]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/mac80211/key.c
0f889b919b06c1482805b5f0ce95bb8ba4cc9cad
[mirror_ubuntu-focal-kernel.git] / net / mac80211 / key.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright 2015-2017 Intel Deutschland GmbH
9 * Copyright 2018-2019 Intel Corporation
10 */
11
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <crypto/algapi.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29
30
31 /**
32 * DOC: Key handling basics
33 *
34 * Key handling in mac80211 is done based on per-interface (sub_if_data)
35 * keys and per-station keys. Since each station belongs to an interface,
36 * each station key also belongs to that interface.
37 *
38 * Hardware acceleration is done on a best-effort basis for algorithms
39 * that are implemented in software, for each key the hardware is asked
40 * to enable that key for offloading but if it cannot do that the key is
41 * simply kept for software encryption (unless it is for an algorithm
42 * that isn't implemented in software).
43 * There is currently no way of knowing whether a key is handled in SW
44 * or HW except by looking into debugfs.
45 *
46 * All key management is internally protected by a mutex. Within all
47 * other parts of mac80211, key references are, just as STA structure
48 * references, protected by RCU. Note, however, that some things are
49 * unprotected, namely the key->sta dereferences within the hardware
50 * acceleration functions. This means that sta_info_destroy() must
51 * remove the key which waits for an RCU grace period.
52 */
53
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 lockdep_assert_held(&local->key_mtx);
59 }
60
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 struct ieee80211_sub_if_data *vlan;
65
66 if (sdata->vif.type != NL80211_IFTYPE_AP)
67 return;
68
69 /* crypto_tx_tailroom_needed_cnt is protected by this */
70 assert_key_lock(sdata->local);
71
72 rcu_read_lock();
73
74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 vlan->crypto_tx_tailroom_needed_cnt += delta;
76
77 rcu_read_unlock();
78 }
79
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 /*
83 * When this count is zero, SKB resizing for allocating tailroom
84 * for IV or MMIC is skipped. But, this check has created two race
85 * cases in xmit path while transiting from zero count to one:
86 *
87 * 1. SKB resize was skipped because no key was added but just before
88 * the xmit key is added and SW encryption kicks off.
89 *
90 * 2. SKB resize was skipped because all the keys were hw planted but
91 * just before xmit one of the key is deleted and SW encryption kicks
92 * off.
93 *
94 * In both the above case SW encryption will find not enough space for
95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 *
97 * Solution has been explained at
98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 */
100
101 assert_key_lock(sdata->local);
102
103 update_vlan_tailroom_need_count(sdata, 1);
104
105 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 /*
107 * Flush all XMIT packets currently using HW encryption or no
108 * encryption at all if the count transition is from 0 -> 1.
109 */
110 synchronize_net();
111 }
112 }
113
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 int delta)
116 {
117 assert_key_lock(sdata->local);
118
119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120
121 update_vlan_tailroom_need_count(sdata, -delta);
122 sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 struct ieee80211_sub_if_data *sdata = key->sdata;
128 struct sta_info *sta;
129 int ret = -EOPNOTSUPP;
130
131 might_sleep();
132
133 if (key->flags & KEY_FLAG_TAINTED) {
134 /* If we get here, it's during resume and the key is
135 * tainted so shouldn't be used/programmed any more.
136 * However, its flags may still indicate that it was
137 * programmed into the device (since we're in resume)
138 * so clear that flag now to avoid trying to remove
139 * it again later.
140 */
141 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
142 !(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
143 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
144 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
145 increment_tailroom_need_count(sdata);
146
147 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
148 return -EINVAL;
149 }
150
151 if (!key->local->ops->set_key)
152 goto out_unsupported;
153
154 assert_key_lock(key->local);
155
156 sta = key->sta;
157
158 /*
159 * If this is a per-STA GTK, check if it
160 * is supported; if not, return.
161 */
162 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
163 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
164 goto out_unsupported;
165
166 if (sta && !sta->uploaded)
167 goto out_unsupported;
168
169 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
170 /*
171 * The driver doesn't know anything about VLAN interfaces.
172 * Hence, don't send GTKs for VLAN interfaces to the driver.
173 */
174 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
175 ret = 1;
176 goto out_unsupported;
177 }
178 }
179
180 ret = drv_set_key(key->local, SET_KEY, sdata,
181 sta ? &sta->sta : NULL, &key->conf);
182
183 if (!ret) {
184 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
185
186 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
187 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
188 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
189 decrease_tailroom_need_count(sdata, 1);
190
191 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
192 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
193
194 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
195 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
196
197 return 0;
198 }
199
200 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
201 sdata_err(sdata,
202 "failed to set key (%d, %pM) to hardware (%d)\n",
203 key->conf.keyidx,
204 sta ? sta->sta.addr : bcast_addr, ret);
205
206 out_unsupported:
207 switch (key->conf.cipher) {
208 case WLAN_CIPHER_SUITE_WEP40:
209 case WLAN_CIPHER_SUITE_WEP104:
210 case WLAN_CIPHER_SUITE_TKIP:
211 case WLAN_CIPHER_SUITE_CCMP:
212 case WLAN_CIPHER_SUITE_CCMP_256:
213 case WLAN_CIPHER_SUITE_AES_CMAC:
214 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
215 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
216 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
217 case WLAN_CIPHER_SUITE_GCMP:
218 case WLAN_CIPHER_SUITE_GCMP_256:
219 /* all of these we can do in software - if driver can */
220 if (ret == 1)
221 return 0;
222 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
223 return -EINVAL;
224 return 0;
225 default:
226 return -EINVAL;
227 }
228 }
229
230 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
231 {
232 struct ieee80211_sub_if_data *sdata;
233 struct sta_info *sta;
234 int ret;
235
236 might_sleep();
237
238 if (!key || !key->local->ops->set_key)
239 return;
240
241 assert_key_lock(key->local);
242
243 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
244 return;
245
246 sta = key->sta;
247 sdata = key->sdata;
248
249 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
250 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
251 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
252 increment_tailroom_need_count(sdata);
253
254 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
255 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
256 sta ? &sta->sta : NULL, &key->conf);
257
258 if (ret)
259 sdata_err(sdata,
260 "failed to remove key (%d, %pM) from hardware (%d)\n",
261 key->conf.keyidx,
262 sta ? sta->sta.addr : bcast_addr, ret);
263 }
264
265 int ieee80211_set_tx_key(struct ieee80211_key *key)
266 {
267 struct sta_info *sta = key->sta;
268 struct ieee80211_local *local = key->local;
269
270 assert_key_lock(local);
271
272 sta->ptk_idx = key->conf.keyidx;
273
274 if (!ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT))
275 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
276 ieee80211_check_fast_xmit(sta);
277
278 return 0;
279 }
280
281 static void ieee80211_pairwise_rekey(struct ieee80211_key *old,
282 struct ieee80211_key *new)
283 {
284 struct ieee80211_local *local = new->local;
285 struct sta_info *sta = new->sta;
286 int i;
287
288 assert_key_lock(local);
289
290 if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) {
291 /* Extended Key ID key install, initial one or rekey */
292
293 if (sta->ptk_idx != INVALID_PTK_KEYIDX &&
294 !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) {
295 /* Aggregation Sessions with Extended Key ID must not
296 * mix MPDUs with different keyIDs within one A-MPDU.
297 * Tear down running Tx aggregation sessions and block
298 * new Rx/Tx aggregation requests during rekey to
299 * ensure there are no A-MPDUs when the driver is not
300 * supporting A-MPDU key borders. (Blocking Tx only
301 * would be sufficient but WLAN_STA_BLOCK_BA gets the
302 * job done for the few ms we need it.)
303 */
304 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
305 mutex_lock(&sta->ampdu_mlme.mtx);
306 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
307 ___ieee80211_stop_tx_ba_session(sta, i,
308 AGG_STOP_LOCAL_REQUEST);
309 mutex_unlock(&sta->ampdu_mlme.mtx);
310 }
311 } else if (old) {
312 /* Rekey without Extended Key ID.
313 * Aggregation sessions are OK when running on SW crypto.
314 * A broken remote STA may cause issues not observed with HW
315 * crypto, though.
316 */
317 if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
318 return;
319
320 /* Stop Tx till we are on the new key */
321 old->flags |= KEY_FLAG_TAINTED;
322 ieee80211_clear_fast_xmit(sta);
323 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
324 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
325 ieee80211_sta_tear_down_BA_sessions(sta,
326 AGG_STOP_LOCAL_REQUEST);
327 }
328 if (!wiphy_ext_feature_isset(local->hw.wiphy,
329 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
330 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
331 sta->sta.addr);
332 /* Flushing the driver queues *may* help prevent
333 * the clear text leaks and freezes.
334 */
335 ieee80211_flush_queues(local, old->sdata, false);
336 }
337 }
338 }
339
340 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
341 int idx, bool uni, bool multi)
342 {
343 struct ieee80211_key *key = NULL;
344
345 assert_key_lock(sdata->local);
346
347 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
348 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
349
350 if (uni) {
351 rcu_assign_pointer(sdata->default_unicast_key, key);
352 ieee80211_check_fast_xmit_iface(sdata);
353 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
354 drv_set_default_unicast_key(sdata->local, sdata, idx);
355 }
356
357 if (multi)
358 rcu_assign_pointer(sdata->default_multicast_key, key);
359
360 ieee80211_debugfs_key_update_default(sdata);
361 }
362
363 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
364 bool uni, bool multi)
365 {
366 mutex_lock(&sdata->local->key_mtx);
367 __ieee80211_set_default_key(sdata, idx, uni, multi);
368 mutex_unlock(&sdata->local->key_mtx);
369 }
370
371 static void
372 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
373 {
374 struct ieee80211_key *key = NULL;
375
376 assert_key_lock(sdata->local);
377
378 if (idx >= NUM_DEFAULT_KEYS &&
379 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
380 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
381
382 rcu_assign_pointer(sdata->default_mgmt_key, key);
383
384 ieee80211_debugfs_key_update_default(sdata);
385 }
386
387 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
388 int idx)
389 {
390 mutex_lock(&sdata->local->key_mtx);
391 __ieee80211_set_default_mgmt_key(sdata, idx);
392 mutex_unlock(&sdata->local->key_mtx);
393 }
394
395 static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
396 struct sta_info *sta,
397 bool pairwise,
398 struct ieee80211_key *old,
399 struct ieee80211_key *new)
400 {
401 int idx;
402 int ret = 0;
403 bool defunikey, defmultikey, defmgmtkey;
404
405 /* caller must provide at least one old/new */
406 if (WARN_ON(!new && !old))
407 return 0;
408
409 if (new)
410 list_add_tail_rcu(&new->list, &sdata->key_list);
411
412 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
413
414 if (new && sta && pairwise) {
415 /* Unicast rekey needs special handling. With Extended Key ID
416 * old is still NULL for the first rekey.
417 */
418 ieee80211_pairwise_rekey(old, new);
419 }
420
421 if (old) {
422 idx = old->conf.keyidx;
423
424 if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
425 ieee80211_key_disable_hw_accel(old);
426
427 if (new)
428 ret = ieee80211_key_enable_hw_accel(new);
429 }
430 } else {
431 /* new must be provided in case old is not */
432 idx = new->conf.keyidx;
433 if (!new->local->wowlan)
434 ret = ieee80211_key_enable_hw_accel(new);
435 }
436
437 if (ret)
438 return ret;
439
440 if (sta) {
441 if (pairwise) {
442 rcu_assign_pointer(sta->ptk[idx], new);
443 if (new &&
444 !(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX)) {
445 sta->ptk_idx = idx;
446 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
447 ieee80211_check_fast_xmit(sta);
448 }
449 } else {
450 rcu_assign_pointer(sta->gtk[idx], new);
451 }
452 /* Only needed for transition from no key -> key.
453 * Still triggers unnecessary when using Extended Key ID
454 * and installing the second key ID the first time.
455 */
456 if (new && !old)
457 ieee80211_check_fast_rx(sta);
458 } else {
459 defunikey = old &&
460 old == key_mtx_dereference(sdata->local,
461 sdata->default_unicast_key);
462 defmultikey = old &&
463 old == key_mtx_dereference(sdata->local,
464 sdata->default_multicast_key);
465 defmgmtkey = old &&
466 old == key_mtx_dereference(sdata->local,
467 sdata->default_mgmt_key);
468
469 if (defunikey && !new)
470 __ieee80211_set_default_key(sdata, -1, true, false);
471 if (defmultikey && !new)
472 __ieee80211_set_default_key(sdata, -1, false, true);
473 if (defmgmtkey && !new)
474 __ieee80211_set_default_mgmt_key(sdata, -1);
475
476 rcu_assign_pointer(sdata->keys[idx], new);
477 if (defunikey && new)
478 __ieee80211_set_default_key(sdata, new->conf.keyidx,
479 true, false);
480 if (defmultikey && new)
481 __ieee80211_set_default_key(sdata, new->conf.keyidx,
482 false, true);
483 if (defmgmtkey && new)
484 __ieee80211_set_default_mgmt_key(sdata,
485 new->conf.keyidx);
486 }
487
488 if (old)
489 list_del_rcu(&old->list);
490
491 return 0;
492 }
493
494 struct ieee80211_key *
495 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
496 const u8 *key_data,
497 size_t seq_len, const u8 *seq,
498 const struct ieee80211_cipher_scheme *cs)
499 {
500 struct ieee80211_key *key;
501 int i, j, err;
502
503 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
504 return ERR_PTR(-EINVAL);
505
506 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
507 if (!key)
508 return ERR_PTR(-ENOMEM);
509
510 /*
511 * Default to software encryption; we'll later upload the
512 * key to the hardware if possible.
513 */
514 key->conf.flags = 0;
515 key->flags = 0;
516
517 key->conf.cipher = cipher;
518 key->conf.keyidx = idx;
519 key->conf.keylen = key_len;
520 switch (cipher) {
521 case WLAN_CIPHER_SUITE_WEP40:
522 case WLAN_CIPHER_SUITE_WEP104:
523 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
524 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
525 break;
526 case WLAN_CIPHER_SUITE_TKIP:
527 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
528 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
529 if (seq) {
530 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
531 key->u.tkip.rx[i].iv32 =
532 get_unaligned_le32(&seq[2]);
533 key->u.tkip.rx[i].iv16 =
534 get_unaligned_le16(seq);
535 }
536 }
537 spin_lock_init(&key->u.tkip.txlock);
538 break;
539 case WLAN_CIPHER_SUITE_CCMP:
540 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
541 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
542 if (seq) {
543 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
544 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
545 key->u.ccmp.rx_pn[i][j] =
546 seq[IEEE80211_CCMP_PN_LEN - j - 1];
547 }
548 /*
549 * Initialize AES key state here as an optimization so that
550 * it does not need to be initialized for every packet.
551 */
552 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
553 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
554 if (IS_ERR(key->u.ccmp.tfm)) {
555 err = PTR_ERR(key->u.ccmp.tfm);
556 kfree(key);
557 return ERR_PTR(err);
558 }
559 break;
560 case WLAN_CIPHER_SUITE_CCMP_256:
561 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
562 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
563 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
564 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
565 key->u.ccmp.rx_pn[i][j] =
566 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
567 /* Initialize AES key state here as an optimization so that
568 * it does not need to be initialized for every packet.
569 */
570 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
571 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
572 if (IS_ERR(key->u.ccmp.tfm)) {
573 err = PTR_ERR(key->u.ccmp.tfm);
574 kfree(key);
575 return ERR_PTR(err);
576 }
577 break;
578 case WLAN_CIPHER_SUITE_AES_CMAC:
579 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
580 key->conf.iv_len = 0;
581 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
582 key->conf.icv_len = sizeof(struct ieee80211_mmie);
583 else
584 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
585 if (seq)
586 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
587 key->u.aes_cmac.rx_pn[j] =
588 seq[IEEE80211_CMAC_PN_LEN - j - 1];
589 /*
590 * Initialize AES key state here as an optimization so that
591 * it does not need to be initialized for every packet.
592 */
593 key->u.aes_cmac.tfm =
594 ieee80211_aes_cmac_key_setup(key_data, key_len);
595 if (IS_ERR(key->u.aes_cmac.tfm)) {
596 err = PTR_ERR(key->u.aes_cmac.tfm);
597 kfree(key);
598 return ERR_PTR(err);
599 }
600 break;
601 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
602 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
603 key->conf.iv_len = 0;
604 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
605 if (seq)
606 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
607 key->u.aes_gmac.rx_pn[j] =
608 seq[IEEE80211_GMAC_PN_LEN - j - 1];
609 /* Initialize AES key state here as an optimization so that
610 * it does not need to be initialized for every packet.
611 */
612 key->u.aes_gmac.tfm =
613 ieee80211_aes_gmac_key_setup(key_data, key_len);
614 if (IS_ERR(key->u.aes_gmac.tfm)) {
615 err = PTR_ERR(key->u.aes_gmac.tfm);
616 kfree(key);
617 return ERR_PTR(err);
618 }
619 break;
620 case WLAN_CIPHER_SUITE_GCMP:
621 case WLAN_CIPHER_SUITE_GCMP_256:
622 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
623 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
624 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
625 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
626 key->u.gcmp.rx_pn[i][j] =
627 seq[IEEE80211_GCMP_PN_LEN - j - 1];
628 /* Initialize AES key state here as an optimization so that
629 * it does not need to be initialized for every packet.
630 */
631 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
632 key_len);
633 if (IS_ERR(key->u.gcmp.tfm)) {
634 err = PTR_ERR(key->u.gcmp.tfm);
635 kfree(key);
636 return ERR_PTR(err);
637 }
638 break;
639 default:
640 if (cs) {
641 if (seq_len && seq_len != cs->pn_len) {
642 kfree(key);
643 return ERR_PTR(-EINVAL);
644 }
645
646 key->conf.iv_len = cs->hdr_len;
647 key->conf.icv_len = cs->mic_len;
648 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
649 for (j = 0; j < seq_len; j++)
650 key->u.gen.rx_pn[i][j] =
651 seq[seq_len - j - 1];
652 key->flags |= KEY_FLAG_CIPHER_SCHEME;
653 }
654 }
655 memcpy(key->conf.key, key_data, key_len);
656 INIT_LIST_HEAD(&key->list);
657
658 return key;
659 }
660
661 static void ieee80211_key_free_common(struct ieee80211_key *key)
662 {
663 switch (key->conf.cipher) {
664 case WLAN_CIPHER_SUITE_CCMP:
665 case WLAN_CIPHER_SUITE_CCMP_256:
666 ieee80211_aes_key_free(key->u.ccmp.tfm);
667 break;
668 case WLAN_CIPHER_SUITE_AES_CMAC:
669 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
670 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
671 break;
672 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
673 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
674 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
675 break;
676 case WLAN_CIPHER_SUITE_GCMP:
677 case WLAN_CIPHER_SUITE_GCMP_256:
678 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
679 break;
680 }
681 kzfree(key);
682 }
683
684 static void __ieee80211_key_destroy(struct ieee80211_key *key,
685 bool delay_tailroom)
686 {
687 if (key->local) {
688 struct ieee80211_sub_if_data *sdata = key->sdata;
689
690 ieee80211_debugfs_key_remove(key);
691
692 if (delay_tailroom) {
693 /* see ieee80211_delayed_tailroom_dec */
694 sdata->crypto_tx_tailroom_pending_dec++;
695 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
696 HZ/2);
697 } else {
698 decrease_tailroom_need_count(sdata, 1);
699 }
700 }
701
702 ieee80211_key_free_common(key);
703 }
704
705 static void ieee80211_key_destroy(struct ieee80211_key *key,
706 bool delay_tailroom)
707 {
708 if (!key)
709 return;
710
711 /*
712 * Synchronize so the TX path and rcu key iterators
713 * can no longer be using this key before we free/remove it.
714 */
715 synchronize_net();
716
717 __ieee80211_key_destroy(key, delay_tailroom);
718 }
719
720 void ieee80211_key_free_unused(struct ieee80211_key *key)
721 {
722 WARN_ON(key->sdata || key->local);
723 ieee80211_key_free_common(key);
724 }
725
726 static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
727 struct ieee80211_key *old,
728 struct ieee80211_key *new)
729 {
730 u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
731 u8 *tk_old, *tk_new;
732
733 if (!old || new->conf.keylen != old->conf.keylen)
734 return false;
735
736 tk_old = old->conf.key;
737 tk_new = new->conf.key;
738
739 /*
740 * In station mode, don't compare the TX MIC key, as it's never used
741 * and offloaded rekeying may not care to send it to the host. This
742 * is the case in iwlwifi, for example.
743 */
744 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
745 new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
746 new->conf.keylen == WLAN_KEY_LEN_TKIP &&
747 !(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
748 memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
749 memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
750 memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
751 memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
752 tk_old = tkip_old;
753 tk_new = tkip_new;
754 }
755
756 return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
757 }
758
759 int ieee80211_key_link(struct ieee80211_key *key,
760 struct ieee80211_sub_if_data *sdata,
761 struct sta_info *sta)
762 {
763 struct ieee80211_key *old_key;
764 int idx = key->conf.keyidx;
765 bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
766 /*
767 * We want to delay tailroom updates only for station - in that
768 * case it helps roaming speed, but in other cases it hurts and
769 * can cause warnings to appear.
770 */
771 bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
772 int ret = -EOPNOTSUPP;
773
774 mutex_lock(&sdata->local->key_mtx);
775
776 if (sta && pairwise) {
777 struct ieee80211_key *alt_key;
778
779 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
780 alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
781
782 /* The rekey code assumes that the old and new key are using
783 * the same cipher. Enforce the assumption for pairwise keys.
784 */
785 if ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
786 (old_key && old_key->conf.cipher != key->conf.cipher))
787 goto out;
788 } else if (sta) {
789 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
790 } else {
791 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
792 }
793
794 /* Non-pairwise keys must also not switch the cipher on rekey */
795 if (!pairwise) {
796 if (old_key && old_key->conf.cipher != key->conf.cipher)
797 goto out;
798 }
799
800 /*
801 * Silently accept key re-installation without really installing the
802 * new version of the key to avoid nonce reuse or replay issues.
803 */
804 if (ieee80211_key_identical(sdata, old_key, key)) {
805 ieee80211_key_free_unused(key);
806 ret = 0;
807 goto out;
808 }
809
810 key->local = sdata->local;
811 key->sdata = sdata;
812 key->sta = sta;
813
814 increment_tailroom_need_count(sdata);
815
816 ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
817
818 if (!ret) {
819 ieee80211_debugfs_key_add(key);
820 ieee80211_key_destroy(old_key, delay_tailroom);
821 } else {
822 ieee80211_key_free(key, delay_tailroom);
823 }
824
825 out:
826 mutex_unlock(&sdata->local->key_mtx);
827
828 return ret;
829 }
830
831 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
832 {
833 if (!key)
834 return;
835
836 /*
837 * Replace key with nothingness if it was ever used.
838 */
839 if (key->sdata)
840 ieee80211_key_replace(key->sdata, key->sta,
841 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
842 key, NULL);
843 ieee80211_key_destroy(key, delay_tailroom);
844 }
845
846 void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata)
847 {
848 struct ieee80211_key *key;
849 struct ieee80211_sub_if_data *vlan;
850
851 ASSERT_RTNL();
852
853 mutex_lock(&sdata->local->key_mtx);
854
855 sdata->crypto_tx_tailroom_needed_cnt = 0;
856 sdata->crypto_tx_tailroom_pending_dec = 0;
857
858 if (sdata->vif.type == NL80211_IFTYPE_AP) {
859 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
860 vlan->crypto_tx_tailroom_needed_cnt = 0;
861 vlan->crypto_tx_tailroom_pending_dec = 0;
862 }
863 }
864
865 if (ieee80211_sdata_running(sdata)) {
866 list_for_each_entry(key, &sdata->key_list, list) {
867 increment_tailroom_need_count(sdata);
868 ieee80211_key_enable_hw_accel(key);
869 }
870 }
871
872 mutex_unlock(&sdata->local->key_mtx);
873 }
874
875 void ieee80211_iter_keys(struct ieee80211_hw *hw,
876 struct ieee80211_vif *vif,
877 void (*iter)(struct ieee80211_hw *hw,
878 struct ieee80211_vif *vif,
879 struct ieee80211_sta *sta,
880 struct ieee80211_key_conf *key,
881 void *data),
882 void *iter_data)
883 {
884 struct ieee80211_local *local = hw_to_local(hw);
885 struct ieee80211_key *key, *tmp;
886 struct ieee80211_sub_if_data *sdata;
887
888 ASSERT_RTNL();
889
890 mutex_lock(&local->key_mtx);
891 if (vif) {
892 sdata = vif_to_sdata(vif);
893 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
894 iter(hw, &sdata->vif,
895 key->sta ? &key->sta->sta : NULL,
896 &key->conf, iter_data);
897 } else {
898 list_for_each_entry(sdata, &local->interfaces, list)
899 list_for_each_entry_safe(key, tmp,
900 &sdata->key_list, list)
901 iter(hw, &sdata->vif,
902 key->sta ? &key->sta->sta : NULL,
903 &key->conf, iter_data);
904 }
905 mutex_unlock(&local->key_mtx);
906 }
907 EXPORT_SYMBOL(ieee80211_iter_keys);
908
909 static void
910 _ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
911 struct ieee80211_sub_if_data *sdata,
912 void (*iter)(struct ieee80211_hw *hw,
913 struct ieee80211_vif *vif,
914 struct ieee80211_sta *sta,
915 struct ieee80211_key_conf *key,
916 void *data),
917 void *iter_data)
918 {
919 struct ieee80211_key *key;
920
921 list_for_each_entry_rcu(key, &sdata->key_list, list) {
922 /* skip keys of station in removal process */
923 if (key->sta && key->sta->removed)
924 continue;
925 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
926 continue;
927
928 iter(hw, &sdata->vif,
929 key->sta ? &key->sta->sta : NULL,
930 &key->conf, iter_data);
931 }
932 }
933
934 void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
935 struct ieee80211_vif *vif,
936 void (*iter)(struct ieee80211_hw *hw,
937 struct ieee80211_vif *vif,
938 struct ieee80211_sta *sta,
939 struct ieee80211_key_conf *key,
940 void *data),
941 void *iter_data)
942 {
943 struct ieee80211_local *local = hw_to_local(hw);
944 struct ieee80211_sub_if_data *sdata;
945
946 if (vif) {
947 sdata = vif_to_sdata(vif);
948 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
949 } else {
950 list_for_each_entry_rcu(sdata, &local->interfaces, list)
951 _ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
952 }
953 }
954 EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
955
956 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
957 struct list_head *keys)
958 {
959 struct ieee80211_key *key, *tmp;
960
961 decrease_tailroom_need_count(sdata,
962 sdata->crypto_tx_tailroom_pending_dec);
963 sdata->crypto_tx_tailroom_pending_dec = 0;
964
965 ieee80211_debugfs_key_remove_mgmt_default(sdata);
966
967 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
968 ieee80211_key_replace(key->sdata, key->sta,
969 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
970 key, NULL);
971 list_add_tail(&key->list, keys);
972 }
973
974 ieee80211_debugfs_key_update_default(sdata);
975 }
976
977 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
978 bool force_synchronize)
979 {
980 struct ieee80211_local *local = sdata->local;
981 struct ieee80211_sub_if_data *vlan;
982 struct ieee80211_sub_if_data *master;
983 struct ieee80211_key *key, *tmp;
984 LIST_HEAD(keys);
985
986 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
987
988 mutex_lock(&local->key_mtx);
989
990 ieee80211_free_keys_iface(sdata, &keys);
991
992 if (sdata->vif.type == NL80211_IFTYPE_AP) {
993 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
994 ieee80211_free_keys_iface(vlan, &keys);
995 }
996
997 if (!list_empty(&keys) || force_synchronize)
998 synchronize_net();
999 list_for_each_entry_safe(key, tmp, &keys, list)
1000 __ieee80211_key_destroy(key, false);
1001
1002 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1003 if (sdata->bss) {
1004 master = container_of(sdata->bss,
1005 struct ieee80211_sub_if_data,
1006 u.ap);
1007
1008 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
1009 master->crypto_tx_tailroom_needed_cnt);
1010 }
1011 } else {
1012 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
1013 sdata->crypto_tx_tailroom_pending_dec);
1014 }
1015
1016 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1017 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
1018 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
1019 vlan->crypto_tx_tailroom_pending_dec);
1020 }
1021
1022 mutex_unlock(&local->key_mtx);
1023 }
1024
1025 void ieee80211_free_sta_keys(struct ieee80211_local *local,
1026 struct sta_info *sta)
1027 {
1028 struct ieee80211_key *key;
1029 int i;
1030
1031 mutex_lock(&local->key_mtx);
1032 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
1033 key = key_mtx_dereference(local, sta->gtk[i]);
1034 if (!key)
1035 continue;
1036 ieee80211_key_replace(key->sdata, key->sta,
1037 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1038 key, NULL);
1039 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1040 NL80211_IFTYPE_STATION);
1041 }
1042
1043 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1044 key = key_mtx_dereference(local, sta->ptk[i]);
1045 if (!key)
1046 continue;
1047 ieee80211_key_replace(key->sdata, key->sta,
1048 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
1049 key, NULL);
1050 __ieee80211_key_destroy(key, key->sdata->vif.type ==
1051 NL80211_IFTYPE_STATION);
1052 }
1053
1054 mutex_unlock(&local->key_mtx);
1055 }
1056
1057 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
1058 {
1059 struct ieee80211_sub_if_data *sdata;
1060
1061 sdata = container_of(wk, struct ieee80211_sub_if_data,
1062 dec_tailroom_needed_wk.work);
1063
1064 /*
1065 * The reason for the delayed tailroom needed decrementing is to
1066 * make roaming faster: during roaming, all keys are first deleted
1067 * and then new keys are installed. The first new key causes the
1068 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1069 * the cost of synchronize_net() (which can be slow). Avoid this
1070 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1071 * key removal for a while, so if we roam the value is larger than
1072 * zero and no 0->1 transition happens.
1073 *
1074 * The cost is that if the AP switching was from an AP with keys
1075 * to one without, we still allocate tailroom while it would no
1076 * longer be needed. However, in the typical (fast) roaming case
1077 * within an ESS this usually won't happen.
1078 */
1079
1080 mutex_lock(&sdata->local->key_mtx);
1081 decrease_tailroom_need_count(sdata,
1082 sdata->crypto_tx_tailroom_pending_dec);
1083 sdata->crypto_tx_tailroom_pending_dec = 0;
1084 mutex_unlock(&sdata->local->key_mtx);
1085 }
1086
1087 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
1088 const u8 *replay_ctr, gfp_t gfp)
1089 {
1090 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1091
1092 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
1093
1094 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
1095 }
1096 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
1097
1098 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
1099 int tid, struct ieee80211_key_seq *seq)
1100 {
1101 struct ieee80211_key *key;
1102 const u8 *pn;
1103
1104 key = container_of(keyconf, struct ieee80211_key, conf);
1105
1106 switch (key->conf.cipher) {
1107 case WLAN_CIPHER_SUITE_TKIP:
1108 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1109 return;
1110 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
1111 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
1112 break;
1113 case WLAN_CIPHER_SUITE_CCMP:
1114 case WLAN_CIPHER_SUITE_CCMP_256:
1115 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1116 return;
1117 if (tid < 0)
1118 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1119 else
1120 pn = key->u.ccmp.rx_pn[tid];
1121 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
1122 break;
1123 case WLAN_CIPHER_SUITE_AES_CMAC:
1124 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1125 if (WARN_ON(tid != 0))
1126 return;
1127 pn = key->u.aes_cmac.rx_pn;
1128 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
1129 break;
1130 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1131 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1132 if (WARN_ON(tid != 0))
1133 return;
1134 pn = key->u.aes_gmac.rx_pn;
1135 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
1136 break;
1137 case WLAN_CIPHER_SUITE_GCMP:
1138 case WLAN_CIPHER_SUITE_GCMP_256:
1139 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1140 return;
1141 if (tid < 0)
1142 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1143 else
1144 pn = key->u.gcmp.rx_pn[tid];
1145 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
1146 break;
1147 }
1148 }
1149 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
1150
1151 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1152 int tid, struct ieee80211_key_seq *seq)
1153 {
1154 struct ieee80211_key *key;
1155 u8 *pn;
1156
1157 key = container_of(keyconf, struct ieee80211_key, conf);
1158
1159 switch (key->conf.cipher) {
1160 case WLAN_CIPHER_SUITE_TKIP:
1161 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1162 return;
1163 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1164 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1165 break;
1166 case WLAN_CIPHER_SUITE_CCMP:
1167 case WLAN_CIPHER_SUITE_CCMP_256:
1168 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1169 return;
1170 if (tid < 0)
1171 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1172 else
1173 pn = key->u.ccmp.rx_pn[tid];
1174 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1175 break;
1176 case WLAN_CIPHER_SUITE_AES_CMAC:
1177 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1178 if (WARN_ON(tid != 0))
1179 return;
1180 pn = key->u.aes_cmac.rx_pn;
1181 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1182 break;
1183 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1184 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1185 if (WARN_ON(tid != 0))
1186 return;
1187 pn = key->u.aes_gmac.rx_pn;
1188 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1189 break;
1190 case WLAN_CIPHER_SUITE_GCMP:
1191 case WLAN_CIPHER_SUITE_GCMP_256:
1192 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1193 return;
1194 if (tid < 0)
1195 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1196 else
1197 pn = key->u.gcmp.rx_pn[tid];
1198 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1199 break;
1200 default:
1201 WARN_ON(1);
1202 break;
1203 }
1204 }
1205 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1206
1207 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1208 {
1209 struct ieee80211_key *key;
1210
1211 key = container_of(keyconf, struct ieee80211_key, conf);
1212
1213 assert_key_lock(key->local);
1214
1215 /*
1216 * if key was uploaded, we assume the driver will/has remove(d)
1217 * it, so adjust bookkeeping accordingly
1218 */
1219 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1220 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1221
1222 if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
1223 IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
1224 IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1225 increment_tailroom_need_count(key->sdata);
1226 }
1227
1228 ieee80211_key_free(key, false);
1229 }
1230 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1231
1232 struct ieee80211_key_conf *
1233 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1234 struct ieee80211_key_conf *keyconf)
1235 {
1236 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1237 struct ieee80211_local *local = sdata->local;
1238 struct ieee80211_key *key;
1239 int err;
1240
1241 if (WARN_ON(!local->wowlan))
1242 return ERR_PTR(-EINVAL);
1243
1244 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1245 return ERR_PTR(-EINVAL);
1246
1247 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1248 keyconf->keylen, keyconf->key,
1249 0, NULL, NULL);
1250 if (IS_ERR(key))
1251 return ERR_CAST(key);
1252
1253 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1254 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1255
1256 err = ieee80211_key_link(key, sdata, NULL);
1257 if (err)
1258 return ERR_PTR(err);
1259
1260 return &key->conf;
1261 }
1262 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);