]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/mac80211/cfg.c
mac80211: use channel contexts
[mirror_ubuntu-jammy-kernel.git] / net / mac80211 / cfg.c
1 /*
2 * mac80211 configuration hooks for cfg80211
3 *
4 * Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This file is GPLv2 as found in COPYING.
7 */
8
9 #include <linux/ieee80211.h>
10 #include <linux/nl80211.h>
11 #include <linux/rtnetlink.h>
12 #include <linux/slab.h>
13 #include <net/net_namespace.h>
14 #include <linux/rcupdate.h>
15 #include <linux/if_ether.h>
16 #include <net/cfg80211.h>
17 #include "ieee80211_i.h"
18 #include "driver-ops.h"
19 #include "cfg.h"
20 #include "rate.h"
21 #include "mesh.h"
22
23 static struct wireless_dev *ieee80211_add_iface(struct wiphy *wiphy,
24 const char *name,
25 enum nl80211_iftype type,
26 u32 *flags,
27 struct vif_params *params)
28 {
29 struct ieee80211_local *local = wiphy_priv(wiphy);
30 struct wireless_dev *wdev;
31 struct ieee80211_sub_if_data *sdata;
32 int err;
33
34 err = ieee80211_if_add(local, name, &wdev, type, params);
35 if (err)
36 return ERR_PTR(err);
37
38 if (type == NL80211_IFTYPE_MONITOR && flags) {
39 sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
40 sdata->u.mntr_flags = *flags;
41 }
42
43 return wdev;
44 }
45
46 static int ieee80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev)
47 {
48 ieee80211_if_remove(IEEE80211_WDEV_TO_SUB_IF(wdev));
49
50 return 0;
51 }
52
53 static int ieee80211_change_iface(struct wiphy *wiphy,
54 struct net_device *dev,
55 enum nl80211_iftype type, u32 *flags,
56 struct vif_params *params)
57 {
58 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
59 int ret;
60
61 ret = ieee80211_if_change_type(sdata, type);
62 if (ret)
63 return ret;
64
65 if (type == NL80211_IFTYPE_AP_VLAN &&
66 params && params->use_4addr == 0)
67 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
68 else if (type == NL80211_IFTYPE_STATION &&
69 params && params->use_4addr >= 0)
70 sdata->u.mgd.use_4addr = params->use_4addr;
71
72 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && flags) {
73 struct ieee80211_local *local = sdata->local;
74
75 if (ieee80211_sdata_running(sdata)) {
76 /*
77 * Prohibit MONITOR_FLAG_COOK_FRAMES to be
78 * changed while the interface is up.
79 * Else we would need to add a lot of cruft
80 * to update everything:
81 * cooked_mntrs, monitor and all fif_* counters
82 * reconfigure hardware
83 */
84 if ((*flags & MONITOR_FLAG_COOK_FRAMES) !=
85 (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
86 return -EBUSY;
87
88 ieee80211_adjust_monitor_flags(sdata, -1);
89 sdata->u.mntr_flags = *flags;
90 ieee80211_adjust_monitor_flags(sdata, 1);
91
92 ieee80211_configure_filter(local);
93 } else {
94 /*
95 * Because the interface is down, ieee80211_do_stop
96 * and ieee80211_do_open take care of "everything"
97 * mentioned in the comment above.
98 */
99 sdata->u.mntr_flags = *flags;
100 }
101 }
102
103 return 0;
104 }
105
106 static int ieee80211_start_p2p_device(struct wiphy *wiphy,
107 struct wireless_dev *wdev)
108 {
109 return ieee80211_do_open(wdev, true);
110 }
111
112 static void ieee80211_stop_p2p_device(struct wiphy *wiphy,
113 struct wireless_dev *wdev)
114 {
115 ieee80211_sdata_stop(IEEE80211_WDEV_TO_SUB_IF(wdev));
116 }
117
118 static int ieee80211_set_noack_map(struct wiphy *wiphy,
119 struct net_device *dev,
120 u16 noack_map)
121 {
122 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
123
124 sdata->noack_map = noack_map;
125 return 0;
126 }
127
128 static int ieee80211_add_key(struct wiphy *wiphy, struct net_device *dev,
129 u8 key_idx, bool pairwise, const u8 *mac_addr,
130 struct key_params *params)
131 {
132 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
133 struct sta_info *sta = NULL;
134 struct ieee80211_key *key;
135 int err;
136
137 if (!ieee80211_sdata_running(sdata))
138 return -ENETDOWN;
139
140 /* reject WEP and TKIP keys if WEP failed to initialize */
141 switch (params->cipher) {
142 case WLAN_CIPHER_SUITE_WEP40:
143 case WLAN_CIPHER_SUITE_TKIP:
144 case WLAN_CIPHER_SUITE_WEP104:
145 if (IS_ERR(sdata->local->wep_tx_tfm))
146 return -EINVAL;
147 break;
148 default:
149 break;
150 }
151
152 key = ieee80211_key_alloc(params->cipher, key_idx, params->key_len,
153 params->key, params->seq_len, params->seq);
154 if (IS_ERR(key))
155 return PTR_ERR(key);
156
157 if (pairwise)
158 key->conf.flags |= IEEE80211_KEY_FLAG_PAIRWISE;
159
160 mutex_lock(&sdata->local->sta_mtx);
161
162 if (mac_addr) {
163 if (ieee80211_vif_is_mesh(&sdata->vif))
164 sta = sta_info_get(sdata, mac_addr);
165 else
166 sta = sta_info_get_bss(sdata, mac_addr);
167 if (!sta) {
168 ieee80211_key_free(sdata->local, key);
169 err = -ENOENT;
170 goto out_unlock;
171 }
172 }
173
174 switch (sdata->vif.type) {
175 case NL80211_IFTYPE_STATION:
176 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
177 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
178 break;
179 case NL80211_IFTYPE_AP:
180 case NL80211_IFTYPE_AP_VLAN:
181 /* Keys without a station are used for TX only */
182 if (key->sta && test_sta_flag(key->sta, WLAN_STA_MFP))
183 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
184 break;
185 case NL80211_IFTYPE_ADHOC:
186 /* no MFP (yet) */
187 break;
188 case NL80211_IFTYPE_MESH_POINT:
189 #ifdef CONFIG_MAC80211_MESH
190 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
191 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
192 break;
193 #endif
194 case NL80211_IFTYPE_WDS:
195 case NL80211_IFTYPE_MONITOR:
196 case NL80211_IFTYPE_P2P_DEVICE:
197 case NL80211_IFTYPE_UNSPECIFIED:
198 case NUM_NL80211_IFTYPES:
199 case NL80211_IFTYPE_P2P_CLIENT:
200 case NL80211_IFTYPE_P2P_GO:
201 /* shouldn't happen */
202 WARN_ON_ONCE(1);
203 break;
204 }
205
206 err = ieee80211_key_link(key, sdata, sta);
207 if (err)
208 ieee80211_key_free(sdata->local, key);
209
210 out_unlock:
211 mutex_unlock(&sdata->local->sta_mtx);
212
213 return err;
214 }
215
216 static int ieee80211_del_key(struct wiphy *wiphy, struct net_device *dev,
217 u8 key_idx, bool pairwise, const u8 *mac_addr)
218 {
219 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
220 struct ieee80211_local *local = sdata->local;
221 struct sta_info *sta;
222 struct ieee80211_key *key = NULL;
223 int ret;
224
225 mutex_lock(&local->sta_mtx);
226 mutex_lock(&local->key_mtx);
227
228 if (mac_addr) {
229 ret = -ENOENT;
230
231 sta = sta_info_get_bss(sdata, mac_addr);
232 if (!sta)
233 goto out_unlock;
234
235 if (pairwise)
236 key = key_mtx_dereference(local, sta->ptk);
237 else
238 key = key_mtx_dereference(local, sta->gtk[key_idx]);
239 } else
240 key = key_mtx_dereference(local, sdata->keys[key_idx]);
241
242 if (!key) {
243 ret = -ENOENT;
244 goto out_unlock;
245 }
246
247 __ieee80211_key_free(key);
248
249 ret = 0;
250 out_unlock:
251 mutex_unlock(&local->key_mtx);
252 mutex_unlock(&local->sta_mtx);
253
254 return ret;
255 }
256
257 static int ieee80211_get_key(struct wiphy *wiphy, struct net_device *dev,
258 u8 key_idx, bool pairwise, const u8 *mac_addr,
259 void *cookie,
260 void (*callback)(void *cookie,
261 struct key_params *params))
262 {
263 struct ieee80211_sub_if_data *sdata;
264 struct sta_info *sta = NULL;
265 u8 seq[6] = {0};
266 struct key_params params;
267 struct ieee80211_key *key = NULL;
268 u64 pn64;
269 u32 iv32;
270 u16 iv16;
271 int err = -ENOENT;
272
273 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
274
275 rcu_read_lock();
276
277 if (mac_addr) {
278 sta = sta_info_get_bss(sdata, mac_addr);
279 if (!sta)
280 goto out;
281
282 if (pairwise)
283 key = rcu_dereference(sta->ptk);
284 else if (key_idx < NUM_DEFAULT_KEYS)
285 key = rcu_dereference(sta->gtk[key_idx]);
286 } else
287 key = rcu_dereference(sdata->keys[key_idx]);
288
289 if (!key)
290 goto out;
291
292 memset(&params, 0, sizeof(params));
293
294 params.cipher = key->conf.cipher;
295
296 switch (key->conf.cipher) {
297 case WLAN_CIPHER_SUITE_TKIP:
298 iv32 = key->u.tkip.tx.iv32;
299 iv16 = key->u.tkip.tx.iv16;
300
301 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
302 drv_get_tkip_seq(sdata->local,
303 key->conf.hw_key_idx,
304 &iv32, &iv16);
305
306 seq[0] = iv16 & 0xff;
307 seq[1] = (iv16 >> 8) & 0xff;
308 seq[2] = iv32 & 0xff;
309 seq[3] = (iv32 >> 8) & 0xff;
310 seq[4] = (iv32 >> 16) & 0xff;
311 seq[5] = (iv32 >> 24) & 0xff;
312 params.seq = seq;
313 params.seq_len = 6;
314 break;
315 case WLAN_CIPHER_SUITE_CCMP:
316 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
317 seq[0] = pn64;
318 seq[1] = pn64 >> 8;
319 seq[2] = pn64 >> 16;
320 seq[3] = pn64 >> 24;
321 seq[4] = pn64 >> 32;
322 seq[5] = pn64 >> 40;
323 params.seq = seq;
324 params.seq_len = 6;
325 break;
326 case WLAN_CIPHER_SUITE_AES_CMAC:
327 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
328 seq[0] = pn64;
329 seq[1] = pn64 >> 8;
330 seq[2] = pn64 >> 16;
331 seq[3] = pn64 >> 24;
332 seq[4] = pn64 >> 32;
333 seq[5] = pn64 >> 40;
334 params.seq = seq;
335 params.seq_len = 6;
336 break;
337 }
338
339 params.key = key->conf.key;
340 params.key_len = key->conf.keylen;
341
342 callback(cookie, &params);
343 err = 0;
344
345 out:
346 rcu_read_unlock();
347 return err;
348 }
349
350 static int ieee80211_config_default_key(struct wiphy *wiphy,
351 struct net_device *dev,
352 u8 key_idx, bool uni,
353 bool multi)
354 {
355 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
356
357 ieee80211_set_default_key(sdata, key_idx, uni, multi);
358
359 return 0;
360 }
361
362 static int ieee80211_config_default_mgmt_key(struct wiphy *wiphy,
363 struct net_device *dev,
364 u8 key_idx)
365 {
366 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
367
368 ieee80211_set_default_mgmt_key(sdata, key_idx);
369
370 return 0;
371 }
372
373 static void rate_idx_to_bitrate(struct rate_info *rate, struct sta_info *sta, int idx)
374 {
375 enum ieee80211_band band = ieee80211_get_sdata_band(sta->sdata);
376
377 if (!(rate->flags & RATE_INFO_FLAGS_MCS)) {
378 struct ieee80211_supported_band *sband;
379 sband = sta->local->hw.wiphy->bands[band];
380 rate->legacy = sband->bitrates[idx].bitrate;
381 } else
382 rate->mcs = idx;
383 }
384
385 void sta_set_rate_info_tx(struct sta_info *sta,
386 const struct ieee80211_tx_rate *rate,
387 struct rate_info *rinfo)
388 {
389 rinfo->flags = 0;
390 if (rate->flags & IEEE80211_TX_RC_MCS)
391 rinfo->flags |= RATE_INFO_FLAGS_MCS;
392 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
393 rinfo->flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
394 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
395 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
396 rate_idx_to_bitrate(rinfo, sta, rate->idx);
397 }
398
399 static void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
400 {
401 struct ieee80211_sub_if_data *sdata = sta->sdata;
402 struct ieee80211_local *local = sdata->local;
403 struct timespec uptime;
404
405 sinfo->generation = sdata->local->sta_generation;
406
407 sinfo->filled = STATION_INFO_INACTIVE_TIME |
408 STATION_INFO_RX_BYTES |
409 STATION_INFO_TX_BYTES |
410 STATION_INFO_RX_PACKETS |
411 STATION_INFO_TX_PACKETS |
412 STATION_INFO_TX_RETRIES |
413 STATION_INFO_TX_FAILED |
414 STATION_INFO_TX_BITRATE |
415 STATION_INFO_RX_BITRATE |
416 STATION_INFO_RX_DROP_MISC |
417 STATION_INFO_BSS_PARAM |
418 STATION_INFO_CONNECTED_TIME |
419 STATION_INFO_STA_FLAGS |
420 STATION_INFO_BEACON_LOSS_COUNT;
421
422 do_posix_clock_monotonic_gettime(&uptime);
423 sinfo->connected_time = uptime.tv_sec - sta->last_connected;
424
425 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
426 sinfo->rx_bytes = sta->rx_bytes;
427 sinfo->tx_bytes = sta->tx_bytes;
428 sinfo->rx_packets = sta->rx_packets;
429 sinfo->tx_packets = sta->tx_packets;
430 sinfo->tx_retries = sta->tx_retry_count;
431 sinfo->tx_failed = sta->tx_retry_failed;
432 sinfo->rx_dropped_misc = sta->rx_dropped;
433 sinfo->beacon_loss_count = sta->beacon_loss_count;
434
435 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
436 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
437 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
438 if (!local->ops->get_rssi ||
439 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
440 sinfo->signal = (s8)sta->last_signal;
441 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
442 }
443
444 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
445
446 sinfo->rxrate.flags = 0;
447 if (sta->last_rx_rate_flag & RX_FLAG_HT)
448 sinfo->rxrate.flags |= RATE_INFO_FLAGS_MCS;
449 if (sta->last_rx_rate_flag & RX_FLAG_40MHZ)
450 sinfo->rxrate.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
451 if (sta->last_rx_rate_flag & RX_FLAG_SHORT_GI)
452 sinfo->rxrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
453 rate_idx_to_bitrate(&sinfo->rxrate, sta, sta->last_rx_rate_idx);
454
455 if (ieee80211_vif_is_mesh(&sdata->vif)) {
456 #ifdef CONFIG_MAC80211_MESH
457 sinfo->filled |= STATION_INFO_LLID |
458 STATION_INFO_PLID |
459 STATION_INFO_PLINK_STATE;
460
461 sinfo->llid = le16_to_cpu(sta->llid);
462 sinfo->plid = le16_to_cpu(sta->plid);
463 sinfo->plink_state = sta->plink_state;
464 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
465 sinfo->filled |= STATION_INFO_T_OFFSET;
466 sinfo->t_offset = sta->t_offset;
467 }
468 #endif
469 }
470
471 sinfo->bss_param.flags = 0;
472 if (sdata->vif.bss_conf.use_cts_prot)
473 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
474 if (sdata->vif.bss_conf.use_short_preamble)
475 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
476 if (sdata->vif.bss_conf.use_short_slot)
477 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
478 sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period;
479 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
480
481 sinfo->sta_flags.set = 0;
482 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
483 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
484 BIT(NL80211_STA_FLAG_WME) |
485 BIT(NL80211_STA_FLAG_MFP) |
486 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
487 BIT(NL80211_STA_FLAG_TDLS_PEER);
488 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
489 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
490 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
491 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
492 if (test_sta_flag(sta, WLAN_STA_WME))
493 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
494 if (test_sta_flag(sta, WLAN_STA_MFP))
495 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
496 if (test_sta_flag(sta, WLAN_STA_AUTH))
497 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
498 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
499 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
500 }
501
502 static const char ieee80211_gstrings_sta_stats[][ETH_GSTRING_LEN] = {
503 "rx_packets", "rx_bytes", "wep_weak_iv_count",
504 "rx_duplicates", "rx_fragments", "rx_dropped",
505 "tx_packets", "tx_bytes", "tx_fragments",
506 "tx_filtered", "tx_retry_failed", "tx_retries",
507 "beacon_loss", "sta_state", "txrate", "rxrate", "signal",
508 "channel", "noise", "ch_time", "ch_time_busy",
509 "ch_time_ext_busy", "ch_time_rx", "ch_time_tx"
510 };
511 #define STA_STATS_LEN ARRAY_SIZE(ieee80211_gstrings_sta_stats)
512
513 static int ieee80211_get_et_sset_count(struct wiphy *wiphy,
514 struct net_device *dev,
515 int sset)
516 {
517 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
518 int rv = 0;
519
520 if (sset == ETH_SS_STATS)
521 rv += STA_STATS_LEN;
522
523 rv += drv_get_et_sset_count(sdata, sset);
524
525 if (rv == 0)
526 return -EOPNOTSUPP;
527 return rv;
528 }
529
530 static void ieee80211_get_et_stats(struct wiphy *wiphy,
531 struct net_device *dev,
532 struct ethtool_stats *stats,
533 u64 *data)
534 {
535 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
536 struct ieee80211_chanctx_conf *chanctx_conf;
537 struct ieee80211_channel *channel;
538 struct sta_info *sta;
539 struct ieee80211_local *local = sdata->local;
540 struct station_info sinfo;
541 struct survey_info survey;
542 int i, q;
543 #define STA_STATS_SURVEY_LEN 7
544
545 memset(data, 0, sizeof(u64) * STA_STATS_LEN);
546
547 #define ADD_STA_STATS(sta) \
548 do { \
549 data[i++] += sta->rx_packets; \
550 data[i++] += sta->rx_bytes; \
551 data[i++] += sta->wep_weak_iv_count; \
552 data[i++] += sta->num_duplicates; \
553 data[i++] += sta->rx_fragments; \
554 data[i++] += sta->rx_dropped; \
555 \
556 data[i++] += sta->tx_packets; \
557 data[i++] += sta->tx_bytes; \
558 data[i++] += sta->tx_fragments; \
559 data[i++] += sta->tx_filtered_count; \
560 data[i++] += sta->tx_retry_failed; \
561 data[i++] += sta->tx_retry_count; \
562 data[i++] += sta->beacon_loss_count; \
563 } while (0)
564
565 /* For Managed stations, find the single station based on BSSID
566 * and use that. For interface types, iterate through all available
567 * stations and add stats for any station that is assigned to this
568 * network device.
569 */
570
571 mutex_lock(&local->sta_mtx);
572
573 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
574 sta = sta_info_get_bss(sdata, sdata->u.mgd.bssid);
575
576 if (!(sta && !WARN_ON(sta->sdata->dev != dev)))
577 goto do_survey;
578
579 i = 0;
580 ADD_STA_STATS(sta);
581
582 data[i++] = sta->sta_state;
583
584 sinfo.filled = 0;
585 sta_set_sinfo(sta, &sinfo);
586
587 if (sinfo.filled & STATION_INFO_TX_BITRATE)
588 data[i] = 100000 *
589 cfg80211_calculate_bitrate(&sinfo.txrate);
590 i++;
591 if (sinfo.filled & STATION_INFO_RX_BITRATE)
592 data[i] = 100000 *
593 cfg80211_calculate_bitrate(&sinfo.rxrate);
594 i++;
595
596 if (sinfo.filled & STATION_INFO_SIGNAL_AVG)
597 data[i] = (u8)sinfo.signal_avg;
598 i++;
599 } else {
600 list_for_each_entry(sta, &local->sta_list, list) {
601 /* Make sure this station belongs to the proper dev */
602 if (sta->sdata->dev != dev)
603 continue;
604
605 i = 0;
606 ADD_STA_STATS(sta);
607 }
608 }
609
610 do_survey:
611 i = STA_STATS_LEN - STA_STATS_SURVEY_LEN;
612 /* Get survey stats for current channel */
613 survey.filled = 0;
614
615 rcu_read_lock();
616 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
617 if (chanctx_conf)
618 channel = chanctx_conf->channel;
619 else
620 channel = NULL;
621 rcu_read_unlock();
622
623 if (channel) {
624 q = 0;
625 do {
626 survey.filled = 0;
627 if (drv_get_survey(local, q, &survey) != 0) {
628 survey.filled = 0;
629 break;
630 }
631 q++;
632 } while (channel != survey.channel);
633 }
634
635 if (survey.filled)
636 data[i++] = survey.channel->center_freq;
637 else
638 data[i++] = 0;
639 if (survey.filled & SURVEY_INFO_NOISE_DBM)
640 data[i++] = (u8)survey.noise;
641 else
642 data[i++] = -1LL;
643 if (survey.filled & SURVEY_INFO_CHANNEL_TIME)
644 data[i++] = survey.channel_time;
645 else
646 data[i++] = -1LL;
647 if (survey.filled & SURVEY_INFO_CHANNEL_TIME_BUSY)
648 data[i++] = survey.channel_time_busy;
649 else
650 data[i++] = -1LL;
651 if (survey.filled & SURVEY_INFO_CHANNEL_TIME_EXT_BUSY)
652 data[i++] = survey.channel_time_ext_busy;
653 else
654 data[i++] = -1LL;
655 if (survey.filled & SURVEY_INFO_CHANNEL_TIME_RX)
656 data[i++] = survey.channel_time_rx;
657 else
658 data[i++] = -1LL;
659 if (survey.filled & SURVEY_INFO_CHANNEL_TIME_TX)
660 data[i++] = survey.channel_time_tx;
661 else
662 data[i++] = -1LL;
663
664 mutex_unlock(&local->sta_mtx);
665
666 if (WARN_ON(i != STA_STATS_LEN))
667 return;
668
669 drv_get_et_stats(sdata, stats, &(data[STA_STATS_LEN]));
670 }
671
672 static void ieee80211_get_et_strings(struct wiphy *wiphy,
673 struct net_device *dev,
674 u32 sset, u8 *data)
675 {
676 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
677 int sz_sta_stats = 0;
678
679 if (sset == ETH_SS_STATS) {
680 sz_sta_stats = sizeof(ieee80211_gstrings_sta_stats);
681 memcpy(data, *ieee80211_gstrings_sta_stats, sz_sta_stats);
682 }
683 drv_get_et_strings(sdata, sset, &(data[sz_sta_stats]));
684 }
685
686 static int ieee80211_dump_station(struct wiphy *wiphy, struct net_device *dev,
687 int idx, u8 *mac, struct station_info *sinfo)
688 {
689 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
690 struct ieee80211_local *local = sdata->local;
691 struct sta_info *sta;
692 int ret = -ENOENT;
693
694 mutex_lock(&local->sta_mtx);
695
696 sta = sta_info_get_by_idx(sdata, idx);
697 if (sta) {
698 ret = 0;
699 memcpy(mac, sta->sta.addr, ETH_ALEN);
700 sta_set_sinfo(sta, sinfo);
701 }
702
703 mutex_unlock(&local->sta_mtx);
704
705 return ret;
706 }
707
708 static int ieee80211_dump_survey(struct wiphy *wiphy, struct net_device *dev,
709 int idx, struct survey_info *survey)
710 {
711 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
712
713 return drv_get_survey(local, idx, survey);
714 }
715
716 static int ieee80211_get_station(struct wiphy *wiphy, struct net_device *dev,
717 u8 *mac, struct station_info *sinfo)
718 {
719 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
720 struct ieee80211_local *local = sdata->local;
721 struct sta_info *sta;
722 int ret = -ENOENT;
723
724 mutex_lock(&local->sta_mtx);
725
726 sta = sta_info_get_bss(sdata, mac);
727 if (sta) {
728 ret = 0;
729 sta_set_sinfo(sta, sinfo);
730 }
731
732 mutex_unlock(&local->sta_mtx);
733
734 return ret;
735 }
736
737 static int ieee80211_set_monitor_channel(struct wiphy *wiphy,
738 struct ieee80211_channel *chan,
739 enum nl80211_channel_type channel_type)
740 {
741 struct ieee80211_local *local = wiphy_priv(wiphy);
742 struct ieee80211_sub_if_data *sdata;
743 int ret = 0;
744
745 if (local->monitor_channel == chan &&
746 local->monitor_channel_type == channel_type)
747 return 0;
748
749 mutex_lock(&local->iflist_mtx);
750 if (local->use_chanctx) {
751 sdata = rcu_dereference_protected(
752 local->monitor_sdata,
753 lockdep_is_held(&local->iflist_mtx));
754 if (sdata) {
755 ieee80211_vif_release_channel(sdata);
756 ret = ieee80211_vif_use_channel(
757 sdata, chan, channel_type,
758 IEEE80211_CHANCTX_EXCLUSIVE);
759 }
760 } else if (local->open_count == local->monitors) {
761 local->_oper_channel = chan;
762 local->_oper_channel_type = channel_type;
763 ieee80211_hw_config(local, 0);
764 }
765
766 if (ret == 0) {
767 local->monitor_channel = chan;
768 local->monitor_channel_type = channel_type;
769 }
770 mutex_unlock(&local->iflist_mtx);
771
772 return ret;
773 }
774
775 static int ieee80211_set_probe_resp(struct ieee80211_sub_if_data *sdata,
776 const u8 *resp, size_t resp_len)
777 {
778 struct probe_resp *new, *old;
779
780 if (!resp || !resp_len)
781 return 1;
782
783 old = rtnl_dereference(sdata->u.ap.probe_resp);
784
785 new = kzalloc(sizeof(struct probe_resp) + resp_len, GFP_KERNEL);
786 if (!new)
787 return -ENOMEM;
788
789 new->len = resp_len;
790 memcpy(new->data, resp, resp_len);
791
792 rcu_assign_pointer(sdata->u.ap.probe_resp, new);
793 if (old)
794 kfree_rcu(old, rcu_head);
795
796 return 0;
797 }
798
799 static int ieee80211_assign_beacon(struct ieee80211_sub_if_data *sdata,
800 struct cfg80211_beacon_data *params)
801 {
802 struct beacon_data *new, *old;
803 int new_head_len, new_tail_len;
804 int size, err;
805 u32 changed = BSS_CHANGED_BEACON;
806
807 old = rtnl_dereference(sdata->u.ap.beacon);
808
809 /* Need to have a beacon head if we don't have one yet */
810 if (!params->head && !old)
811 return -EINVAL;
812
813 /* new or old head? */
814 if (params->head)
815 new_head_len = params->head_len;
816 else
817 new_head_len = old->head_len;
818
819 /* new or old tail? */
820 if (params->tail || !old)
821 /* params->tail_len will be zero for !params->tail */
822 new_tail_len = params->tail_len;
823 else
824 new_tail_len = old->tail_len;
825
826 size = sizeof(*new) + new_head_len + new_tail_len;
827
828 new = kzalloc(size, GFP_KERNEL);
829 if (!new)
830 return -ENOMEM;
831
832 /* start filling the new info now */
833
834 /*
835 * pointers go into the block we allocated,
836 * memory is | beacon_data | head | tail |
837 */
838 new->head = ((u8 *) new) + sizeof(*new);
839 new->tail = new->head + new_head_len;
840 new->head_len = new_head_len;
841 new->tail_len = new_tail_len;
842
843 /* copy in head */
844 if (params->head)
845 memcpy(new->head, params->head, new_head_len);
846 else
847 memcpy(new->head, old->head, new_head_len);
848
849 /* copy in optional tail */
850 if (params->tail)
851 memcpy(new->tail, params->tail, new_tail_len);
852 else
853 if (old)
854 memcpy(new->tail, old->tail, new_tail_len);
855
856 err = ieee80211_set_probe_resp(sdata, params->probe_resp,
857 params->probe_resp_len);
858 if (err < 0)
859 return err;
860 if (err == 0)
861 changed |= BSS_CHANGED_AP_PROBE_RESP;
862
863 rcu_assign_pointer(sdata->u.ap.beacon, new);
864
865 if (old)
866 kfree_rcu(old, rcu_head);
867
868 return changed;
869 }
870
871 static int ieee80211_start_ap(struct wiphy *wiphy, struct net_device *dev,
872 struct cfg80211_ap_settings *params)
873 {
874 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
875 struct beacon_data *old;
876 struct ieee80211_sub_if_data *vlan;
877 u32 changed = BSS_CHANGED_BEACON_INT |
878 BSS_CHANGED_BEACON_ENABLED |
879 BSS_CHANGED_BEACON |
880 BSS_CHANGED_SSID;
881 int err;
882
883 old = rtnl_dereference(sdata->u.ap.beacon);
884 if (old)
885 return -EALREADY;
886
887 err = ieee80211_vif_use_channel(sdata, params->channel,
888 params->channel_type,
889 IEEE80211_CHANCTX_SHARED);
890 if (err)
891 return err;
892
893 /*
894 * Apply control port protocol, this allows us to
895 * not encrypt dynamic WEP control frames.
896 */
897 sdata->control_port_protocol = params->crypto.control_port_ethertype;
898 sdata->control_port_no_encrypt = params->crypto.control_port_no_encrypt;
899 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
900 vlan->control_port_protocol =
901 params->crypto.control_port_ethertype;
902 vlan->control_port_no_encrypt =
903 params->crypto.control_port_no_encrypt;
904 }
905
906 sdata->vif.bss_conf.beacon_int = params->beacon_interval;
907 sdata->vif.bss_conf.dtim_period = params->dtim_period;
908
909 sdata->vif.bss_conf.ssid_len = params->ssid_len;
910 if (params->ssid_len)
911 memcpy(sdata->vif.bss_conf.ssid, params->ssid,
912 params->ssid_len);
913 sdata->vif.bss_conf.hidden_ssid =
914 (params->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE);
915
916 err = ieee80211_assign_beacon(sdata, &params->beacon);
917 if (err < 0)
918 return err;
919 changed |= err;
920
921 ieee80211_bss_info_change_notify(sdata, changed);
922
923 netif_carrier_on(dev);
924 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
925 netif_carrier_on(vlan->dev);
926
927 return 0;
928 }
929
930 static int ieee80211_change_beacon(struct wiphy *wiphy, struct net_device *dev,
931 struct cfg80211_beacon_data *params)
932 {
933 struct ieee80211_sub_if_data *sdata;
934 struct beacon_data *old;
935 int err;
936
937 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
938
939 old = rtnl_dereference(sdata->u.ap.beacon);
940 if (!old)
941 return -ENOENT;
942
943 err = ieee80211_assign_beacon(sdata, params);
944 if (err < 0)
945 return err;
946 ieee80211_bss_info_change_notify(sdata, err);
947 return 0;
948 }
949
950 static int ieee80211_stop_ap(struct wiphy *wiphy, struct net_device *dev)
951 {
952 struct ieee80211_sub_if_data *sdata, *vlan;
953 struct beacon_data *old;
954
955 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
956
957 old = rtnl_dereference(sdata->u.ap.beacon);
958 if (!old)
959 return -ENOENT;
960
961 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
962 netif_carrier_off(vlan->dev);
963 netif_carrier_off(dev);
964
965 RCU_INIT_POINTER(sdata->u.ap.beacon, NULL);
966
967 kfree_rcu(old, rcu_head);
968
969 sta_info_flush(sdata->local, sdata);
970 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_BEACON_ENABLED);
971
972 ieee80211_vif_release_channel(sdata);
973
974 return 0;
975 }
976
977 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
978 struct iapp_layer2_update {
979 u8 da[ETH_ALEN]; /* broadcast */
980 u8 sa[ETH_ALEN]; /* STA addr */
981 __be16 len; /* 6 */
982 u8 dsap; /* 0 */
983 u8 ssap; /* 0 */
984 u8 control;
985 u8 xid_info[3];
986 } __packed;
987
988 static void ieee80211_send_layer2_update(struct sta_info *sta)
989 {
990 struct iapp_layer2_update *msg;
991 struct sk_buff *skb;
992
993 /* Send Level 2 Update Frame to update forwarding tables in layer 2
994 * bridge devices */
995
996 skb = dev_alloc_skb(sizeof(*msg));
997 if (!skb)
998 return;
999 msg = (struct iapp_layer2_update *)skb_put(skb, sizeof(*msg));
1000
1001 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1002 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1003
1004 eth_broadcast_addr(msg->da);
1005 memcpy(msg->sa, sta->sta.addr, ETH_ALEN);
1006 msg->len = htons(6);
1007 msg->dsap = 0;
1008 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
1009 msg->control = 0xaf; /* XID response lsb.1111F101.
1010 * F=0 (no poll command; unsolicited frame) */
1011 msg->xid_info[0] = 0x81; /* XID format identifier */
1012 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
1013 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
1014
1015 skb->dev = sta->sdata->dev;
1016 skb->protocol = eth_type_trans(skb, sta->sdata->dev);
1017 memset(skb->cb, 0, sizeof(skb->cb));
1018 netif_rx_ni(skb);
1019 }
1020
1021 static int sta_apply_parameters(struct ieee80211_local *local,
1022 struct sta_info *sta,
1023 struct station_parameters *params)
1024 {
1025 int ret = 0;
1026 u32 rates;
1027 int i, j;
1028 struct ieee80211_supported_band *sband;
1029 struct ieee80211_sub_if_data *sdata = sta->sdata;
1030 enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
1031 u32 mask, set;
1032
1033 sband = local->hw.wiphy->bands[band];
1034
1035 mask = params->sta_flags_mask;
1036 set = params->sta_flags_set;
1037
1038 /*
1039 * In mesh mode, we can clear AUTHENTICATED flag but must
1040 * also make ASSOCIATED follow appropriately for the driver
1041 * API. See also below, after AUTHORIZED changes.
1042 */
1043 if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED)) {
1044 /* cfg80211 should not allow this in non-mesh modes */
1045 if (WARN_ON(!ieee80211_vif_is_mesh(&sdata->vif)))
1046 return -EINVAL;
1047
1048 if (set & BIT(NL80211_STA_FLAG_AUTHENTICATED) &&
1049 !test_sta_flag(sta, WLAN_STA_AUTH)) {
1050 ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
1051 if (ret)
1052 return ret;
1053 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1054 if (ret)
1055 return ret;
1056 }
1057 }
1058
1059 if (mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
1060 if (set & BIT(NL80211_STA_FLAG_AUTHORIZED))
1061 ret = sta_info_move_state(sta, IEEE80211_STA_AUTHORIZED);
1062 else if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
1063 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1064 if (ret)
1065 return ret;
1066 }
1067
1068 if (mask & BIT(NL80211_STA_FLAG_AUTHENTICATED)) {
1069 /* cfg80211 should not allow this in non-mesh modes */
1070 if (WARN_ON(!ieee80211_vif_is_mesh(&sdata->vif)))
1071 return -EINVAL;
1072
1073 if (!(set & BIT(NL80211_STA_FLAG_AUTHENTICATED)) &&
1074 test_sta_flag(sta, WLAN_STA_AUTH)) {
1075 ret = sta_info_move_state(sta, IEEE80211_STA_AUTH);
1076 if (ret)
1077 return ret;
1078 ret = sta_info_move_state(sta, IEEE80211_STA_NONE);
1079 if (ret)
1080 return ret;
1081 }
1082 }
1083
1084
1085 if (mask & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE)) {
1086 if (set & BIT(NL80211_STA_FLAG_SHORT_PREAMBLE))
1087 set_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
1088 else
1089 clear_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE);
1090 }
1091
1092 if (mask & BIT(NL80211_STA_FLAG_WME)) {
1093 if (set & BIT(NL80211_STA_FLAG_WME)) {
1094 set_sta_flag(sta, WLAN_STA_WME);
1095 sta->sta.wme = true;
1096 } else {
1097 clear_sta_flag(sta, WLAN_STA_WME);
1098 sta->sta.wme = false;
1099 }
1100 }
1101
1102 if (mask & BIT(NL80211_STA_FLAG_MFP)) {
1103 if (set & BIT(NL80211_STA_FLAG_MFP))
1104 set_sta_flag(sta, WLAN_STA_MFP);
1105 else
1106 clear_sta_flag(sta, WLAN_STA_MFP);
1107 }
1108
1109 if (mask & BIT(NL80211_STA_FLAG_TDLS_PEER)) {
1110 if (set & BIT(NL80211_STA_FLAG_TDLS_PEER))
1111 set_sta_flag(sta, WLAN_STA_TDLS_PEER);
1112 else
1113 clear_sta_flag(sta, WLAN_STA_TDLS_PEER);
1114 }
1115
1116 if (params->sta_modify_mask & STATION_PARAM_APPLY_UAPSD) {
1117 sta->sta.uapsd_queues = params->uapsd_queues;
1118 sta->sta.max_sp = params->max_sp;
1119 }
1120
1121 /*
1122 * cfg80211 validates this (1-2007) and allows setting the AID
1123 * only when creating a new station entry
1124 */
1125 if (params->aid)
1126 sta->sta.aid = params->aid;
1127
1128 /*
1129 * FIXME: updating the following information is racy when this
1130 * function is called from ieee80211_change_station().
1131 * However, all this information should be static so
1132 * maybe we should just reject attemps to change it.
1133 */
1134
1135 if (params->listen_interval >= 0)
1136 sta->listen_interval = params->listen_interval;
1137
1138 if (params->supported_rates) {
1139 rates = 0;
1140
1141 for (i = 0; i < params->supported_rates_len; i++) {
1142 int rate = (params->supported_rates[i] & 0x7f) * 5;
1143 for (j = 0; j < sband->n_bitrates; j++) {
1144 if (sband->bitrates[j].bitrate == rate)
1145 rates |= BIT(j);
1146 }
1147 }
1148 sta->sta.supp_rates[band] = rates;
1149 }
1150
1151 if (params->ht_capa)
1152 ieee80211_ht_cap_ie_to_sta_ht_cap(sdata, sband,
1153 params->ht_capa,
1154 &sta->sta.ht_cap);
1155
1156 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1157 #ifdef CONFIG_MAC80211_MESH
1158 if (sdata->u.mesh.security & IEEE80211_MESH_SEC_SECURED)
1159 switch (params->plink_state) {
1160 case NL80211_PLINK_LISTEN:
1161 case NL80211_PLINK_ESTAB:
1162 case NL80211_PLINK_BLOCKED:
1163 sta->plink_state = params->plink_state;
1164 break;
1165 default:
1166 /* nothing */
1167 break;
1168 }
1169 else
1170 switch (params->plink_action) {
1171 case PLINK_ACTION_OPEN:
1172 mesh_plink_open(sta);
1173 break;
1174 case PLINK_ACTION_BLOCK:
1175 mesh_plink_block(sta);
1176 break;
1177 }
1178 #endif
1179 }
1180
1181 return 0;
1182 }
1183
1184 static int ieee80211_add_station(struct wiphy *wiphy, struct net_device *dev,
1185 u8 *mac, struct station_parameters *params)
1186 {
1187 struct ieee80211_local *local = wiphy_priv(wiphy);
1188 struct sta_info *sta;
1189 struct ieee80211_sub_if_data *sdata;
1190 int err;
1191 int layer2_update;
1192
1193 if (params->vlan) {
1194 sdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
1195
1196 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1197 sdata->vif.type != NL80211_IFTYPE_AP)
1198 return -EINVAL;
1199 } else
1200 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1201
1202 if (ether_addr_equal(mac, sdata->vif.addr))
1203 return -EINVAL;
1204
1205 if (is_multicast_ether_addr(mac))
1206 return -EINVAL;
1207
1208 sta = sta_info_alloc(sdata, mac, GFP_KERNEL);
1209 if (!sta)
1210 return -ENOMEM;
1211
1212 sta_info_pre_move_state(sta, IEEE80211_STA_AUTH);
1213 sta_info_pre_move_state(sta, IEEE80211_STA_ASSOC);
1214
1215 err = sta_apply_parameters(local, sta, params);
1216 if (err) {
1217 sta_info_free(local, sta);
1218 return err;
1219 }
1220
1221 /*
1222 * for TDLS, rate control should be initialized only when supported
1223 * rates are known.
1224 */
1225 if (!test_sta_flag(sta, WLAN_STA_TDLS_PEER))
1226 rate_control_rate_init(sta);
1227
1228 layer2_update = sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1229 sdata->vif.type == NL80211_IFTYPE_AP;
1230
1231 err = sta_info_insert_rcu(sta);
1232 if (err) {
1233 rcu_read_unlock();
1234 return err;
1235 }
1236
1237 if (layer2_update)
1238 ieee80211_send_layer2_update(sta);
1239
1240 rcu_read_unlock();
1241
1242 return 0;
1243 }
1244
1245 static int ieee80211_del_station(struct wiphy *wiphy, struct net_device *dev,
1246 u8 *mac)
1247 {
1248 struct ieee80211_local *local = wiphy_priv(wiphy);
1249 struct ieee80211_sub_if_data *sdata;
1250
1251 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1252
1253 if (mac)
1254 return sta_info_destroy_addr_bss(sdata, mac);
1255
1256 sta_info_flush(local, sdata);
1257 return 0;
1258 }
1259
1260 static int ieee80211_change_station(struct wiphy *wiphy,
1261 struct net_device *dev,
1262 u8 *mac,
1263 struct station_parameters *params)
1264 {
1265 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1266 struct ieee80211_local *local = wiphy_priv(wiphy);
1267 struct sta_info *sta;
1268 struct ieee80211_sub_if_data *vlansdata;
1269 int err;
1270
1271 mutex_lock(&local->sta_mtx);
1272
1273 sta = sta_info_get_bss(sdata, mac);
1274 if (!sta) {
1275 mutex_unlock(&local->sta_mtx);
1276 return -ENOENT;
1277 }
1278
1279 /* in station mode, supported rates are only valid with TDLS */
1280 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1281 params->supported_rates &&
1282 !test_sta_flag(sta, WLAN_STA_TDLS_PEER)) {
1283 mutex_unlock(&local->sta_mtx);
1284 return -EINVAL;
1285 }
1286
1287 if (params->vlan && params->vlan != sta->sdata->dev) {
1288 bool prev_4addr = false;
1289 bool new_4addr = false;
1290
1291 vlansdata = IEEE80211_DEV_TO_SUB_IF(params->vlan);
1292
1293 if (vlansdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1294 vlansdata->vif.type != NL80211_IFTYPE_AP) {
1295 mutex_unlock(&local->sta_mtx);
1296 return -EINVAL;
1297 }
1298
1299 if (params->vlan->ieee80211_ptr->use_4addr) {
1300 if (vlansdata->u.vlan.sta) {
1301 mutex_unlock(&local->sta_mtx);
1302 return -EBUSY;
1303 }
1304
1305 rcu_assign_pointer(vlansdata->u.vlan.sta, sta);
1306 new_4addr = true;
1307 }
1308
1309 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1310 sta->sdata->u.vlan.sta) {
1311 rcu_assign_pointer(sta->sdata->u.vlan.sta, NULL);
1312 prev_4addr = true;
1313 }
1314
1315 sta->sdata = vlansdata;
1316
1317 if (sta->sta_state == IEEE80211_STA_AUTHORIZED &&
1318 prev_4addr != new_4addr) {
1319 if (new_4addr)
1320 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1321 else
1322 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1323 }
1324
1325 ieee80211_send_layer2_update(sta);
1326 }
1327
1328 err = sta_apply_parameters(local, sta, params);
1329 if (err) {
1330 mutex_unlock(&local->sta_mtx);
1331 return err;
1332 }
1333
1334 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER) && params->supported_rates)
1335 rate_control_rate_init(sta);
1336
1337 mutex_unlock(&local->sta_mtx);
1338
1339 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1340 params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)) {
1341 ieee80211_recalc_ps(local, -1);
1342 ieee80211_recalc_ps_vif(sdata);
1343 }
1344 return 0;
1345 }
1346
1347 #ifdef CONFIG_MAC80211_MESH
1348 static int ieee80211_add_mpath(struct wiphy *wiphy, struct net_device *dev,
1349 u8 *dst, u8 *next_hop)
1350 {
1351 struct ieee80211_sub_if_data *sdata;
1352 struct mesh_path *mpath;
1353 struct sta_info *sta;
1354 int err;
1355
1356 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1357
1358 rcu_read_lock();
1359 sta = sta_info_get(sdata, next_hop);
1360 if (!sta) {
1361 rcu_read_unlock();
1362 return -ENOENT;
1363 }
1364
1365 err = mesh_path_add(dst, sdata);
1366 if (err) {
1367 rcu_read_unlock();
1368 return err;
1369 }
1370
1371 mpath = mesh_path_lookup(dst, sdata);
1372 if (!mpath) {
1373 rcu_read_unlock();
1374 return -ENXIO;
1375 }
1376 mesh_path_fix_nexthop(mpath, sta);
1377
1378 rcu_read_unlock();
1379 return 0;
1380 }
1381
1382 static int ieee80211_del_mpath(struct wiphy *wiphy, struct net_device *dev,
1383 u8 *dst)
1384 {
1385 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1386
1387 if (dst)
1388 return mesh_path_del(dst, sdata);
1389
1390 mesh_path_flush_by_iface(sdata);
1391 return 0;
1392 }
1393
1394 static int ieee80211_change_mpath(struct wiphy *wiphy,
1395 struct net_device *dev,
1396 u8 *dst, u8 *next_hop)
1397 {
1398 struct ieee80211_sub_if_data *sdata;
1399 struct mesh_path *mpath;
1400 struct sta_info *sta;
1401
1402 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1403
1404 rcu_read_lock();
1405
1406 sta = sta_info_get(sdata, next_hop);
1407 if (!sta) {
1408 rcu_read_unlock();
1409 return -ENOENT;
1410 }
1411
1412 mpath = mesh_path_lookup(dst, sdata);
1413 if (!mpath) {
1414 rcu_read_unlock();
1415 return -ENOENT;
1416 }
1417
1418 mesh_path_fix_nexthop(mpath, sta);
1419
1420 rcu_read_unlock();
1421 return 0;
1422 }
1423
1424 static void mpath_set_pinfo(struct mesh_path *mpath, u8 *next_hop,
1425 struct mpath_info *pinfo)
1426 {
1427 struct sta_info *next_hop_sta = rcu_dereference(mpath->next_hop);
1428
1429 if (next_hop_sta)
1430 memcpy(next_hop, next_hop_sta->sta.addr, ETH_ALEN);
1431 else
1432 memset(next_hop, 0, ETH_ALEN);
1433
1434 memset(pinfo, 0, sizeof(*pinfo));
1435
1436 pinfo->generation = mesh_paths_generation;
1437
1438 pinfo->filled = MPATH_INFO_FRAME_QLEN |
1439 MPATH_INFO_SN |
1440 MPATH_INFO_METRIC |
1441 MPATH_INFO_EXPTIME |
1442 MPATH_INFO_DISCOVERY_TIMEOUT |
1443 MPATH_INFO_DISCOVERY_RETRIES |
1444 MPATH_INFO_FLAGS;
1445
1446 pinfo->frame_qlen = mpath->frame_queue.qlen;
1447 pinfo->sn = mpath->sn;
1448 pinfo->metric = mpath->metric;
1449 if (time_before(jiffies, mpath->exp_time))
1450 pinfo->exptime = jiffies_to_msecs(mpath->exp_time - jiffies);
1451 pinfo->discovery_timeout =
1452 jiffies_to_msecs(mpath->discovery_timeout);
1453 pinfo->discovery_retries = mpath->discovery_retries;
1454 if (mpath->flags & MESH_PATH_ACTIVE)
1455 pinfo->flags |= NL80211_MPATH_FLAG_ACTIVE;
1456 if (mpath->flags & MESH_PATH_RESOLVING)
1457 pinfo->flags |= NL80211_MPATH_FLAG_RESOLVING;
1458 if (mpath->flags & MESH_PATH_SN_VALID)
1459 pinfo->flags |= NL80211_MPATH_FLAG_SN_VALID;
1460 if (mpath->flags & MESH_PATH_FIXED)
1461 pinfo->flags |= NL80211_MPATH_FLAG_FIXED;
1462 if (mpath->flags & MESH_PATH_RESOLVED)
1463 pinfo->flags |= NL80211_MPATH_FLAG_RESOLVED;
1464 }
1465
1466 static int ieee80211_get_mpath(struct wiphy *wiphy, struct net_device *dev,
1467 u8 *dst, u8 *next_hop, struct mpath_info *pinfo)
1468
1469 {
1470 struct ieee80211_sub_if_data *sdata;
1471 struct mesh_path *mpath;
1472
1473 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1474
1475 rcu_read_lock();
1476 mpath = mesh_path_lookup(dst, sdata);
1477 if (!mpath) {
1478 rcu_read_unlock();
1479 return -ENOENT;
1480 }
1481 memcpy(dst, mpath->dst, ETH_ALEN);
1482 mpath_set_pinfo(mpath, next_hop, pinfo);
1483 rcu_read_unlock();
1484 return 0;
1485 }
1486
1487 static int ieee80211_dump_mpath(struct wiphy *wiphy, struct net_device *dev,
1488 int idx, u8 *dst, u8 *next_hop,
1489 struct mpath_info *pinfo)
1490 {
1491 struct ieee80211_sub_if_data *sdata;
1492 struct mesh_path *mpath;
1493
1494 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1495
1496 rcu_read_lock();
1497 mpath = mesh_path_lookup_by_idx(idx, sdata);
1498 if (!mpath) {
1499 rcu_read_unlock();
1500 return -ENOENT;
1501 }
1502 memcpy(dst, mpath->dst, ETH_ALEN);
1503 mpath_set_pinfo(mpath, next_hop, pinfo);
1504 rcu_read_unlock();
1505 return 0;
1506 }
1507
1508 static int ieee80211_get_mesh_config(struct wiphy *wiphy,
1509 struct net_device *dev,
1510 struct mesh_config *conf)
1511 {
1512 struct ieee80211_sub_if_data *sdata;
1513 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1514
1515 memcpy(conf, &(sdata->u.mesh.mshcfg), sizeof(struct mesh_config));
1516 return 0;
1517 }
1518
1519 static inline bool _chg_mesh_attr(enum nl80211_meshconf_params parm, u32 mask)
1520 {
1521 return (mask >> (parm-1)) & 0x1;
1522 }
1523
1524 static int copy_mesh_setup(struct ieee80211_if_mesh *ifmsh,
1525 const struct mesh_setup *setup)
1526 {
1527 u8 *new_ie;
1528 const u8 *old_ie;
1529 struct ieee80211_sub_if_data *sdata = container_of(ifmsh,
1530 struct ieee80211_sub_if_data, u.mesh);
1531
1532 /* allocate information elements */
1533 new_ie = NULL;
1534 old_ie = ifmsh->ie;
1535
1536 if (setup->ie_len) {
1537 new_ie = kmemdup(setup->ie, setup->ie_len,
1538 GFP_KERNEL);
1539 if (!new_ie)
1540 return -ENOMEM;
1541 }
1542 ifmsh->ie_len = setup->ie_len;
1543 ifmsh->ie = new_ie;
1544 kfree(old_ie);
1545
1546 /* now copy the rest of the setup parameters */
1547 ifmsh->mesh_id_len = setup->mesh_id_len;
1548 memcpy(ifmsh->mesh_id, setup->mesh_id, ifmsh->mesh_id_len);
1549 ifmsh->mesh_sp_id = setup->sync_method;
1550 ifmsh->mesh_pp_id = setup->path_sel_proto;
1551 ifmsh->mesh_pm_id = setup->path_metric;
1552 ifmsh->security = IEEE80211_MESH_SEC_NONE;
1553 if (setup->is_authenticated)
1554 ifmsh->security |= IEEE80211_MESH_SEC_AUTHED;
1555 if (setup->is_secure)
1556 ifmsh->security |= IEEE80211_MESH_SEC_SECURED;
1557
1558 /* mcast rate setting in Mesh Node */
1559 memcpy(sdata->vif.bss_conf.mcast_rate, setup->mcast_rate,
1560 sizeof(setup->mcast_rate));
1561
1562 return 0;
1563 }
1564
1565 static int ieee80211_update_mesh_config(struct wiphy *wiphy,
1566 struct net_device *dev, u32 mask,
1567 const struct mesh_config *nconf)
1568 {
1569 struct mesh_config *conf;
1570 struct ieee80211_sub_if_data *sdata;
1571 struct ieee80211_if_mesh *ifmsh;
1572
1573 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1574 ifmsh = &sdata->u.mesh;
1575
1576 /* Set the config options which we are interested in setting */
1577 conf = &(sdata->u.mesh.mshcfg);
1578 if (_chg_mesh_attr(NL80211_MESHCONF_RETRY_TIMEOUT, mask))
1579 conf->dot11MeshRetryTimeout = nconf->dot11MeshRetryTimeout;
1580 if (_chg_mesh_attr(NL80211_MESHCONF_CONFIRM_TIMEOUT, mask))
1581 conf->dot11MeshConfirmTimeout = nconf->dot11MeshConfirmTimeout;
1582 if (_chg_mesh_attr(NL80211_MESHCONF_HOLDING_TIMEOUT, mask))
1583 conf->dot11MeshHoldingTimeout = nconf->dot11MeshHoldingTimeout;
1584 if (_chg_mesh_attr(NL80211_MESHCONF_MAX_PEER_LINKS, mask))
1585 conf->dot11MeshMaxPeerLinks = nconf->dot11MeshMaxPeerLinks;
1586 if (_chg_mesh_attr(NL80211_MESHCONF_MAX_RETRIES, mask))
1587 conf->dot11MeshMaxRetries = nconf->dot11MeshMaxRetries;
1588 if (_chg_mesh_attr(NL80211_MESHCONF_TTL, mask))
1589 conf->dot11MeshTTL = nconf->dot11MeshTTL;
1590 if (_chg_mesh_attr(NL80211_MESHCONF_ELEMENT_TTL, mask))
1591 conf->element_ttl = nconf->element_ttl;
1592 if (_chg_mesh_attr(NL80211_MESHCONF_AUTO_OPEN_PLINKS, mask))
1593 conf->auto_open_plinks = nconf->auto_open_plinks;
1594 if (_chg_mesh_attr(NL80211_MESHCONF_SYNC_OFFSET_MAX_NEIGHBOR, mask))
1595 conf->dot11MeshNbrOffsetMaxNeighbor =
1596 nconf->dot11MeshNbrOffsetMaxNeighbor;
1597 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES, mask))
1598 conf->dot11MeshHWMPmaxPREQretries =
1599 nconf->dot11MeshHWMPmaxPREQretries;
1600 if (_chg_mesh_attr(NL80211_MESHCONF_PATH_REFRESH_TIME, mask))
1601 conf->path_refresh_time = nconf->path_refresh_time;
1602 if (_chg_mesh_attr(NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT, mask))
1603 conf->min_discovery_timeout = nconf->min_discovery_timeout;
1604 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT, mask))
1605 conf->dot11MeshHWMPactivePathTimeout =
1606 nconf->dot11MeshHWMPactivePathTimeout;
1607 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL, mask))
1608 conf->dot11MeshHWMPpreqMinInterval =
1609 nconf->dot11MeshHWMPpreqMinInterval;
1610 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PERR_MIN_INTERVAL, mask))
1611 conf->dot11MeshHWMPperrMinInterval =
1612 nconf->dot11MeshHWMPperrMinInterval;
1613 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
1614 mask))
1615 conf->dot11MeshHWMPnetDiameterTraversalTime =
1616 nconf->dot11MeshHWMPnetDiameterTraversalTime;
1617 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOTMODE, mask)) {
1618 conf->dot11MeshHWMPRootMode = nconf->dot11MeshHWMPRootMode;
1619 ieee80211_mesh_root_setup(ifmsh);
1620 }
1621 if (_chg_mesh_attr(NL80211_MESHCONF_GATE_ANNOUNCEMENTS, mask)) {
1622 /* our current gate announcement implementation rides on root
1623 * announcements, so require this ifmsh to also be a root node
1624 * */
1625 if (nconf->dot11MeshGateAnnouncementProtocol &&
1626 !(conf->dot11MeshHWMPRootMode > IEEE80211_ROOTMODE_ROOT)) {
1627 conf->dot11MeshHWMPRootMode = IEEE80211_PROACTIVE_RANN;
1628 ieee80211_mesh_root_setup(ifmsh);
1629 }
1630 conf->dot11MeshGateAnnouncementProtocol =
1631 nconf->dot11MeshGateAnnouncementProtocol;
1632 }
1633 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_RANN_INTERVAL, mask))
1634 conf->dot11MeshHWMPRannInterval =
1635 nconf->dot11MeshHWMPRannInterval;
1636 if (_chg_mesh_attr(NL80211_MESHCONF_FORWARDING, mask))
1637 conf->dot11MeshForwarding = nconf->dot11MeshForwarding;
1638 if (_chg_mesh_attr(NL80211_MESHCONF_RSSI_THRESHOLD, mask)) {
1639 /* our RSSI threshold implementation is supported only for
1640 * devices that report signal in dBm.
1641 */
1642 if (!(sdata->local->hw.flags & IEEE80211_HW_SIGNAL_DBM))
1643 return -ENOTSUPP;
1644 conf->rssi_threshold = nconf->rssi_threshold;
1645 }
1646 if (_chg_mesh_attr(NL80211_MESHCONF_HT_OPMODE, mask)) {
1647 conf->ht_opmode = nconf->ht_opmode;
1648 sdata->vif.bss_conf.ht_operation_mode = nconf->ht_opmode;
1649 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_HT);
1650 }
1651 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_PATH_TO_ROOT_TIMEOUT, mask))
1652 conf->dot11MeshHWMPactivePathToRootTimeout =
1653 nconf->dot11MeshHWMPactivePathToRootTimeout;
1654 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_ROOT_INTERVAL, mask))
1655 conf->dot11MeshHWMProotInterval =
1656 nconf->dot11MeshHWMProotInterval;
1657 if (_chg_mesh_attr(NL80211_MESHCONF_HWMP_CONFIRMATION_INTERVAL, mask))
1658 conf->dot11MeshHWMPconfirmationInterval =
1659 nconf->dot11MeshHWMPconfirmationInterval;
1660 return 0;
1661 }
1662
1663 static int ieee80211_join_mesh(struct wiphy *wiphy, struct net_device *dev,
1664 const struct mesh_config *conf,
1665 const struct mesh_setup *setup)
1666 {
1667 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1668 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1669 int err;
1670
1671 memcpy(&ifmsh->mshcfg, conf, sizeof(struct mesh_config));
1672 err = copy_mesh_setup(ifmsh, setup);
1673 if (err)
1674 return err;
1675
1676 err = ieee80211_vif_use_channel(sdata, setup->channel,
1677 setup->channel_type,
1678 IEEE80211_CHANCTX_SHARED);
1679 if (err)
1680 return err;
1681
1682 ieee80211_start_mesh(sdata);
1683
1684 return 0;
1685 }
1686
1687 static int ieee80211_leave_mesh(struct wiphy *wiphy, struct net_device *dev)
1688 {
1689 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1690
1691 ieee80211_stop_mesh(sdata);
1692 ieee80211_vif_release_channel(sdata);
1693
1694 return 0;
1695 }
1696 #endif
1697
1698 static int ieee80211_change_bss(struct wiphy *wiphy,
1699 struct net_device *dev,
1700 struct bss_parameters *params)
1701 {
1702 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1703 enum ieee80211_band band;
1704 u32 changed = 0;
1705
1706 if (!rtnl_dereference(sdata->u.ap.beacon))
1707 return -ENOENT;
1708
1709 band = ieee80211_get_sdata_band(sdata);
1710
1711 if (params->use_cts_prot >= 0) {
1712 sdata->vif.bss_conf.use_cts_prot = params->use_cts_prot;
1713 changed |= BSS_CHANGED_ERP_CTS_PROT;
1714 }
1715 if (params->use_short_preamble >= 0) {
1716 sdata->vif.bss_conf.use_short_preamble =
1717 params->use_short_preamble;
1718 changed |= BSS_CHANGED_ERP_PREAMBLE;
1719 }
1720
1721 if (!sdata->vif.bss_conf.use_short_slot &&
1722 band == IEEE80211_BAND_5GHZ) {
1723 sdata->vif.bss_conf.use_short_slot = true;
1724 changed |= BSS_CHANGED_ERP_SLOT;
1725 }
1726
1727 if (params->use_short_slot_time >= 0) {
1728 sdata->vif.bss_conf.use_short_slot =
1729 params->use_short_slot_time;
1730 changed |= BSS_CHANGED_ERP_SLOT;
1731 }
1732
1733 if (params->basic_rates) {
1734 int i, j;
1735 u32 rates = 0;
1736 struct ieee80211_supported_band *sband = wiphy->bands[band];
1737
1738 for (i = 0; i < params->basic_rates_len; i++) {
1739 int rate = (params->basic_rates[i] & 0x7f) * 5;
1740 for (j = 0; j < sband->n_bitrates; j++) {
1741 if (sband->bitrates[j].bitrate == rate)
1742 rates |= BIT(j);
1743 }
1744 }
1745 sdata->vif.bss_conf.basic_rates = rates;
1746 changed |= BSS_CHANGED_BASIC_RATES;
1747 }
1748
1749 if (params->ap_isolate >= 0) {
1750 if (params->ap_isolate)
1751 sdata->flags |= IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
1752 else
1753 sdata->flags &= ~IEEE80211_SDATA_DONT_BRIDGE_PACKETS;
1754 }
1755
1756 if (params->ht_opmode >= 0) {
1757 sdata->vif.bss_conf.ht_operation_mode =
1758 (u16) params->ht_opmode;
1759 changed |= BSS_CHANGED_HT;
1760 }
1761
1762 ieee80211_bss_info_change_notify(sdata, changed);
1763
1764 return 0;
1765 }
1766
1767 static int ieee80211_set_txq_params(struct wiphy *wiphy,
1768 struct net_device *dev,
1769 struct ieee80211_txq_params *params)
1770 {
1771 struct ieee80211_local *local = wiphy_priv(wiphy);
1772 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1773 struct ieee80211_tx_queue_params p;
1774
1775 if (!local->ops->conf_tx)
1776 return -EOPNOTSUPP;
1777
1778 if (local->hw.queues < IEEE80211_NUM_ACS)
1779 return -EOPNOTSUPP;
1780
1781 memset(&p, 0, sizeof(p));
1782 p.aifs = params->aifs;
1783 p.cw_max = params->cwmax;
1784 p.cw_min = params->cwmin;
1785 p.txop = params->txop;
1786
1787 /*
1788 * Setting tx queue params disables u-apsd because it's only
1789 * called in master mode.
1790 */
1791 p.uapsd = false;
1792
1793 sdata->tx_conf[params->ac] = p;
1794 if (drv_conf_tx(local, sdata, params->ac, &p)) {
1795 wiphy_debug(local->hw.wiphy,
1796 "failed to set TX queue parameters for AC %d\n",
1797 params->ac);
1798 return -EINVAL;
1799 }
1800
1801 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_QOS);
1802
1803 return 0;
1804 }
1805
1806 #ifdef CONFIG_PM
1807 static int ieee80211_suspend(struct wiphy *wiphy,
1808 struct cfg80211_wowlan *wowlan)
1809 {
1810 return __ieee80211_suspend(wiphy_priv(wiphy), wowlan);
1811 }
1812
1813 static int ieee80211_resume(struct wiphy *wiphy)
1814 {
1815 return __ieee80211_resume(wiphy_priv(wiphy));
1816 }
1817 #else
1818 #define ieee80211_suspend NULL
1819 #define ieee80211_resume NULL
1820 #endif
1821
1822 static int ieee80211_scan(struct wiphy *wiphy,
1823 struct cfg80211_scan_request *req)
1824 {
1825 struct ieee80211_sub_if_data *sdata;
1826
1827 sdata = IEEE80211_WDEV_TO_SUB_IF(req->wdev);
1828
1829 switch (ieee80211_vif_type_p2p(&sdata->vif)) {
1830 case NL80211_IFTYPE_STATION:
1831 case NL80211_IFTYPE_ADHOC:
1832 case NL80211_IFTYPE_MESH_POINT:
1833 case NL80211_IFTYPE_P2P_CLIENT:
1834 case NL80211_IFTYPE_P2P_DEVICE:
1835 break;
1836 case NL80211_IFTYPE_P2P_GO:
1837 if (sdata->local->ops->hw_scan)
1838 break;
1839 /*
1840 * FIXME: implement NoA while scanning in software,
1841 * for now fall through to allow scanning only when
1842 * beaconing hasn't been configured yet
1843 */
1844 case NL80211_IFTYPE_AP:
1845 if (sdata->u.ap.beacon)
1846 return -EOPNOTSUPP;
1847 break;
1848 default:
1849 return -EOPNOTSUPP;
1850 }
1851
1852 return ieee80211_request_scan(sdata, req);
1853 }
1854
1855 static int
1856 ieee80211_sched_scan_start(struct wiphy *wiphy,
1857 struct net_device *dev,
1858 struct cfg80211_sched_scan_request *req)
1859 {
1860 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1861
1862 if (!sdata->local->ops->sched_scan_start)
1863 return -EOPNOTSUPP;
1864
1865 return ieee80211_request_sched_scan_start(sdata, req);
1866 }
1867
1868 static int
1869 ieee80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev)
1870 {
1871 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1872
1873 if (!sdata->local->ops->sched_scan_stop)
1874 return -EOPNOTSUPP;
1875
1876 return ieee80211_request_sched_scan_stop(sdata);
1877 }
1878
1879 static int ieee80211_auth(struct wiphy *wiphy, struct net_device *dev,
1880 struct cfg80211_auth_request *req)
1881 {
1882 return ieee80211_mgd_auth(IEEE80211_DEV_TO_SUB_IF(dev), req);
1883 }
1884
1885 static int ieee80211_assoc(struct wiphy *wiphy, struct net_device *dev,
1886 struct cfg80211_assoc_request *req)
1887 {
1888 return ieee80211_mgd_assoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
1889 }
1890
1891 static int ieee80211_deauth(struct wiphy *wiphy, struct net_device *dev,
1892 struct cfg80211_deauth_request *req)
1893 {
1894 return ieee80211_mgd_deauth(IEEE80211_DEV_TO_SUB_IF(dev), req);
1895 }
1896
1897 static int ieee80211_disassoc(struct wiphy *wiphy, struct net_device *dev,
1898 struct cfg80211_disassoc_request *req)
1899 {
1900 return ieee80211_mgd_disassoc(IEEE80211_DEV_TO_SUB_IF(dev), req);
1901 }
1902
1903 static int ieee80211_join_ibss(struct wiphy *wiphy, struct net_device *dev,
1904 struct cfg80211_ibss_params *params)
1905 {
1906 return ieee80211_ibss_join(IEEE80211_DEV_TO_SUB_IF(dev), params);
1907 }
1908
1909 static int ieee80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev)
1910 {
1911 return ieee80211_ibss_leave(IEEE80211_DEV_TO_SUB_IF(dev));
1912 }
1913
1914 static int ieee80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
1915 {
1916 struct ieee80211_local *local = wiphy_priv(wiphy);
1917 int err;
1918
1919 if (changed & WIPHY_PARAM_FRAG_THRESHOLD) {
1920 err = drv_set_frag_threshold(local, wiphy->frag_threshold);
1921
1922 if (err)
1923 return err;
1924 }
1925
1926 if (changed & WIPHY_PARAM_COVERAGE_CLASS) {
1927 err = drv_set_coverage_class(local, wiphy->coverage_class);
1928
1929 if (err)
1930 return err;
1931 }
1932
1933 if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
1934 err = drv_set_rts_threshold(local, wiphy->rts_threshold);
1935
1936 if (err)
1937 return err;
1938 }
1939
1940 if (changed & WIPHY_PARAM_RETRY_SHORT)
1941 local->hw.conf.short_frame_max_tx_count = wiphy->retry_short;
1942 if (changed & WIPHY_PARAM_RETRY_LONG)
1943 local->hw.conf.long_frame_max_tx_count = wiphy->retry_long;
1944 if (changed &
1945 (WIPHY_PARAM_RETRY_SHORT | WIPHY_PARAM_RETRY_LONG))
1946 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_RETRY_LIMITS);
1947
1948 return 0;
1949 }
1950
1951 static int ieee80211_set_tx_power(struct wiphy *wiphy,
1952 enum nl80211_tx_power_setting type, int mbm)
1953 {
1954 struct ieee80211_local *local = wiphy_priv(wiphy);
1955 struct ieee80211_channel *chan = local->_oper_channel;
1956 u32 changes = 0;
1957
1958 /* FIXME */
1959 if (local->use_chanctx)
1960 return -EOPNOTSUPP;
1961
1962 switch (type) {
1963 case NL80211_TX_POWER_AUTOMATIC:
1964 local->user_power_level = -1;
1965 break;
1966 case NL80211_TX_POWER_LIMITED:
1967 if (mbm < 0 || (mbm % 100))
1968 return -EOPNOTSUPP;
1969 local->user_power_level = MBM_TO_DBM(mbm);
1970 break;
1971 case NL80211_TX_POWER_FIXED:
1972 if (mbm < 0 || (mbm % 100))
1973 return -EOPNOTSUPP;
1974 /* TODO: move to cfg80211 when it knows the channel */
1975 if (MBM_TO_DBM(mbm) > chan->max_power)
1976 return -EINVAL;
1977 local->user_power_level = MBM_TO_DBM(mbm);
1978 break;
1979 }
1980
1981 ieee80211_hw_config(local, changes);
1982
1983 return 0;
1984 }
1985
1986 static int ieee80211_get_tx_power(struct wiphy *wiphy, int *dbm)
1987 {
1988 struct ieee80211_local *local = wiphy_priv(wiphy);
1989
1990 *dbm = local->hw.conf.power_level;
1991
1992 return 0;
1993 }
1994
1995 static int ieee80211_set_wds_peer(struct wiphy *wiphy, struct net_device *dev,
1996 const u8 *addr)
1997 {
1998 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1999
2000 memcpy(&sdata->u.wds.remote_addr, addr, ETH_ALEN);
2001
2002 return 0;
2003 }
2004
2005 static void ieee80211_rfkill_poll(struct wiphy *wiphy)
2006 {
2007 struct ieee80211_local *local = wiphy_priv(wiphy);
2008
2009 drv_rfkill_poll(local);
2010 }
2011
2012 #ifdef CONFIG_NL80211_TESTMODE
2013 static int ieee80211_testmode_cmd(struct wiphy *wiphy, void *data, int len)
2014 {
2015 struct ieee80211_local *local = wiphy_priv(wiphy);
2016
2017 if (!local->ops->testmode_cmd)
2018 return -EOPNOTSUPP;
2019
2020 return local->ops->testmode_cmd(&local->hw, data, len);
2021 }
2022
2023 static int ieee80211_testmode_dump(struct wiphy *wiphy,
2024 struct sk_buff *skb,
2025 struct netlink_callback *cb,
2026 void *data, int len)
2027 {
2028 struct ieee80211_local *local = wiphy_priv(wiphy);
2029
2030 if (!local->ops->testmode_dump)
2031 return -EOPNOTSUPP;
2032
2033 return local->ops->testmode_dump(&local->hw, skb, cb, data, len);
2034 }
2035 #endif
2036
2037 int __ieee80211_request_smps(struct ieee80211_sub_if_data *sdata,
2038 enum ieee80211_smps_mode smps_mode)
2039 {
2040 const u8 *ap;
2041 enum ieee80211_smps_mode old_req;
2042 int err;
2043
2044 lockdep_assert_held(&sdata->u.mgd.mtx);
2045
2046 old_req = sdata->u.mgd.req_smps;
2047 sdata->u.mgd.req_smps = smps_mode;
2048
2049 if (old_req == smps_mode &&
2050 smps_mode != IEEE80211_SMPS_AUTOMATIC)
2051 return 0;
2052
2053 /*
2054 * If not associated, or current association is not an HT
2055 * association, there's no need to send an action frame.
2056 */
2057 if (!sdata->u.mgd.associated ||
2058 sdata->vif.bss_conf.channel_type == NL80211_CHAN_NO_HT) {
2059 ieee80211_recalc_smps(sdata->local);
2060 return 0;
2061 }
2062
2063 ap = sdata->u.mgd.associated->bssid;
2064
2065 if (smps_mode == IEEE80211_SMPS_AUTOMATIC) {
2066 if (sdata->u.mgd.powersave)
2067 smps_mode = IEEE80211_SMPS_DYNAMIC;
2068 else
2069 smps_mode = IEEE80211_SMPS_OFF;
2070 }
2071
2072 /* send SM PS frame to AP */
2073 err = ieee80211_send_smps_action(sdata, smps_mode,
2074 ap, ap);
2075 if (err)
2076 sdata->u.mgd.req_smps = old_req;
2077
2078 return err;
2079 }
2080
2081 static int ieee80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev,
2082 bool enabled, int timeout)
2083 {
2084 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2085 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2086
2087 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2088 return -EOPNOTSUPP;
2089
2090 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
2091 return -EOPNOTSUPP;
2092
2093 if (enabled == sdata->u.mgd.powersave &&
2094 timeout == local->dynamic_ps_forced_timeout)
2095 return 0;
2096
2097 sdata->u.mgd.powersave = enabled;
2098 local->dynamic_ps_forced_timeout = timeout;
2099
2100 /* no change, but if automatic follow powersave */
2101 mutex_lock(&sdata->u.mgd.mtx);
2102 __ieee80211_request_smps(sdata, sdata->u.mgd.req_smps);
2103 mutex_unlock(&sdata->u.mgd.mtx);
2104
2105 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
2106 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_PS);
2107
2108 ieee80211_recalc_ps(local, -1);
2109 ieee80211_recalc_ps_vif(sdata);
2110
2111 return 0;
2112 }
2113
2114 static int ieee80211_set_cqm_rssi_config(struct wiphy *wiphy,
2115 struct net_device *dev,
2116 s32 rssi_thold, u32 rssi_hyst)
2117 {
2118 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2119 struct ieee80211_vif *vif = &sdata->vif;
2120 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
2121
2122 if (rssi_thold == bss_conf->cqm_rssi_thold &&
2123 rssi_hyst == bss_conf->cqm_rssi_hyst)
2124 return 0;
2125
2126 bss_conf->cqm_rssi_thold = rssi_thold;
2127 bss_conf->cqm_rssi_hyst = rssi_hyst;
2128
2129 /* tell the driver upon association, unless already associated */
2130 if (sdata->u.mgd.associated &&
2131 sdata->vif.driver_flags & IEEE80211_VIF_SUPPORTS_CQM_RSSI)
2132 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_CQM);
2133
2134 return 0;
2135 }
2136
2137 static int ieee80211_set_bitrate_mask(struct wiphy *wiphy,
2138 struct net_device *dev,
2139 const u8 *addr,
2140 const struct cfg80211_bitrate_mask *mask)
2141 {
2142 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2143 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
2144 int i, ret;
2145
2146 if (!ieee80211_sdata_running(sdata))
2147 return -ENETDOWN;
2148
2149 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) {
2150 ret = drv_set_bitrate_mask(local, sdata, mask);
2151 if (ret)
2152 return ret;
2153 }
2154
2155 for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
2156 sdata->rc_rateidx_mask[i] = mask->control[i].legacy;
2157 memcpy(sdata->rc_rateidx_mcs_mask[i], mask->control[i].mcs,
2158 sizeof(mask->control[i].mcs));
2159 }
2160
2161 return 0;
2162 }
2163
2164 static int ieee80211_start_roc_work(struct ieee80211_local *local,
2165 struct ieee80211_sub_if_data *sdata,
2166 struct ieee80211_channel *channel,
2167 enum nl80211_channel_type channel_type,
2168 unsigned int duration, u64 *cookie,
2169 struct sk_buff *txskb)
2170 {
2171 struct ieee80211_roc_work *roc, *tmp;
2172 bool queued = false;
2173 int ret;
2174
2175 lockdep_assert_held(&local->mtx);
2176
2177 if (local->use_chanctx && !local->ops->remain_on_channel)
2178 return -EOPNOTSUPP;
2179
2180 roc = kzalloc(sizeof(*roc), GFP_KERNEL);
2181 if (!roc)
2182 return -ENOMEM;
2183
2184 roc->chan = channel;
2185 roc->chan_type = channel_type;
2186 roc->duration = duration;
2187 roc->req_duration = duration;
2188 roc->frame = txskb;
2189 roc->mgmt_tx_cookie = (unsigned long)txskb;
2190 roc->sdata = sdata;
2191 INIT_DELAYED_WORK(&roc->work, ieee80211_sw_roc_work);
2192 INIT_LIST_HEAD(&roc->dependents);
2193
2194 /* if there's one pending or we're scanning, queue this one */
2195 if (!list_empty(&local->roc_list) || local->scanning)
2196 goto out_check_combine;
2197
2198 /* if not HW assist, just queue & schedule work */
2199 if (!local->ops->remain_on_channel) {
2200 ieee80211_queue_delayed_work(&local->hw, &roc->work, 0);
2201 goto out_queue;
2202 }
2203
2204 /* otherwise actually kick it off here (for error handling) */
2205
2206 /*
2207 * If the duration is zero, then the driver
2208 * wouldn't actually do anything. Set it to
2209 * 10 for now.
2210 *
2211 * TODO: cancel the off-channel operation
2212 * when we get the SKB's TX status and
2213 * the wait time was zero before.
2214 */
2215 if (!duration)
2216 duration = 10;
2217
2218 ret = drv_remain_on_channel(local, channel, channel_type, duration);
2219 if (ret) {
2220 kfree(roc);
2221 return ret;
2222 }
2223
2224 roc->started = true;
2225 goto out_queue;
2226
2227 out_check_combine:
2228 list_for_each_entry(tmp, &local->roc_list, list) {
2229 if (tmp->chan != channel || tmp->chan_type != channel_type)
2230 continue;
2231
2232 /*
2233 * Extend this ROC if possible:
2234 *
2235 * If it hasn't started yet, just increase the duration
2236 * and add the new one to the list of dependents.
2237 */
2238 if (!tmp->started) {
2239 list_add_tail(&roc->list, &tmp->dependents);
2240 tmp->duration = max(tmp->duration, roc->duration);
2241 queued = true;
2242 break;
2243 }
2244
2245 /* If it has already started, it's more difficult ... */
2246 if (local->ops->remain_on_channel) {
2247 unsigned long j = jiffies;
2248
2249 /*
2250 * In the offloaded ROC case, if it hasn't begun, add
2251 * this new one to the dependent list to be handled
2252 * when the the master one begins. If it has begun,
2253 * check that there's still a minimum time left and
2254 * if so, start this one, transmitting the frame, but
2255 * add it to the list directly after this one with a
2256 * a reduced time so we'll ask the driver to execute
2257 * it right after finishing the previous one, in the
2258 * hope that it'll also be executed right afterwards,
2259 * effectively extending the old one.
2260 * If there's no minimum time left, just add it to the
2261 * normal list.
2262 */
2263 if (!tmp->hw_begun) {
2264 list_add_tail(&roc->list, &tmp->dependents);
2265 queued = true;
2266 break;
2267 }
2268
2269 if (time_before(j + IEEE80211_ROC_MIN_LEFT,
2270 tmp->hw_start_time +
2271 msecs_to_jiffies(tmp->duration))) {
2272 int new_dur;
2273
2274 ieee80211_handle_roc_started(roc);
2275
2276 new_dur = roc->duration -
2277 jiffies_to_msecs(tmp->hw_start_time +
2278 msecs_to_jiffies(
2279 tmp->duration) -
2280 j);
2281
2282 if (new_dur > 0) {
2283 /* add right after tmp */
2284 list_add(&roc->list, &tmp->list);
2285 } else {
2286 list_add_tail(&roc->list,
2287 &tmp->dependents);
2288 }
2289 queued = true;
2290 }
2291 } else if (del_timer_sync(&tmp->work.timer)) {
2292 unsigned long new_end;
2293
2294 /*
2295 * In the software ROC case, cancel the timer, if
2296 * that fails then the finish work is already
2297 * queued/pending and thus we queue the new ROC
2298 * normally, if that succeeds then we can extend
2299 * the timer duration and TX the frame (if any.)
2300 */
2301
2302 list_add_tail(&roc->list, &tmp->dependents);
2303 queued = true;
2304
2305 new_end = jiffies + msecs_to_jiffies(roc->duration);
2306
2307 /* ok, it was started & we canceled timer */
2308 if (time_after(new_end, tmp->work.timer.expires))
2309 mod_timer(&tmp->work.timer, new_end);
2310 else
2311 add_timer(&tmp->work.timer);
2312
2313 ieee80211_handle_roc_started(roc);
2314 }
2315 break;
2316 }
2317
2318 out_queue:
2319 if (!queued)
2320 list_add_tail(&roc->list, &local->roc_list);
2321
2322 /*
2323 * cookie is either the roc (for normal roc)
2324 * or the SKB (for mgmt TX)
2325 */
2326 if (txskb)
2327 *cookie = (unsigned long)txskb;
2328 else
2329 *cookie = (unsigned long)roc;
2330
2331 return 0;
2332 }
2333
2334 static int ieee80211_remain_on_channel(struct wiphy *wiphy,
2335 struct wireless_dev *wdev,
2336 struct ieee80211_channel *chan,
2337 enum nl80211_channel_type channel_type,
2338 unsigned int duration,
2339 u64 *cookie)
2340 {
2341 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
2342 struct ieee80211_local *local = sdata->local;
2343 int ret;
2344
2345 mutex_lock(&local->mtx);
2346 ret = ieee80211_start_roc_work(local, sdata, chan, channel_type,
2347 duration, cookie, NULL);
2348 mutex_unlock(&local->mtx);
2349
2350 return ret;
2351 }
2352
2353 static int ieee80211_cancel_roc(struct ieee80211_local *local,
2354 u64 cookie, bool mgmt_tx)
2355 {
2356 struct ieee80211_roc_work *roc, *tmp, *found = NULL;
2357 int ret;
2358
2359 mutex_lock(&local->mtx);
2360 list_for_each_entry_safe(roc, tmp, &local->roc_list, list) {
2361 struct ieee80211_roc_work *dep, *tmp2;
2362
2363 list_for_each_entry_safe(dep, tmp2, &roc->dependents, list) {
2364 if (!mgmt_tx && (unsigned long)dep != cookie)
2365 continue;
2366 else if (mgmt_tx && dep->mgmt_tx_cookie != cookie)
2367 continue;
2368 /* found dependent item -- just remove it */
2369 list_del(&dep->list);
2370 mutex_unlock(&local->mtx);
2371
2372 ieee80211_roc_notify_destroy(dep);
2373 return 0;
2374 }
2375
2376 if (!mgmt_tx && (unsigned long)roc != cookie)
2377 continue;
2378 else if (mgmt_tx && roc->mgmt_tx_cookie != cookie)
2379 continue;
2380
2381 found = roc;
2382 break;
2383 }
2384
2385 if (!found) {
2386 mutex_unlock(&local->mtx);
2387 return -ENOENT;
2388 }
2389
2390 /*
2391 * We found the item to cancel, so do that. Note that it
2392 * may have dependents, which we also cancel (and send
2393 * the expired signal for.) Not doing so would be quite
2394 * tricky here, but we may need to fix it later.
2395 */
2396
2397 if (local->ops->remain_on_channel) {
2398 if (found->started) {
2399 ret = drv_cancel_remain_on_channel(local);
2400 if (WARN_ON_ONCE(ret)) {
2401 mutex_unlock(&local->mtx);
2402 return ret;
2403 }
2404 }
2405
2406 list_del(&found->list);
2407
2408 if (found->started)
2409 ieee80211_start_next_roc(local);
2410 mutex_unlock(&local->mtx);
2411
2412 ieee80211_roc_notify_destroy(found);
2413 } else {
2414 /* work may be pending so use it all the time */
2415 found->abort = true;
2416 ieee80211_queue_delayed_work(&local->hw, &found->work, 0);
2417
2418 mutex_unlock(&local->mtx);
2419
2420 /* work will clean up etc */
2421 flush_delayed_work(&found->work);
2422 }
2423
2424 return 0;
2425 }
2426
2427 static int ieee80211_cancel_remain_on_channel(struct wiphy *wiphy,
2428 struct wireless_dev *wdev,
2429 u64 cookie)
2430 {
2431 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
2432 struct ieee80211_local *local = sdata->local;
2433
2434 return ieee80211_cancel_roc(local, cookie, false);
2435 }
2436
2437 static int ieee80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev,
2438 struct ieee80211_channel *chan, bool offchan,
2439 enum nl80211_channel_type channel_type,
2440 bool channel_type_valid, unsigned int wait,
2441 const u8 *buf, size_t len, bool no_cck,
2442 bool dont_wait_for_ack, u64 *cookie)
2443 {
2444 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
2445 struct ieee80211_local *local = sdata->local;
2446 struct sk_buff *skb;
2447 struct sta_info *sta;
2448 const struct ieee80211_mgmt *mgmt = (void *)buf;
2449 bool need_offchan = false;
2450 u32 flags;
2451 int ret;
2452
2453 if (dont_wait_for_ack)
2454 flags = IEEE80211_TX_CTL_NO_ACK;
2455 else
2456 flags = IEEE80211_TX_INTFL_NL80211_FRAME_TX |
2457 IEEE80211_TX_CTL_REQ_TX_STATUS;
2458
2459 if (no_cck)
2460 flags |= IEEE80211_TX_CTL_NO_CCK_RATE;
2461
2462 switch (sdata->vif.type) {
2463 case NL80211_IFTYPE_ADHOC:
2464 if (!sdata->vif.bss_conf.ibss_joined)
2465 need_offchan = true;
2466 /* fall through */
2467 #ifdef CONFIG_MAC80211_MESH
2468 case NL80211_IFTYPE_MESH_POINT:
2469 if (ieee80211_vif_is_mesh(&sdata->vif) &&
2470 !sdata->u.mesh.mesh_id_len)
2471 need_offchan = true;
2472 /* fall through */
2473 #endif
2474 case NL80211_IFTYPE_AP:
2475 case NL80211_IFTYPE_AP_VLAN:
2476 case NL80211_IFTYPE_P2P_GO:
2477 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2478 !ieee80211_vif_is_mesh(&sdata->vif) &&
2479 !rcu_access_pointer(sdata->bss->beacon))
2480 need_offchan = true;
2481 if (!ieee80211_is_action(mgmt->frame_control) ||
2482 mgmt->u.action.category == WLAN_CATEGORY_PUBLIC)
2483 break;
2484 rcu_read_lock();
2485 sta = sta_info_get(sdata, mgmt->da);
2486 rcu_read_unlock();
2487 if (!sta)
2488 return -ENOLINK;
2489 break;
2490 case NL80211_IFTYPE_STATION:
2491 case NL80211_IFTYPE_P2P_CLIENT:
2492 if (!sdata->u.mgd.associated)
2493 need_offchan = true;
2494 break;
2495 case NL80211_IFTYPE_P2P_DEVICE:
2496 need_offchan = true;
2497 break;
2498 default:
2499 return -EOPNOTSUPP;
2500 }
2501
2502 mutex_lock(&local->mtx);
2503
2504 /* Check if the operating channel is the requested channel */
2505 if (!need_offchan) {
2506 struct ieee80211_chanctx_conf *chanctx_conf;
2507
2508 rcu_read_lock();
2509 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
2510
2511 if (chanctx_conf) {
2512 need_offchan = chan != chanctx_conf->channel;
2513 if (channel_type_valid &&
2514 channel_type != chanctx_conf->channel_type)
2515 need_offchan = true;
2516 } else {
2517 need_offchan = true;
2518 }
2519 rcu_read_unlock();
2520 }
2521
2522 if (need_offchan && !offchan) {
2523 ret = -EBUSY;
2524 goto out_unlock;
2525 }
2526
2527 skb = dev_alloc_skb(local->hw.extra_tx_headroom + len);
2528 if (!skb) {
2529 ret = -ENOMEM;
2530 goto out_unlock;
2531 }
2532 skb_reserve(skb, local->hw.extra_tx_headroom);
2533
2534 memcpy(skb_put(skb, len), buf, len);
2535
2536 IEEE80211_SKB_CB(skb)->flags = flags;
2537
2538 skb->dev = sdata->dev;
2539
2540 if (!need_offchan) {
2541 *cookie = (unsigned long) skb;
2542 ieee80211_tx_skb(sdata, skb);
2543 ret = 0;
2544 goto out_unlock;
2545 }
2546
2547 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_CTL_TX_OFFCHAN;
2548 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2549 IEEE80211_SKB_CB(skb)->hw_queue =
2550 local->hw.offchannel_tx_hw_queue;
2551
2552 /* This will handle all kinds of coalescing and immediate TX */
2553 ret = ieee80211_start_roc_work(local, sdata, chan, channel_type,
2554 wait, cookie, skb);
2555 if (ret)
2556 kfree_skb(skb);
2557 out_unlock:
2558 mutex_unlock(&local->mtx);
2559 return ret;
2560 }
2561
2562 static int ieee80211_mgmt_tx_cancel_wait(struct wiphy *wiphy,
2563 struct wireless_dev *wdev,
2564 u64 cookie)
2565 {
2566 struct ieee80211_local *local = wiphy_priv(wiphy);
2567
2568 return ieee80211_cancel_roc(local, cookie, true);
2569 }
2570
2571 static void ieee80211_mgmt_frame_register(struct wiphy *wiphy,
2572 struct wireless_dev *wdev,
2573 u16 frame_type, bool reg)
2574 {
2575 struct ieee80211_local *local = wiphy_priv(wiphy);
2576 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
2577
2578 switch (frame_type) {
2579 case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH:
2580 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2581 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2582
2583 if (reg)
2584 ifibss->auth_frame_registrations++;
2585 else
2586 ifibss->auth_frame_registrations--;
2587 }
2588 break;
2589 case IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ:
2590 if (reg)
2591 local->probe_req_reg++;
2592 else
2593 local->probe_req_reg--;
2594
2595 ieee80211_queue_work(&local->hw, &local->reconfig_filter);
2596 break;
2597 default:
2598 break;
2599 }
2600 }
2601
2602 static int ieee80211_set_antenna(struct wiphy *wiphy, u32 tx_ant, u32 rx_ant)
2603 {
2604 struct ieee80211_local *local = wiphy_priv(wiphy);
2605
2606 if (local->started)
2607 return -EOPNOTSUPP;
2608
2609 return drv_set_antenna(local, tx_ant, rx_ant);
2610 }
2611
2612 static int ieee80211_get_antenna(struct wiphy *wiphy, u32 *tx_ant, u32 *rx_ant)
2613 {
2614 struct ieee80211_local *local = wiphy_priv(wiphy);
2615
2616 return drv_get_antenna(local, tx_ant, rx_ant);
2617 }
2618
2619 static int ieee80211_set_ringparam(struct wiphy *wiphy, u32 tx, u32 rx)
2620 {
2621 struct ieee80211_local *local = wiphy_priv(wiphy);
2622
2623 return drv_set_ringparam(local, tx, rx);
2624 }
2625
2626 static void ieee80211_get_ringparam(struct wiphy *wiphy,
2627 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max)
2628 {
2629 struct ieee80211_local *local = wiphy_priv(wiphy);
2630
2631 drv_get_ringparam(local, tx, tx_max, rx, rx_max);
2632 }
2633
2634 static int ieee80211_set_rekey_data(struct wiphy *wiphy,
2635 struct net_device *dev,
2636 struct cfg80211_gtk_rekey_data *data)
2637 {
2638 struct ieee80211_local *local = wiphy_priv(wiphy);
2639 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2640
2641 if (!local->ops->set_rekey_data)
2642 return -EOPNOTSUPP;
2643
2644 drv_set_rekey_data(local, sdata, data);
2645
2646 return 0;
2647 }
2648
2649 static void ieee80211_tdls_add_ext_capab(struct sk_buff *skb)
2650 {
2651 u8 *pos = (void *)skb_put(skb, 7);
2652
2653 *pos++ = WLAN_EID_EXT_CAPABILITY;
2654 *pos++ = 5; /* len */
2655 *pos++ = 0x0;
2656 *pos++ = 0x0;
2657 *pos++ = 0x0;
2658 *pos++ = 0x0;
2659 *pos++ = WLAN_EXT_CAPA5_TDLS_ENABLED;
2660 }
2661
2662 static u16 ieee80211_get_tdls_sta_capab(struct ieee80211_sub_if_data *sdata)
2663 {
2664 struct ieee80211_local *local = sdata->local;
2665 u16 capab;
2666
2667 capab = 0;
2668 if (ieee80211_get_sdata_band(sdata) != IEEE80211_BAND_2GHZ)
2669 return capab;
2670
2671 if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
2672 capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
2673 if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
2674 capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
2675
2676 return capab;
2677 }
2678
2679 static void ieee80211_tdls_add_link_ie(struct sk_buff *skb, u8 *src_addr,
2680 u8 *peer, u8 *bssid)
2681 {
2682 struct ieee80211_tdls_lnkie *lnkid;
2683
2684 lnkid = (void *)skb_put(skb, sizeof(struct ieee80211_tdls_lnkie));
2685
2686 lnkid->ie_type = WLAN_EID_LINK_ID;
2687 lnkid->ie_len = sizeof(struct ieee80211_tdls_lnkie) - 2;
2688
2689 memcpy(lnkid->bssid, bssid, ETH_ALEN);
2690 memcpy(lnkid->init_sta, src_addr, ETH_ALEN);
2691 memcpy(lnkid->resp_sta, peer, ETH_ALEN);
2692 }
2693
2694 static int
2695 ieee80211_prep_tdls_encap_data(struct wiphy *wiphy, struct net_device *dev,
2696 u8 *peer, u8 action_code, u8 dialog_token,
2697 u16 status_code, struct sk_buff *skb)
2698 {
2699 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2700 enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
2701 struct ieee80211_tdls_data *tf;
2702
2703 tf = (void *)skb_put(skb, offsetof(struct ieee80211_tdls_data, u));
2704
2705 memcpy(tf->da, peer, ETH_ALEN);
2706 memcpy(tf->sa, sdata->vif.addr, ETH_ALEN);
2707 tf->ether_type = cpu_to_be16(ETH_P_TDLS);
2708 tf->payload_type = WLAN_TDLS_SNAP_RFTYPE;
2709
2710 switch (action_code) {
2711 case WLAN_TDLS_SETUP_REQUEST:
2712 tf->category = WLAN_CATEGORY_TDLS;
2713 tf->action_code = WLAN_TDLS_SETUP_REQUEST;
2714
2715 skb_put(skb, sizeof(tf->u.setup_req));
2716 tf->u.setup_req.dialog_token = dialog_token;
2717 tf->u.setup_req.capability =
2718 cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
2719
2720 ieee80211_add_srates_ie(sdata, skb, false, band);
2721 ieee80211_add_ext_srates_ie(sdata, skb, false, band);
2722 ieee80211_tdls_add_ext_capab(skb);
2723 break;
2724 case WLAN_TDLS_SETUP_RESPONSE:
2725 tf->category = WLAN_CATEGORY_TDLS;
2726 tf->action_code = WLAN_TDLS_SETUP_RESPONSE;
2727
2728 skb_put(skb, sizeof(tf->u.setup_resp));
2729 tf->u.setup_resp.status_code = cpu_to_le16(status_code);
2730 tf->u.setup_resp.dialog_token = dialog_token;
2731 tf->u.setup_resp.capability =
2732 cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
2733
2734 ieee80211_add_srates_ie(sdata, skb, false, band);
2735 ieee80211_add_ext_srates_ie(sdata, skb, false, band);
2736 ieee80211_tdls_add_ext_capab(skb);
2737 break;
2738 case WLAN_TDLS_SETUP_CONFIRM:
2739 tf->category = WLAN_CATEGORY_TDLS;
2740 tf->action_code = WLAN_TDLS_SETUP_CONFIRM;
2741
2742 skb_put(skb, sizeof(tf->u.setup_cfm));
2743 tf->u.setup_cfm.status_code = cpu_to_le16(status_code);
2744 tf->u.setup_cfm.dialog_token = dialog_token;
2745 break;
2746 case WLAN_TDLS_TEARDOWN:
2747 tf->category = WLAN_CATEGORY_TDLS;
2748 tf->action_code = WLAN_TDLS_TEARDOWN;
2749
2750 skb_put(skb, sizeof(tf->u.teardown));
2751 tf->u.teardown.reason_code = cpu_to_le16(status_code);
2752 break;
2753 case WLAN_TDLS_DISCOVERY_REQUEST:
2754 tf->category = WLAN_CATEGORY_TDLS;
2755 tf->action_code = WLAN_TDLS_DISCOVERY_REQUEST;
2756
2757 skb_put(skb, sizeof(tf->u.discover_req));
2758 tf->u.discover_req.dialog_token = dialog_token;
2759 break;
2760 default:
2761 return -EINVAL;
2762 }
2763
2764 return 0;
2765 }
2766
2767 static int
2768 ieee80211_prep_tdls_direct(struct wiphy *wiphy, struct net_device *dev,
2769 u8 *peer, u8 action_code, u8 dialog_token,
2770 u16 status_code, struct sk_buff *skb)
2771 {
2772 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2773 enum ieee80211_band band = ieee80211_get_sdata_band(sdata);
2774 struct ieee80211_mgmt *mgmt;
2775
2776 mgmt = (void *)skb_put(skb, 24);
2777 memset(mgmt, 0, 24);
2778 memcpy(mgmt->da, peer, ETH_ALEN);
2779 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2780 memcpy(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2781
2782 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2783 IEEE80211_STYPE_ACTION);
2784
2785 switch (action_code) {
2786 case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
2787 skb_put(skb, 1 + sizeof(mgmt->u.action.u.tdls_discover_resp));
2788 mgmt->u.action.category = WLAN_CATEGORY_PUBLIC;
2789 mgmt->u.action.u.tdls_discover_resp.action_code =
2790 WLAN_PUB_ACTION_TDLS_DISCOVER_RES;
2791 mgmt->u.action.u.tdls_discover_resp.dialog_token =
2792 dialog_token;
2793 mgmt->u.action.u.tdls_discover_resp.capability =
2794 cpu_to_le16(ieee80211_get_tdls_sta_capab(sdata));
2795
2796 ieee80211_add_srates_ie(sdata, skb, false, band);
2797 ieee80211_add_ext_srates_ie(sdata, skb, false, band);
2798 ieee80211_tdls_add_ext_capab(skb);
2799 break;
2800 default:
2801 return -EINVAL;
2802 }
2803
2804 return 0;
2805 }
2806
2807 static int ieee80211_tdls_mgmt(struct wiphy *wiphy, struct net_device *dev,
2808 u8 *peer, u8 action_code, u8 dialog_token,
2809 u16 status_code, const u8 *extra_ies,
2810 size_t extra_ies_len)
2811 {
2812 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2813 struct ieee80211_local *local = sdata->local;
2814 struct ieee80211_tx_info *info;
2815 struct sk_buff *skb = NULL;
2816 bool send_direct;
2817 int ret;
2818
2819 if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS))
2820 return -ENOTSUPP;
2821
2822 /* make sure we are in managed mode, and associated */
2823 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
2824 !sdata->u.mgd.associated)
2825 return -EINVAL;
2826
2827 tdls_dbg(sdata, "TDLS mgmt action %d peer %pM\n",
2828 action_code, peer);
2829
2830 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
2831 max(sizeof(struct ieee80211_mgmt),
2832 sizeof(struct ieee80211_tdls_data)) +
2833 50 + /* supported rates */
2834 7 + /* ext capab */
2835 extra_ies_len +
2836 sizeof(struct ieee80211_tdls_lnkie));
2837 if (!skb)
2838 return -ENOMEM;
2839
2840 info = IEEE80211_SKB_CB(skb);
2841 skb_reserve(skb, local->hw.extra_tx_headroom);
2842
2843 switch (action_code) {
2844 case WLAN_TDLS_SETUP_REQUEST:
2845 case WLAN_TDLS_SETUP_RESPONSE:
2846 case WLAN_TDLS_SETUP_CONFIRM:
2847 case WLAN_TDLS_TEARDOWN:
2848 case WLAN_TDLS_DISCOVERY_REQUEST:
2849 ret = ieee80211_prep_tdls_encap_data(wiphy, dev, peer,
2850 action_code, dialog_token,
2851 status_code, skb);
2852 send_direct = false;
2853 break;
2854 case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
2855 ret = ieee80211_prep_tdls_direct(wiphy, dev, peer, action_code,
2856 dialog_token, status_code,
2857 skb);
2858 send_direct = true;
2859 break;
2860 default:
2861 ret = -ENOTSUPP;
2862 break;
2863 }
2864
2865 if (ret < 0)
2866 goto fail;
2867
2868 if (extra_ies_len)
2869 memcpy(skb_put(skb, extra_ies_len), extra_ies, extra_ies_len);
2870
2871 /* the TDLS link IE is always added last */
2872 switch (action_code) {
2873 case WLAN_TDLS_SETUP_REQUEST:
2874 case WLAN_TDLS_SETUP_CONFIRM:
2875 case WLAN_TDLS_TEARDOWN:
2876 case WLAN_TDLS_DISCOVERY_REQUEST:
2877 /* we are the initiator */
2878 ieee80211_tdls_add_link_ie(skb, sdata->vif.addr, peer,
2879 sdata->u.mgd.bssid);
2880 break;
2881 case WLAN_TDLS_SETUP_RESPONSE:
2882 case WLAN_PUB_ACTION_TDLS_DISCOVER_RES:
2883 /* we are the responder */
2884 ieee80211_tdls_add_link_ie(skb, peer, sdata->vif.addr,
2885 sdata->u.mgd.bssid);
2886 break;
2887 default:
2888 ret = -ENOTSUPP;
2889 goto fail;
2890 }
2891
2892 if (send_direct) {
2893 ieee80211_tx_skb(sdata, skb);
2894 return 0;
2895 }
2896
2897 /*
2898 * According to 802.11z: Setup req/resp are sent in AC_BK, otherwise
2899 * we should default to AC_VI.
2900 */
2901 switch (action_code) {
2902 case WLAN_TDLS_SETUP_REQUEST:
2903 case WLAN_TDLS_SETUP_RESPONSE:
2904 skb_set_queue_mapping(skb, IEEE80211_AC_BK);
2905 skb->priority = 2;
2906 break;
2907 default:
2908 skb_set_queue_mapping(skb, IEEE80211_AC_VI);
2909 skb->priority = 5;
2910 break;
2911 }
2912
2913 /* disable bottom halves when entering the Tx path */
2914 local_bh_disable();
2915 ret = ieee80211_subif_start_xmit(skb, dev);
2916 local_bh_enable();
2917
2918 return ret;
2919
2920 fail:
2921 dev_kfree_skb(skb);
2922 return ret;
2923 }
2924
2925 static int ieee80211_tdls_oper(struct wiphy *wiphy, struct net_device *dev,
2926 u8 *peer, enum nl80211_tdls_operation oper)
2927 {
2928 struct sta_info *sta;
2929 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2930
2931 if (!(wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS))
2932 return -ENOTSUPP;
2933
2934 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2935 return -EINVAL;
2936
2937 tdls_dbg(sdata, "TDLS oper %d peer %pM\n", oper, peer);
2938
2939 switch (oper) {
2940 case NL80211_TDLS_ENABLE_LINK:
2941 rcu_read_lock();
2942 sta = sta_info_get(sdata, peer);
2943 if (!sta) {
2944 rcu_read_unlock();
2945 return -ENOLINK;
2946 }
2947
2948 set_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH);
2949 rcu_read_unlock();
2950 break;
2951 case NL80211_TDLS_DISABLE_LINK:
2952 return sta_info_destroy_addr(sdata, peer);
2953 case NL80211_TDLS_TEARDOWN:
2954 case NL80211_TDLS_SETUP:
2955 case NL80211_TDLS_DISCOVERY_REQ:
2956 /* We don't support in-driver setup/teardown/discovery */
2957 return -ENOTSUPP;
2958 default:
2959 return -ENOTSUPP;
2960 }
2961
2962 return 0;
2963 }
2964
2965 static int ieee80211_probe_client(struct wiphy *wiphy, struct net_device *dev,
2966 const u8 *peer, u64 *cookie)
2967 {
2968 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2969 struct ieee80211_local *local = sdata->local;
2970 struct ieee80211_qos_hdr *nullfunc;
2971 struct sk_buff *skb;
2972 int size = sizeof(*nullfunc);
2973 __le16 fc;
2974 bool qos;
2975 struct ieee80211_tx_info *info;
2976 struct sta_info *sta;
2977 struct ieee80211_chanctx_conf *chanctx_conf;
2978 enum ieee80211_band band;
2979
2980 rcu_read_lock();
2981 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
2982 if (WARN_ON(!chanctx_conf)) {
2983 rcu_read_unlock();
2984 return -EINVAL;
2985 }
2986 band = chanctx_conf->channel->band;
2987 sta = sta_info_get(sdata, peer);
2988 if (sta) {
2989 qos = test_sta_flag(sta, WLAN_STA_WME);
2990 } else {
2991 rcu_read_unlock();
2992 return -ENOLINK;
2993 }
2994
2995 if (qos) {
2996 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
2997 IEEE80211_STYPE_QOS_NULLFUNC |
2998 IEEE80211_FCTL_FROMDS);
2999 } else {
3000 size -= 2;
3001 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
3002 IEEE80211_STYPE_NULLFUNC |
3003 IEEE80211_FCTL_FROMDS);
3004 }
3005
3006 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
3007 if (!skb) {
3008 rcu_read_unlock();
3009 return -ENOMEM;
3010 }
3011
3012 skb->dev = dev;
3013
3014 skb_reserve(skb, local->hw.extra_tx_headroom);
3015
3016 nullfunc = (void *) skb_put(skb, size);
3017 nullfunc->frame_control = fc;
3018 nullfunc->duration_id = 0;
3019 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
3020 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
3021 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
3022 nullfunc->seq_ctrl = 0;
3023
3024 info = IEEE80211_SKB_CB(skb);
3025
3026 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS |
3027 IEEE80211_TX_INTFL_NL80211_FRAME_TX;
3028
3029 skb_set_queue_mapping(skb, IEEE80211_AC_VO);
3030 skb->priority = 7;
3031 if (qos)
3032 nullfunc->qos_ctrl = cpu_to_le16(7);
3033
3034 local_bh_disable();
3035 ieee80211_xmit(sdata, skb, band);
3036 local_bh_enable();
3037 rcu_read_unlock();
3038
3039 *cookie = (unsigned long) skb;
3040 return 0;
3041 }
3042
3043 static struct ieee80211_channel *
3044 ieee80211_cfg_get_channel(struct wiphy *wiphy, struct wireless_dev *wdev,
3045 enum nl80211_channel_type *type)
3046 {
3047 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
3048 struct ieee80211_chanctx_conf *chanctx_conf;
3049 struct ieee80211_channel *chan = NULL;
3050
3051 rcu_read_lock();
3052 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
3053 if (chanctx_conf) {
3054 *type = chanctx_conf->channel_type;
3055 chan = chanctx_conf->channel;
3056 }
3057 rcu_read_unlock();
3058
3059 return chan;
3060 }
3061
3062 #ifdef CONFIG_PM
3063 static void ieee80211_set_wakeup(struct wiphy *wiphy, bool enabled)
3064 {
3065 drv_set_wakeup(wiphy_priv(wiphy), enabled);
3066 }
3067 #endif
3068
3069 struct cfg80211_ops mac80211_config_ops = {
3070 .add_virtual_intf = ieee80211_add_iface,
3071 .del_virtual_intf = ieee80211_del_iface,
3072 .change_virtual_intf = ieee80211_change_iface,
3073 .start_p2p_device = ieee80211_start_p2p_device,
3074 .stop_p2p_device = ieee80211_stop_p2p_device,
3075 .add_key = ieee80211_add_key,
3076 .del_key = ieee80211_del_key,
3077 .get_key = ieee80211_get_key,
3078 .set_default_key = ieee80211_config_default_key,
3079 .set_default_mgmt_key = ieee80211_config_default_mgmt_key,
3080 .start_ap = ieee80211_start_ap,
3081 .change_beacon = ieee80211_change_beacon,
3082 .stop_ap = ieee80211_stop_ap,
3083 .add_station = ieee80211_add_station,
3084 .del_station = ieee80211_del_station,
3085 .change_station = ieee80211_change_station,
3086 .get_station = ieee80211_get_station,
3087 .dump_station = ieee80211_dump_station,
3088 .dump_survey = ieee80211_dump_survey,
3089 #ifdef CONFIG_MAC80211_MESH
3090 .add_mpath = ieee80211_add_mpath,
3091 .del_mpath = ieee80211_del_mpath,
3092 .change_mpath = ieee80211_change_mpath,
3093 .get_mpath = ieee80211_get_mpath,
3094 .dump_mpath = ieee80211_dump_mpath,
3095 .update_mesh_config = ieee80211_update_mesh_config,
3096 .get_mesh_config = ieee80211_get_mesh_config,
3097 .join_mesh = ieee80211_join_mesh,
3098 .leave_mesh = ieee80211_leave_mesh,
3099 #endif
3100 .change_bss = ieee80211_change_bss,
3101 .set_txq_params = ieee80211_set_txq_params,
3102 .set_monitor_channel = ieee80211_set_monitor_channel,
3103 .suspend = ieee80211_suspend,
3104 .resume = ieee80211_resume,
3105 .scan = ieee80211_scan,
3106 .sched_scan_start = ieee80211_sched_scan_start,
3107 .sched_scan_stop = ieee80211_sched_scan_stop,
3108 .auth = ieee80211_auth,
3109 .assoc = ieee80211_assoc,
3110 .deauth = ieee80211_deauth,
3111 .disassoc = ieee80211_disassoc,
3112 .join_ibss = ieee80211_join_ibss,
3113 .leave_ibss = ieee80211_leave_ibss,
3114 .set_wiphy_params = ieee80211_set_wiphy_params,
3115 .set_tx_power = ieee80211_set_tx_power,
3116 .get_tx_power = ieee80211_get_tx_power,
3117 .set_wds_peer = ieee80211_set_wds_peer,
3118 .rfkill_poll = ieee80211_rfkill_poll,
3119 CFG80211_TESTMODE_CMD(ieee80211_testmode_cmd)
3120 CFG80211_TESTMODE_DUMP(ieee80211_testmode_dump)
3121 .set_power_mgmt = ieee80211_set_power_mgmt,
3122 .set_bitrate_mask = ieee80211_set_bitrate_mask,
3123 .remain_on_channel = ieee80211_remain_on_channel,
3124 .cancel_remain_on_channel = ieee80211_cancel_remain_on_channel,
3125 .mgmt_tx = ieee80211_mgmt_tx,
3126 .mgmt_tx_cancel_wait = ieee80211_mgmt_tx_cancel_wait,
3127 .set_cqm_rssi_config = ieee80211_set_cqm_rssi_config,
3128 .mgmt_frame_register = ieee80211_mgmt_frame_register,
3129 .set_antenna = ieee80211_set_antenna,
3130 .get_antenna = ieee80211_get_antenna,
3131 .set_ringparam = ieee80211_set_ringparam,
3132 .get_ringparam = ieee80211_get_ringparam,
3133 .set_rekey_data = ieee80211_set_rekey_data,
3134 .tdls_oper = ieee80211_tdls_oper,
3135 .tdls_mgmt = ieee80211_tdls_mgmt,
3136 .probe_client = ieee80211_probe_client,
3137 .set_noack_map = ieee80211_set_noack_map,
3138 #ifdef CONFIG_PM
3139 .set_wakeup = ieee80211_set_wakeup,
3140 #endif
3141 .get_et_sset_count = ieee80211_get_et_sset_count,
3142 .get_et_stats = ieee80211_get_et_stats,
3143 .get_et_strings = ieee80211_get_et_strings,
3144 .get_channel = ieee80211_cfg_get_channel,
3145 };