeout in the selective discovery process
428 *
429 * We were waiting for a node to be discovered, but nothing has come up
430 * so far. Wake up the user and tell him that we failed...
431 */
432 static void irda_discovery_timeout(u_long priv)
433 {
434 struct irda_sock *self;
435
436 self = (struct irda_sock *) priv;
437 BUG_ON(self == NULL);
438
439 /* Nothing for the caller */
440 self->cachelog = NULL;
441 self->cachedaddr = 0;
442 self->errno = -ETIME;
443
444 /* Wake up process if its still waiting... */
445 wake_up_interruptible(&self->query_wait);
446 }
447
448 /*
449 * Function irda_open_tsap (self)
450 *
451 * Open local Transport Service Access Point (TSAP)
452 *
453 */
454 static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name)
455 {
456 notify_t notify;
457
458 if (self->tsap) {
459 pr_debug("%s: busy!\n", __func__);
460 return -EBUSY;
461 }
462
463 /* Initialize callbacks to be used by the IrDA stack */
464 irda_notify_init(&notify);
465 notify.connect_confirm = irda_connect_confirm;
466 notify.connect_indication = irda_connect_indication;
467 notify.disconnect_indication = irda_disconnect_indication;
468 notify.data_indication = irda_data_indication;
469 notify.udata_indication = irda_data_indication;
470 notify.flow_indication = irda_flow_indication;
471 notify.instance = self;
472 strncpy(notify.name, name, NOTIFY_MAX_NAME);
473
474 self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT,
475 &notify);
476 if (self->tsap == NULL) {
477 pr_debug("%s(), Unable to allocate TSAP!\n",
478 __func__);
479 return -ENOMEM;
480 }
481 /* Remember which TSAP selector we actually got */
482 self->stsap_sel = self->tsap->stsap_sel;
483
484 return 0;
485 }
486
487 /*
488 * Function irda_open_lsap (self)
489 *
490 * Open local Link Service Access Point (LSAP). Used for opening Ultra
491 * sockets
492 */
493 #ifdef CONFIG_IRDA_ULTRA
494 static int irda_open_lsap(struct irda_sock *self, int pid)
495 {
496 notify_t notify;
497
498 if (self->lsap) {
499 net_warn_ratelimited("%s(), busy!\n", __func__);
500 return -EBUSY;
501 }
502
503 /* Initialize callbacks to be used by the IrDA stack */
504 irda_notify_init(&notify);
505 notify.udata_indication = irda_data_indication;
506 notify.instance = self;
507 strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME);
508
509 self->lsap = irlmp_open_lsap(LSAP_CONNLESS, &notify, pid);
510 if (self->lsap == NULL) {
511 pr_debug("%s(), Unable to allocate LSAP!\n", __func__);
512 return -ENOMEM;
513 }
514
515 return 0;
516 }
517 #endif /* CONFIG_IRDA_ULTRA */
518
519 /*
520 * Function irda_find_lsap_sel (self, name)
521 *
522 * Try to lookup LSAP selector in remote LM-IAS
523 *
524 * Basically, we start a IAP query, and then go to sleep. When the query
525 * return, irda_getvalue_confirm will wake us up, and we can examine the
526 * result of the query...
527 * Note that in some case, the query fail even before we go to sleep,
528 * creating some races...
529 */
530 static int irda_find_lsap_sel(struct irda_sock *self, char *name)
531 {
532 pr_debug("%s(%p, %s)\n", __func__, self, name);
533
534 if (self->iriap) {
535 net_warn_ratelimited("%s(): busy with a previous query\n",
536 __func__);
537 return -EBUSY;
538 }
539
540 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
541 irda_getvalue_confirm);
542 if(self->iriap == NULL)
543 return -ENOMEM;
544
545 /* Treat unexpected wakeup as disconnect */
546 self->errno = -EHOSTUNREACH;
547
548 /* Query remote LM-IAS */
549 iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr,
550 name, "IrDA:TinyTP:LsapSel");
551
552 /* Wait for answer, if not yet finished (or failed) */
553 if (wait_event_interruptible(self->query_wait, (self->iriap==NULL)))
554 /* Treat signals as disconnect */
555 return -EHOSTUNREACH;
556
557 /* Check what happened */
558 if (self->errno)
559 {
560 /* Requested object/attribute doesn't exist */
561 if((self->errno == IAS_CLASS_UNKNOWN) ||
562 (self->errno == IAS_ATTRIB_UNKNOWN))
563 return -EADDRNOTAVAIL;
564 else
565 return -EHOSTUNREACH;
566 }
567
568 /* Get the remote TSAP selector */
569 switch (self->ias_result->type) {
570 case IAS_INTEGER:
571 pr_debug("%s() int=%d\n",
572 __func__, self->ias_result->t.integer);
573
574 if (self->ias_result->t.integer != -1)
575 self->dtsap_sel = self->ias_result->t.integer;
576 else
577 self->dtsap_sel = 0;
578 break;
579 default:
580 self->dtsap_sel = 0;
581 pr_debug("%s(), bad type!\n", __func__);
582 break;
583 }
584 if (self->ias_result)
585 irias_delete_value(self->ias_result);
586
587 if (self->dtsap_sel)
588 return 0;
589
590 return -EADDRNOTAVAIL;
591 }
592
593 /*
594 * Function irda_discover_daddr_and_lsap_sel (self, name)
595 *
596 * This try to find a device with the requested service.
597 *
598 * It basically look into the discovery log. For each address in the list,
599 * it queries the LM-IAS of the device to find if this device offer
600 * the requested service.
601 * If there is more than one node supporting the service, we complain
602 * to the user (it should move devices around).
603 * The, we set both the destination address and the lsap selector to point
604 * on the service on the unique device we have found.
605 *
606 * Note : this function fails if there is more than one device in range,
607 * because IrLMP doesn't disconnect the LAP when the last LSAP is closed.
608 * Moreover, we would need to wait the LAP disconnection...
609 */
610 static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name)
611 {
612 discinfo_t *discoveries; /* Copy of the discovery log */
613 int number; /* Number of nodes in the log */
614 int i;
615 int err = -ENETUNREACH;
616 __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */
617 __u8 dtsap_sel = 0x0; /* TSAP associated with it */
618
619 pr_debug("%s(), name=%s\n", __func__, name);
620
621 /* Ask lmp for the current discovery log
622 * Note : we have to use irlmp_get_discoveries(), as opposed
623 * to play with the cachelog directly, because while we are
624 * making our ias query, le log might change... */
625 discoveries = irlmp_get_discoveries(&number, self->mask.word,
626 self->nslots);
627 /* Check if the we got some results */
628 if (discoveries == NULL)
629 return -ENETUNREACH; /* No nodes discovered */
630
631 /*
632 * Now, check all discovered devices (if any), and connect
633 * client only about the services that the client is
634 * interested in...
635 */
636 for(i = 0; i < number; i++) {
637 /* Try the address in the log */
638 self->daddr = discoveries[i].daddr;
639 self->saddr = 0x0;
640 pr_debug("%s(), trying daddr = %08x\n",
641 __func__, self->daddr);
642
643 /* Query remote LM-IAS for this service */
644 err = irda_find_lsap_sel(self, name);
645 switch (err) {
646 case 0:
647 /* We found the requested service */
648 if(daddr != DEV_ADDR_ANY) {
649 pr_debug("%s(), discovered service ''%s'' in two different devices !!!\n",
650 __func__, name);
651 self->daddr = DEV_ADDR_ANY;
652 kfree(discoveries);
653 return -ENOTUNIQ;
654 }
655 /* First time we found that one, save it ! */
656 daddr = self->daddr;
657 dtsap_sel = self->dtsap_sel;
658 break;
659 case -EADDRNOTAVAIL:
660 /* Requested service simply doesn't exist on this node */
661 break;
662 default:
663 /* Something bad did happen :-( */
664 pr_debug("%s(), unexpected IAS query failure\n",
665 __func__);
666 self->daddr = DEV_ADDR_ANY;
667 kfree(discoveries);
668 return -EHOSTUNREACH;
669 }
670 }
671 /* Cleanup our copy of the discovery log */
672 kfree(discoveries);
673
674 /* Check out what we found */
675 if(daddr == DEV_ADDR_ANY) {
676 pr_debug("%s(), cannot discover service ''%s'' in any device !!!\n",
677 __func__, name);
678 self->daddr = DEV_ADDR_ANY;
679 return -EADDRNOTAVAIL;
680 }
681
682 /* Revert back to discovered device & service */
683 self->daddr = daddr;
684 self->saddr = 0x0;
685 self->dtsap_sel = dtsap_sel;
686
687 pr_debug("%s(), discovered requested service ''%s'' at address %08x\n",
688 __func__, name, self->daddr);
689
690 return 0;
691 }
692
693 /*
694 * Function irda_getname (sock, uaddr, uaddr_len, peer)
695 *
696 * Return the our own, or peers socket address (sockaddr_irda)
697 *
698 */
699 static int irda_getname(struct socket *sock, struct sockaddr *uaddr,
700 int *uaddr_len, int peer)
701 {
702 struct sockaddr_irda saddr;
703 struct sock *sk = sock->sk;
704 struct irda_sock *self = irda_sk(sk);
705
706 memset(&saddr, 0, sizeof(saddr));
707 if (peer) {
708 if (sk->sk_state != TCP_ESTABLISHED)
709 return -ENOTCONN;
710
711 saddr.sir_family = AF_IRDA;
712 saddr.sir_lsap_sel = self->dtsap_sel;
713 saddr.sir_addr = self->daddr;
714 } else {
715 saddr.sir_family = AF_IRDA;
716 saddr.sir_lsap_sel = self->stsap_sel;
717 saddr.sir_addr = self->saddr;
718 }
719
720 pr_debug("%s(), tsap_sel = %#x\n", __func__, saddr.sir_lsap_sel);
721 pr_debug("%s(), addr = %08x\n", __func__, saddr.sir_addr);
722
723 /* uaddr_len come to us uninitialised */
724 *uaddr_len = sizeof (struct sockaddr_irda);
725 memcpy(uaddr, &saddr, *uaddr_len);
726
727 return 0;
728 }
729
730 /*
731 * Function irda_listen (sock, backlog)
732 *
733 * Just move to the listen state
734 *
735 */
736 static int irda_listen(struct socket *sock, int backlog)
737 {
738 struct sock *sk = sock->sk;
739 int err = -EOPNOTSUPP;
740
741 lock_sock(sk);
742
743 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
744 (sk->sk_type != SOCK_DGRAM))
745 goto out;
746
747 if (sk->sk_state != TCP_LISTEN) {
748 sk->sk_max_ack_backlog = backlog;
749 sk->sk_state = TCP_LISTEN;
750
751 err = 0;
752 }
753 out:
754 release_sock(sk);
755
756 return err;
757 }
758
759 /*
760 * Function irda_bind (sock, uaddr, addr_len)
761 *
762 * Used by servers to register their well known TSAP
763 *
764 */
765 static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
766 {
767 struct sock *sk = sock->sk;
768 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
769 struct irda_sock *self = irda_sk(sk);
770 int err;
771
772 pr_debug("%s(%p)\n", __func__, self);
773
774 if (addr_len != sizeof(struct sockaddr_irda))
775 return -EINVAL;
776
777 lock_sock(sk);
778 #ifdef CONFIG_IRDA_ULTRA
779 /* Special care for Ultra sockets */
780 if ((sk->sk_type == SOCK_DGRAM) &&
781 (sk->sk_protocol == IRDAPROTO_ULTRA)) {
782 self->pid = addr->sir_lsap_sel;
783 err = -EOPNOTSUPP;
784 if (self->pid & 0x80) {
785 pr_debug("%s(), extension in PID not supp!\n",
786 __func__);
787 goto out;
788 }
789 err = irda_open_lsap(self, self->pid);
790 if (err < 0)
791 goto out;
792
793 /* Pretend we are connected */
794 sock->state = SS_CONNECTED;
795 sk->sk_state = TCP_ESTABLISHED;
796 err = 0;
797
798 goto out;
799 }
800 #endif /* CONFIG_IRDA_ULTRA */
801
802 self->ias_obj = irias_new_object(addr->sir_name, jiffies);
803 err = -ENOMEM;
804 if (self->ias_obj == NULL)
805 goto out;
806
807 err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name);
808 if (err < 0) {
809 irias_delete_object(self->ias_obj);
810 self->ias_obj = NULL;
811 goto out;
812 }
813
814 /* Register with LM-IAS */
815 irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel",
816 self->stsap_sel, IAS_KERNEL_ATTR);
817 irias_insert_object(self->ias_obj);
818
819 err = 0;
820 out:
821 release_sock(sk);
822 return err;
823 }
824
825 /*
826 * Function irda_accept (sock, newsock, flags)
827 *
828 * Wait for incoming connection
829 *
830 */
831 static int irda_accept(struct socket *sock, struct socket *newsock, int flags,
832 bool kern)
833 {
834 struct sock *sk = sock->sk;
835 struct irda_sock *new, *self = irda_sk(sk);
836 struct sock *newsk;
837 struct sk_buff *skb = NULL;
838 int err;
839
840 err = irda_create(sock_net(sk), newsock, sk->sk_protocol, kern);
841 if (err)
842 return err;
843
844 err = -EINVAL;
845
846 lock_sock(sk);
847 if (sock->state != SS_UNCONNECTED)
848 goto out;
849
850 err = -EOPNOTSUPP;
851 if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) &&
852 (sk->sk_type != SOCK_DGRAM))
853 goto out;
854
855 err = -EINVAL;
856 if (sk->sk_state != TCP_LISTEN)
857 goto out;
858
859 /*
860 * The read queue this time is holding sockets ready to use
861 * hooked into the SABM we saved
862 */
863
864 /*
865 * We can perform the accept only if there is incoming data
866 * on the listening socket.
867 * So, we will block the caller until we receive any data.
868 * If the caller was waiting on select() or poll() before
869 * calling us, the data is waiting for us ;-)
870 * Jean II
871 */
872 while (1) {
873 skb = skb_dequeue(&sk->sk_receive_queue);
874 if (skb)
875 break;
876
877 /* Non blocking operation */
878 err = -EWOULDBLOCK;
879 if (flags & O_NONBLOCK)
880 goto out;
881
882 err = wait_event_interruptible(*(sk_sleep(sk)),
883 skb_peek(&sk->sk_receive_queue));
884 if (err)
885 goto out;
886 }
887
888 newsk = newsock->sk;
889 err = -EIO;
890 if (newsk == NULL)
891 goto out;
892
893 newsk->sk_state = TCP_ESTABLISHED;
894
895 new = irda_sk(newsk);
896
897 /* Now attach up the new socket */
898 new->tsap = irttp_dup(self->tsap, new);
899 err = -EPERM; /* value does not seem to make sense. -arnd */
900 if (!new->tsap) {
901 pr_debug("%s(), dup failed!\n", __func__);
902 goto out;
903 }
904
905 new->stsap_sel = new->tsap->stsap_sel;
906 new->dtsap_sel = new->tsap->dtsap_sel;
907 new->saddr = irttp_get_saddr(new->tsap);
908 new->daddr = irttp_get_daddr(new->tsap);
909
910 new->max_sdu_size_tx = self->max_sdu_size_tx;
911 new->max_sdu_size_rx = self->max_sdu_size_rx;
912 new->max_data_size = self->max_data_size;
913 new->max_header_size = self->max_header_size;
914
915 memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info));
916
917 /* Clean up the original one to keep it in listen state */
918 irttp_listen(self->tsap);
919
920 sk->sk_ack_backlog--;
921
922 newsock->state = SS_CONNECTED;
923
924 irda_connect_response(new);
925 err = 0;
926 out:
927 kfree_skb(skb);
928 release_sock(sk);
929 return err;
930 }
931
932 /*
933 * Function irda_connect (sock, uaddr, addr_len, flags)
934 *
935 * Connect to a IrDA device
936 *
937 * The main difference with a "standard" connect is that with IrDA we need
938 * to resolve the service name into a TSAP selector (in TCP, port number
939 * doesn't have to be resolved).
940 * Because of this service name resolution, we can offer "auto-connect",
941 * where we connect to a service without specifying a destination address.
942 *
943 * Note : by consulting "errno", the user space caller may learn the cause
944 * of the failure. Most of them are visible in the function, others may come
945 * from subroutines called and are listed here :
946 * o EBUSY : already processing a connect
947 * o EHOSTUNREACH : bad addr->sir_addr argument
948 * o EADDRNOTAVAIL : bad addr->sir_name argument
949 * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect)
950 * o ENETUNREACH : no node found on the network (auto-connect)
951 */
952 static int irda_connect(struct socket *sock, struct sockaddr *uaddr,
953 int addr_len, int flags)
954 {
955 struct sock *sk = sock->sk;
956 struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr;
957 struct irda_sock *self = irda_sk(sk);
958 int err;
959
960 pr_debug("%s(%p)\n", __func__, self);
961
962 lock_sock(sk);
963 /* Don't allow connect for Ultra sockets */
964 err = -ESOCKTNOSUPPORT;
965 if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA))
966 goto out;
967
968 if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
969 sock->state = SS_CONNECTED;
970 err = 0;
971 goto out; /* Connect completed during a ERESTARTSYS event */
972 }
973
974 if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
975 sock->state = SS_UNCONNECTED;
976 err = -ECONNREFUSED;
977 goto out;
978 }
979
980 err = -EISCONN; /* No reconnect on a seqpacket socket */
981 if (sk->sk_state == TCP_ESTABLISHED)
982 goto out;
983
984 sk->sk_state = TCP_CLOSE;
985 sock->state = SS_UNCONNECTED;
986
987 err = -EINVAL;
988 if (addr_len != sizeof(struct sockaddr_irda))
989 goto out;
990
991 /* Check if user supplied any destination device address */
992 if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) {
993 /* Try to find one suitable */
994 err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name);
995 if (err) {
996 pr_debug("%s(), auto-connect failed!\n", __func__);
997 goto out;
998 }
999 } else {
1000 /* Use the one provided by the user */
1001 self->daddr = addr->sir_addr;
1002 pr_debug("%s(), daddr = %08x\n", __func__, self->daddr);
1003
1004 /* If we don't have a valid service name, we assume the
1005 * user want to connect on a specific LSAP. Prevent
1006 * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */
1007 if((addr->sir_name[0] != '\0') ||
1008 (addr->sir_lsap_sel >= 0x70)) {
1009 /* Query remote LM-IAS using service name */
1010 err = irda_find_lsap_sel(self, addr->sir_name);
1011 if (err) {
1012 pr_debug("%s(), connect failed!\n", __func__);
1013 goto out;
1014 }
1015 } else {
1016 /* Directly connect to the remote LSAP
1017 * specified by the sir_lsap field.
1018 * Please use with caution, in IrDA LSAPs are
1019 * dynamic and there is no "well-known" LSAP. */
1020 self->dtsap_sel = addr->sir_lsap_sel;
1021 }
1022 }
1023
1024 /* Check if we have opened a local TSAP */
1025 if (!self->tsap) {
1026 err = irda_open_tsap(self, LSAP_ANY, addr->sir_name);
1027 if (err)
1028 goto out;
1029 }
1030
1031 /* Move to connecting socket, start sending Connect Requests */
1032 sock->state = SS_CONNECTING;
1033 sk->sk_state = TCP_SYN_SENT;
1034
1035 /* Connect to remote device */
1036 err = irttp_connect_request(self->tsap, self->dtsap_sel,
1037 self->saddr, self->daddr, NULL,
1038 self->max_sdu_size_rx, NULL);
1039 if (err) {
1040 pr_debug("%s(), connect failed!\n", __func__);
1041 goto out;
1042 }
1043
1044 /* Now the loop */
1045 err = -EINPROGRESS;
1046 if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK))
1047 goto out;
1048
1049 err = -ERESTARTSYS;
1050 if (wait_event_interruptible(*(sk_sleep(sk)),
1051 (sk->sk_state != TCP_SYN_SENT)))
1052 goto out;
1053
1054 if (sk->sk_state != TCP_ESTABLISHED) {
1055 sock->state = SS_UNCONNECTED;
1056 err = sock_error(sk);
1057 if (!err)
1058 err = -ECONNRESET;
1059 goto out;
1060 }
1061
1062 sock->state = SS_CONNECTED;
1063
1064 /* At this point, IrLMP has assigned our source address */
1065 self->saddr = irttp_get_saddr(self->tsap);
1066 err = 0;
1067 out:
1068 release_sock(sk);
1069 return err;
1070 }
1071
1072 static struct proto irda_proto = {
1073 .name = "IRDA",
1074 .owner = THIS_MODULE,
1075 .obj_size = sizeof(struct irda_sock),
1076 };
1077
1078 /*
1079 * Function irda_create (sock, protocol)
1080 *
1081 * Create IrDA socket
1082 *
1083 */
1084 static int irda_create(struct net *net, struct socket *sock, int protocol,
1085 int kern)
1086 {
1087 struct sock *sk;
1088 struct irda_sock *self;
1089
1090 if (protocol < 0 || protocol > SK_PROTOCOL_MAX)
1091 return -EINVAL;
1092
1093 if (net != &init_net)
1094 return -EAFNOSUPPORT;
1095
1096 /* Check for valid socket type */
1097 switch (sock->type) {
1098 case SOCK_STREAM: /* For TTP connections with SAR disabled */
1099 case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */
1100 case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */
1101 break;
1102 default:
1103 return -ESOCKTNOSUPPORT;
1104 }
1105
1106 /* Allocate networking socket */
1107 sk = sk_alloc(net, PF_IRDA, GFP_KERNEL, &irda_proto, kern);
1108 if (sk == NULL)
1109 return -ENOMEM;
1110
1111 self = irda_sk(sk);
1112 pr_debug("%s() : self is %p\n", __func__, self);
1113
1114 init_waitqueue_head(&self->query_wait);
1115
1116 switch (sock->type) {
1117 case SOCK_STREAM:
1118 sock->ops = &irda_stream_ops;
1119 self->max_sdu_size_rx = TTP_SAR_DISABLE;
1120 break;
1121 case SOCK_SEQPACKET:
1122 sock->ops = &irda_seqpacket_ops;
1123 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1124 break;
1125 case SOCK_DGRAM:
1126 switch (protocol) {
1127 #ifdef CONFIG_IRDA_ULTRA
1128 case IRDAPROTO_ULTRA:
1129 sock->ops = &irda_ultra_ops;
1130 /* Initialise now, because we may send on unbound
1131 * sockets. Jean II */
1132 self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER;
1133 self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER;
1134 break;
1135 #endif /* CONFIG_IRDA_ULTRA */
1136 case IRDAPROTO_UNITDATA:
1137 sock->ops = &irda_dgram_ops;
1138 /* We let Unitdata conn. be like seqpack conn. */
1139 self->max_sdu_size_rx = TTP_SAR_UNBOUND;
1140 break;
1141 default:
1142 sk_free(sk);
1143 return -ESOCKTNOSUPPORT;
1144 }
1145 break;
1146 default:
1147 sk_free(sk);
1148 return -ESOCKTNOSUPPORT;
1149 }
1150
1151 /* Initialise networking socket struct */
1152 sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */
1153 sk->sk_family = PF_IRDA;
1154 sk->sk_protocol = protocol;
1155
1156 /* Register as a client with IrLMP */
1157 self->ckey = irlmp_register_client(0, NULL, NULL, NULL);
1158 self->mask.word = 0xffff;
1159 self->rx_flow = self->tx_flow = FLOW_START;
1160 self->nslots = DISCOVERY_DEFAULT_SLOTS;
1161 self->daddr = DEV_ADDR_ANY; /* Until we get connected */
1162 self->saddr = 0x0; /* so IrLMP assign us any link */
1163 return 0;
1164 }
1165
1166 /*
1167 * Function irda_destroy_socket (self)
1168 *
1169 * Destroy socket
1170 *
1171 */
1172 static void irda_destroy_socket(struct irda_sock *self)
1173 {
1174 pr_debug("%s(%p)\n", __func__, self);
1175
1176 /* Unregister with IrLMP */
1177 irlmp_unregister_client(self->ckey);
1178 irlmp_unregister_service(self->skey);
1179
1180 /* Unregister with LM-IAS */
1181 if (self->ias_obj) {
1182 irias_delete_object(self->ias_obj);
1183 self->ias_obj = NULL;
1184 }
1185
1186 if (self->iriap) {
1187 iriap_close(self->iriap);
1188 self->iriap = NULL;
1189 }
1190
1191 if (self->tsap) {
1192 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1193 irttp_close_tsap(self->tsap);
1194 self->tsap = NULL;
1195 }
1196 #ifdef CONFIG_IRDA_ULTRA
1197 if (self->lsap) {
1198 irlmp_close_lsap(self->lsap);
1199 self->lsap = NULL;
1200 }
1201 #endif /* CONFIG_IRDA_ULTRA */
1202 }
1203
1204 /*
1205 * Function irda_release (sock)
1206 */
1207 static int irda_release(struct socket *sock)
1208 {
1209 struct sock *sk = sock->sk;
1210
1211 if (sk == NULL)
1212 return 0;
1213
1214 lock_sock(sk);
1215 sk->sk_state = TCP_CLOSE;
1216 sk->sk_shutdown |= SEND_SHUTDOWN;
1217 sk->sk_state_change(sk);
1218
1219 /* Destroy IrDA socket */
1220 irda_destroy_socket(irda_sk(sk));
1221
1222 sock_orphan(sk);
1223 sock->sk = NULL;
1224 release_sock(sk);
1225
1226 /* Purge queues (see sock_init_data()) */
1227 skb_queue_purge(&sk->sk_receive_queue);
1228
1229 /* Destroy networking socket if we are the last reference on it,
1230 * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */
1231 sock_put(sk);
1232
1233 /* Notes on socket locking and deallocation... - Jean II
1234 * In theory we should put pairs of sock_hold() / sock_put() to
1235 * prevent the socket to be destroyed whenever there is an
1236 * outstanding request or outstanding incoming packet or event.
1237 *
1238 * 1) This may include IAS request, both in connect and getsockopt.
1239 * Unfortunately, the situation is a bit more messy than it looks,
1240 * because we close iriap and kfree(self) above.
1241 *
1242 * 2) This may include selective discovery in getsockopt.
1243 * Same stuff as above, irlmp registration and self are gone.
1244 *
1245 * Probably 1 and 2 may not matter, because it's all triggered
1246 * by a process and the socket layer already prevent the
1247 * socket to go away while a process is holding it, through
1248 * sockfd_put() and fput()...
1249 *
1250 * 3) This may include deferred TSAP closure. In particular,
1251 * we may receive a late irda_disconnect_indication()
1252 * Fortunately, (tsap_cb *)->close_pend should protect us
1253 * from that.
1254 *
1255 * I did some testing on SMP, and it looks solid. And the socket
1256 * memory leak is now gone... - Jean II
1257 */
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * Function irda_sendmsg (sock, msg, len)
1264 *
1265 * Send message down to TinyTP. This function is used for both STREAM and
1266 * SEQPACK services. This is possible since it forces the client to
1267 * fragment the message if necessary
1268 */
1269 static int irda_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1270 {
1271 struct sock *sk = sock->sk;
1272 struct irda_sock *self;
1273 struct sk_buff *skb;
1274 int err = -EPIPE;
1275
1276 pr_debug("%s(), len=%zd\n", __func__, len);
1277
1278 /* Note : socket.c set MSG_EOR on SEQPACKET sockets */
1279 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_EOR | MSG_CMSG_COMPAT |
1280 MSG_NOSIGNAL)) {
1281 return -EINVAL;
1282 }
1283
1284 lock_sock(sk);
1285
1286 if (sk->sk_shutdown & SEND_SHUTDOWN)
1287 goto out_err;
1288
1289 if (sk->sk_state != TCP_ESTABLISHED) {
1290 err = -ENOTCONN;
1291 goto out;
1292 }
1293
1294 self = irda_sk(sk);
1295
1296 /* Check if IrTTP is wants us to slow down */
1297
1298 if (wait_event_interruptible(*(sk_sleep(sk)),
1299 (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) {
1300 err = -ERESTARTSYS;
1301 goto out;
1302 }
1303
1304 /* Check if we are still connected */
1305 if (sk->sk_state != TCP_ESTABLISHED) {
1306 err = -ENOTCONN;
1307 goto out;
1308 }
1309
1310 /* Check that we don't send out too big frames */
1311 if (len > self->max_data_size) {
1312 pr_debug("%s(), Chopping frame from %zd to %d bytes!\n",
1313 __func__, len, self->max_data_size);
1314 len = self->max_data_size;
1315 }
1316
1317 skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16,
1318 msg->msg_flags & MSG_DONTWAIT, &err);
1319 if (!skb)
1320 goto out_err;
1321
1322 skb_reserve(skb, self->max_header_size + 16);
1323 skb_reset_transport_header(skb);
1324 skb_put(skb, len);
1325 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1326 if (err) {
1327 kfree_skb(skb);
1328 goto out_err;
1329 }
1330
1331 /*
1332 * Just send the message to TinyTP, and let it deal with possible
1333 * errors. No need to duplicate all that here
1334 */
1335 err = irttp_data_request(self->tsap, skb);
1336 if (err) {
1337 pr_debug("%s(), err=%d\n", __func__, err);
1338 goto out_err;
1339 }
1340
1341 release_sock(sk);
1342 /* Tell client how much data we actually sent */
1343 return len;
1344
1345 out_err:
1346 err = sk_stream_error(sk, msg->msg_flags, err);
1347 out:
1348 release_sock(sk);
1349 return err;
1350
1351 }
1352
1353 /*
1354 * Function irda_recvmsg_dgram (sock, msg, size, flags)
1355 *
1356 * Try to receive message and copy it to user. The frame is discarded
1357 * after being read, regardless of how much the user actually read
1358 */
1359 static int irda_recvmsg_dgram(struct socket *sock, struct msghdr *msg,
1360 size_t size, int flags)
1361 {
1362 struct sock *sk = sock->sk;
1363 struct irda_sock *self = irda_sk(sk);
1364 struct sk_buff *skb;
1365 size_t copied;
1366 int err;
1367
1368 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1369 flags & MSG_DONTWAIT, &err);
1370 if (!skb)
1371 return err;
1372
1373 skb_reset_transport_header(skb);
1374 copied = skb->len;
1375
1376 if (copied > size) {
1377 pr_debug("%s(), Received truncated frame (%zd < %zd)!\n",
1378 __func__, copied, size);
1379 copied = size;
1380 msg->msg_flags |= MSG_TRUNC;
1381 }
1382 skb_copy_datagram_msg(skb, 0, msg, copied);
1383
1384 skb_free_datagram(sk, skb);
1385
1386 /*
1387 * Check if we have previously stopped IrTTP and we know
1388 * have more free space in our rx_queue. If so tell IrTTP
1389 * to start delivering frames again before our rx_queue gets
1390 * empty
1391 */
1392 if (self->rx_flow == FLOW_STOP) {
1393 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1394 pr_debug("%s(), Starting IrTTP\n", __func__);
1395 self->rx_flow = FLOW_START;
1396 irttp_flow_request(self->tsap, FLOW_START);
1397 }
1398 }
1399
1400 return copied;
1401 }
1402
1403 /*
1404 * Function irda_recvmsg_stream (sock, msg, size, flags)
1405 */
1406 static int irda_recvmsg_stream(struct socket *sock, struct msghdr *msg,
1407 size_t size, int flags)
1408 {
1409 struct sock *sk = sock->sk;
1410 struct irda_sock *self = irda_sk(sk);
1411 int noblock = flags & MSG_DONTWAIT;
1412 size_t copied = 0;
1413 int target, err;
1414 long timeo;
1415
1416 if ((err = sock_error(sk)) < 0)
1417 return err;
1418
1419 if (sock->flags & __SO_ACCEPTCON)
1420 return -EINVAL;
1421
1422 err =-EOPNOTSUPP;
1423 if (flags & MSG_OOB)
1424 return -EOPNOTSUPP;
1425
1426 err = 0;
1427 target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
1428 timeo = sock_rcvtimeo(sk, noblock);
1429
1430 do {
1431 int chunk;
1432 struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue);
1433
1434 if (skb == NULL) {
1435 DEFINE_WAIT(wait);
1436 err = 0;
1437
1438 if (copied >= target)
1439 break;
1440
1441 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1442
1443 /*
1444 * POSIX 1003.1g mandates this order.
1445 */
1446 err = sock_error(sk);
1447 if (err)
1448 ;
1449 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1450 ;
1451 else if (noblock)
1452 err = -EAGAIN;
1453 else if (signal_pending(current))
1454 err = sock_intr_errno(timeo);
1455 else if (sk->sk_state != TCP_ESTABLISHED)
1456 err = -ENOTCONN;
1457 else if (skb_peek(&sk->sk_receive_queue) == NULL)
1458 /* Wait process until data arrives */
1459 schedule();
1460
1461 finish_wait(sk_sleep(sk), &wait);
1462
1463 if (err)
1464 return err;
1465 if (sk->sk_shutdown & RCV_SHUTDOWN)
1466 break;
1467
1468 continue;
1469 }
1470
1471 chunk = min_t(unsigned int, skb->len, size);
1472 if (memcpy_to_msg(msg, skb->data, chunk)) {
1473 skb_queue_head(&sk->sk_receive_queue, skb);
1474 if (copied == 0)
1475 copied = -EFAULT;
1476 break;
1477 }
1478 copied += chunk;
1479 size -= chunk;
1480
1481 /* Mark read part of skb as used */
1482 if (!(flags & MSG_PEEK)) {
1483 skb_pull(skb, chunk);
1484
1485 /* put the skb back if we didn't use it up.. */
1486 if (skb->len) {
1487 pr_debug("%s(), back on q!\n",
1488 __func__);
1489 skb_queue_head(&sk->sk_receive_queue, skb);
1490 break;
1491 }
1492
1493 kfree_skb(skb);
1494 } else {
1495 pr_debug("%s() questionable!?\n", __func__);
1496
1497 /* put message back and return */
1498 skb_queue_head(&sk->sk_receive_queue, skb);
1499 break;
1500 }
1501 } while (size);
1502
1503 /*
1504 * Check if we have previously stopped IrTTP and we know
1505 * have more free space in our rx_queue. If so tell IrTTP
1506 * to start delivering frames again before our rx_queue gets
1507 * empty
1508 */
1509 if (self->rx_flow == FLOW_STOP) {
1510 if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) {
1511 pr_debug("%s(), Starting IrTTP\n", __func__);
1512 self->rx_flow = FLOW_START;
1513 irttp_flow_request(self->tsap, FLOW_START);
1514 }
1515 }
1516
1517 return copied;
1518 }
1519
1520 /*
1521 * Function irda_sendmsg_dgram (sock, msg, len)
1522 *
1523 * Send message down to TinyTP for the unreliable sequenced
1524 * packet service...
1525 *
1526 */
1527 static int irda_sendmsg_dgram(struct socket *sock, struct msghdr *msg,
1528 size_t len)
1529 {
1530 struct sock *sk = sock->sk;
1531 struct irda_sock *self;
1532 struct sk_buff *skb;
1533 int err;
1534
1535 pr_debug("%s(), len=%zd\n", __func__, len);
1536
1537 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1538 return -EINVAL;
1539
1540 lock_sock(sk);
1541
1542 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1543 send_sig(SIGPIPE, current, 0);
1544 err = -EPIPE;
1545 goto out;
1546 }
1547
1548 err = -ENOTCONN;
1549 if (sk->sk_state != TCP_ESTABLISHED)
1550 goto out;
1551
1552 self = irda_sk(sk);
1553
1554 /*
1555 * Check that we don't send out too big frames. This is an unreliable
1556 * service, so we have no fragmentation and no coalescence
1557 */
1558 if (len > self->max_data_size) {
1559 pr_debug("%s(), Warning too much data! Chopping frame from %zd to %d bytes!\n",
1560 __func__, len, self->max_data_size);
1561 len = self->max_data_size;
1562 }
1563
1564 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1565 msg->msg_flags & MSG_DONTWAIT, &err);
1566 err = -ENOBUFS;
1567 if (!skb)
1568 goto out;
1569
1570 skb_reserve(skb, self->max_header_size);
1571 skb_reset_transport_header(skb);
1572
1573 pr_debug("%s(), appending user data\n", __func__);
1574 skb_put(skb, len);
1575 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1576 if (err) {
1577 kfree_skb(skb);
1578 goto out;
1579 }
1580
1581 /*
1582 * Just send the message to TinyTP, and let it deal with possible
1583 * errors. No need to duplicate all that here
1584 */
1585 err = irttp_udata_request(self->tsap, skb);
1586 if (err) {
1587 pr_debug("%s(), err=%d\n", __func__, err);
1588 goto out;
1589 }
1590
1591 release_sock(sk);
1592 return len;
1593
1594 out:
1595 release_sock(sk);
1596 return err;
1597 }
1598
1599 /*
1600 * Function irda_sendmsg_ultra (sock, msg, len)
1601 *
1602 * Send message down to IrLMP for the unreliable Ultra
1603 * packet service...
1604 */
1605 #ifdef CONFIG_IRDA_ULTRA
1606 static int irda_sendmsg_ultra(struct socket *sock, struct msghdr *msg,
1607 size_t len)
1608 {
1609 struct sock *sk = sock->sk;
1610 struct irda_sock *self;
1611 __u8 pid = 0;
1612 int bound = 0;
1613 struct sk_buff *skb;
1614 int err;
1615
1616 pr_debug("%s(), len=%zd\n", __func__, len);
1617
1618 err = -EINVAL;
1619 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT))
1620 return -EINVAL;
1621
1622 lock_sock(sk);
1623
1624 err = -EPIPE;
1625 if (sk->sk_shutdown & SEND_SHUTDOWN) {
1626 send_sig(SIGPIPE, current, 0);
1627 goto out;
1628 }
1629
1630 self = irda_sk(sk);
1631
1632 /* Check if an address was specified with sendto. Jean II */
1633 if (msg->msg_name) {
1634 DECLARE_SOCKADDR(struct sockaddr_irda *, addr, msg->msg_name);
1635 err = -EINVAL;
1636 /* Check address, extract pid. Jean II */
1637 if (msg->msg_namelen < sizeof(*addr))
1638 goto out;
1639 if (addr->sir_family != AF_IRDA)
1640 goto out;
1641
1642 pid = addr->sir_lsap_sel;
1643 if (pid & 0x80) {
1644 pr_debug("%s(), extension in PID not supp!\n",
1645 __func__);
1646 err = -EOPNOTSUPP;
1647 goto out;
1648 }
1649 } else {
1650 /* Check that the socket is properly bound to an Ultra
1651 * port. Jean II */
1652 if ((self->lsap == NULL) ||
1653 (sk->sk_state != TCP_ESTABLISHED)) {
1654 pr_debug("%s(), socket not bound to Ultra PID.\n",
1655 __func__);
1656 err = -ENOTCONN;
1657 goto out;
1658 }
1659 /* Use PID from socket */
1660 bound = 1;
1661 }
1662
1663 /*
1664 * Check that we don't send out too big frames. This is an unreliable
1665 * service, so we have no fragmentation and no coalescence
1666 */
1667 if (len > self->max_data_size) {
1668 pr_debug("%s(), Warning too much data! Chopping frame from %zd to %d bytes!\n",
1669 __func__, len, self->max_data_size);
1670 len = self->max_data_size;
1671 }
1672
1673 skb = sock_alloc_send_skb(sk, len + self->max_header_size,
1674 msg->msg_flags & MSG_DONTWAIT, &err);
1675 err = -ENOBUFS;
1676 if (!skb)
1677 goto out;
1678
1679 skb_reserve(skb, self->max_header_size);
1680 skb_reset_transport_header(skb);
1681
1682 pr_debug("%s(), appending user data\n", __func__);
1683 skb_put(skb, len);
1684 err = memcpy_from_msg(skb_transport_header(skb), msg, len);
1685 if (err) {
1686 kfree_skb(skb);
1687 goto out;
1688 }
1689
1690 err = irlmp_connless_data_request((bound ? self->lsap : NULL),
1691 skb, pid);
1692 if (err)
1693 pr_debug("%s(), err=%d\n", __func__, err);
1694 out:
1695 release_sock(sk);
1696 return err ? : len;
1697 }
1698 #endif /* CONFIG_IRDA_ULTRA */
1699
1700 /*
1701 * Function irda_shutdown (sk, how)
1702 */
1703 static int irda_shutdown(struct socket *sock, int how)
1704 {
1705 struct sock *sk = sock->sk;
1706 struct irda_sock *self = irda_sk(sk);
1707
1708 pr_debug("%s(%p)\n", __func__, self);
1709
1710 lock_sock(sk);
1711
1712 sk->sk_state = TCP_CLOSE;
1713 sk->sk_shutdown |= SEND_SHUTDOWN;
1714 sk->sk_state_change(sk);
1715
1716 if (self->iriap) {
1717 iriap_close(self->iriap);
1718 self->iriap = NULL;
1719 }
1720
1721 if (self->tsap) {
1722 irttp_disconnect_request(self->tsap, NULL, P_NORMAL);
1723 irttp_close_tsap(self->tsap);
1724 self->tsap = NULL;
1725 }
1726
1727 /* A few cleanup so the socket look as good as new... */
1728 self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */
1729 self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */
1730 self->saddr = 0x0; /* so IrLMP assign us any link */
1731
1732 release_sock(sk);
1733
1734 return 0;
1735 }
1736
1737 /*
1738 * Function irda_poll (file, sock, wait)
1739 */
1740 static unsigned int irda_poll(struct file * file, struct socket *sock,
1741 poll_table *wait)
1742 {
1743 struct sock *sk = sock->sk;
1744 struct irda_sock *self = irda_sk(sk);
1745 unsigned int mask;
1746
1747 poll_wait(file, sk_sleep(sk), wait);
1748 mask = 0;
1749
1750 /* Exceptional events? */
1751 if (sk->sk_err)
1752 mask |= POLLERR;
1753 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1754 pr_debug("%s(), POLLHUP\n", __func__);
1755 mask |= POLLHUP;
1756 }
1757
1758 /* Readable? */
1759 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1760 pr_debug("Socket is readable\n");
1761 mask |= POLLIN | POLLRDNORM;
1762 }
1763
1764 /* Connection-based need to check for termination and startup */
1765 switch (sk->sk_type) {
1766 case SOCK_STREAM:
1767 if (sk->sk_state == TCP_CLOSE) {
1768 pr_debug("%s(), POLLHUP\n", __func__);
1769 mask |= POLLHUP;
1770 }
1771
1772 if (sk->sk_state == TCP_ESTABLISHED) {
1773 if ((self->tx_flow == FLOW_START) &&
1774 sock_writeable(sk))
1775 {
1776 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1777 }
1778 }
1779 break;
1780 case SOCK_SEQPACKET:
1781 if ((self->tx_flow == FLOW_START) &&
1782 sock_writeable(sk))
1783 {
1784 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1785 }
1786 break;
1787 case SOCK_DGRAM:
1788 if (sock_writeable(sk))
1789 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
1790 break;
1791 default:
1792 break;
1793 }
1794
1795 return mask;
1796 }
1797
1798 /*
1799 * Function irda_ioctl (sock, cmd, arg)
1800 */
1801 static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1802 {
1803 struct sock *sk = sock->sk;
1804 int err;
1805
1806 pr_debug("%s(), cmd=%#x\n", __func__, cmd);
1807
1808 err = -EINVAL;
1809 switch (cmd) {
1810 case TIOCOUTQ: {
1811 long amount;
1812
1813 amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1814 if (amount < 0)
1815 amount = 0;
1816 err = put_user(amount, (unsigned int __user *)arg);
1817 break;
1818 }
1819
1820 case TIOCINQ: {
1821 struct sk_buff *skb;
1822 long amount = 0L;
1823 /* These two are safe on a single CPU system as only user tasks fiddle here */
1824 if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1825 amount = skb->len;
1826 err = put_user(amount, (unsigned int __user *)arg);
1827 break;
1828 }
1829
1830 case SIOCGSTAMP:
1831 if (sk != NULL)
1832 err = sock_get_timestamp(sk, (struct timeval __user *)arg);
1833 break;
1834
1835 case SIOCGIFADDR:
1836 case SIOCSIFADDR:
1837 case SIOCGIFDSTADDR:
1838 case SIOCSIFDSTADDR:
1839 case SIOCGIFBRDADDR:
1840 case SIOCSIFBRDADDR:
1841 case SIOCGIFNETMASK:
1842 case SIOCSIFNETMASK:
1843 case SIOCGIFMETRIC:
1844 case SIOCSIFMETRIC:
1845 break;
1846 default:
1847 pr_debug("%s(), doing device ioctl!\n", __func__);
1848 err = -ENOIOCTLCMD;
1849 }
1850
1851 return err;
1852 }
1853
1854 #ifdef CONFIG_COMPAT
1855 /*
1856 * Function irda_ioctl (sock, cmd, arg)
1857 */
1858 static int irda_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1859 {
1860 /*
1861 * All IRDA's ioctl are standard ones.
1862 */
1863 return -ENOIOCTLCMD;
1864 }
1865 #endif
1866
1867 /*
1868 * Function irda_setsockopt (sock, level, optname, optval, optlen)
1869 *
1870 * Set some options for the socket
1871 *
1872 */
1873 static int irda_setsockopt(struct socket *sock, int level, int optname,
1874 char __user *optval, unsigned int optlen)
1875 {
1876 struct sock *sk = sock->sk;
1877 struct irda_sock *self = irda_sk(sk);
1878 struct irda_ias_set *ias_opt;
1879 struct ias_object *ias_obj;
1880 struct ias_attrib * ias_attr; /* Attribute in IAS object */
1881 int opt, free_ias = 0, err = 0;
1882
1883 pr_debug("%s(%p)\n", __func__, self);
1884
1885 if (level != SOL_IRLMP)
1886 return -ENOPROTOOPT;
1887
1888 lock_sock(sk);
1889
1890 switch (optname) {
1891 case IRLMP_IAS_SET:
1892 /* The user want to add an attribute to an existing IAS object
1893 * (in the IAS database) or to create a new object with this
1894 * attribute.
1895 * We first query IAS to know if the object exist, and then
1896 * create the right attribute...
1897 */
1898
1899 if (optlen != sizeof(struct irda_ias_set)) {
1900 err = -EINVAL;
1901 goto out;
1902 }
1903
1904 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
1905 if (ias_opt == NULL) {
1906 err = -ENOMEM;
1907 goto out;
1908 }
1909
1910 /* Copy query to the driver. */
1911 if (copy_from_user(ias_opt, optval, optlen)) {
1912 kfree(ias_opt);
1913 err = -EFAULT;
1914 goto out;
1915 }
1916
1917 /* Find the object we target.
1918 * If the user gives us an empty string, we use the object
1919 * associated with this socket. This will workaround
1920 * duplicated class name - Jean II */
1921 if(ias_opt->irda_class_name[0] == '\0') {
1922 if(self->ias_obj == NULL) {
1923 kfree(ias_opt);
1924 err = -EINVAL;
1925 goto out;
1926 }
1927 ias_obj = self->ias_obj;
1928 } else
1929 ias_obj = irias_find_object(ias_opt->irda_class_name);
1930
1931 /* Only ROOT can mess with the global IAS database.
1932 * Users can only add attributes to the object associated
1933 * with the socket they own - Jean II */
1934 if((!capable(CAP_NET_ADMIN)) &&
1935 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
1936 kfree(ias_opt);
1937 err = -EPERM;
1938 goto out;
1939 }
1940
1941 /* If the object doesn't exist, create it */
1942 if(ias_obj == (struct ias_object *) NULL) {
1943 /* Create a new object */
1944 ias_obj = irias_new_object(ias_opt->irda_class_name,
1945 jiffies);
1946 if (ias_obj == NULL) {
1947 kfree(ias_opt);
1948 err = -ENOMEM;
1949 goto out;
1950 }
1951 free_ias = 1;
1952 }
1953
1954 /* Do we have the attribute already ? */
1955 if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) {
1956 kfree(ias_opt);
1957 if (free_ias) {
1958 kfree(ias_obj->name);
1959 kfree(ias_obj);
1960 }
1961 err = -EINVAL;
1962 goto out;
1963 }
1964
1965 /* Look at the type */
1966 switch(ias_opt->irda_attrib_type) {
1967 case IAS_INTEGER:
1968 /* Add an integer attribute */
1969 irias_add_integer_attrib(
1970 ias_obj,
1971 ias_opt->irda_attrib_name,
1972 ias_opt->attribute.irda_attrib_int,
1973 IAS_USER_ATTR);
1974 break;
1975 case IAS_OCT_SEQ:
1976 /* Check length */
1977 if(ias_opt->attribute.irda_attrib_octet_seq.len >
1978 IAS_MAX_OCTET_STRING) {
1979 kfree(ias_opt);
1980 if (free_ias) {
1981 kfree(ias_obj->name);
1982 kfree(ias_obj);
1983 }
1984
1985 err = -EINVAL;
1986 goto out;
1987 }
1988 /* Add an octet sequence attribute */
1989 irias_add_octseq_attrib(
1990 ias_obj,
1991 ias_opt->irda_attrib_name,
1992 ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
1993 ias_opt->attribute.irda_attrib_octet_seq.len,
1994 IAS_USER_ATTR);
1995 break;
1996 case IAS_STRING:
1997 /* Should check charset & co */
1998 /* Check length */
1999 /* The length is encoded in a __u8, and
2000 * IAS_MAX_STRING == 256, so there is no way
2001 * userspace can pass us a string too large.
2002 * Jean II */
2003 /* NULL terminate the string (avoid troubles) */
2004 ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0';
2005 /* Add a string attribute */
2006 irias_add_string_attrib(
2007 ias_obj,
2008 ias_opt->irda_attrib_name,
2009 ias_opt->attribute.irda_attrib_string.string,
2010 IAS_USER_ATTR);
2011 break;
2012 default :
2013 kfree(ias_opt);
2014 if (free_ias) {
2015 kfree(ias_obj->name);
2016 kfree(ias_obj);
2017 }
2018 err = -EINVAL;
2019 goto out;
2020 }
2021 irias_insert_object(ias_obj);
2022 kfree(ias_opt);
2023 break;
2024 case IRLMP_IAS_DEL:
2025 /* The user want to delete an object from our local IAS
2026 * database. We just need to query the IAS, check is the
2027 * object is not owned by the kernel and delete it.
2028 */
2029
2030 if (optlen != sizeof(struct irda_ias_set)) {
2031 err = -EINVAL;
2032 goto out;
2033 }
2034
2035 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2036 if (ias_opt == NULL) {
2037 err = -ENOMEM;
2038 goto out;
2039 }
2040
2041 /* Copy query to the driver. */
2042 if (copy_from_user(ias_opt, optval, optlen)) {
2043 kfree(ias_opt);
2044 err = -EFAULT;
2045 goto out;
2046 }
2047
2048 /* Find the object we target.
2049 * If the user gives us an empty string, we use the object
2050 * associated with this socket. This will workaround
2051 * duplicated class name - Jean II */
2052 if(ias_opt->irda_class_name[0] == '\0')
2053 ias_obj = self->ias_obj;
2054 else
2055 ias_obj = irias_find_object(ias_opt->irda_class_name);
2056 if(ias_obj == (struct ias_object *) NULL) {
2057 kfree(ias_opt);
2058 err = -EINVAL;
2059 goto out;
2060 }
2061
2062 /* Only ROOT can mess with the global IAS database.
2063 * Users can only del attributes from the object associated
2064 * with the socket they own - Jean II */
2065 if((!capable(CAP_NET_ADMIN)) &&
2066 ((ias_obj == NULL) || (ias_obj != self->ias_obj))) {
2067 kfree(ias_opt);
2068 err = -EPERM;
2069 goto out;
2070 }
2071
2072 /* Find the attribute (in the object) we target */
2073 ias_attr = irias_find_attrib(ias_obj,
2074 ias_opt->irda_attrib_name);
2075 if(ias_attr == (struct ias_attrib *) NULL) {
2076 kfree(ias_opt);
2077 err = -EINVAL;
2078 goto out;
2079 }
2080
2081 /* Check is the user space own the object */
2082 if(ias_attr->value->owner != IAS_USER_ATTR) {
2083 pr_debug("%s(), attempting to delete a kernel attribute\n",
2084 __func__);
2085 kfree(ias_opt);
2086 err = -EPERM;
2087 goto out;
2088 }
2089
2090 /* Remove the attribute (and maybe the object) */
2091 irias_delete_attrib(ias_obj, ias_attr, 1);
2092 kfree(ias_opt);
2093 break;
2094 case IRLMP_MAX_SDU_SIZE:
2095 if (optlen < sizeof(int)) {
2096 err = -EINVAL;
2097 goto out;
2098 }
2099
2100 if (get_user(opt, (int __user *)optval)) {
2101 err = -EFAULT;
2102 goto out;
2103 }
2104
2105 /* Only possible for a seqpacket service (TTP with SAR) */
2106 if (sk->sk_type != SOCK_SEQPACKET) {
2107 pr_debug("%s(), setting max_sdu_size = %d\n",
2108 __func__, opt);
2109 self->max_sdu_size_rx = opt;
2110 } else {
2111 net_warn_ratelimited("%s: not allowed to set MAXSDUSIZE for this socket type!\n",
2112 __func__);
2113 err = -ENOPROTOOPT;
2114 goto out;
2115 }
2116 break;
2117 case IRLMP_HINTS_SET:
2118 if (optlen < sizeof(int)) {
2119 err = -EINVAL;
2120 goto out;
2121 }
2122
2123 /* The input is really a (__u8 hints[2]), easier as an int */
2124 if (get_user(opt, (int __user *)optval)) {
2125 err = -EFAULT;
2126 goto out;
2127 }
2128
2129 /* Unregister any old registration */
2130 irlmp_unregister_service(self->skey);
2131
2132 self->skey = irlmp_register_service((__u16) opt);
2133 break;
2134 case IRLMP_HINT_MASK_SET:
2135 /* As opposed to the previous case which set the hint bits
2136 * that we advertise, this one set the filter we use when
2137 * making a discovery (nodes which don't match any hint
2138 * bit in the mask are not reported).
2139 */
2140 if (optlen < sizeof(int)) {
2141 err = -EINVAL;
2142 goto out;
2143 }
2144
2145 /* The input is really a (__u8 hints[2]), easier as an int */
2146 if (get_user(opt, (int __user *)optval)) {
2147 err = -EFAULT;
2148 goto out;
2149 }
2150
2151 /* Set the new hint mask */
2152 self->mask.word = (__u16) opt;
2153 /* Mask out extension bits */
2154 self->mask.word &= 0x7f7f;
2155 /* Check if no bits */
2156 if(!self->mask.word)
2157 self->mask.word = 0xFFFF;
2158
2159 break;
2160 default:
2161 err = -ENOPROTOOPT;
2162 break;
2163 }
2164
2165 out:
2166 release_sock(sk);
2167
2168 return err;
2169 }
2170
2171 /*
2172 * Function irda_extract_ias_value(ias_opt, ias_value)
2173 *
2174 * Translate internal IAS value structure to the user space representation
2175 *
2176 * The external representation of IAS values, as we exchange them with
2177 * user space program is quite different from the internal representation,
2178 * as stored in the IAS database (because we need a flat structure for
2179 * crossing kernel boundary).
2180 * This function transform the former in the latter. We also check
2181 * that the value type is valid.
2182 */
2183 static int irda_extract_ias_value(struct irda_ias_set *ias_opt,
2184 struct ias_value *ias_value)
2185 {
2186 /* Look at the type */
2187 switch (ias_value->type) {
2188 case IAS_INTEGER:
2189 /* Copy the integer */
2190 ias_opt->attribute.irda_attrib_int = ias_value->t.integer;
2191 break;
2192 case IAS_OCT_SEQ:
2193 /* Set length */
2194 ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len;
2195 /* Copy over */
2196 memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq,
2197 ias_value->t.oct_seq, ias_value->len);
2198 break;
2199 case IAS_STRING:
2200 /* Set length */
2201 ias_opt->attribute.irda_attrib_string.len = ias_value->len;
2202 ias_opt->attribute.irda_attrib_string.charset = ias_value->charset;
2203 /* Copy over */
2204 memcpy(ias_opt->attribute.irda_attrib_string.string,
2205 ias_value->t.string, ias_value->len);
2206 /* NULL terminate the string (avoid troubles) */
2207 ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0';
2208 break;
2209 case IAS_MISSING:
2210 default :
2211 return -EINVAL;
2212 }
2213
2214 /* Copy type over */
2215 ias_opt->irda_attrib_type = ias_value->type;
2216
2217 return 0;
2218 }
2219
2220 /*
2221 * Function irda_getsockopt (sock, level, optname, optval, optlen)
2222 */
2223 static int irda_getsockopt(struct socket *sock, int level, int optname,
2224 char __user *optval, int __user *optlen)
2225 {
2226 struct sock *sk = sock->sk;
2227 struct irda_sock *self = irda_sk(sk);
2228 struct irda_device_list list;
2229 struct irda_device_info *discoveries;
2230 struct irda_ias_set * ias_opt; /* IAS get/query params */
2231 struct ias_object * ias_obj; /* Object in IAS */
2232 struct ias_attrib * ias_attr; /* Attribute in IAS object */
2233 int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */
2234 int val = 0;
2235 int len = 0;
2236 int err = 0;
2237 int offset, total;
2238
2239 pr_debug("%s(%p)\n", __func__, self);
2240
2241 if (level != SOL_IRLMP)
2242 return -ENOPROTOOPT;
2243
2244 if (get_user(len, optlen))
2245 return -EFAULT;
2246
2247 if(len < 0)
2248 return -EINVAL;
2249
2250 lock_sock(sk);
2251
2252 switch (optname) {
2253 case IRLMP_ENUMDEVICES:
2254
2255 /* Offset to first device entry */
2256 offset = sizeof(struct irda_device_list) -
2257 sizeof(struct irda_device_info);
2258
2259 if (len < offset) {
2260 err = -EINVAL;
2261 goto out;
2262 }
2263
2264 /* Ask lmp for the current discovery log */
2265 discoveries = irlmp_get_discoveries(&list.len, self->mask.word,
2266 self->nslots);
2267 /* Check if the we got some results */
2268 if (discoveries == NULL) {
2269 err = -EAGAIN;
2270 goto out; /* Didn't find any devices */
2271 }
2272
2273 /* Write total list length back to client */
2274 if (copy_to_user(optval, &list, offset))
2275 err = -EFAULT;
2276
2277 /* Copy the list itself - watch for overflow */
2278 if (list.len > 2048) {
2279 err = -EINVAL;
2280 goto bed;
2281 }
2282 total = offset + (list.len * sizeof(struct irda_device_info));
2283 if (total > len)
2284 total = len;
2285 if (copy_to_user(optval+offset, discoveries, total - offset))
2286 err = -EFAULT;
2287
2288 /* Write total number of bytes used back to client */
2289 if (put_user(total, optlen))
2290 err = -EFAULT;
2291 bed:
2292 /* Free up our buffer */
2293 kfree(discoveries);
2294 break;
2295 case IRLMP_MAX_SDU_SIZE:
2296 val = self->max_data_size;
2297 len = sizeof(int);
2298 if (put_user(len, optlen)) {
2299 err = -EFAULT;
2300 goto out;
2301 }
2302
2303 if (copy_to_user(optval, &val, len)) {
2304 err = -EFAULT;
2305 goto out;
2306 }
2307
2308 break;
2309 case IRLMP_IAS_GET:
2310 /* The user want an object from our local IAS database.
2311 * We just need to query the IAS and return the value
2312 * that we found */
2313
2314 /* Check that the user has allocated the right space for us */
2315 if (len != sizeof(struct irda_ias_set)) {
2316 err = -EINVAL;
2317 goto out;
2318 }
2319
2320 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2321 if (ias_opt == NULL) {
2322 err = -ENOMEM;
2323 goto out;
2324 }
2325
2326 /* Copy query to the driver. */
2327 if (copy_from_user(ias_opt, optval, len)) {
2328 kfree(ias_opt);
2329 err = -EFAULT;
2330 goto out;
2331 }
2332
2333 /* Find the object we target.
2334 * If the user gives us an empty string, we use the object
2335 * associated with this socket. This will workaround
2336 * duplicated class name - Jean II */
2337 if(ias_opt->irda_class_name[0] == '\0')
2338 ias_obj = self->ias_obj;
2339 else
2340 ias_obj = irias_find_object(ias_opt->irda_class_name);
2341 if(ias_obj == (struct ias_object *) NULL) {
2342 kfree(ias_opt);
2343 err = -EINVAL;
2344 goto out;
2345 }
2346
2347 /* Find the attribute (in the object) we target */
2348 ias_attr = irias_find_attrib(ias_obj,
2349 ias_opt->irda_attrib_name);
2350 if(ias_attr == (struct ias_attrib *) NULL) {
2351 kfree(ias_opt);
2352 err = -EINVAL;
2353 goto out;
2354 }
2355
2356 /* Translate from internal to user structure */
2357 err = irda_extract_ias_value(ias_opt, ias_attr->value);
2358 if(err) {
2359 kfree(ias_opt);
2360 goto out;
2361 }
2362
2363 /* Copy reply to the user */
2364 if (copy_to_user(optval, ias_opt,
2365 sizeof(struct irda_ias_set))) {
2366 kfree(ias_opt);
2367 err = -EFAULT;
2368 goto out;
2369 }
2370 /* Note : don't need to put optlen, we checked it */
2371 kfree(ias_opt);
2372 break;
2373 case IRLMP_IAS_QUERY:
2374 /* The user want an object from a remote IAS database.
2375 * We need to use IAP to query the remote database and
2376 * then wait for the answer to come back. */
2377
2378 /* Check that the user has allocated the right space for us */
2379 if (len != sizeof(struct irda_ias_set)) {
2380 err = -EINVAL;
2381 goto out;
2382 }
2383
2384 ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC);
2385 if (ias_opt == NULL) {
2386 err = -ENOMEM;
2387 goto out;
2388 }
2389
2390 /* Copy query to the driver. */
2391 if (copy_from_user(ias_opt, optval, len)) {
2392 kfree(ias_opt);
2393 err = -EFAULT;
2394 goto out;
2395 }
2396
2397 /* At this point, there are two cases...
2398 * 1) the socket is connected - that's the easy case, we
2399 * just query the device we are connected to...
2400 * 2) the socket is not connected - the user doesn't want
2401 * to connect and/or may not have a valid service name
2402 * (so can't create a fake connection). In this case,
2403 * we assume that the user pass us a valid destination
2404 * address in the requesting structure...
2405 */
2406 if(self->daddr != DEV_ADDR_ANY) {
2407 /* We are connected - reuse known daddr */
2408 daddr = self->daddr;
2409 } else {
2410 /* We are not connected, we must specify a valid
2411 * destination address */
2412 daddr = ias_opt->daddr;
2413 if((!daddr) || (daddr == DEV_ADDR_ANY)) {
2414 kfree(ias_opt);
2415 err = -EINVAL;
2416 goto out;
2417 }
2418 }
2419
2420 /* Check that we can proceed with IAP */
2421 if (self->iriap) {
2422 net_warn_ratelimited("%s: busy with a previous query\n",
2423 __func__);
2424 kfree(ias_opt);
2425 err = -EBUSY;
2426 goto out;
2427 }
2428
2429 self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self,
2430 irda_getvalue_confirm);
2431
2432 if (self->iriap == NULL) {
2433 kfree(ias_opt);
2434 err = -ENOMEM;
2435 goto out;
2436 }
2437
2438 /* Treat unexpected wakeup as disconnect */
2439 self->errno = -EHOSTUNREACH;
2440
2441 /* Query remote LM-IAS */
2442 iriap_getvaluebyclass_request(self->iriap,
2443 self->saddr, daddr,
2444 ias_opt->irda_class_name,
2445 ias_opt->irda_attrib_name);
2446
2447 /* Wait for answer, if not yet finished (or failed) */
2448 if (wait_event_interruptible(self->query_wait,
2449 (self->iriap == NULL))) {
2450 /* pending request uses copy of ias_opt-content
2451 * we can free it regardless! */
2452 kfree(ias_opt);
2453 /* Treat signals as disconnect */
2454 err = -EHOSTUNREACH;
2455 goto out;
2456 }
2457
2458 /* Check what happened */
2459 if (self->errno)
2460 {
2461 kfree(ias_opt);
2462 /* Requested object/attribute doesn't exist */
2463 if((self->errno == IAS_CLASS_UNKNOWN) ||
2464 (self->errno == IAS_ATTRIB_UNKNOWN))
2465 err = -EADDRNOTAVAIL;
2466 else
2467 err = -EHOSTUNREACH;
2468
2469 goto out;
2470 }
2471
2472 /* Translate from internal to user structure */
2473 err = irda_extract_ias_value(ias_opt, self->ias_result);
2474 if (self->ias_result)
2475 irias_delete_value(self->ias_result);
2476 if (err) {
2477 kfree(ias_opt);
2478 goto out;
2479 }
2480
2481 /* Copy reply to the user */
2482 if (copy_to_user(optval, ias_opt,
2483 sizeof(struct irda_ias_set))) {
2484 kfree(ias_opt);
2485 err = -EFAULT;
2486 goto out;
2487 }
2488 /* Note : don't need to put optlen, we checked it */
2489 kfree(ias_opt);
2490 break;
2491 case IRLMP_WAITDEVICE:
2492 /* This function is just another way of seeing life ;-)
2493 * IRLMP_ENUMDEVICES assumes that you have a static network,
2494 * and that you just want to pick one of the devices present.
2495 * On the other hand, in here we assume that no device is
2496 * present and that at some point in the future a device will
2497 * come into range. When this device arrive, we just wake
2498 * up the caller, so that he has time to connect to it before
2499 * the device goes away...
2500 * Note : once the node has been discovered for more than a
2501 * few second, it won't trigger this function, unless it
2502 * goes away and come back changes its hint bits (so we
2503 * might call it IRLMP_WAITNEWDEVICE).
2504 */
2505
2506 /* Check that the user is passing us an int */
2507 if (len != sizeof(int)) {
2508 err = -EINVAL;
2509 goto out;
2510 }
2511 /* Get timeout in ms (max time we block the caller) */
2512 if (get_user(val, (int __user *)optval)) {
2513 err = -EFAULT;
2514 goto out;
2515 }
2516
2517 /* Tell IrLMP we want to be notified */
2518 irlmp_update_client(self->ckey, self->mask.word,
2519 irda_selective_discovery_indication,
2520 NULL, (void *) self);
2521
2522 /* Do some discovery (and also return cached results) */
2523 irlmp_discovery_request(self->nslots);
2524
2525 /* Wait until a node is discovered */
2526 if (!self->cachedaddr) {
2527 pr_debug("%s(), nothing discovered yet, going to sleep...\n",
2528 __func__);
2529
2530 /* Set watchdog timer to expire in <val> ms. */
2531 self->errno = 0;
2532 setup_timer(&self->watchdog, irda_discovery_timeout,
2533 (unsigned long)self);
2534 mod_timer(&self->watchdog,
2535 jiffies + msecs_to_jiffies(val));
2536
2537 /* Wait for IR-LMP to call us back */
2538 err = __wait_event_interruptible(self->query_wait,
2539 (self->cachedaddr != 0 || self->errno == -ETIME));
2540
2541 /* If watchdog is still activated, kill it! */
2542 del_timer(&(self->watchdog));
2543
2544 pr_debug("%s(), ...waking up !\n", __func__);
2545
2546 if (err != 0)
2547 goto out;
2548 }
2549 else
2550 pr_debug("%s(), found immediately !\n",
2551 __func__);
2552
2553 /* Tell IrLMP that we have been notified */
2554 irlmp_update_client(self->ckey, self->mask.word,
2555 NULL, NULL, NULL);
2556
2557 /* Check if the we got some results */
2558 if (!self->cachedaddr) {
2559 err = -EAGAIN; /* Didn't find any devices */
2560 goto out;
2561 }
2562 daddr = self->cachedaddr;
2563 /* Cleanup */
2564 self->cachedaddr = 0;
2565
2566 /* We return the daddr of the device that trigger the
2567 * wakeup. As irlmp pass us only the new devices, we
2568 * are sure that it's not an old device.
2569 * If the user want more details, he should query
2570 * the whole discovery log and pick one device...
2571 */
2572 if (put_user(daddr, (int __user *)optval)) {
2573 err = -EFAULT;
2574 goto out;
2575 }
2576
2577 break;
2578 default:
2579 err = -ENOPROTOOPT;
2580 }
2581
2582 out:
2583
2584 release_sock(sk);
2585
2586 return err;
2587 }
2588
2589 static const struct net_proto_family irda_family_ops = {
2590 .family = PF_IRDA,
2591 .create = irda_create,
2592 .owner = THIS_MODULE,
2593 };
2594
2595 static const struct proto_ops irda_stream_ops = {
2596 .family = PF_IRDA,
2597 .owner = THIS_MODULE,
2598 .release = irda_release,
2599 .bind = irda_bind,
2600 .connect = irda_connect,
2601 .socketpair = sock_no_socketpair,
2602 .accept = irda_accept,
2603 .getname = irda_getname,
2604 .poll = irda_poll,
2605 .ioctl = irda_ioctl,
2606 #ifdef CONFIG_COMPAT
2607 .compat_ioctl = irda_compat_ioctl,
2608 #endif
2609 .listen = irda_listen,
2610 .shutdown = irda_shutdown,
2611 .setsockopt = irda_setsockopt,
2612 .getsockopt = irda_getsockopt,
2613 .sendmsg = irda_sendmsg,
2614 .recvmsg = irda_recvmsg_stream,
2615 .mmap = sock_no_mmap,
2616 .sendpage = sock_no_sendpage,
2617 };
2618
2619 static const struct proto_ops irda_seqpacket_ops = {
2620 .family = PF_IRDA,
2621 .owner = THIS_MODULE,
2622 .release = irda_release,
2623 .bind = irda_bind,
2624 .connect = irda_connect,
2625 .socketpair = sock_no_socketpair,
2626 .accept = irda_accept,
2627 .getname = irda_getname,
2628 .poll = datagram_poll,
2629 .ioctl = irda_ioctl,
2630 #ifdef CONFIG_COMPAT
2631 .compat_ioctl = irda_compat_ioctl,
2632 #endif
2633 .listen = irda_listen,
2634 .shutdown = irda_shutdown,
2635 .setsockopt = irda_setsockopt,
2636 .getsockopt = irda_getsockopt,
2637 .sendmsg = irda_sendmsg,
2638 .recvmsg = irda_recvmsg_dgram,
2639 .mmap = sock_no_mmap,
2640 .sendpage = sock_no_sendpage,
2641 };
2642
2643 static const struct proto_ops irda_dgram_ops = {
2644 .family = PF_IRDA,
2645 .owner = THIS_MODULE,
2646 .release = irda_release,
2647 .bind = irda_bind,
2648 .connect = irda_connect,
2649 .socketpair = sock_no_socketpair,
2650 .accept = irda_accept,
2651 .getname = irda_getname,
2652 .poll = datagram_poll,
2653 .ioctl = irda_ioctl,
2654 #ifdef CONFIG_COMPAT
2655 .compat_ioctl = irda_compat_ioctl,
2656 #endif
2657 .listen = irda_listen,
2658 .shutdown = irda_shutdown,
2659 .setsockopt = irda_setsockopt,
2660 .getsockopt = irda_getsockopt,
2661 .sendmsg = irda_sendmsg_dgram,
2662 .recvmsg = irda_recvmsg_dgram,
2663 .mmap = sock_no_mmap,
2664 .sendpage = sock_no_sendpage,
2665 };
2666
2667 #ifdef CONFIG_IRDA_ULTRA
2668 static const struct proto_ops irda_ultra_ops = {
2669 .family = PF_IRDA,
2670 .owner = THIS_MODULE,
2671 .release = irda_release,
2672 .bind = irda_bind,
2673 .connect = sock_no_connect,
2674 .socketpair = sock_no_socketpair,
2675 .accept = sock_no_accept,
2676 .getname = irda_getname,
2677 .poll = datagram_poll,
2678 .ioctl = irda_ioctl,
2679 #ifdef CONFIG_COMPAT
2680 .compat_ioctl = irda_compat_ioctl,
2681 #endif
2682 .listen = sock_no_listen,
2683 .shutdown = irda_shutdown,
2684 .setsockopt = irda_setsockopt,
2685 .getsockopt = irda_getsockopt,
2686 .sendmsg = irda_sendmsg_ultra,
2687 .recvmsg = irda_recvmsg_dgram,
2688 .mmap = sock_no_mmap,
2689 .sendpage = sock_no_sendpage,
2690 };
2691 #endif /* CONFIG_IRDA_ULTRA */
2692
2693 /*
2694 * Function irsock_init (pro)
2695 *
2696 * Initialize IrDA protocol
2697 *
2698 */
2699 int __init irsock_init(void)
2700 {
2701 int rc = proto_register(&irda_proto, 0);
2702
2703 if (rc == 0)
2704 rc = sock_register(&irda_family_ops);
2705
2706 return rc;
2707 }
2708
2709 /*
2710 * Function irsock_cleanup (void)
2711 *
2712 * Remove IrDA protocol
2713 *
2714 */
2715 void irsock_cleanup(void)
2716 {
2717 sock_unregister(PF_IRDA);
2718 proto_unregister(&irda_proto);
2719 }