]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/key/af_key.c
[IPSEC]: Fix catch-22 with algorithm IDs above 31
[mirror_ubuntu-zesty-kernel.git] / net / key / af_key.c
1 /*
2 * net/key/af_key.c An implementation of PF_KEYv2 sockets.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Maxim Giryaev <gem@asplinux.ru>
10 * David S. Miller <davem@redhat.com>
11 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
12 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
13 * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
14 * Derek Atkins <derek@ihtfp.com>
15 */
16
17 #include <linux/capability.h>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/socket.h>
21 #include <linux/pfkeyv2.h>
22 #include <linux/ipsec.h>
23 #include <linux/skbuff.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/in.h>
26 #include <linux/in6.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <net/net_namespace.h>
30 #include <net/xfrm.h>
31
32 #include <net/sock.h>
33
34 #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
35 #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
36
37
38 /* List of all pfkey sockets. */
39 static HLIST_HEAD(pfkey_table);
40 static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
41 static DEFINE_RWLOCK(pfkey_table_lock);
42 static atomic_t pfkey_table_users = ATOMIC_INIT(0);
43
44 static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
45
46 struct pfkey_sock {
47 /* struct sock must be the first member of struct pfkey_sock */
48 struct sock sk;
49 int registered;
50 int promisc;
51
52 struct {
53 uint8_t msg_version;
54 uint32_t msg_pid;
55 int (*dump)(struct pfkey_sock *sk);
56 void (*done)(struct pfkey_sock *sk);
57 union {
58 struct xfrm_policy_walk policy;
59 struct xfrm_state_walk state;
60 } u;
61 } dump;
62 };
63
64 static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
65 {
66 return (struct pfkey_sock *)sk;
67 }
68
69 static int pfkey_can_dump(struct sock *sk)
70 {
71 if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
72 return 1;
73 return 0;
74 }
75
76 static int pfkey_do_dump(struct pfkey_sock *pfk)
77 {
78 int rc;
79
80 rc = pfk->dump.dump(pfk);
81 if (rc == -ENOBUFS)
82 return 0;
83
84 pfk->dump.done(pfk);
85 pfk->dump.dump = NULL;
86 pfk->dump.done = NULL;
87 return rc;
88 }
89
90 static void pfkey_sock_destruct(struct sock *sk)
91 {
92 skb_queue_purge(&sk->sk_receive_queue);
93
94 if (!sock_flag(sk, SOCK_DEAD)) {
95 printk("Attempt to release alive pfkey socket: %p\n", sk);
96 return;
97 }
98
99 BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
100 BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
101
102 atomic_dec(&pfkey_socks_nr);
103 }
104
105 static void pfkey_table_grab(void)
106 {
107 write_lock_bh(&pfkey_table_lock);
108
109 if (atomic_read(&pfkey_table_users)) {
110 DECLARE_WAITQUEUE(wait, current);
111
112 add_wait_queue_exclusive(&pfkey_table_wait, &wait);
113 for(;;) {
114 set_current_state(TASK_UNINTERRUPTIBLE);
115 if (atomic_read(&pfkey_table_users) == 0)
116 break;
117 write_unlock_bh(&pfkey_table_lock);
118 schedule();
119 write_lock_bh(&pfkey_table_lock);
120 }
121
122 __set_current_state(TASK_RUNNING);
123 remove_wait_queue(&pfkey_table_wait, &wait);
124 }
125 }
126
127 static __inline__ void pfkey_table_ungrab(void)
128 {
129 write_unlock_bh(&pfkey_table_lock);
130 wake_up(&pfkey_table_wait);
131 }
132
133 static __inline__ void pfkey_lock_table(void)
134 {
135 /* read_lock() synchronizes us to pfkey_table_grab */
136
137 read_lock(&pfkey_table_lock);
138 atomic_inc(&pfkey_table_users);
139 read_unlock(&pfkey_table_lock);
140 }
141
142 static __inline__ void pfkey_unlock_table(void)
143 {
144 if (atomic_dec_and_test(&pfkey_table_users))
145 wake_up(&pfkey_table_wait);
146 }
147
148
149 static const struct proto_ops pfkey_ops;
150
151 static void pfkey_insert(struct sock *sk)
152 {
153 pfkey_table_grab();
154 sk_add_node(sk, &pfkey_table);
155 pfkey_table_ungrab();
156 }
157
158 static void pfkey_remove(struct sock *sk)
159 {
160 pfkey_table_grab();
161 sk_del_node_init(sk);
162 pfkey_table_ungrab();
163 }
164
165 static struct proto key_proto = {
166 .name = "KEY",
167 .owner = THIS_MODULE,
168 .obj_size = sizeof(struct pfkey_sock),
169 };
170
171 static int pfkey_create(struct net *net, struct socket *sock, int protocol)
172 {
173 struct sock *sk;
174 int err;
175
176 if (net != &init_net)
177 return -EAFNOSUPPORT;
178
179 if (!capable(CAP_NET_ADMIN))
180 return -EPERM;
181 if (sock->type != SOCK_RAW)
182 return -ESOCKTNOSUPPORT;
183 if (protocol != PF_KEY_V2)
184 return -EPROTONOSUPPORT;
185
186 err = -ENOMEM;
187 sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
188 if (sk == NULL)
189 goto out;
190
191 sock->ops = &pfkey_ops;
192 sock_init_data(sock, sk);
193
194 sk->sk_family = PF_KEY;
195 sk->sk_destruct = pfkey_sock_destruct;
196
197 atomic_inc(&pfkey_socks_nr);
198
199 pfkey_insert(sk);
200
201 return 0;
202 out:
203 return err;
204 }
205
206 static int pfkey_release(struct socket *sock)
207 {
208 struct sock *sk = sock->sk;
209
210 if (!sk)
211 return 0;
212
213 pfkey_remove(sk);
214
215 sock_orphan(sk);
216 sock->sk = NULL;
217 skb_queue_purge(&sk->sk_write_queue);
218 sock_put(sk);
219
220 return 0;
221 }
222
223 static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
224 gfp_t allocation, struct sock *sk)
225 {
226 int err = -ENOBUFS;
227
228 sock_hold(sk);
229 if (*skb2 == NULL) {
230 if (atomic_read(&skb->users) != 1) {
231 *skb2 = skb_clone(skb, allocation);
232 } else {
233 *skb2 = skb;
234 atomic_inc(&skb->users);
235 }
236 }
237 if (*skb2 != NULL) {
238 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
239 skb_orphan(*skb2);
240 skb_set_owner_r(*skb2, sk);
241 skb_queue_tail(&sk->sk_receive_queue, *skb2);
242 sk->sk_data_ready(sk, (*skb2)->len);
243 *skb2 = NULL;
244 err = 0;
245 }
246 }
247 sock_put(sk);
248 return err;
249 }
250
251 /* Send SKB to all pfkey sockets matching selected criteria. */
252 #define BROADCAST_ALL 0
253 #define BROADCAST_ONE 1
254 #define BROADCAST_REGISTERED 2
255 #define BROADCAST_PROMISC_ONLY 4
256 static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
257 int broadcast_flags, struct sock *one_sk)
258 {
259 struct sock *sk;
260 struct hlist_node *node;
261 struct sk_buff *skb2 = NULL;
262 int err = -ESRCH;
263
264 /* XXX Do we need something like netlink_overrun? I think
265 * XXX PF_KEY socket apps will not mind current behavior.
266 */
267 if (!skb)
268 return -ENOMEM;
269
270 pfkey_lock_table();
271 sk_for_each(sk, node, &pfkey_table) {
272 struct pfkey_sock *pfk = pfkey_sk(sk);
273 int err2;
274
275 /* Yes, it means that if you are meant to receive this
276 * pfkey message you receive it twice as promiscuous
277 * socket.
278 */
279 if (pfk->promisc)
280 pfkey_broadcast_one(skb, &skb2, allocation, sk);
281
282 /* the exact target will be processed later */
283 if (sk == one_sk)
284 continue;
285 if (broadcast_flags != BROADCAST_ALL) {
286 if (broadcast_flags & BROADCAST_PROMISC_ONLY)
287 continue;
288 if ((broadcast_flags & BROADCAST_REGISTERED) &&
289 !pfk->registered)
290 continue;
291 if (broadcast_flags & BROADCAST_ONE)
292 continue;
293 }
294
295 err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
296
297 /* Error is cleare after succecful sending to at least one
298 * registered KM */
299 if ((broadcast_flags & BROADCAST_REGISTERED) && err)
300 err = err2;
301 }
302 pfkey_unlock_table();
303
304 if (one_sk != NULL)
305 err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
306
307 if (skb2)
308 kfree_skb(skb2);
309 kfree_skb(skb);
310 return err;
311 }
312
313 static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
314 {
315 *new = *orig;
316 }
317
318 static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
319 {
320 struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
321 struct sadb_msg *hdr;
322
323 if (!skb)
324 return -ENOBUFS;
325
326 /* Woe be to the platform trying to support PFKEY yet
327 * having normal errnos outside the 1-255 range, inclusive.
328 */
329 err = -err;
330 if (err == ERESTARTSYS ||
331 err == ERESTARTNOHAND ||
332 err == ERESTARTNOINTR)
333 err = EINTR;
334 if (err >= 512)
335 err = EINVAL;
336 BUG_ON(err <= 0 || err >= 256);
337
338 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
339 pfkey_hdr_dup(hdr, orig);
340 hdr->sadb_msg_errno = (uint8_t) err;
341 hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
342 sizeof(uint64_t));
343
344 pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
345
346 return 0;
347 }
348
349 static u8 sadb_ext_min_len[] = {
350 [SADB_EXT_RESERVED] = (u8) 0,
351 [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
352 [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
353 [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
354 [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
355 [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
356 [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
357 [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
358 [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
359 [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
360 [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
361 [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
362 [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
363 [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
364 [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
365 [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
366 [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
367 [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
368 [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
369 [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
370 [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
371 [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
372 [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
373 [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
374 [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
375 };
376
377 /* Verify sadb_address_{len,prefixlen} against sa_family. */
378 static int verify_address_len(void *p)
379 {
380 struct sadb_address *sp = p;
381 struct sockaddr *addr = (struct sockaddr *)(sp + 1);
382 struct sockaddr_in *sin;
383 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
384 struct sockaddr_in6 *sin6;
385 #endif
386 int len;
387
388 switch (addr->sa_family) {
389 case AF_INET:
390 len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
391 if (sp->sadb_address_len != len ||
392 sp->sadb_address_prefixlen > 32)
393 return -EINVAL;
394 break;
395 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
396 case AF_INET6:
397 len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
398 if (sp->sadb_address_len != len ||
399 sp->sadb_address_prefixlen > 128)
400 return -EINVAL;
401 break;
402 #endif
403 default:
404 /* It is user using kernel to keep track of security
405 * associations for another protocol, such as
406 * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
407 * lengths.
408 *
409 * XXX Actually, association/policy database is not yet
410 * XXX able to cope with arbitrary sockaddr families.
411 * XXX When it can, remove this -EINVAL. -DaveM
412 */
413 return -EINVAL;
414 break;
415 }
416
417 return 0;
418 }
419
420 static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
421 {
422 return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
423 sec_ctx->sadb_x_ctx_len,
424 sizeof(uint64_t));
425 }
426
427 static inline int verify_sec_ctx_len(void *p)
428 {
429 struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
430 int len = sec_ctx->sadb_x_ctx_len;
431
432 if (len > PAGE_SIZE)
433 return -EINVAL;
434
435 len = pfkey_sec_ctx_len(sec_ctx);
436
437 if (sec_ctx->sadb_x_sec_len != len)
438 return -EINVAL;
439
440 return 0;
441 }
442
443 static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
444 {
445 struct xfrm_user_sec_ctx *uctx = NULL;
446 int ctx_size = sec_ctx->sadb_x_ctx_len;
447
448 uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
449
450 if (!uctx)
451 return NULL;
452
453 uctx->len = pfkey_sec_ctx_len(sec_ctx);
454 uctx->exttype = sec_ctx->sadb_x_sec_exttype;
455 uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
456 uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
457 uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
458 memcpy(uctx + 1, sec_ctx + 1,
459 uctx->ctx_len);
460
461 return uctx;
462 }
463
464 static int present_and_same_family(struct sadb_address *src,
465 struct sadb_address *dst)
466 {
467 struct sockaddr *s_addr, *d_addr;
468
469 if (!src || !dst)
470 return 0;
471
472 s_addr = (struct sockaddr *)(src + 1);
473 d_addr = (struct sockaddr *)(dst + 1);
474 if (s_addr->sa_family != d_addr->sa_family)
475 return 0;
476 if (s_addr->sa_family != AF_INET
477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
478 && s_addr->sa_family != AF_INET6
479 #endif
480 )
481 return 0;
482
483 return 1;
484 }
485
486 static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
487 {
488 char *p = (char *) hdr;
489 int len = skb->len;
490
491 len -= sizeof(*hdr);
492 p += sizeof(*hdr);
493 while (len > 0) {
494 struct sadb_ext *ehdr = (struct sadb_ext *) p;
495 uint16_t ext_type;
496 int ext_len;
497
498 ext_len = ehdr->sadb_ext_len;
499 ext_len *= sizeof(uint64_t);
500 ext_type = ehdr->sadb_ext_type;
501 if (ext_len < sizeof(uint64_t) ||
502 ext_len > len ||
503 ext_type == SADB_EXT_RESERVED)
504 return -EINVAL;
505
506 if (ext_type <= SADB_EXT_MAX) {
507 int min = (int) sadb_ext_min_len[ext_type];
508 if (ext_len < min)
509 return -EINVAL;
510 if (ext_hdrs[ext_type-1] != NULL)
511 return -EINVAL;
512 if (ext_type == SADB_EXT_ADDRESS_SRC ||
513 ext_type == SADB_EXT_ADDRESS_DST ||
514 ext_type == SADB_EXT_ADDRESS_PROXY ||
515 ext_type == SADB_X_EXT_NAT_T_OA) {
516 if (verify_address_len(p))
517 return -EINVAL;
518 }
519 if (ext_type == SADB_X_EXT_SEC_CTX) {
520 if (verify_sec_ctx_len(p))
521 return -EINVAL;
522 }
523 ext_hdrs[ext_type-1] = p;
524 }
525 p += ext_len;
526 len -= ext_len;
527 }
528
529 return 0;
530 }
531
532 static uint16_t
533 pfkey_satype2proto(uint8_t satype)
534 {
535 switch (satype) {
536 case SADB_SATYPE_UNSPEC:
537 return IPSEC_PROTO_ANY;
538 case SADB_SATYPE_AH:
539 return IPPROTO_AH;
540 case SADB_SATYPE_ESP:
541 return IPPROTO_ESP;
542 case SADB_X_SATYPE_IPCOMP:
543 return IPPROTO_COMP;
544 break;
545 default:
546 return 0;
547 }
548 /* NOTREACHED */
549 }
550
551 static uint8_t
552 pfkey_proto2satype(uint16_t proto)
553 {
554 switch (proto) {
555 case IPPROTO_AH:
556 return SADB_SATYPE_AH;
557 case IPPROTO_ESP:
558 return SADB_SATYPE_ESP;
559 case IPPROTO_COMP:
560 return SADB_X_SATYPE_IPCOMP;
561 break;
562 default:
563 return 0;
564 }
565 /* NOTREACHED */
566 }
567
568 /* BTW, this scheme means that there is no way with PFKEY2 sockets to
569 * say specifically 'just raw sockets' as we encode them as 255.
570 */
571
572 static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
573 {
574 return (proto == IPSEC_PROTO_ANY ? 0 : proto);
575 }
576
577 static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
578 {
579 return (proto ? proto : IPSEC_PROTO_ANY);
580 }
581
582 static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
583 xfrm_address_t *xaddr)
584 {
585 switch (((struct sockaddr*)(addr + 1))->sa_family) {
586 case AF_INET:
587 xaddr->a4 =
588 ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
589 return AF_INET;
590 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
591 case AF_INET6:
592 memcpy(xaddr->a6,
593 &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
594 sizeof(struct in6_addr));
595 return AF_INET6;
596 #endif
597 default:
598 return 0;
599 }
600 /* NOTREACHED */
601 }
602
603 static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
604 {
605 struct sadb_sa *sa;
606 struct sadb_address *addr;
607 uint16_t proto;
608 unsigned short family;
609 xfrm_address_t *xaddr;
610
611 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
612 if (sa == NULL)
613 return NULL;
614
615 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
616 if (proto == 0)
617 return NULL;
618
619 /* sadb_address_len should be checked by caller */
620 addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
621 if (addr == NULL)
622 return NULL;
623
624 family = ((struct sockaddr *)(addr + 1))->sa_family;
625 switch (family) {
626 case AF_INET:
627 xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
628 break;
629 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
630 case AF_INET6:
631 xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
632 break;
633 #endif
634 default:
635 xaddr = NULL;
636 }
637
638 if (!xaddr)
639 return NULL;
640
641 return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
642 }
643
644 #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
645 static int
646 pfkey_sockaddr_size(sa_family_t family)
647 {
648 switch (family) {
649 case AF_INET:
650 return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
651 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
652 case AF_INET6:
653 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
654 #endif
655 default:
656 return 0;
657 }
658 /* NOTREACHED */
659 }
660
661 static inline int pfkey_mode_from_xfrm(int mode)
662 {
663 switch(mode) {
664 case XFRM_MODE_TRANSPORT:
665 return IPSEC_MODE_TRANSPORT;
666 case XFRM_MODE_TUNNEL:
667 return IPSEC_MODE_TUNNEL;
668 case XFRM_MODE_BEET:
669 return IPSEC_MODE_BEET;
670 default:
671 return -1;
672 }
673 }
674
675 static inline int pfkey_mode_to_xfrm(int mode)
676 {
677 switch(mode) {
678 case IPSEC_MODE_ANY: /*XXX*/
679 case IPSEC_MODE_TRANSPORT:
680 return XFRM_MODE_TRANSPORT;
681 case IPSEC_MODE_TUNNEL:
682 return XFRM_MODE_TUNNEL;
683 case IPSEC_MODE_BEET:
684 return XFRM_MODE_BEET;
685 default:
686 return -1;
687 }
688 }
689
690 static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
691 int add_keys, int hsc)
692 {
693 struct sk_buff *skb;
694 struct sadb_msg *hdr;
695 struct sadb_sa *sa;
696 struct sadb_lifetime *lifetime;
697 struct sadb_address *addr;
698 struct sadb_key *key;
699 struct sadb_x_sa2 *sa2;
700 struct sockaddr_in *sin;
701 struct sadb_x_sec_ctx *sec_ctx;
702 struct xfrm_sec_ctx *xfrm_ctx;
703 int ctx_size = 0;
704 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
705 struct sockaddr_in6 *sin6;
706 #endif
707 int size;
708 int auth_key_size = 0;
709 int encrypt_key_size = 0;
710 int sockaddr_size;
711 struct xfrm_encap_tmpl *natt = NULL;
712 int mode;
713
714 /* address family check */
715 sockaddr_size = pfkey_sockaddr_size(x->props.family);
716 if (!sockaddr_size)
717 return ERR_PTR(-EINVAL);
718
719 /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
720 key(AE), (identity(SD),) (sensitivity)> */
721 size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
722 sizeof(struct sadb_lifetime) +
723 ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
724 ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
725 sizeof(struct sadb_address)*2 +
726 sockaddr_size*2 +
727 sizeof(struct sadb_x_sa2);
728
729 if ((xfrm_ctx = x->security)) {
730 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
731 size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
732 }
733
734 /* identity & sensitivity */
735
736 if ((x->props.family == AF_INET &&
737 x->sel.saddr.a4 != x->props.saddr.a4)
738 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
739 || (x->props.family == AF_INET6 &&
740 memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
741 #endif
742 )
743 size += sizeof(struct sadb_address) + sockaddr_size;
744
745 if (add_keys) {
746 if (x->aalg && x->aalg->alg_key_len) {
747 auth_key_size =
748 PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
749 size += sizeof(struct sadb_key) + auth_key_size;
750 }
751 if (x->ealg && x->ealg->alg_key_len) {
752 encrypt_key_size =
753 PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
754 size += sizeof(struct sadb_key) + encrypt_key_size;
755 }
756 }
757 if (x->encap)
758 natt = x->encap;
759
760 if (natt && natt->encap_type) {
761 size += sizeof(struct sadb_x_nat_t_type);
762 size += sizeof(struct sadb_x_nat_t_port);
763 size += sizeof(struct sadb_x_nat_t_port);
764 }
765
766 skb = alloc_skb(size + 16, GFP_ATOMIC);
767 if (skb == NULL)
768 return ERR_PTR(-ENOBUFS);
769
770 /* call should fill header later */
771 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
772 memset(hdr, 0, size); /* XXX do we need this ? */
773 hdr->sadb_msg_len = size / sizeof(uint64_t);
774
775 /* sa */
776 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
777 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
778 sa->sadb_sa_exttype = SADB_EXT_SA;
779 sa->sadb_sa_spi = x->id.spi;
780 sa->sadb_sa_replay = x->props.replay_window;
781 switch (x->km.state) {
782 case XFRM_STATE_VALID:
783 sa->sadb_sa_state = x->km.dying ?
784 SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
785 break;
786 case XFRM_STATE_ACQ:
787 sa->sadb_sa_state = SADB_SASTATE_LARVAL;
788 break;
789 default:
790 sa->sadb_sa_state = SADB_SASTATE_DEAD;
791 break;
792 }
793 sa->sadb_sa_auth = 0;
794 if (x->aalg) {
795 struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
796 sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
797 }
798 sa->sadb_sa_encrypt = 0;
799 BUG_ON(x->ealg && x->calg);
800 if (x->ealg) {
801 struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
802 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
803 }
804 /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
805 if (x->calg) {
806 struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
807 sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
808 }
809
810 sa->sadb_sa_flags = 0;
811 if (x->props.flags & XFRM_STATE_NOECN)
812 sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
813 if (x->props.flags & XFRM_STATE_DECAP_DSCP)
814 sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
815 if (x->props.flags & XFRM_STATE_NOPMTUDISC)
816 sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
817
818 /* hard time */
819 if (hsc & 2) {
820 lifetime = (struct sadb_lifetime *) skb_put(skb,
821 sizeof(struct sadb_lifetime));
822 lifetime->sadb_lifetime_len =
823 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
824 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
825 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
826 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
827 lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
828 lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
829 }
830 /* soft time */
831 if (hsc & 1) {
832 lifetime = (struct sadb_lifetime *) skb_put(skb,
833 sizeof(struct sadb_lifetime));
834 lifetime->sadb_lifetime_len =
835 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
836 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
837 lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
838 lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
839 lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
840 lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
841 }
842 /* current time */
843 lifetime = (struct sadb_lifetime *) skb_put(skb,
844 sizeof(struct sadb_lifetime));
845 lifetime->sadb_lifetime_len =
846 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
847 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
848 lifetime->sadb_lifetime_allocations = x->curlft.packets;
849 lifetime->sadb_lifetime_bytes = x->curlft.bytes;
850 lifetime->sadb_lifetime_addtime = x->curlft.add_time;
851 lifetime->sadb_lifetime_usetime = x->curlft.use_time;
852 /* src address */
853 addr = (struct sadb_address*) skb_put(skb,
854 sizeof(struct sadb_address)+sockaddr_size);
855 addr->sadb_address_len =
856 (sizeof(struct sadb_address)+sockaddr_size)/
857 sizeof(uint64_t);
858 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
859 /* "if the ports are non-zero, then the sadb_address_proto field,
860 normally zero, MUST be filled in with the transport
861 protocol's number." - RFC2367 */
862 addr->sadb_address_proto = 0;
863 addr->sadb_address_reserved = 0;
864 if (x->props.family == AF_INET) {
865 addr->sadb_address_prefixlen = 32;
866
867 sin = (struct sockaddr_in *) (addr + 1);
868 sin->sin_family = AF_INET;
869 sin->sin_addr.s_addr = x->props.saddr.a4;
870 sin->sin_port = 0;
871 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
872 }
873 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
874 else if (x->props.family == AF_INET6) {
875 addr->sadb_address_prefixlen = 128;
876
877 sin6 = (struct sockaddr_in6 *) (addr + 1);
878 sin6->sin6_family = AF_INET6;
879 sin6->sin6_port = 0;
880 sin6->sin6_flowinfo = 0;
881 memcpy(&sin6->sin6_addr, x->props.saddr.a6,
882 sizeof(struct in6_addr));
883 sin6->sin6_scope_id = 0;
884 }
885 #endif
886 else
887 BUG();
888
889 /* dst address */
890 addr = (struct sadb_address*) skb_put(skb,
891 sizeof(struct sadb_address)+sockaddr_size);
892 addr->sadb_address_len =
893 (sizeof(struct sadb_address)+sockaddr_size)/
894 sizeof(uint64_t);
895 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
896 addr->sadb_address_proto = 0;
897 addr->sadb_address_prefixlen = 32; /* XXX */
898 addr->sadb_address_reserved = 0;
899 if (x->props.family == AF_INET) {
900 sin = (struct sockaddr_in *) (addr + 1);
901 sin->sin_family = AF_INET;
902 sin->sin_addr.s_addr = x->id.daddr.a4;
903 sin->sin_port = 0;
904 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
905
906 if (x->sel.saddr.a4 != x->props.saddr.a4) {
907 addr = (struct sadb_address*) skb_put(skb,
908 sizeof(struct sadb_address)+sockaddr_size);
909 addr->sadb_address_len =
910 (sizeof(struct sadb_address)+sockaddr_size)/
911 sizeof(uint64_t);
912 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
913 addr->sadb_address_proto =
914 pfkey_proto_from_xfrm(x->sel.proto);
915 addr->sadb_address_prefixlen = x->sel.prefixlen_s;
916 addr->sadb_address_reserved = 0;
917
918 sin = (struct sockaddr_in *) (addr + 1);
919 sin->sin_family = AF_INET;
920 sin->sin_addr.s_addr = x->sel.saddr.a4;
921 sin->sin_port = x->sel.sport;
922 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
923 }
924 }
925 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
926 else if (x->props.family == AF_INET6) {
927 addr->sadb_address_prefixlen = 128;
928
929 sin6 = (struct sockaddr_in6 *) (addr + 1);
930 sin6->sin6_family = AF_INET6;
931 sin6->sin6_port = 0;
932 sin6->sin6_flowinfo = 0;
933 memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
934 sin6->sin6_scope_id = 0;
935
936 if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
937 sizeof(struct in6_addr))) {
938 addr = (struct sadb_address *) skb_put(skb,
939 sizeof(struct sadb_address)+sockaddr_size);
940 addr->sadb_address_len =
941 (sizeof(struct sadb_address)+sockaddr_size)/
942 sizeof(uint64_t);
943 addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
944 addr->sadb_address_proto =
945 pfkey_proto_from_xfrm(x->sel.proto);
946 addr->sadb_address_prefixlen = x->sel.prefixlen_s;
947 addr->sadb_address_reserved = 0;
948
949 sin6 = (struct sockaddr_in6 *) (addr + 1);
950 sin6->sin6_family = AF_INET6;
951 sin6->sin6_port = x->sel.sport;
952 sin6->sin6_flowinfo = 0;
953 memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
954 sizeof(struct in6_addr));
955 sin6->sin6_scope_id = 0;
956 }
957 }
958 #endif
959 else
960 BUG();
961
962 /* auth key */
963 if (add_keys && auth_key_size) {
964 key = (struct sadb_key *) skb_put(skb,
965 sizeof(struct sadb_key)+auth_key_size);
966 key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
967 sizeof(uint64_t);
968 key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
969 key->sadb_key_bits = x->aalg->alg_key_len;
970 key->sadb_key_reserved = 0;
971 memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
972 }
973 /* encrypt key */
974 if (add_keys && encrypt_key_size) {
975 key = (struct sadb_key *) skb_put(skb,
976 sizeof(struct sadb_key)+encrypt_key_size);
977 key->sadb_key_len = (sizeof(struct sadb_key) +
978 encrypt_key_size) / sizeof(uint64_t);
979 key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
980 key->sadb_key_bits = x->ealg->alg_key_len;
981 key->sadb_key_reserved = 0;
982 memcpy(key + 1, x->ealg->alg_key,
983 (x->ealg->alg_key_len+7)/8);
984 }
985
986 /* sa */
987 sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
988 sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
989 sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
990 if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
991 kfree_skb(skb);
992 return ERR_PTR(-EINVAL);
993 }
994 sa2->sadb_x_sa2_mode = mode;
995 sa2->sadb_x_sa2_reserved1 = 0;
996 sa2->sadb_x_sa2_reserved2 = 0;
997 sa2->sadb_x_sa2_sequence = 0;
998 sa2->sadb_x_sa2_reqid = x->props.reqid;
999
1000 if (natt && natt->encap_type) {
1001 struct sadb_x_nat_t_type *n_type;
1002 struct sadb_x_nat_t_port *n_port;
1003
1004 /* type */
1005 n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
1006 n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
1007 n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
1008 n_type->sadb_x_nat_t_type_type = natt->encap_type;
1009 n_type->sadb_x_nat_t_type_reserved[0] = 0;
1010 n_type->sadb_x_nat_t_type_reserved[1] = 0;
1011 n_type->sadb_x_nat_t_type_reserved[2] = 0;
1012
1013 /* source port */
1014 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
1015 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
1016 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
1017 n_port->sadb_x_nat_t_port_port = natt->encap_sport;
1018 n_port->sadb_x_nat_t_port_reserved = 0;
1019
1020 /* dest port */
1021 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
1022 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
1023 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
1024 n_port->sadb_x_nat_t_port_port = natt->encap_dport;
1025 n_port->sadb_x_nat_t_port_reserved = 0;
1026 }
1027
1028 /* security context */
1029 if (xfrm_ctx) {
1030 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
1031 sizeof(struct sadb_x_sec_ctx) + ctx_size);
1032 sec_ctx->sadb_x_sec_len =
1033 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
1034 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
1035 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
1036 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
1037 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
1038 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
1039 xfrm_ctx->ctx_len);
1040 }
1041
1042 return skb;
1043 }
1044
1045
1046 static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
1047 {
1048 struct sk_buff *skb;
1049
1050 skb = __pfkey_xfrm_state2msg(x, 1, 3);
1051
1052 return skb;
1053 }
1054
1055 static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
1056 int hsc)
1057 {
1058 return __pfkey_xfrm_state2msg(x, 0, hsc);
1059 }
1060
1061 static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
1062 void **ext_hdrs)
1063 {
1064 struct xfrm_state *x;
1065 struct sadb_lifetime *lifetime;
1066 struct sadb_sa *sa;
1067 struct sadb_key *key;
1068 struct sadb_x_sec_ctx *sec_ctx;
1069 uint16_t proto;
1070 int err;
1071
1072
1073 sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
1074 if (!sa ||
1075 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1076 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1077 return ERR_PTR(-EINVAL);
1078 if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
1079 !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
1080 return ERR_PTR(-EINVAL);
1081 if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
1082 !ext_hdrs[SADB_EXT_KEY_AUTH-1])
1083 return ERR_PTR(-EINVAL);
1084 if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
1085 !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
1086 return ERR_PTR(-EINVAL);
1087
1088 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1089 if (proto == 0)
1090 return ERR_PTR(-EINVAL);
1091
1092 /* default error is no buffer space */
1093 err = -ENOBUFS;
1094
1095 /* RFC2367:
1096
1097 Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
1098 SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
1099 sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
1100 Therefore, the sadb_sa_state field of all submitted SAs MUST be
1101 SADB_SASTATE_MATURE and the kernel MUST return an error if this is
1102 not true.
1103
1104 However, KAME setkey always uses SADB_SASTATE_LARVAL.
1105 Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
1106 */
1107 if (sa->sadb_sa_auth > SADB_AALG_MAX ||
1108 (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
1109 sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
1110 sa->sadb_sa_encrypt > SADB_EALG_MAX)
1111 return ERR_PTR(-EINVAL);
1112 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
1113 if (key != NULL &&
1114 sa->sadb_sa_auth != SADB_X_AALG_NULL &&
1115 ((key->sadb_key_bits+7) / 8 == 0 ||
1116 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
1117 return ERR_PTR(-EINVAL);
1118 key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1119 if (key != NULL &&
1120 sa->sadb_sa_encrypt != SADB_EALG_NULL &&
1121 ((key->sadb_key_bits+7) / 8 == 0 ||
1122 (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
1123 return ERR_PTR(-EINVAL);
1124
1125 x = xfrm_state_alloc();
1126 if (x == NULL)
1127 return ERR_PTR(-ENOBUFS);
1128
1129 x->id.proto = proto;
1130 x->id.spi = sa->sadb_sa_spi;
1131 x->props.replay_window = sa->sadb_sa_replay;
1132 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
1133 x->props.flags |= XFRM_STATE_NOECN;
1134 if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
1135 x->props.flags |= XFRM_STATE_DECAP_DSCP;
1136 if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
1137 x->props.flags |= XFRM_STATE_NOPMTUDISC;
1138
1139 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
1140 if (lifetime != NULL) {
1141 x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
1142 x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
1143 x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
1144 x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
1145 }
1146 lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
1147 if (lifetime != NULL) {
1148 x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
1149 x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
1150 x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
1151 x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
1152 }
1153
1154 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
1155 if (sec_ctx != NULL) {
1156 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
1157
1158 if (!uctx)
1159 goto out;
1160
1161 err = security_xfrm_state_alloc(x, uctx);
1162 kfree(uctx);
1163
1164 if (err)
1165 goto out;
1166 }
1167
1168 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
1169 if (sa->sadb_sa_auth) {
1170 int keysize = 0;
1171 struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
1172 if (!a) {
1173 err = -ENOSYS;
1174 goto out;
1175 }
1176 if (key)
1177 keysize = (key->sadb_key_bits + 7) / 8;
1178 x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
1179 if (!x->aalg)
1180 goto out;
1181 strcpy(x->aalg->alg_name, a->name);
1182 x->aalg->alg_key_len = 0;
1183 if (key) {
1184 x->aalg->alg_key_len = key->sadb_key_bits;
1185 memcpy(x->aalg->alg_key, key+1, keysize);
1186 }
1187 x->props.aalgo = sa->sadb_sa_auth;
1188 /* x->algo.flags = sa->sadb_sa_flags; */
1189 }
1190 if (sa->sadb_sa_encrypt) {
1191 if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
1192 struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
1193 if (!a) {
1194 err = -ENOSYS;
1195 goto out;
1196 }
1197 x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
1198 if (!x->calg)
1199 goto out;
1200 strcpy(x->calg->alg_name, a->name);
1201 x->props.calgo = sa->sadb_sa_encrypt;
1202 } else {
1203 int keysize = 0;
1204 struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
1205 if (!a) {
1206 err = -ENOSYS;
1207 goto out;
1208 }
1209 key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
1210 if (key)
1211 keysize = (key->sadb_key_bits + 7) / 8;
1212 x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
1213 if (!x->ealg)
1214 goto out;
1215 strcpy(x->ealg->alg_name, a->name);
1216 x->ealg->alg_key_len = 0;
1217 if (key) {
1218 x->ealg->alg_key_len = key->sadb_key_bits;
1219 memcpy(x->ealg->alg_key, key+1, keysize);
1220 }
1221 x->props.ealgo = sa->sadb_sa_encrypt;
1222 }
1223 }
1224 /* x->algo.flags = sa->sadb_sa_flags; */
1225
1226 x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1227 &x->props.saddr);
1228 if (!x->props.family) {
1229 err = -EAFNOSUPPORT;
1230 goto out;
1231 }
1232 pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
1233 &x->id.daddr);
1234
1235 if (ext_hdrs[SADB_X_EXT_SA2-1]) {
1236 struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
1237 int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
1238 if (mode < 0) {
1239 err = -EINVAL;
1240 goto out;
1241 }
1242 x->props.mode = mode;
1243 x->props.reqid = sa2->sadb_x_sa2_reqid;
1244 }
1245
1246 if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
1247 struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
1248
1249 /* Nobody uses this, but we try. */
1250 x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
1251 x->sel.prefixlen_s = addr->sadb_address_prefixlen;
1252 }
1253
1254 if (x->props.mode == XFRM_MODE_TRANSPORT)
1255 x->sel.family = x->props.family;
1256
1257 if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
1258 struct sadb_x_nat_t_type* n_type;
1259 struct xfrm_encap_tmpl *natt;
1260
1261 x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
1262 if (!x->encap)
1263 goto out;
1264
1265 natt = x->encap;
1266 n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
1267 natt->encap_type = n_type->sadb_x_nat_t_type_type;
1268
1269 if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
1270 struct sadb_x_nat_t_port* n_port =
1271 ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
1272 natt->encap_sport = n_port->sadb_x_nat_t_port_port;
1273 }
1274 if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
1275 struct sadb_x_nat_t_port* n_port =
1276 ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
1277 natt->encap_dport = n_port->sadb_x_nat_t_port_port;
1278 }
1279 }
1280
1281 err = xfrm_init_state(x);
1282 if (err)
1283 goto out;
1284
1285 x->km.seq = hdr->sadb_msg_seq;
1286 return x;
1287
1288 out:
1289 x->km.state = XFRM_STATE_DEAD;
1290 xfrm_state_put(x);
1291 return ERR_PTR(err);
1292 }
1293
1294 static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1295 {
1296 return -EOPNOTSUPP;
1297 }
1298
1299 static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1300 {
1301 struct sk_buff *resp_skb;
1302 struct sadb_x_sa2 *sa2;
1303 struct sadb_address *saddr, *daddr;
1304 struct sadb_msg *out_hdr;
1305 struct sadb_spirange *range;
1306 struct xfrm_state *x = NULL;
1307 int mode;
1308 int err;
1309 u32 min_spi, max_spi;
1310 u32 reqid;
1311 u8 proto;
1312 unsigned short family;
1313 xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
1314
1315 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1316 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1317 return -EINVAL;
1318
1319 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1320 if (proto == 0)
1321 return -EINVAL;
1322
1323 if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
1324 mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
1325 if (mode < 0)
1326 return -EINVAL;
1327 reqid = sa2->sadb_x_sa2_reqid;
1328 } else {
1329 mode = 0;
1330 reqid = 0;
1331 }
1332
1333 saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
1334 daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
1335
1336 family = ((struct sockaddr *)(saddr + 1))->sa_family;
1337 switch (family) {
1338 case AF_INET:
1339 xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
1340 xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
1341 break;
1342 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1343 case AF_INET6:
1344 xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
1345 xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
1346 break;
1347 #endif
1348 }
1349
1350 if (hdr->sadb_msg_seq) {
1351 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1352 if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
1353 xfrm_state_put(x);
1354 x = NULL;
1355 }
1356 }
1357
1358 if (!x)
1359 x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
1360
1361 if (x == NULL)
1362 return -ENOENT;
1363
1364 min_spi = 0x100;
1365 max_spi = 0x0fffffff;
1366
1367 range = ext_hdrs[SADB_EXT_SPIRANGE-1];
1368 if (range) {
1369 min_spi = range->sadb_spirange_min;
1370 max_spi = range->sadb_spirange_max;
1371 }
1372
1373 err = xfrm_alloc_spi(x, min_spi, max_spi);
1374 resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
1375
1376 if (IS_ERR(resp_skb)) {
1377 xfrm_state_put(x);
1378 return PTR_ERR(resp_skb);
1379 }
1380
1381 out_hdr = (struct sadb_msg *) resp_skb->data;
1382 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1383 out_hdr->sadb_msg_type = SADB_GETSPI;
1384 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1385 out_hdr->sadb_msg_errno = 0;
1386 out_hdr->sadb_msg_reserved = 0;
1387 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1388 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1389
1390 xfrm_state_put(x);
1391
1392 pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
1393
1394 return 0;
1395 }
1396
1397 static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1398 {
1399 struct xfrm_state *x;
1400
1401 if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
1402 return -EOPNOTSUPP;
1403
1404 if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
1405 return 0;
1406
1407 x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
1408 if (x == NULL)
1409 return 0;
1410
1411 spin_lock_bh(&x->lock);
1412 if (x->km.state == XFRM_STATE_ACQ) {
1413 x->km.state = XFRM_STATE_ERROR;
1414 wake_up(&km_waitq);
1415 }
1416 spin_unlock_bh(&x->lock);
1417 xfrm_state_put(x);
1418 return 0;
1419 }
1420
1421 static inline int event2poltype(int event)
1422 {
1423 switch (event) {
1424 case XFRM_MSG_DELPOLICY:
1425 return SADB_X_SPDDELETE;
1426 case XFRM_MSG_NEWPOLICY:
1427 return SADB_X_SPDADD;
1428 case XFRM_MSG_UPDPOLICY:
1429 return SADB_X_SPDUPDATE;
1430 case XFRM_MSG_POLEXPIRE:
1431 // return SADB_X_SPDEXPIRE;
1432 default:
1433 printk("pfkey: Unknown policy event %d\n", event);
1434 break;
1435 }
1436
1437 return 0;
1438 }
1439
1440 static inline int event2keytype(int event)
1441 {
1442 switch (event) {
1443 case XFRM_MSG_DELSA:
1444 return SADB_DELETE;
1445 case XFRM_MSG_NEWSA:
1446 return SADB_ADD;
1447 case XFRM_MSG_UPDSA:
1448 return SADB_UPDATE;
1449 case XFRM_MSG_EXPIRE:
1450 return SADB_EXPIRE;
1451 default:
1452 printk("pfkey: Unknown SA event %d\n", event);
1453 break;
1454 }
1455
1456 return 0;
1457 }
1458
1459 /* ADD/UPD/DEL */
1460 static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
1461 {
1462 struct sk_buff *skb;
1463 struct sadb_msg *hdr;
1464
1465 skb = pfkey_xfrm_state2msg(x);
1466
1467 if (IS_ERR(skb))
1468 return PTR_ERR(skb);
1469
1470 hdr = (struct sadb_msg *) skb->data;
1471 hdr->sadb_msg_version = PF_KEY_V2;
1472 hdr->sadb_msg_type = event2keytype(c->event);
1473 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1474 hdr->sadb_msg_errno = 0;
1475 hdr->sadb_msg_reserved = 0;
1476 hdr->sadb_msg_seq = c->seq;
1477 hdr->sadb_msg_pid = c->pid;
1478
1479 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1480
1481 return 0;
1482 }
1483
1484 static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1485 {
1486 struct xfrm_state *x;
1487 int err;
1488 struct km_event c;
1489
1490 x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
1491 if (IS_ERR(x))
1492 return PTR_ERR(x);
1493
1494 xfrm_state_hold(x);
1495 if (hdr->sadb_msg_type == SADB_ADD)
1496 err = xfrm_state_add(x);
1497 else
1498 err = xfrm_state_update(x);
1499
1500 xfrm_audit_state_add(x, err ? 0 : 1,
1501 audit_get_loginuid(current), 0);
1502
1503 if (err < 0) {
1504 x->km.state = XFRM_STATE_DEAD;
1505 __xfrm_state_put(x);
1506 goto out;
1507 }
1508
1509 if (hdr->sadb_msg_type == SADB_ADD)
1510 c.event = XFRM_MSG_NEWSA;
1511 else
1512 c.event = XFRM_MSG_UPDSA;
1513 c.seq = hdr->sadb_msg_seq;
1514 c.pid = hdr->sadb_msg_pid;
1515 km_state_notify(x, &c);
1516 out:
1517 xfrm_state_put(x);
1518 return err;
1519 }
1520
1521 static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1522 {
1523 struct xfrm_state *x;
1524 struct km_event c;
1525 int err;
1526
1527 if (!ext_hdrs[SADB_EXT_SA-1] ||
1528 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1529 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1530 return -EINVAL;
1531
1532 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1533 if (x == NULL)
1534 return -ESRCH;
1535
1536 if ((err = security_xfrm_state_delete(x)))
1537 goto out;
1538
1539 if (xfrm_state_kern(x)) {
1540 err = -EPERM;
1541 goto out;
1542 }
1543
1544 err = xfrm_state_delete(x);
1545
1546 if (err < 0)
1547 goto out;
1548
1549 c.seq = hdr->sadb_msg_seq;
1550 c.pid = hdr->sadb_msg_pid;
1551 c.event = XFRM_MSG_DELSA;
1552 km_state_notify(x, &c);
1553 out:
1554 xfrm_audit_state_delete(x, err ? 0 : 1,
1555 audit_get_loginuid(current), 0);
1556 xfrm_state_put(x);
1557
1558 return err;
1559 }
1560
1561 static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1562 {
1563 __u8 proto;
1564 struct sk_buff *out_skb;
1565 struct sadb_msg *out_hdr;
1566 struct xfrm_state *x;
1567
1568 if (!ext_hdrs[SADB_EXT_SA-1] ||
1569 !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
1570 ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
1571 return -EINVAL;
1572
1573 x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
1574 if (x == NULL)
1575 return -ESRCH;
1576
1577 out_skb = pfkey_xfrm_state2msg(x);
1578 proto = x->id.proto;
1579 xfrm_state_put(x);
1580 if (IS_ERR(out_skb))
1581 return PTR_ERR(out_skb);
1582
1583 out_hdr = (struct sadb_msg *) out_skb->data;
1584 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
1585 out_hdr->sadb_msg_type = SADB_GET;
1586 out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
1587 out_hdr->sadb_msg_errno = 0;
1588 out_hdr->sadb_msg_reserved = 0;
1589 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
1590 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
1591 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
1592
1593 return 0;
1594 }
1595
1596 static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
1597 gfp_t allocation)
1598 {
1599 struct sk_buff *skb;
1600 struct sadb_msg *hdr;
1601 int len, auth_len, enc_len, i;
1602
1603 auth_len = xfrm_count_auth_supported();
1604 if (auth_len) {
1605 auth_len *= sizeof(struct sadb_alg);
1606 auth_len += sizeof(struct sadb_supported);
1607 }
1608
1609 enc_len = xfrm_count_enc_supported();
1610 if (enc_len) {
1611 enc_len *= sizeof(struct sadb_alg);
1612 enc_len += sizeof(struct sadb_supported);
1613 }
1614
1615 len = enc_len + auth_len + sizeof(struct sadb_msg);
1616
1617 skb = alloc_skb(len + 16, allocation);
1618 if (!skb)
1619 goto out_put_algs;
1620
1621 hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
1622 pfkey_hdr_dup(hdr, orig);
1623 hdr->sadb_msg_errno = 0;
1624 hdr->sadb_msg_len = len / sizeof(uint64_t);
1625
1626 if (auth_len) {
1627 struct sadb_supported *sp;
1628 struct sadb_alg *ap;
1629
1630 sp = (struct sadb_supported *) skb_put(skb, auth_len);
1631 ap = (struct sadb_alg *) (sp + 1);
1632
1633 sp->sadb_supported_len = auth_len / sizeof(uint64_t);
1634 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
1635
1636 for (i = 0; ; i++) {
1637 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
1638 if (!aalg)
1639 break;
1640 if (aalg->available)
1641 *ap++ = aalg->desc;
1642 }
1643 }
1644
1645 if (enc_len) {
1646 struct sadb_supported *sp;
1647 struct sadb_alg *ap;
1648
1649 sp = (struct sadb_supported *) skb_put(skb, enc_len);
1650 ap = (struct sadb_alg *) (sp + 1);
1651
1652 sp->sadb_supported_len = enc_len / sizeof(uint64_t);
1653 sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
1654
1655 for (i = 0; ; i++) {
1656 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
1657 if (!ealg)
1658 break;
1659 if (ealg->available)
1660 *ap++ = ealg->desc;
1661 }
1662 }
1663
1664 out_put_algs:
1665 return skb;
1666 }
1667
1668 static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1669 {
1670 struct pfkey_sock *pfk = pfkey_sk(sk);
1671 struct sk_buff *supp_skb;
1672
1673 if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
1674 return -EINVAL;
1675
1676 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
1677 if (pfk->registered&(1<<hdr->sadb_msg_satype))
1678 return -EEXIST;
1679 pfk->registered |= (1<<hdr->sadb_msg_satype);
1680 }
1681
1682 xfrm_probe_algs();
1683
1684 supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
1685 if (!supp_skb) {
1686 if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
1687 pfk->registered &= ~(1<<hdr->sadb_msg_satype);
1688
1689 return -ENOBUFS;
1690 }
1691
1692 pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
1693
1694 return 0;
1695 }
1696
1697 static int key_notify_sa_flush(struct km_event *c)
1698 {
1699 struct sk_buff *skb;
1700 struct sadb_msg *hdr;
1701
1702 skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
1703 if (!skb)
1704 return -ENOBUFS;
1705 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
1706 hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
1707 hdr->sadb_msg_type = SADB_FLUSH;
1708 hdr->sadb_msg_seq = c->seq;
1709 hdr->sadb_msg_pid = c->pid;
1710 hdr->sadb_msg_version = PF_KEY_V2;
1711 hdr->sadb_msg_errno = (uint8_t) 0;
1712 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
1713
1714 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
1715
1716 return 0;
1717 }
1718
1719 static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1720 {
1721 unsigned proto;
1722 struct km_event c;
1723 struct xfrm_audit audit_info;
1724 int err;
1725
1726 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1727 if (proto == 0)
1728 return -EINVAL;
1729
1730 audit_info.loginuid = audit_get_loginuid(current);
1731 audit_info.secid = 0;
1732 err = xfrm_state_flush(proto, &audit_info);
1733 if (err)
1734 return err;
1735 c.data.proto = proto;
1736 c.seq = hdr->sadb_msg_seq;
1737 c.pid = hdr->sadb_msg_pid;
1738 c.event = XFRM_MSG_FLUSHSA;
1739 km_state_notify(NULL, &c);
1740
1741 return 0;
1742 }
1743
1744 static int dump_sa(struct xfrm_state *x, int count, void *ptr)
1745 {
1746 struct pfkey_sock *pfk = ptr;
1747 struct sk_buff *out_skb;
1748 struct sadb_msg *out_hdr;
1749
1750 if (!pfkey_can_dump(&pfk->sk))
1751 return -ENOBUFS;
1752
1753 out_skb = pfkey_xfrm_state2msg(x);
1754 if (IS_ERR(out_skb))
1755 return PTR_ERR(out_skb);
1756
1757 out_hdr = (struct sadb_msg *) out_skb->data;
1758 out_hdr->sadb_msg_version = pfk->dump.msg_version;
1759 out_hdr->sadb_msg_type = SADB_DUMP;
1760 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
1761 out_hdr->sadb_msg_errno = 0;
1762 out_hdr->sadb_msg_reserved = 0;
1763 out_hdr->sadb_msg_seq = count;
1764 out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
1765 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
1766 return 0;
1767 }
1768
1769 static int pfkey_dump_sa(struct pfkey_sock *pfk)
1770 {
1771 return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
1772 }
1773
1774 static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
1775 {
1776 xfrm_state_walk_done(&pfk->dump.u.state);
1777 }
1778
1779 static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1780 {
1781 u8 proto;
1782 struct pfkey_sock *pfk = pfkey_sk(sk);
1783
1784 if (pfk->dump.dump != NULL)
1785 return -EBUSY;
1786
1787 proto = pfkey_satype2proto(hdr->sadb_msg_satype);
1788 if (proto == 0)
1789 return -EINVAL;
1790
1791 pfk->dump.msg_version = hdr->sadb_msg_version;
1792 pfk->dump.msg_pid = hdr->sadb_msg_pid;
1793 pfk->dump.dump = pfkey_dump_sa;
1794 pfk->dump.done = pfkey_dump_sa_done;
1795 xfrm_state_walk_init(&pfk->dump.u.state, proto);
1796
1797 return pfkey_do_dump(pfk);
1798 }
1799
1800 static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
1801 {
1802 struct pfkey_sock *pfk = pfkey_sk(sk);
1803 int satype = hdr->sadb_msg_satype;
1804
1805 if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
1806 /* XXX we mangle packet... */
1807 hdr->sadb_msg_errno = 0;
1808 if (satype != 0 && satype != 1)
1809 return -EINVAL;
1810 pfk->promisc = satype;
1811 }
1812 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
1813 return 0;
1814 }
1815
1816 static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
1817 {
1818 int i;
1819 u32 reqid = *(u32*)ptr;
1820
1821 for (i=0; i<xp->xfrm_nr; i++) {
1822 if (xp->xfrm_vec[i].reqid == reqid)
1823 return -EEXIST;
1824 }
1825 return 0;
1826 }
1827
1828 static u32 gen_reqid(void)
1829 {
1830 struct xfrm_policy_walk walk;
1831 u32 start;
1832 int rc;
1833 static u32 reqid = IPSEC_MANUAL_REQID_MAX;
1834
1835 start = reqid;
1836 do {
1837 ++reqid;
1838 if (reqid == 0)
1839 reqid = IPSEC_MANUAL_REQID_MAX+1;
1840 xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
1841 rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
1842 xfrm_policy_walk_done(&walk);
1843 if (rc != -EEXIST)
1844 return reqid;
1845 } while (reqid != start);
1846 return 0;
1847 }
1848
1849 static int
1850 parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
1851 {
1852 struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
1853 struct sockaddr_in *sin;
1854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1855 struct sockaddr_in6 *sin6;
1856 #endif
1857 int mode;
1858
1859 if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
1860 return -ELOOP;
1861
1862 if (rq->sadb_x_ipsecrequest_mode == 0)
1863 return -EINVAL;
1864
1865 t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
1866 if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
1867 return -EINVAL;
1868 t->mode = mode;
1869 if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
1870 t->optional = 1;
1871 else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
1872 t->reqid = rq->sadb_x_ipsecrequest_reqid;
1873 if (t->reqid > IPSEC_MANUAL_REQID_MAX)
1874 t->reqid = 0;
1875 if (!t->reqid && !(t->reqid = gen_reqid()))
1876 return -ENOBUFS;
1877 }
1878
1879 /* addresses present only in tunnel mode */
1880 if (t->mode == XFRM_MODE_TUNNEL) {
1881 struct sockaddr *sa;
1882 sa = (struct sockaddr *)(rq+1);
1883 switch(sa->sa_family) {
1884 case AF_INET:
1885 sin = (struct sockaddr_in*)sa;
1886 t->saddr.a4 = sin->sin_addr.s_addr;
1887 sin++;
1888 if (sin->sin_family != AF_INET)
1889 return -EINVAL;
1890 t->id.daddr.a4 = sin->sin_addr.s_addr;
1891 break;
1892 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1893 case AF_INET6:
1894 sin6 = (struct sockaddr_in6*)sa;
1895 memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1896 sin6++;
1897 if (sin6->sin6_family != AF_INET6)
1898 return -EINVAL;
1899 memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
1900 break;
1901 #endif
1902 default:
1903 return -EINVAL;
1904 }
1905 t->encap_family = sa->sa_family;
1906 } else
1907 t->encap_family = xp->family;
1908
1909 /* No way to set this via kame pfkey */
1910 t->allalgs = 1;
1911 xp->xfrm_nr++;
1912 return 0;
1913 }
1914
1915 static int
1916 parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
1917 {
1918 int err;
1919 int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
1920 struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
1921
1922 while (len >= sizeof(struct sadb_x_ipsecrequest)) {
1923 if ((err = parse_ipsecrequest(xp, rq)) < 0)
1924 return err;
1925 len -= rq->sadb_x_ipsecrequest_len;
1926 rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
1927 }
1928 return 0;
1929 }
1930
1931 static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
1932 {
1933 struct xfrm_sec_ctx *xfrm_ctx = xp->security;
1934
1935 if (xfrm_ctx) {
1936 int len = sizeof(struct sadb_x_sec_ctx);
1937 len += xfrm_ctx->ctx_len;
1938 return PFKEY_ALIGN8(len);
1939 }
1940 return 0;
1941 }
1942
1943 static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
1944 {
1945 struct xfrm_tmpl *t;
1946 int sockaddr_size = pfkey_sockaddr_size(xp->family);
1947 int socklen = 0;
1948 int i;
1949
1950 for (i=0; i<xp->xfrm_nr; i++) {
1951 t = xp->xfrm_vec + i;
1952 socklen += (t->encap_family == AF_INET ?
1953 sizeof(struct sockaddr_in) :
1954 sizeof(struct sockaddr_in6));
1955 }
1956
1957 return sizeof(struct sadb_msg) +
1958 (sizeof(struct sadb_lifetime) * 3) +
1959 (sizeof(struct sadb_address) * 2) +
1960 (sockaddr_size * 2) +
1961 sizeof(struct sadb_x_policy) +
1962 (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
1963 (socklen * 2) +
1964 pfkey_xfrm_policy2sec_ctx_size(xp);
1965 }
1966
1967 static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
1968 {
1969 struct sk_buff *skb;
1970 int size;
1971
1972 size = pfkey_xfrm_policy2msg_size(xp);
1973
1974 skb = alloc_skb(size + 16, GFP_ATOMIC);
1975 if (skb == NULL)
1976 return ERR_PTR(-ENOBUFS);
1977
1978 return skb;
1979 }
1980
1981 static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
1982 {
1983 struct sadb_msg *hdr;
1984 struct sadb_address *addr;
1985 struct sadb_lifetime *lifetime;
1986 struct sadb_x_policy *pol;
1987 struct sockaddr_in *sin;
1988 struct sadb_x_sec_ctx *sec_ctx;
1989 struct xfrm_sec_ctx *xfrm_ctx;
1990 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1991 struct sockaddr_in6 *sin6;
1992 #endif
1993 int i;
1994 int size;
1995 int sockaddr_size = pfkey_sockaddr_size(xp->family);
1996 int socklen = (xp->family == AF_INET ?
1997 sizeof(struct sockaddr_in) :
1998 sizeof(struct sockaddr_in6));
1999
2000 size = pfkey_xfrm_policy2msg_size(xp);
2001
2002 /* call should fill header later */
2003 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
2004 memset(hdr, 0, size); /* XXX do we need this ? */
2005
2006 /* src address */
2007 addr = (struct sadb_address*) skb_put(skb,
2008 sizeof(struct sadb_address)+sockaddr_size);
2009 addr->sadb_address_len =
2010 (sizeof(struct sadb_address)+sockaddr_size)/
2011 sizeof(uint64_t);
2012 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
2013 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
2014 addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
2015 addr->sadb_address_reserved = 0;
2016 /* src address */
2017 if (xp->family == AF_INET) {
2018 sin = (struct sockaddr_in *) (addr + 1);
2019 sin->sin_family = AF_INET;
2020 sin->sin_addr.s_addr = xp->selector.saddr.a4;
2021 sin->sin_port = xp->selector.sport;
2022 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2023 }
2024 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2025 else if (xp->family == AF_INET6) {
2026 sin6 = (struct sockaddr_in6 *) (addr + 1);
2027 sin6->sin6_family = AF_INET6;
2028 sin6->sin6_port = xp->selector.sport;
2029 sin6->sin6_flowinfo = 0;
2030 memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
2031 sizeof(struct in6_addr));
2032 sin6->sin6_scope_id = 0;
2033 }
2034 #endif
2035 else
2036 BUG();
2037
2038 /* dst address */
2039 addr = (struct sadb_address*) skb_put(skb,
2040 sizeof(struct sadb_address)+sockaddr_size);
2041 addr->sadb_address_len =
2042 (sizeof(struct sadb_address)+sockaddr_size)/
2043 sizeof(uint64_t);
2044 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
2045 addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
2046 addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
2047 addr->sadb_address_reserved = 0;
2048 if (xp->family == AF_INET) {
2049 sin = (struct sockaddr_in *) (addr + 1);
2050 sin->sin_family = AF_INET;
2051 sin->sin_addr.s_addr = xp->selector.daddr.a4;
2052 sin->sin_port = xp->selector.dport;
2053 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2054 }
2055 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2056 else if (xp->family == AF_INET6) {
2057 sin6 = (struct sockaddr_in6 *) (addr + 1);
2058 sin6->sin6_family = AF_INET6;
2059 sin6->sin6_port = xp->selector.dport;
2060 sin6->sin6_flowinfo = 0;
2061 memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
2062 sizeof(struct in6_addr));
2063 sin6->sin6_scope_id = 0;
2064 }
2065 #endif
2066 else
2067 BUG();
2068
2069 /* hard time */
2070 lifetime = (struct sadb_lifetime *) skb_put(skb,
2071 sizeof(struct sadb_lifetime));
2072 lifetime->sadb_lifetime_len =
2073 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
2074 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2075 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
2076 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
2077 lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
2078 lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
2079 /* soft time */
2080 lifetime = (struct sadb_lifetime *) skb_put(skb,
2081 sizeof(struct sadb_lifetime));
2082 lifetime->sadb_lifetime_len =
2083 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
2084 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
2085 lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
2086 lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
2087 lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
2088 lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
2089 /* current time */
2090 lifetime = (struct sadb_lifetime *) skb_put(skb,
2091 sizeof(struct sadb_lifetime));
2092 lifetime->sadb_lifetime_len =
2093 sizeof(struct sadb_lifetime)/sizeof(uint64_t);
2094 lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2095 lifetime->sadb_lifetime_allocations = xp->curlft.packets;
2096 lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
2097 lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
2098 lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
2099
2100 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
2101 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
2102 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
2103 pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
2104 if (xp->action == XFRM_POLICY_ALLOW) {
2105 if (xp->xfrm_nr)
2106 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
2107 else
2108 pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
2109 }
2110 pol->sadb_x_policy_dir = dir+1;
2111 pol->sadb_x_policy_id = xp->index;
2112 pol->sadb_x_policy_priority = xp->priority;
2113
2114 for (i=0; i<xp->xfrm_nr; i++) {
2115 struct sadb_x_ipsecrequest *rq;
2116 struct xfrm_tmpl *t = xp->xfrm_vec + i;
2117 int req_size;
2118 int mode;
2119
2120 req_size = sizeof(struct sadb_x_ipsecrequest);
2121 if (t->mode == XFRM_MODE_TUNNEL)
2122 req_size += ((t->encap_family == AF_INET ?
2123 sizeof(struct sockaddr_in) :
2124 sizeof(struct sockaddr_in6)) * 2);
2125 else
2126 size -= 2*socklen;
2127 rq = (void*)skb_put(skb, req_size);
2128 pol->sadb_x_policy_len += req_size/8;
2129 memset(rq, 0, sizeof(*rq));
2130 rq->sadb_x_ipsecrequest_len = req_size;
2131 rq->sadb_x_ipsecrequest_proto = t->id.proto;
2132 if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
2133 return -EINVAL;
2134 rq->sadb_x_ipsecrequest_mode = mode;
2135 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
2136 if (t->reqid)
2137 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
2138 if (t->optional)
2139 rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
2140 rq->sadb_x_ipsecrequest_reqid = t->reqid;
2141 if (t->mode == XFRM_MODE_TUNNEL) {
2142 switch (t->encap_family) {
2143 case AF_INET:
2144 sin = (void*)(rq+1);
2145 sin->sin_family = AF_INET;
2146 sin->sin_addr.s_addr = t->saddr.a4;
2147 sin->sin_port = 0;
2148 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2149 sin++;
2150 sin->sin_family = AF_INET;
2151 sin->sin_addr.s_addr = t->id.daddr.a4;
2152 sin->sin_port = 0;
2153 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
2154 break;
2155 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2156 case AF_INET6:
2157 sin6 = (void*)(rq+1);
2158 sin6->sin6_family = AF_INET6;
2159 sin6->sin6_port = 0;
2160 sin6->sin6_flowinfo = 0;
2161 memcpy(&sin6->sin6_addr, t->saddr.a6,
2162 sizeof(struct in6_addr));
2163 sin6->sin6_scope_id = 0;
2164
2165 sin6++;
2166 sin6->sin6_family = AF_INET6;
2167 sin6->sin6_port = 0;
2168 sin6->sin6_flowinfo = 0;
2169 memcpy(&sin6->sin6_addr, t->id.daddr.a6,
2170 sizeof(struct in6_addr));
2171 sin6->sin6_scope_id = 0;
2172 break;
2173 #endif
2174 default:
2175 break;
2176 }
2177 }
2178 }
2179
2180 /* security context */
2181 if ((xfrm_ctx = xp->security)) {
2182 int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
2183
2184 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
2185 sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
2186 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
2187 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
2188 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
2189 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
2190 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
2191 xfrm_ctx->ctx_len);
2192 }
2193
2194 hdr->sadb_msg_len = size / sizeof(uint64_t);
2195 hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
2196
2197 return 0;
2198 }
2199
2200 static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
2201 {
2202 struct sk_buff *out_skb;
2203 struct sadb_msg *out_hdr;
2204 int err;
2205
2206 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2207 if (IS_ERR(out_skb)) {
2208 err = PTR_ERR(out_skb);
2209 goto out;
2210 }
2211 err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
2212 if (err < 0)
2213 return err;
2214
2215 out_hdr = (struct sadb_msg *) out_skb->data;
2216 out_hdr->sadb_msg_version = PF_KEY_V2;
2217
2218 if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
2219 out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
2220 else
2221 out_hdr->sadb_msg_type = event2poltype(c->event);
2222 out_hdr->sadb_msg_errno = 0;
2223 out_hdr->sadb_msg_seq = c->seq;
2224 out_hdr->sadb_msg_pid = c->pid;
2225 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
2226 out:
2227 return 0;
2228
2229 }
2230
2231 static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2232 {
2233 int err = 0;
2234 struct sadb_lifetime *lifetime;
2235 struct sadb_address *sa;
2236 struct sadb_x_policy *pol;
2237 struct xfrm_policy *xp;
2238 struct km_event c;
2239 struct sadb_x_sec_ctx *sec_ctx;
2240
2241 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2242 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2243 !ext_hdrs[SADB_X_EXT_POLICY-1])
2244 return -EINVAL;
2245
2246 pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2247 if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
2248 return -EINVAL;
2249 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2250 return -EINVAL;
2251
2252 xp = xfrm_policy_alloc(GFP_KERNEL);
2253 if (xp == NULL)
2254 return -ENOBUFS;
2255
2256 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
2257 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
2258 xp->priority = pol->sadb_x_policy_priority;
2259
2260 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2261 xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
2262 if (!xp->family) {
2263 err = -EINVAL;
2264 goto out;
2265 }
2266 xp->selector.family = xp->family;
2267 xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
2268 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2269 xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2270 if (xp->selector.sport)
2271 xp->selector.sport_mask = htons(0xffff);
2272
2273 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2274 pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
2275 xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
2276
2277 /* Amusing, we set this twice. KAME apps appear to set same value
2278 * in both addresses.
2279 */
2280 xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2281
2282 xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2283 if (xp->selector.dport)
2284 xp->selector.dport_mask = htons(0xffff);
2285
2286 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
2287 if (sec_ctx != NULL) {
2288 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2289
2290 if (!uctx) {
2291 err = -ENOBUFS;
2292 goto out;
2293 }
2294
2295 err = security_xfrm_policy_alloc(&xp->security, uctx);
2296 kfree(uctx);
2297
2298 if (err)
2299 goto out;
2300 }
2301
2302 xp->lft.soft_byte_limit = XFRM_INF;
2303 xp->lft.hard_byte_limit = XFRM_INF;
2304 xp->lft.soft_packet_limit = XFRM_INF;
2305 xp->lft.hard_packet_limit = XFRM_INF;
2306 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
2307 xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2308 xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2309 xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2310 xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2311 }
2312 if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
2313 xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
2314 xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
2315 xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
2316 xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
2317 }
2318 xp->xfrm_nr = 0;
2319 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
2320 (err = parse_ipsecrequests(xp, pol)) < 0)
2321 goto out;
2322
2323 err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
2324 hdr->sadb_msg_type != SADB_X_SPDUPDATE);
2325
2326 xfrm_audit_policy_add(xp, err ? 0 : 1,
2327 audit_get_loginuid(current), 0);
2328
2329 if (err)
2330 goto out;
2331
2332 if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
2333 c.event = XFRM_MSG_UPDPOLICY;
2334 else
2335 c.event = XFRM_MSG_NEWPOLICY;
2336
2337 c.seq = hdr->sadb_msg_seq;
2338 c.pid = hdr->sadb_msg_pid;
2339
2340 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2341 xfrm_pol_put(xp);
2342 return 0;
2343
2344 out:
2345 xp->dead = 1;
2346 xfrm_policy_destroy(xp);
2347 return err;
2348 }
2349
2350 static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2351 {
2352 int err;
2353 struct sadb_address *sa;
2354 struct sadb_x_policy *pol;
2355 struct xfrm_policy *xp;
2356 struct xfrm_selector sel;
2357 struct km_event c;
2358 struct sadb_x_sec_ctx *sec_ctx;
2359 struct xfrm_sec_ctx *pol_ctx;
2360
2361 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2362 ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
2363 !ext_hdrs[SADB_X_EXT_POLICY-1])
2364 return -EINVAL;
2365
2366 pol = ext_hdrs[SADB_X_EXT_POLICY-1];
2367 if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
2368 return -EINVAL;
2369
2370 memset(&sel, 0, sizeof(sel));
2371
2372 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
2373 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
2374 sel.prefixlen_s = sa->sadb_address_prefixlen;
2375 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2376 sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
2377 if (sel.sport)
2378 sel.sport_mask = htons(0xffff);
2379
2380 sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
2381 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
2382 sel.prefixlen_d = sa->sadb_address_prefixlen;
2383 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2384 sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
2385 if (sel.dport)
2386 sel.dport_mask = htons(0xffff);
2387
2388 sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
2389 if (sec_ctx != NULL) {
2390 struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
2391
2392 if (!uctx)
2393 return -ENOMEM;
2394
2395 err = security_xfrm_policy_alloc(&pol_ctx, uctx);
2396 kfree(uctx);
2397 if (err)
2398 return err;
2399 } else
2400 pol_ctx = NULL;
2401
2402 xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
2403 pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
2404 1, &err);
2405 security_xfrm_policy_free(pol_ctx);
2406 if (xp == NULL)
2407 return -ENOENT;
2408
2409 xfrm_audit_policy_delete(xp, err ? 0 : 1,
2410 audit_get_loginuid(current), 0);
2411
2412 if (err)
2413 goto out;
2414
2415 c.seq = hdr->sadb_msg_seq;
2416 c.pid = hdr->sadb_msg_pid;
2417 c.event = XFRM_MSG_DELPOLICY;
2418 km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
2419
2420 out:
2421 xfrm_pol_put(xp);
2422 return err;
2423 }
2424
2425 static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
2426 {
2427 int err;
2428 struct sk_buff *out_skb;
2429 struct sadb_msg *out_hdr;
2430 err = 0;
2431
2432 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2433 if (IS_ERR(out_skb)) {
2434 err = PTR_ERR(out_skb);
2435 goto out;
2436 }
2437 err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
2438 if (err < 0)
2439 goto out;
2440
2441 out_hdr = (struct sadb_msg *) out_skb->data;
2442 out_hdr->sadb_msg_version = hdr->sadb_msg_version;
2443 out_hdr->sadb_msg_type = hdr->sadb_msg_type;
2444 out_hdr->sadb_msg_satype = 0;
2445 out_hdr->sadb_msg_errno = 0;
2446 out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
2447 out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
2448 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
2449 err = 0;
2450
2451 out:
2452 return err;
2453 }
2454
2455 #ifdef CONFIG_NET_KEY_MIGRATE
2456 static int pfkey_sockaddr_pair_size(sa_family_t family)
2457 {
2458 switch (family) {
2459 case AF_INET:
2460 return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
2461 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2462 case AF_INET6:
2463 return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
2464 #endif
2465 default:
2466 return 0;
2467 }
2468 /* NOTREACHED */
2469 }
2470
2471 static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
2472 xfrm_address_t *saddr, xfrm_address_t *daddr,
2473 u16 *family)
2474 {
2475 struct sockaddr *sa = (struct sockaddr *)(rq + 1);
2476 if (rq->sadb_x_ipsecrequest_len <
2477 pfkey_sockaddr_pair_size(sa->sa_family))
2478 return -EINVAL;
2479
2480 switch (sa->sa_family) {
2481 case AF_INET:
2482 {
2483 struct sockaddr_in *sin;
2484 sin = (struct sockaddr_in *)sa;
2485 if ((sin+1)->sin_family != AF_INET)
2486 return -EINVAL;
2487 memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
2488 sin++;
2489 memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
2490 *family = AF_INET;
2491 break;
2492 }
2493 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2494 case AF_INET6:
2495 {
2496 struct sockaddr_in6 *sin6;
2497 sin6 = (struct sockaddr_in6 *)sa;
2498 if ((sin6+1)->sin6_family != AF_INET6)
2499 return -EINVAL;
2500 memcpy(&saddr->a6, &sin6->sin6_addr,
2501 sizeof(saddr->a6));
2502 sin6++;
2503 memcpy(&daddr->a6, &sin6->sin6_addr,
2504 sizeof(daddr->a6));
2505 *family = AF_INET6;
2506 break;
2507 }
2508 #endif
2509 default:
2510 return -EINVAL;
2511 }
2512
2513 return 0;
2514 }
2515
2516 static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
2517 struct xfrm_migrate *m)
2518 {
2519 int err;
2520 struct sadb_x_ipsecrequest *rq2;
2521 int mode;
2522
2523 if (len <= sizeof(struct sadb_x_ipsecrequest) ||
2524 len < rq1->sadb_x_ipsecrequest_len)
2525 return -EINVAL;
2526
2527 /* old endoints */
2528 err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
2529 &m->old_family);
2530 if (err)
2531 return err;
2532
2533 rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
2534 len -= rq1->sadb_x_ipsecrequest_len;
2535
2536 if (len <= sizeof(struct sadb_x_ipsecrequest) ||
2537 len < rq2->sadb_x_ipsecrequest_len)
2538 return -EINVAL;
2539
2540 /* new endpoints */
2541 err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
2542 &m->new_family);
2543 if (err)
2544 return err;
2545
2546 if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
2547 rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
2548 rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
2549 return -EINVAL;
2550
2551 m->proto = rq1->sadb_x_ipsecrequest_proto;
2552 if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
2553 return -EINVAL;
2554 m->mode = mode;
2555 m->reqid = rq1->sadb_x_ipsecrequest_reqid;
2556
2557 return ((int)(rq1->sadb_x_ipsecrequest_len +
2558 rq2->sadb_x_ipsecrequest_len));
2559 }
2560
2561 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
2562 struct sadb_msg *hdr, void **ext_hdrs)
2563 {
2564 int i, len, ret, err = -EINVAL;
2565 u8 dir;
2566 struct sadb_address *sa;
2567 struct sadb_x_policy *pol;
2568 struct sadb_x_ipsecrequest *rq;
2569 struct xfrm_selector sel;
2570 struct xfrm_migrate m[XFRM_MAX_DEPTH];
2571
2572 if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
2573 ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
2574 !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
2575 err = -EINVAL;
2576 goto out;
2577 }
2578
2579 pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
2580 if (!pol) {
2581 err = -EINVAL;
2582 goto out;
2583 }
2584
2585 if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
2586 err = -EINVAL;
2587 goto out;
2588 }
2589
2590 dir = pol->sadb_x_policy_dir - 1;
2591 memset(&sel, 0, sizeof(sel));
2592
2593 /* set source address info of selector */
2594 sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
2595 sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
2596 sel.prefixlen_s = sa->sadb_address_prefixlen;
2597 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2598 sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
2599 if (sel.sport)
2600 sel.sport_mask = htons(0xffff);
2601
2602 /* set destination address info of selector */
2603 sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
2604 pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
2605 sel.prefixlen_d = sa->sadb_address_prefixlen;
2606 sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
2607 sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
2608 if (sel.dport)
2609 sel.dport_mask = htons(0xffff);
2610
2611 rq = (struct sadb_x_ipsecrequest *)(pol + 1);
2612
2613 /* extract ipsecrequests */
2614 i = 0;
2615 len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
2616
2617 while (len > 0 && i < XFRM_MAX_DEPTH) {
2618 ret = ipsecrequests_to_migrate(rq, len, &m[i]);
2619 if (ret < 0) {
2620 err = ret;
2621 goto out;
2622 } else {
2623 rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
2624 len -= ret;
2625 i++;
2626 }
2627 }
2628
2629 if (!i || len > 0) {
2630 err = -EINVAL;
2631 goto out;
2632 }
2633
2634 return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
2635
2636 out:
2637 return err;
2638 }
2639 #else
2640 static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
2641 struct sadb_msg *hdr, void **ext_hdrs)
2642 {
2643 return -ENOPROTOOPT;
2644 }
2645 #endif
2646
2647
2648 static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2649 {
2650 unsigned int dir;
2651 int err = 0, delete;
2652 struct sadb_x_policy *pol;
2653 struct xfrm_policy *xp;
2654 struct km_event c;
2655
2656 if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
2657 return -EINVAL;
2658
2659 dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
2660 if (dir >= XFRM_POLICY_MAX)
2661 return -EINVAL;
2662
2663 delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
2664 xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
2665 delete, &err);
2666 if (xp == NULL)
2667 return -ENOENT;
2668
2669 if (delete) {
2670 xfrm_audit_policy_delete(xp, err ? 0 : 1,
2671 audit_get_loginuid(current), 0);
2672
2673 if (err)
2674 goto out;
2675 c.seq = hdr->sadb_msg_seq;
2676 c.pid = hdr->sadb_msg_pid;
2677 c.data.byid = 1;
2678 c.event = XFRM_MSG_DELPOLICY;
2679 km_policy_notify(xp, dir, &c);
2680 } else {
2681 err = key_pol_get_resp(sk, xp, hdr, dir);
2682 }
2683
2684 out:
2685 xfrm_pol_put(xp);
2686 return err;
2687 }
2688
2689 static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
2690 {
2691 struct pfkey_sock *pfk = ptr;
2692 struct sk_buff *out_skb;
2693 struct sadb_msg *out_hdr;
2694 int err;
2695
2696 if (!pfkey_can_dump(&pfk->sk))
2697 return -ENOBUFS;
2698
2699 out_skb = pfkey_xfrm_policy2msg_prep(xp);
2700 if (IS_ERR(out_skb))
2701 return PTR_ERR(out_skb);
2702
2703 err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
2704 if (err < 0)
2705 return err;
2706
2707 out_hdr = (struct sadb_msg *) out_skb->data;
2708 out_hdr->sadb_msg_version = pfk->dump.msg_version;
2709 out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
2710 out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
2711 out_hdr->sadb_msg_errno = 0;
2712 out_hdr->sadb_msg_seq = count;
2713 out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
2714 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
2715 return 0;
2716 }
2717
2718 static int pfkey_dump_sp(struct pfkey_sock *pfk)
2719 {
2720 return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
2721 }
2722
2723 static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
2724 {
2725 xfrm_policy_walk_done(&pfk->dump.u.policy);
2726 }
2727
2728 static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2729 {
2730 struct pfkey_sock *pfk = pfkey_sk(sk);
2731
2732 if (pfk->dump.dump != NULL)
2733 return -EBUSY;
2734
2735 pfk->dump.msg_version = hdr->sadb_msg_version;
2736 pfk->dump.msg_pid = hdr->sadb_msg_pid;
2737 pfk->dump.dump = pfkey_dump_sp;
2738 pfk->dump.done = pfkey_dump_sp_done;
2739 xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
2740
2741 return pfkey_do_dump(pfk);
2742 }
2743
2744 static int key_notify_policy_flush(struct km_event *c)
2745 {
2746 struct sk_buff *skb_out;
2747 struct sadb_msg *hdr;
2748
2749 skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
2750 if (!skb_out)
2751 return -ENOBUFS;
2752 hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
2753 hdr->sadb_msg_type = SADB_X_SPDFLUSH;
2754 hdr->sadb_msg_seq = c->seq;
2755 hdr->sadb_msg_pid = c->pid;
2756 hdr->sadb_msg_version = PF_KEY_V2;
2757 hdr->sadb_msg_errno = (uint8_t) 0;
2758 hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
2759 pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
2760 return 0;
2761
2762 }
2763
2764 static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
2765 {
2766 struct km_event c;
2767 struct xfrm_audit audit_info;
2768 int err;
2769
2770 audit_info.loginuid = audit_get_loginuid(current);
2771 audit_info.secid = 0;
2772 err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
2773 if (err)
2774 return err;
2775 c.data.type = XFRM_POLICY_TYPE_MAIN;
2776 c.event = XFRM_MSG_FLUSHPOLICY;
2777 c.pid = hdr->sadb_msg_pid;
2778 c.seq = hdr->sadb_msg_seq;
2779 km_policy_notify(NULL, 0, &c);
2780
2781 return 0;
2782 }
2783
2784 typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
2785 struct sadb_msg *hdr, void **ext_hdrs);
2786 static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
2787 [SADB_RESERVED] = pfkey_reserved,
2788 [SADB_GETSPI] = pfkey_getspi,
2789 [SADB_UPDATE] = pfkey_add,
2790 [SADB_ADD] = pfkey_add,
2791 [SADB_DELETE] = pfkey_delete,
2792 [SADB_GET] = pfkey_get,
2793 [SADB_ACQUIRE] = pfkey_acquire,
2794 [SADB_REGISTER] = pfkey_register,
2795 [SADB_EXPIRE] = NULL,
2796 [SADB_FLUSH] = pfkey_flush,
2797 [SADB_DUMP] = pfkey_dump,
2798 [SADB_X_PROMISC] = pfkey_promisc,
2799 [SADB_X_PCHANGE] = NULL,
2800 [SADB_X_SPDUPDATE] = pfkey_spdadd,
2801 [SADB_X_SPDADD] = pfkey_spdadd,
2802 [SADB_X_SPDDELETE] = pfkey_spddelete,
2803 [SADB_X_SPDGET] = pfkey_spdget,
2804 [SADB_X_SPDACQUIRE] = NULL,
2805 [SADB_X_SPDDUMP] = pfkey_spddump,
2806 [SADB_X_SPDFLUSH] = pfkey_spdflush,
2807 [SADB_X_SPDSETIDX] = pfkey_spdadd,
2808 [SADB_X_SPDDELETE2] = pfkey_spdget,
2809 [SADB_X_MIGRATE] = pfkey_migrate,
2810 };
2811
2812 static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
2813 {
2814 void *ext_hdrs[SADB_EXT_MAX];
2815 int err;
2816
2817 pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
2818 BROADCAST_PROMISC_ONLY, NULL);
2819
2820 memset(ext_hdrs, 0, sizeof(ext_hdrs));
2821 err = parse_exthdrs(skb, hdr, ext_hdrs);
2822 if (!err) {
2823 err = -EOPNOTSUPP;
2824 if (pfkey_funcs[hdr->sadb_msg_type])
2825 err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
2826 }
2827 return err;
2828 }
2829
2830 static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
2831 {
2832 struct sadb_msg *hdr = NULL;
2833
2834 if (skb->len < sizeof(*hdr)) {
2835 *errp = -EMSGSIZE;
2836 } else {
2837 hdr = (struct sadb_msg *) skb->data;
2838 if (hdr->sadb_msg_version != PF_KEY_V2 ||
2839 hdr->sadb_msg_reserved != 0 ||
2840 (hdr->sadb_msg_type <= SADB_RESERVED ||
2841 hdr->sadb_msg_type > SADB_MAX)) {
2842 hdr = NULL;
2843 *errp = -EINVAL;
2844 } else if (hdr->sadb_msg_len != (skb->len /
2845 sizeof(uint64_t)) ||
2846 hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
2847 sizeof(uint64_t))) {
2848 hdr = NULL;
2849 *errp = -EMSGSIZE;
2850 } else {
2851 *errp = 0;
2852 }
2853 }
2854 return hdr;
2855 }
2856
2857 static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2858 {
2859 unsigned int id = d->desc.sadb_alg_id;
2860
2861 if (id >= sizeof(t->aalgos) * 8)
2862 return 0;
2863
2864 return (t->aalgos >> id) & 1;
2865 }
2866
2867 static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
2868 {
2869 unsigned int id = d->desc.sadb_alg_id;
2870
2871 if (id >= sizeof(t->ealgos) * 8)
2872 return 0;
2873
2874 return (t->ealgos >> id) & 1;
2875 }
2876
2877 static int count_ah_combs(struct xfrm_tmpl *t)
2878 {
2879 int i, sz = 0;
2880
2881 for (i = 0; ; i++) {
2882 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2883 if (!aalg)
2884 break;
2885 if (aalg_tmpl_set(t, aalg) && aalg->available)
2886 sz += sizeof(struct sadb_comb);
2887 }
2888 return sz + sizeof(struct sadb_prop);
2889 }
2890
2891 static int count_esp_combs(struct xfrm_tmpl *t)
2892 {
2893 int i, k, sz = 0;
2894
2895 for (i = 0; ; i++) {
2896 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2897 if (!ealg)
2898 break;
2899
2900 if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2901 continue;
2902
2903 for (k = 1; ; k++) {
2904 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2905 if (!aalg)
2906 break;
2907
2908 if (aalg_tmpl_set(t, aalg) && aalg->available)
2909 sz += sizeof(struct sadb_comb);
2910 }
2911 }
2912 return sz + sizeof(struct sadb_prop);
2913 }
2914
2915 static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2916 {
2917 struct sadb_prop *p;
2918 int i;
2919
2920 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2921 p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2922 p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2923 p->sadb_prop_replay = 32;
2924 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2925
2926 for (i = 0; ; i++) {
2927 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
2928 if (!aalg)
2929 break;
2930
2931 if (aalg_tmpl_set(t, aalg) && aalg->available) {
2932 struct sadb_comb *c;
2933 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2934 memset(c, 0, sizeof(*c));
2935 p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2936 c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2937 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2938 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2939 c->sadb_comb_hard_addtime = 24*60*60;
2940 c->sadb_comb_soft_addtime = 20*60*60;
2941 c->sadb_comb_hard_usetime = 8*60*60;
2942 c->sadb_comb_soft_usetime = 7*60*60;
2943 }
2944 }
2945 }
2946
2947 static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
2948 {
2949 struct sadb_prop *p;
2950 int i, k;
2951
2952 p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
2953 p->sadb_prop_len = sizeof(struct sadb_prop)/8;
2954 p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
2955 p->sadb_prop_replay = 32;
2956 memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
2957
2958 for (i=0; ; i++) {
2959 struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
2960 if (!ealg)
2961 break;
2962
2963 if (!(ealg_tmpl_set(t, ealg) && ealg->available))
2964 continue;
2965
2966 for (k = 1; ; k++) {
2967 struct sadb_comb *c;
2968 struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
2969 if (!aalg)
2970 break;
2971 if (!(aalg_tmpl_set(t, aalg) && aalg->available))
2972 continue;
2973 c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
2974 memset(c, 0, sizeof(*c));
2975 p->sadb_prop_len += sizeof(struct sadb_comb)/8;
2976 c->sadb_comb_auth = aalg->desc.sadb_alg_id;
2977 c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
2978 c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
2979 c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
2980 c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
2981 c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
2982 c->sadb_comb_hard_addtime = 24*60*60;
2983 c->sadb_comb_soft_addtime = 20*60*60;
2984 c->sadb_comb_hard_usetime = 8*60*60;
2985 c->sadb_comb_soft_usetime = 7*60*60;
2986 }
2987 }
2988 }
2989
2990 static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
2991 {
2992 return 0;
2993 }
2994
2995 static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
2996 {
2997 struct sk_buff *out_skb;
2998 struct sadb_msg *out_hdr;
2999 int hard;
3000 int hsc;
3001
3002 hard = c->data.hard;
3003 if (hard)
3004 hsc = 2;
3005 else
3006 hsc = 1;
3007
3008 out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
3009 if (IS_ERR(out_skb))
3010 return PTR_ERR(out_skb);
3011
3012 out_hdr = (struct sadb_msg *) out_skb->data;
3013 out_hdr->sadb_msg_version = PF_KEY_V2;
3014 out_hdr->sadb_msg_type = SADB_EXPIRE;
3015 out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
3016 out_hdr->sadb_msg_errno = 0;
3017 out_hdr->sadb_msg_reserved = 0;
3018 out_hdr->sadb_msg_seq = 0;
3019 out_hdr->sadb_msg_pid = 0;
3020
3021 pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3022 return 0;
3023 }
3024
3025 static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
3026 {
3027 switch (c->event) {
3028 case XFRM_MSG_EXPIRE:
3029 return key_notify_sa_expire(x, c);
3030 case XFRM_MSG_DELSA:
3031 case XFRM_MSG_NEWSA:
3032 case XFRM_MSG_UPDSA:
3033 return key_notify_sa(x, c);
3034 case XFRM_MSG_FLUSHSA:
3035 return key_notify_sa_flush(c);
3036 case XFRM_MSG_NEWAE: /* not yet supported */
3037 break;
3038 default:
3039 printk("pfkey: Unknown SA event %d\n", c->event);
3040 break;
3041 }
3042
3043 return 0;
3044 }
3045
3046 static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
3047 {
3048 if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
3049 return 0;
3050
3051 switch (c->event) {
3052 case XFRM_MSG_POLEXPIRE:
3053 return key_notify_policy_expire(xp, c);
3054 case XFRM_MSG_DELPOLICY:
3055 case XFRM_MSG_NEWPOLICY:
3056 case XFRM_MSG_UPDPOLICY:
3057 return key_notify_policy(xp, dir, c);
3058 case XFRM_MSG_FLUSHPOLICY:
3059 if (c->data.type != XFRM_POLICY_TYPE_MAIN)
3060 break;
3061 return key_notify_policy_flush(c);
3062 default:
3063 printk("pfkey: Unknown policy event %d\n", c->event);
3064 break;
3065 }
3066
3067 return 0;
3068 }
3069
3070 static u32 get_acqseq(void)
3071 {
3072 u32 res;
3073 static u32 acqseq;
3074 static DEFINE_SPINLOCK(acqseq_lock);
3075
3076 spin_lock_bh(&acqseq_lock);
3077 res = (++acqseq ? : ++acqseq);
3078 spin_unlock_bh(&acqseq_lock);
3079 return res;
3080 }
3081
3082 static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
3083 {
3084 struct sk_buff *skb;
3085 struct sadb_msg *hdr;
3086 struct sadb_address *addr;
3087 struct sadb_x_policy *pol;
3088 struct sockaddr_in *sin;
3089 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3090 struct sockaddr_in6 *sin6;
3091 #endif
3092 int sockaddr_size;
3093 int size;
3094 struct sadb_x_sec_ctx *sec_ctx;
3095 struct xfrm_sec_ctx *xfrm_ctx;
3096 int ctx_size = 0;
3097
3098 sockaddr_size = pfkey_sockaddr_size(x->props.family);
3099 if (!sockaddr_size)
3100 return -EINVAL;
3101
3102 size = sizeof(struct sadb_msg) +
3103 (sizeof(struct sadb_address) * 2) +
3104 (sockaddr_size * 2) +
3105 sizeof(struct sadb_x_policy);
3106
3107 if (x->id.proto == IPPROTO_AH)
3108 size += count_ah_combs(t);
3109 else if (x->id.proto == IPPROTO_ESP)
3110 size += count_esp_combs(t);
3111
3112 if ((xfrm_ctx = x->security)) {
3113 ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
3114 size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
3115 }
3116
3117 skb = alloc_skb(size + 16, GFP_ATOMIC);
3118 if (skb == NULL)
3119 return -ENOMEM;
3120
3121 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
3122 hdr->sadb_msg_version = PF_KEY_V2;
3123 hdr->sadb_msg_type = SADB_ACQUIRE;
3124 hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
3125 hdr->sadb_msg_len = size / sizeof(uint64_t);
3126 hdr->sadb_msg_errno = 0;
3127 hdr->sadb_msg_reserved = 0;
3128 hdr->sadb_msg_seq = x->km.seq = get_acqseq();
3129 hdr->sadb_msg_pid = 0;
3130
3131 /* src address */
3132 addr = (struct sadb_address*) skb_put(skb,
3133 sizeof(struct sadb_address)+sockaddr_size);
3134 addr->sadb_address_len =
3135 (sizeof(struct sadb_address)+sockaddr_size)/
3136 sizeof(uint64_t);
3137 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
3138 addr->sadb_address_proto = 0;
3139 addr->sadb_address_reserved = 0;
3140 if (x->props.family == AF_INET) {
3141 addr->sadb_address_prefixlen = 32;
3142
3143 sin = (struct sockaddr_in *) (addr + 1);
3144 sin->sin_family = AF_INET;
3145 sin->sin_addr.s_addr = x->props.saddr.a4;
3146 sin->sin_port = 0;
3147 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3148 }
3149 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3150 else if (x->props.family == AF_INET6) {
3151 addr->sadb_address_prefixlen = 128;
3152
3153 sin6 = (struct sockaddr_in6 *) (addr + 1);
3154 sin6->sin6_family = AF_INET6;
3155 sin6->sin6_port = 0;
3156 sin6->sin6_flowinfo = 0;
3157 memcpy(&sin6->sin6_addr,
3158 x->props.saddr.a6, sizeof(struct in6_addr));
3159 sin6->sin6_scope_id = 0;
3160 }
3161 #endif
3162 else
3163 BUG();
3164
3165 /* dst address */
3166 addr = (struct sadb_address*) skb_put(skb,
3167 sizeof(struct sadb_address)+sockaddr_size);
3168 addr->sadb_address_len =
3169 (sizeof(struct sadb_address)+sockaddr_size)/
3170 sizeof(uint64_t);
3171 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
3172 addr->sadb_address_proto = 0;
3173 addr->sadb_address_reserved = 0;
3174 if (x->props.family == AF_INET) {
3175 addr->sadb_address_prefixlen = 32;
3176
3177 sin = (struct sockaddr_in *) (addr + 1);
3178 sin->sin_family = AF_INET;
3179 sin->sin_addr.s_addr = x->id.daddr.a4;
3180 sin->sin_port = 0;
3181 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3182 }
3183 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3184 else if (x->props.family == AF_INET6) {
3185 addr->sadb_address_prefixlen = 128;
3186
3187 sin6 = (struct sockaddr_in6 *) (addr + 1);
3188 sin6->sin6_family = AF_INET6;
3189 sin6->sin6_port = 0;
3190 sin6->sin6_flowinfo = 0;
3191 memcpy(&sin6->sin6_addr,
3192 x->id.daddr.a6, sizeof(struct in6_addr));
3193 sin6->sin6_scope_id = 0;
3194 }
3195 #endif
3196 else
3197 BUG();
3198
3199 pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
3200 pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
3201 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3202 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
3203 pol->sadb_x_policy_dir = dir+1;
3204 pol->sadb_x_policy_id = xp->index;
3205
3206 /* Set sadb_comb's. */
3207 if (x->id.proto == IPPROTO_AH)
3208 dump_ah_combs(skb, t);
3209 else if (x->id.proto == IPPROTO_ESP)
3210 dump_esp_combs(skb, t);
3211
3212 /* security context */
3213 if (xfrm_ctx) {
3214 sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
3215 sizeof(struct sadb_x_sec_ctx) + ctx_size);
3216 sec_ctx->sadb_x_sec_len =
3217 (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
3218 sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
3219 sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
3220 sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
3221 sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
3222 memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
3223 xfrm_ctx->ctx_len);
3224 }
3225
3226 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3227 }
3228
3229 static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
3230 u8 *data, int len, int *dir)
3231 {
3232 struct xfrm_policy *xp;
3233 struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
3234 struct sadb_x_sec_ctx *sec_ctx;
3235
3236 switch (sk->sk_family) {
3237 case AF_INET:
3238 if (opt != IP_IPSEC_POLICY) {
3239 *dir = -EOPNOTSUPP;
3240 return NULL;
3241 }
3242 break;
3243 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3244 case AF_INET6:
3245 if (opt != IPV6_IPSEC_POLICY) {
3246 *dir = -EOPNOTSUPP;
3247 return NULL;
3248 }
3249 break;
3250 #endif
3251 default:
3252 *dir = -EINVAL;
3253 return NULL;
3254 }
3255
3256 *dir = -EINVAL;
3257
3258 if (len < sizeof(struct sadb_x_policy) ||
3259 pol->sadb_x_policy_len*8 > len ||
3260 pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
3261 (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
3262 return NULL;
3263
3264 xp = xfrm_policy_alloc(GFP_ATOMIC);
3265 if (xp == NULL) {
3266 *dir = -ENOBUFS;
3267 return NULL;
3268 }
3269
3270 xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
3271 XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
3272
3273 xp->lft.soft_byte_limit = XFRM_INF;
3274 xp->lft.hard_byte_limit = XFRM_INF;
3275 xp->lft.soft_packet_limit = XFRM_INF;
3276 xp->lft.hard_packet_limit = XFRM_INF;
3277 xp->family = sk->sk_family;
3278
3279 xp->xfrm_nr = 0;
3280 if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
3281 (*dir = parse_ipsecrequests(xp, pol)) < 0)
3282 goto out;
3283
3284 /* security context too */
3285 if (len >= (pol->sadb_x_policy_len*8 +
3286 sizeof(struct sadb_x_sec_ctx))) {
3287 char *p = (char *)pol;
3288 struct xfrm_user_sec_ctx *uctx;
3289
3290 p += pol->sadb_x_policy_len*8;
3291 sec_ctx = (struct sadb_x_sec_ctx *)p;
3292 if (len < pol->sadb_x_policy_len*8 +
3293 sec_ctx->sadb_x_sec_len) {
3294 *dir = -EINVAL;
3295 goto out;
3296 }
3297 if ((*dir = verify_sec_ctx_len(p)))
3298 goto out;
3299 uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
3300 *dir = security_xfrm_policy_alloc(&xp->security, uctx);
3301 kfree(uctx);
3302
3303 if (*dir)
3304 goto out;
3305 }
3306
3307 *dir = pol->sadb_x_policy_dir-1;
3308 return xp;
3309
3310 out:
3311 xfrm_policy_destroy(xp);
3312 return NULL;
3313 }
3314
3315 static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
3316 {
3317 struct sk_buff *skb;
3318 struct sadb_msg *hdr;
3319 struct sadb_sa *sa;
3320 struct sadb_address *addr;
3321 struct sadb_x_nat_t_port *n_port;
3322 struct sockaddr_in *sin;
3323 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3324 struct sockaddr_in6 *sin6;
3325 #endif
3326 int sockaddr_size;
3327 int size;
3328 __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
3329 struct xfrm_encap_tmpl *natt = NULL;
3330
3331 sockaddr_size = pfkey_sockaddr_size(x->props.family);
3332 if (!sockaddr_size)
3333 return -EINVAL;
3334
3335 if (!satype)
3336 return -EINVAL;
3337
3338 if (!x->encap)
3339 return -EINVAL;
3340
3341 natt = x->encap;
3342
3343 /* Build an SADB_X_NAT_T_NEW_MAPPING message:
3344 *
3345 * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
3346 * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
3347 */
3348
3349 size = sizeof(struct sadb_msg) +
3350 sizeof(struct sadb_sa) +
3351 (sizeof(struct sadb_address) * 2) +
3352 (sockaddr_size * 2) +
3353 (sizeof(struct sadb_x_nat_t_port) * 2);
3354
3355 skb = alloc_skb(size + 16, GFP_ATOMIC);
3356 if (skb == NULL)
3357 return -ENOMEM;
3358
3359 hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
3360 hdr->sadb_msg_version = PF_KEY_V2;
3361 hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
3362 hdr->sadb_msg_satype = satype;
3363 hdr->sadb_msg_len = size / sizeof(uint64_t);
3364 hdr->sadb_msg_errno = 0;
3365 hdr->sadb_msg_reserved = 0;
3366 hdr->sadb_msg_seq = x->km.seq = get_acqseq();
3367 hdr->sadb_msg_pid = 0;
3368
3369 /* SA */
3370 sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
3371 sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
3372 sa->sadb_sa_exttype = SADB_EXT_SA;
3373 sa->sadb_sa_spi = x->id.spi;
3374 sa->sadb_sa_replay = 0;
3375 sa->sadb_sa_state = 0;
3376 sa->sadb_sa_auth = 0;
3377 sa->sadb_sa_encrypt = 0;
3378 sa->sadb_sa_flags = 0;
3379
3380 /* ADDRESS_SRC (old addr) */
3381 addr = (struct sadb_address*)
3382 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
3383 addr->sadb_address_len =
3384 (sizeof(struct sadb_address)+sockaddr_size)/
3385 sizeof(uint64_t);
3386 addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
3387 addr->sadb_address_proto = 0;
3388 addr->sadb_address_reserved = 0;
3389 if (x->props.family == AF_INET) {
3390 addr->sadb_address_prefixlen = 32;
3391
3392 sin = (struct sockaddr_in *) (addr + 1);
3393 sin->sin_family = AF_INET;
3394 sin->sin_addr.s_addr = x->props.saddr.a4;
3395 sin->sin_port = 0;
3396 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3397 }
3398 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3399 else if (x->props.family == AF_INET6) {
3400 addr->sadb_address_prefixlen = 128;
3401
3402 sin6 = (struct sockaddr_in6 *) (addr + 1);
3403 sin6->sin6_family = AF_INET6;
3404 sin6->sin6_port = 0;
3405 sin6->sin6_flowinfo = 0;
3406 memcpy(&sin6->sin6_addr,
3407 x->props.saddr.a6, sizeof(struct in6_addr));
3408 sin6->sin6_scope_id = 0;
3409 }
3410 #endif
3411 else
3412 BUG();
3413
3414 /* NAT_T_SPORT (old port) */
3415 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
3416 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
3417 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
3418 n_port->sadb_x_nat_t_port_port = natt->encap_sport;
3419 n_port->sadb_x_nat_t_port_reserved = 0;
3420
3421 /* ADDRESS_DST (new addr) */
3422 addr = (struct sadb_address*)
3423 skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
3424 addr->sadb_address_len =
3425 (sizeof(struct sadb_address)+sockaddr_size)/
3426 sizeof(uint64_t);
3427 addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
3428 addr->sadb_address_proto = 0;
3429 addr->sadb_address_reserved = 0;
3430 if (x->props.family == AF_INET) {
3431 addr->sadb_address_prefixlen = 32;
3432
3433 sin = (struct sockaddr_in *) (addr + 1);
3434 sin->sin_family = AF_INET;
3435 sin->sin_addr.s_addr = ipaddr->a4;
3436 sin->sin_port = 0;
3437 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3438 }
3439 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3440 else if (x->props.family == AF_INET6) {
3441 addr->sadb_address_prefixlen = 128;
3442
3443 sin6 = (struct sockaddr_in6 *) (addr + 1);
3444 sin6->sin6_family = AF_INET6;
3445 sin6->sin6_port = 0;
3446 sin6->sin6_flowinfo = 0;
3447 memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
3448 sin6->sin6_scope_id = 0;
3449 }
3450 #endif
3451 else
3452 BUG();
3453
3454 /* NAT_T_DPORT (new port) */
3455 n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
3456 n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
3457 n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
3458 n_port->sadb_x_nat_t_port_port = sport;
3459 n_port->sadb_x_nat_t_port_reserved = 0;
3460
3461 return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
3462 }
3463
3464 #ifdef CONFIG_NET_KEY_MIGRATE
3465 static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
3466 struct xfrm_selector *sel)
3467 {
3468 struct sadb_address *addr;
3469 struct sockaddr_in *sin;
3470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3471 struct sockaddr_in6 *sin6;
3472 #endif
3473 addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
3474 addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
3475 addr->sadb_address_exttype = type;
3476 addr->sadb_address_proto = sel->proto;
3477 addr->sadb_address_reserved = 0;
3478
3479 switch (type) {
3480 case SADB_EXT_ADDRESS_SRC:
3481 if (sel->family == AF_INET) {
3482 addr->sadb_address_prefixlen = sel->prefixlen_s;
3483 sin = (struct sockaddr_in *)(addr + 1);
3484 sin->sin_family = AF_INET;
3485 memcpy(&sin->sin_addr.s_addr, &sel->saddr,
3486 sizeof(sin->sin_addr.s_addr));
3487 sin->sin_port = 0;
3488 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3489 }
3490 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3491 else if (sel->family == AF_INET6) {
3492 addr->sadb_address_prefixlen = sel->prefixlen_s;
3493 sin6 = (struct sockaddr_in6 *)(addr + 1);
3494 sin6->sin6_family = AF_INET6;
3495 sin6->sin6_port = 0;
3496 sin6->sin6_flowinfo = 0;
3497 sin6->sin6_scope_id = 0;
3498 memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
3499 sizeof(sin6->sin6_addr.s6_addr));
3500 }
3501 #endif
3502 break;
3503 case SADB_EXT_ADDRESS_DST:
3504 if (sel->family == AF_INET) {
3505 addr->sadb_address_prefixlen = sel->prefixlen_d;
3506 sin = (struct sockaddr_in *)(addr + 1);
3507 sin->sin_family = AF_INET;
3508 memcpy(&sin->sin_addr.s_addr, &sel->daddr,
3509 sizeof(sin->sin_addr.s_addr));
3510 sin->sin_port = 0;
3511 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
3512 }
3513 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3514 else if (sel->family == AF_INET6) {
3515 addr->sadb_address_prefixlen = sel->prefixlen_d;
3516 sin6 = (struct sockaddr_in6 *)(addr + 1);
3517 sin6->sin6_family = AF_INET6;
3518 sin6->sin6_port = 0;
3519 sin6->sin6_flowinfo = 0;
3520 sin6->sin6_scope_id = 0;
3521 memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
3522 sizeof(sin6->sin6_addr.s6_addr));
3523 }
3524 #endif
3525 break;
3526 default:
3527 return -EINVAL;
3528 }
3529
3530 return 0;
3531 }
3532
3533 static int set_ipsecrequest(struct sk_buff *skb,
3534 uint8_t proto, uint8_t mode, int level,
3535 uint32_t reqid, uint8_t family,
3536 xfrm_address_t *src, xfrm_address_t *dst)
3537 {
3538 struct sadb_x_ipsecrequest *rq;
3539 struct sockaddr_in *sin;
3540 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3541 struct sockaddr_in6 *sin6;
3542 #endif
3543 int size_req;
3544
3545 size_req = sizeof(struct sadb_x_ipsecrequest) +
3546 pfkey_sockaddr_pair_size(family);
3547
3548 rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
3549 memset(rq, 0, size_req);
3550 rq->sadb_x_ipsecrequest_len = size_req;
3551 rq->sadb_x_ipsecrequest_proto = proto;
3552 rq->sadb_x_ipsecrequest_mode = mode;
3553 rq->sadb_x_ipsecrequest_level = level;
3554 rq->sadb_x_ipsecrequest_reqid = reqid;
3555
3556 switch (family) {
3557 case AF_INET:
3558 sin = (struct sockaddr_in *)(rq + 1);
3559 sin->sin_family = AF_INET;
3560 memcpy(&sin->sin_addr.s_addr, src,
3561 sizeof(sin->sin_addr.s_addr));
3562 sin++;
3563 sin->sin_family = AF_INET;
3564 memcpy(&sin->sin_addr.s_addr, dst,
3565 sizeof(sin->sin_addr.s_addr));
3566 break;
3567 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3568 case AF_INET6:
3569 sin6 = (struct sockaddr_in6 *)(rq + 1);
3570 sin6->sin6_family = AF_INET6;
3571 sin6->sin6_port = 0;
3572 sin6->sin6_flowinfo = 0;
3573 sin6->sin6_scope_id = 0;
3574 memcpy(&sin6->sin6_addr.s6_addr, src,
3575 sizeof(sin6->sin6_addr.s6_addr));
3576 sin6++;
3577 sin6->sin6_family = AF_INET6;
3578 sin6->sin6_port = 0;
3579 sin6->sin6_flowinfo = 0;
3580 sin6->sin6_scope_id = 0;
3581 memcpy(&sin6->sin6_addr.s6_addr, dst,
3582 sizeof(sin6->sin6_addr.s6_addr));
3583 break;
3584 #endif
3585 default:
3586 return -EINVAL;
3587 }
3588
3589 return 0;
3590 }
3591 #endif
3592
3593 #ifdef CONFIG_NET_KEY_MIGRATE
3594 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
3595 struct xfrm_migrate *m, int num_bundles)
3596 {
3597 int i;
3598 int sasize_sel;
3599 int size = 0;
3600 int size_pol = 0;
3601 struct sk_buff *skb;
3602 struct sadb_msg *hdr;
3603 struct sadb_x_policy *pol;
3604 struct xfrm_migrate *mp;
3605
3606 if (type != XFRM_POLICY_TYPE_MAIN)
3607 return 0;
3608
3609 if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
3610 return -EINVAL;
3611
3612 /* selector */
3613 sasize_sel = pfkey_sockaddr_size(sel->family);
3614 if (!sasize_sel)
3615 return -EINVAL;
3616 size += (sizeof(struct sadb_address) + sasize_sel) * 2;
3617
3618 /* policy info */
3619 size_pol += sizeof(struct sadb_x_policy);
3620
3621 /* ipsecrequests */
3622 for (i = 0, mp = m; i < num_bundles; i++, mp++) {
3623 /* old locator pair */
3624 size_pol += sizeof(struct sadb_x_ipsecrequest) +
3625 pfkey_sockaddr_pair_size(mp->old_family);
3626 /* new locator pair */
3627 size_pol += sizeof(struct sadb_x_ipsecrequest) +
3628 pfkey_sockaddr_pair_size(mp->new_family);
3629 }
3630
3631 size += sizeof(struct sadb_msg) + size_pol;
3632
3633 /* alloc buffer */
3634 skb = alloc_skb(size, GFP_ATOMIC);
3635 if (skb == NULL)
3636 return -ENOMEM;
3637
3638 hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
3639 hdr->sadb_msg_version = PF_KEY_V2;
3640 hdr->sadb_msg_type = SADB_X_MIGRATE;
3641 hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
3642 hdr->sadb_msg_len = size / 8;
3643 hdr->sadb_msg_errno = 0;
3644 hdr->sadb_msg_reserved = 0;
3645 hdr->sadb_msg_seq = 0;
3646 hdr->sadb_msg_pid = 0;
3647
3648 /* selector src */
3649 set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
3650
3651 /* selector dst */
3652 set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
3653
3654 /* policy information */
3655 pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
3656 pol->sadb_x_policy_len = size_pol / 8;
3657 pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3658 pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
3659 pol->sadb_x_policy_dir = dir + 1;
3660 pol->sadb_x_policy_id = 0;
3661 pol->sadb_x_policy_priority = 0;
3662
3663 for (i = 0, mp = m; i < num_bundles; i++, mp++) {
3664 /* old ipsecrequest */
3665 int mode = pfkey_mode_from_xfrm(mp->mode);
3666 if (mode < 0)
3667 goto err;
3668 if (set_ipsecrequest(skb, mp->proto, mode,
3669 (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
3670 mp->reqid, mp->old_family,
3671 &mp->old_saddr, &mp->old_daddr) < 0)
3672 goto err;
3673
3674 /* new ipsecrequest */
3675 if (set_ipsecrequest(skb, mp->proto, mode,
3676 (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
3677 mp->reqid, mp->new_family,
3678 &mp->new_saddr, &mp->new_daddr) < 0)
3679 goto err;
3680 }
3681
3682 /* broadcast migrate message to sockets */
3683 pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
3684
3685 return 0;
3686
3687 err:
3688 kfree_skb(skb);
3689 return -EINVAL;
3690 }
3691 #else
3692 static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
3693 struct xfrm_migrate *m, int num_bundles)
3694 {
3695 return -ENOPROTOOPT;
3696 }
3697 #endif
3698
3699 static int pfkey_sendmsg(struct kiocb *kiocb,
3700 struct socket *sock, struct msghdr *msg, size_t len)
3701 {
3702 struct sock *sk = sock->sk;
3703 struct sk_buff *skb = NULL;
3704 struct sadb_msg *hdr = NULL;
3705 int err;
3706
3707 err = -EOPNOTSUPP;
3708 if (msg->msg_flags & MSG_OOB)
3709 goto out;
3710
3711 err = -EMSGSIZE;
3712 if ((unsigned)len > sk->sk_sndbuf - 32)
3713 goto out;
3714
3715 err = -ENOBUFS;
3716 skb = alloc_skb(len, GFP_KERNEL);
3717 if (skb == NULL)
3718 goto out;
3719
3720 err = -EFAULT;
3721 if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
3722 goto out;
3723
3724 hdr = pfkey_get_base_msg(skb, &err);
3725 if (!hdr)
3726 goto out;
3727
3728 mutex_lock(&xfrm_cfg_mutex);
3729 err = pfkey_process(sk, skb, hdr);
3730 mutex_unlock(&xfrm_cfg_mutex);
3731
3732 out:
3733 if (err && hdr && pfkey_error(hdr, err, sk) == 0)
3734 err = 0;
3735 if (skb)
3736 kfree_skb(skb);
3737
3738 return err ? : len;
3739 }
3740
3741 static int pfkey_recvmsg(struct kiocb *kiocb,
3742 struct socket *sock, struct msghdr *msg, size_t len,
3743 int flags)
3744 {
3745 struct sock *sk = sock->sk;
3746 struct pfkey_sock *pfk = pfkey_sk(sk);
3747 struct sk_buff *skb;
3748 int copied, err;
3749
3750 err = -EINVAL;
3751 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
3752 goto out;
3753
3754 msg->msg_namelen = 0;
3755 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3756 if (skb == NULL)
3757 goto out;
3758
3759 copied = skb->len;
3760 if (copied > len) {
3761 msg->msg_flags |= MSG_TRUNC;
3762 copied = len;
3763 }
3764
3765 skb_reset_transport_header(skb);
3766 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
3767 if (err)
3768 goto out_free;
3769
3770 sock_recv_timestamp(msg, sk, skb);
3771
3772 err = (flags & MSG_TRUNC) ? skb->len : copied;
3773
3774 if (pfk->dump.dump != NULL &&
3775 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3776 pfkey_do_dump(pfk);
3777
3778 out_free:
3779 skb_free_datagram(sk, skb);
3780 out:
3781 return err;
3782 }
3783
3784 static const struct proto_ops pfkey_ops = {
3785 .family = PF_KEY,
3786 .owner = THIS_MODULE,
3787 /* Operations that make no sense on pfkey sockets. */
3788 .bind = sock_no_bind,
3789 .connect = sock_no_connect,
3790 .socketpair = sock_no_socketpair,
3791 .accept = sock_no_accept,
3792 .getname = sock_no_getname,
3793 .ioctl = sock_no_ioctl,
3794 .listen = sock_no_listen,
3795 .shutdown = sock_no_shutdown,
3796 .setsockopt = sock_no_setsockopt,
3797 .getsockopt = sock_no_getsockopt,
3798 .mmap = sock_no_mmap,
3799 .sendpage = sock_no_sendpage,
3800
3801 /* Now the operations that really occur. */
3802 .release = pfkey_release,
3803 .poll = datagram_poll,
3804 .sendmsg = pfkey_sendmsg,
3805 .recvmsg = pfkey_recvmsg,
3806 };
3807
3808 static struct net_proto_family pfkey_family_ops = {
3809 .family = PF_KEY,
3810 .create = pfkey_create,
3811 .owner = THIS_MODULE,
3812 };
3813
3814 #ifdef CONFIG_PROC_FS
3815 static int pfkey_seq_show(struct seq_file *f, void *v)
3816 {
3817 struct sock *s;
3818
3819 s = (struct sock *)v;
3820 if (v == SEQ_START_TOKEN)
3821 seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
3822 else
3823 seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
3824 s,
3825 atomic_read(&s->sk_refcnt),
3826 atomic_read(&s->sk_rmem_alloc),
3827 atomic_read(&s->sk_wmem_alloc),
3828 sock_i_uid(s),
3829 sock_i_ino(s)
3830 );
3831 return 0;
3832 }
3833
3834 static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
3835 {
3836 struct sock *s;
3837 struct hlist_node *node;
3838 loff_t pos = *ppos;
3839
3840 read_lock(&pfkey_table_lock);
3841 if (pos == 0)
3842 return SEQ_START_TOKEN;
3843
3844 sk_for_each(s, node, &pfkey_table)
3845 if (pos-- == 1)
3846 return s;
3847
3848 return NULL;
3849 }
3850
3851 static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
3852 {
3853 ++*ppos;
3854 return (v == SEQ_START_TOKEN) ?
3855 sk_head(&pfkey_table) :
3856 sk_next((struct sock *)v);
3857 }
3858
3859 static void pfkey_seq_stop(struct seq_file *f, void *v)
3860 {
3861 read_unlock(&pfkey_table_lock);
3862 }
3863
3864 static struct seq_operations pfkey_seq_ops = {
3865 .start = pfkey_seq_start,
3866 .next = pfkey_seq_next,
3867 .stop = pfkey_seq_stop,
3868 .show = pfkey_seq_show,
3869 };
3870
3871 static int pfkey_seq_open(struct inode *inode, struct file *file)
3872 {
3873 return seq_open(file, &pfkey_seq_ops);
3874 }
3875
3876 static struct file_operations pfkey_proc_ops = {
3877 .open = pfkey_seq_open,
3878 .read = seq_read,
3879 .llseek = seq_lseek,
3880 .release = seq_release,
3881 };
3882
3883 static int pfkey_init_proc(void)
3884 {
3885 struct proc_dir_entry *e;
3886
3887 e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
3888 if (e == NULL)
3889 return -ENOMEM;
3890
3891 return 0;
3892 }
3893
3894 static void pfkey_exit_proc(void)
3895 {
3896 proc_net_remove(&init_net, "pfkey");
3897 }
3898 #else
3899 static inline int pfkey_init_proc(void)
3900 {
3901 return 0;
3902 }
3903
3904 static inline void pfkey_exit_proc(void)
3905 {
3906 }
3907 #endif
3908
3909 static struct xfrm_mgr pfkeyv2_mgr =
3910 {
3911 .id = "pfkeyv2",
3912 .notify = pfkey_send_notify,
3913 .acquire = pfkey_send_acquire,
3914 .compile_policy = pfkey_compile_policy,
3915 .new_mapping = pfkey_send_new_mapping,
3916 .notify_policy = pfkey_send_policy_notify,
3917 .migrate = pfkey_send_migrate,
3918 };
3919
3920 static void __exit ipsec_pfkey_exit(void)
3921 {
3922 xfrm_unregister_km(&pfkeyv2_mgr);
3923 pfkey_exit_proc();
3924 sock_unregister(PF_KEY);
3925 proto_unregister(&key_proto);
3926 }
3927
3928 static int __init ipsec_pfkey_init(void)
3929 {
3930 int err = proto_register(&key_proto, 0);
3931
3932 if (err != 0)
3933 goto out;
3934
3935 err = sock_register(&pfkey_family_ops);
3936 if (err != 0)
3937 goto out_unregister_key_proto;
3938 err = pfkey_init_proc();
3939 if (err != 0)
3940 goto out_sock_unregister;
3941 err = xfrm_register_km(&pfkeyv2_mgr);
3942 if (err != 0)
3943 goto out_remove_proc_entry;
3944 out:
3945 return err;
3946 out_remove_proc_entry:
3947 pfkey_exit_proc();
3948 out_sock_unregister:
3949 sock_unregister(PF_KEY);
3950 out_unregister_key_proto:
3951 proto_unregister(&key_proto);
3952 goto out;
3953 }
3954
3955 module_init(ipsec_pfkey_init);
3956 module_exit(ipsec_pfkey_exit);
3957 MODULE_LICENSE("GPL");
3958 MODULE_ALIAS_NETPROTO(PF_KEY);