]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/key.c
Merge tag 'please-pull-misc-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / key.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29
30
31 /**
32 * DOC: Key handling basics
33 *
34 * Key handling in mac80211 is done based on per-interface (sub_if_data)
35 * keys and per-station keys. Since each station belongs to an interface,
36 * each station key also belongs to that interface.
37 *
38 * Hardware acceleration is done on a best-effort basis for algorithms
39 * that are implemented in software, for each key the hardware is asked
40 * to enable that key for offloading but if it cannot do that the key is
41 * simply kept for software encryption (unless it is for an algorithm
42 * that isn't implemented in software).
43 * There is currently no way of knowing whether a key is handled in SW
44 * or HW except by looking into debugfs.
45 *
46 * All key management is internally protected by a mutex. Within all
47 * other parts of mac80211, key references are, just as STA structure
48 * references, protected by RCU. Note, however, that some things are
49 * unprotected, namely the key->sta dereferences within the hardware
50 * acceleration functions. This means that sta_info_destroy() must
51 * remove the key which waits for an RCU grace period.
52 */
53
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 lockdep_assert_held(&local->key_mtx);
59 }
60
61 static void
62 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
63 {
64 struct ieee80211_sub_if_data *vlan;
65
66 if (sdata->vif.type != NL80211_IFTYPE_AP)
67 return;
68
69 /* crypto_tx_tailroom_needed_cnt is protected by this */
70 assert_key_lock(sdata->local);
71
72 rcu_read_lock();
73
74 list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
75 vlan->crypto_tx_tailroom_needed_cnt += delta;
76
77 rcu_read_unlock();
78 }
79
80 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
81 {
82 /*
83 * When this count is zero, SKB resizing for allocating tailroom
84 * for IV or MMIC is skipped. But, this check has created two race
85 * cases in xmit path while transiting from zero count to one:
86 *
87 * 1. SKB resize was skipped because no key was added but just before
88 * the xmit key is added and SW encryption kicks off.
89 *
90 * 2. SKB resize was skipped because all the keys were hw planted but
91 * just before xmit one of the key is deleted and SW encryption kicks
92 * off.
93 *
94 * In both the above case SW encryption will find not enough space for
95 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
96 *
97 * Solution has been explained at
98 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
99 */
100
101 assert_key_lock(sdata->local);
102
103 update_vlan_tailroom_need_count(sdata, 1);
104
105 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
106 /*
107 * Flush all XMIT packets currently using HW encryption or no
108 * encryption at all if the count transition is from 0 -> 1.
109 */
110 synchronize_net();
111 }
112 }
113
114 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
115 int delta)
116 {
117 assert_key_lock(sdata->local);
118
119 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
120
121 update_vlan_tailroom_need_count(sdata, -delta);
122 sdata->crypto_tx_tailroom_needed_cnt -= delta;
123 }
124
125 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
126 {
127 struct ieee80211_sub_if_data *sdata;
128 struct sta_info *sta;
129 int ret = -EOPNOTSUPP;
130
131 might_sleep();
132
133 if (key->flags & KEY_FLAG_TAINTED) {
134 /* If we get here, it's during resume and the key is
135 * tainted so shouldn't be used/programmed any more.
136 * However, its flags may still indicate that it was
137 * programmed into the device (since we're in resume)
138 * so clear that flag now to avoid trying to remove
139 * it again later.
140 */
141 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
142 return -EINVAL;
143 }
144
145 if (!key->local->ops->set_key)
146 goto out_unsupported;
147
148 assert_key_lock(key->local);
149
150 sta = key->sta;
151
152 /*
153 * If this is a per-STA GTK, check if it
154 * is supported; if not, return.
155 */
156 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
157 !ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
158 goto out_unsupported;
159
160 if (sta && !sta->uploaded)
161 goto out_unsupported;
162
163 sdata = key->sdata;
164 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
165 /*
166 * The driver doesn't know anything about VLAN interfaces.
167 * Hence, don't send GTKs for VLAN interfaces to the driver.
168 */
169 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
170 goto out_unsupported;
171 }
172
173 ret = drv_set_key(key->local, SET_KEY, sdata,
174 sta ? &sta->sta : NULL, &key->conf);
175
176 if (!ret) {
177 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
178
179 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
180 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
181 decrease_tailroom_need_count(sdata, 1);
182
183 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
184 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
185
186 return 0;
187 }
188
189 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
190 sdata_err(sdata,
191 "failed to set key (%d, %pM) to hardware (%d)\n",
192 key->conf.keyidx,
193 sta ? sta->sta.addr : bcast_addr, ret);
194
195 out_unsupported:
196 switch (key->conf.cipher) {
197 case WLAN_CIPHER_SUITE_WEP40:
198 case WLAN_CIPHER_SUITE_WEP104:
199 case WLAN_CIPHER_SUITE_TKIP:
200 case WLAN_CIPHER_SUITE_CCMP:
201 case WLAN_CIPHER_SUITE_CCMP_256:
202 case WLAN_CIPHER_SUITE_AES_CMAC:
203 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
204 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
205 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
206 case WLAN_CIPHER_SUITE_GCMP:
207 case WLAN_CIPHER_SUITE_GCMP_256:
208 /* all of these we can do in software - if driver can */
209 if (ret == 1)
210 return 0;
211 if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
212 return -EINVAL;
213 return 0;
214 default:
215 return -EINVAL;
216 }
217 }
218
219 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
220 {
221 struct ieee80211_sub_if_data *sdata;
222 struct sta_info *sta;
223 int ret;
224
225 might_sleep();
226
227 if (!key || !key->local->ops->set_key)
228 return;
229
230 assert_key_lock(key->local);
231
232 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
233 return;
234
235 sta = key->sta;
236 sdata = key->sdata;
237
238 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
239 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
240 increment_tailroom_need_count(sdata);
241
242 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
243 sta ? &sta->sta : NULL, &key->conf);
244
245 if (ret)
246 sdata_err(sdata,
247 "failed to remove key (%d, %pM) from hardware (%d)\n",
248 key->conf.keyidx,
249 sta ? sta->sta.addr : bcast_addr, ret);
250
251 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
252 }
253
254 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
255 int idx, bool uni, bool multi)
256 {
257 struct ieee80211_key *key = NULL;
258
259 assert_key_lock(sdata->local);
260
261 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
262 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
263
264 if (uni) {
265 rcu_assign_pointer(sdata->default_unicast_key, key);
266 ieee80211_check_fast_xmit_iface(sdata);
267 drv_set_default_unicast_key(sdata->local, sdata, idx);
268 }
269
270 if (multi)
271 rcu_assign_pointer(sdata->default_multicast_key, key);
272
273 ieee80211_debugfs_key_update_default(sdata);
274 }
275
276 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
277 bool uni, bool multi)
278 {
279 mutex_lock(&sdata->local->key_mtx);
280 __ieee80211_set_default_key(sdata, idx, uni, multi);
281 mutex_unlock(&sdata->local->key_mtx);
282 }
283
284 static void
285 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
286 {
287 struct ieee80211_key *key = NULL;
288
289 assert_key_lock(sdata->local);
290
291 if (idx >= NUM_DEFAULT_KEYS &&
292 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
293 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
294
295 rcu_assign_pointer(sdata->default_mgmt_key, key);
296
297 ieee80211_debugfs_key_update_default(sdata);
298 }
299
300 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
301 int idx)
302 {
303 mutex_lock(&sdata->local->key_mtx);
304 __ieee80211_set_default_mgmt_key(sdata, idx);
305 mutex_unlock(&sdata->local->key_mtx);
306 }
307
308
309 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
310 struct sta_info *sta,
311 bool pairwise,
312 struct ieee80211_key *old,
313 struct ieee80211_key *new)
314 {
315 int idx;
316 bool defunikey, defmultikey, defmgmtkey;
317
318 /* caller must provide at least one old/new */
319 if (WARN_ON(!new && !old))
320 return;
321
322 if (new)
323 list_add_tail(&new->list, &sdata->key_list);
324
325 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
326
327 if (old)
328 idx = old->conf.keyidx;
329 else
330 idx = new->conf.keyidx;
331
332 if (sta) {
333 if (pairwise) {
334 rcu_assign_pointer(sta->ptk[idx], new);
335 sta->ptk_idx = idx;
336 ieee80211_check_fast_xmit(sta);
337 } else {
338 rcu_assign_pointer(sta->gtk[idx], new);
339 sta->gtk_idx = idx;
340 }
341 } else {
342 defunikey = old &&
343 old == key_mtx_dereference(sdata->local,
344 sdata->default_unicast_key);
345 defmultikey = old &&
346 old == key_mtx_dereference(sdata->local,
347 sdata->default_multicast_key);
348 defmgmtkey = old &&
349 old == key_mtx_dereference(sdata->local,
350 sdata->default_mgmt_key);
351
352 if (defunikey && !new)
353 __ieee80211_set_default_key(sdata, -1, true, false);
354 if (defmultikey && !new)
355 __ieee80211_set_default_key(sdata, -1, false, true);
356 if (defmgmtkey && !new)
357 __ieee80211_set_default_mgmt_key(sdata, -1);
358
359 rcu_assign_pointer(sdata->keys[idx], new);
360 if (defunikey && new)
361 __ieee80211_set_default_key(sdata, new->conf.keyidx,
362 true, false);
363 if (defmultikey && new)
364 __ieee80211_set_default_key(sdata, new->conf.keyidx,
365 false, true);
366 if (defmgmtkey && new)
367 __ieee80211_set_default_mgmt_key(sdata,
368 new->conf.keyidx);
369 }
370
371 if (old)
372 list_del(&old->list);
373 }
374
375 struct ieee80211_key *
376 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
377 const u8 *key_data,
378 size_t seq_len, const u8 *seq,
379 const struct ieee80211_cipher_scheme *cs)
380 {
381 struct ieee80211_key *key;
382 int i, j, err;
383
384 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
385 return ERR_PTR(-EINVAL);
386
387 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
388 if (!key)
389 return ERR_PTR(-ENOMEM);
390
391 /*
392 * Default to software encryption; we'll later upload the
393 * key to the hardware if possible.
394 */
395 key->conf.flags = 0;
396 key->flags = 0;
397
398 key->conf.cipher = cipher;
399 key->conf.keyidx = idx;
400 key->conf.keylen = key_len;
401 switch (cipher) {
402 case WLAN_CIPHER_SUITE_WEP40:
403 case WLAN_CIPHER_SUITE_WEP104:
404 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
405 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
406 break;
407 case WLAN_CIPHER_SUITE_TKIP:
408 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
409 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
410 if (seq) {
411 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
412 key->u.tkip.rx[i].iv32 =
413 get_unaligned_le32(&seq[2]);
414 key->u.tkip.rx[i].iv16 =
415 get_unaligned_le16(seq);
416 }
417 }
418 spin_lock_init(&key->u.tkip.txlock);
419 break;
420 case WLAN_CIPHER_SUITE_CCMP:
421 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
422 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
423 if (seq) {
424 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
425 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
426 key->u.ccmp.rx_pn[i][j] =
427 seq[IEEE80211_CCMP_PN_LEN - j - 1];
428 }
429 /*
430 * Initialize AES key state here as an optimization so that
431 * it does not need to be initialized for every packet.
432 */
433 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
434 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
435 if (IS_ERR(key->u.ccmp.tfm)) {
436 err = PTR_ERR(key->u.ccmp.tfm);
437 kfree(key);
438 return ERR_PTR(err);
439 }
440 break;
441 case WLAN_CIPHER_SUITE_CCMP_256:
442 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
443 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
444 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
445 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
446 key->u.ccmp.rx_pn[i][j] =
447 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
448 /* Initialize AES key state here as an optimization so that
449 * it does not need to be initialized for every packet.
450 */
451 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
452 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
453 if (IS_ERR(key->u.ccmp.tfm)) {
454 err = PTR_ERR(key->u.ccmp.tfm);
455 kfree(key);
456 return ERR_PTR(err);
457 }
458 break;
459 case WLAN_CIPHER_SUITE_AES_CMAC:
460 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
461 key->conf.iv_len = 0;
462 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
463 key->conf.icv_len = sizeof(struct ieee80211_mmie);
464 else
465 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
466 if (seq)
467 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
468 key->u.aes_cmac.rx_pn[j] =
469 seq[IEEE80211_CMAC_PN_LEN - j - 1];
470 /*
471 * Initialize AES key state here as an optimization so that
472 * it does not need to be initialized for every packet.
473 */
474 key->u.aes_cmac.tfm =
475 ieee80211_aes_cmac_key_setup(key_data, key_len);
476 if (IS_ERR(key->u.aes_cmac.tfm)) {
477 err = PTR_ERR(key->u.aes_cmac.tfm);
478 kfree(key);
479 return ERR_PTR(err);
480 }
481 break;
482 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
483 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
484 key->conf.iv_len = 0;
485 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
486 if (seq)
487 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
488 key->u.aes_gmac.rx_pn[j] =
489 seq[IEEE80211_GMAC_PN_LEN - j - 1];
490 /* Initialize AES key state here as an optimization so that
491 * it does not need to be initialized for every packet.
492 */
493 key->u.aes_gmac.tfm =
494 ieee80211_aes_gmac_key_setup(key_data, key_len);
495 if (IS_ERR(key->u.aes_gmac.tfm)) {
496 err = PTR_ERR(key->u.aes_gmac.tfm);
497 kfree(key);
498 return ERR_PTR(err);
499 }
500 break;
501 case WLAN_CIPHER_SUITE_GCMP:
502 case WLAN_CIPHER_SUITE_GCMP_256:
503 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
504 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
505 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
506 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
507 key->u.gcmp.rx_pn[i][j] =
508 seq[IEEE80211_GCMP_PN_LEN - j - 1];
509 /* Initialize AES key state here as an optimization so that
510 * it does not need to be initialized for every packet.
511 */
512 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
513 key_len);
514 if (IS_ERR(key->u.gcmp.tfm)) {
515 err = PTR_ERR(key->u.gcmp.tfm);
516 kfree(key);
517 return ERR_PTR(err);
518 }
519 break;
520 default:
521 if (cs) {
522 if (seq_len && seq_len != cs->pn_len) {
523 kfree(key);
524 return ERR_PTR(-EINVAL);
525 }
526
527 key->conf.iv_len = cs->hdr_len;
528 key->conf.icv_len = cs->mic_len;
529 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
530 for (j = 0; j < seq_len; j++)
531 key->u.gen.rx_pn[i][j] =
532 seq[seq_len - j - 1];
533 key->flags |= KEY_FLAG_CIPHER_SCHEME;
534 }
535 }
536 memcpy(key->conf.key, key_data, key_len);
537 INIT_LIST_HEAD(&key->list);
538
539 return key;
540 }
541
542 static void ieee80211_key_free_common(struct ieee80211_key *key)
543 {
544 switch (key->conf.cipher) {
545 case WLAN_CIPHER_SUITE_CCMP:
546 case WLAN_CIPHER_SUITE_CCMP_256:
547 ieee80211_aes_key_free(key->u.ccmp.tfm);
548 break;
549 case WLAN_CIPHER_SUITE_AES_CMAC:
550 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
551 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
552 break;
553 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
554 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
555 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
556 break;
557 case WLAN_CIPHER_SUITE_GCMP:
558 case WLAN_CIPHER_SUITE_GCMP_256:
559 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
560 break;
561 }
562 kzfree(key);
563 }
564
565 static void __ieee80211_key_destroy(struct ieee80211_key *key,
566 bool delay_tailroom)
567 {
568 if (key->local)
569 ieee80211_key_disable_hw_accel(key);
570
571 if (key->local) {
572 struct ieee80211_sub_if_data *sdata = key->sdata;
573
574 ieee80211_debugfs_key_remove(key);
575
576 if (delay_tailroom) {
577 /* see ieee80211_delayed_tailroom_dec */
578 sdata->crypto_tx_tailroom_pending_dec++;
579 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
580 HZ/2);
581 } else {
582 decrease_tailroom_need_count(sdata, 1);
583 }
584 }
585
586 ieee80211_key_free_common(key);
587 }
588
589 static void ieee80211_key_destroy(struct ieee80211_key *key,
590 bool delay_tailroom)
591 {
592 if (!key)
593 return;
594
595 /*
596 * Synchronize so the TX path can no longer be using
597 * this key before we free/remove it.
598 */
599 synchronize_net();
600
601 __ieee80211_key_destroy(key, delay_tailroom);
602 }
603
604 void ieee80211_key_free_unused(struct ieee80211_key *key)
605 {
606 WARN_ON(key->sdata || key->local);
607 ieee80211_key_free_common(key);
608 }
609
610 int ieee80211_key_link(struct ieee80211_key *key,
611 struct ieee80211_sub_if_data *sdata,
612 struct sta_info *sta)
613 {
614 struct ieee80211_local *local = sdata->local;
615 struct ieee80211_key *old_key;
616 int idx, ret;
617 bool pairwise;
618
619 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
620 idx = key->conf.keyidx;
621 key->local = sdata->local;
622 key->sdata = sdata;
623 key->sta = sta;
624
625 mutex_lock(&sdata->local->key_mtx);
626
627 if (sta && pairwise)
628 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
629 else if (sta)
630 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
631 else
632 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
633
634 increment_tailroom_need_count(sdata);
635
636 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
637 ieee80211_key_destroy(old_key, true);
638
639 ieee80211_debugfs_key_add(key);
640
641 if (!local->wowlan) {
642 ret = ieee80211_key_enable_hw_accel(key);
643 if (ret)
644 ieee80211_key_free(key, true);
645 } else {
646 ret = 0;
647 }
648
649 mutex_unlock(&sdata->local->key_mtx);
650
651 return ret;
652 }
653
654 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
655 {
656 if (!key)
657 return;
658
659 /*
660 * Replace key with nothingness if it was ever used.
661 */
662 if (key->sdata)
663 ieee80211_key_replace(key->sdata, key->sta,
664 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
665 key, NULL);
666 ieee80211_key_destroy(key, delay_tailroom);
667 }
668
669 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
670 {
671 struct ieee80211_key *key;
672 struct ieee80211_sub_if_data *vlan;
673
674 ASSERT_RTNL();
675
676 if (WARN_ON(!ieee80211_sdata_running(sdata)))
677 return;
678
679 mutex_lock(&sdata->local->key_mtx);
680
681 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
682 sdata->crypto_tx_tailroom_pending_dec);
683
684 if (sdata->vif.type == NL80211_IFTYPE_AP) {
685 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
686 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
687 vlan->crypto_tx_tailroom_pending_dec);
688 }
689
690 list_for_each_entry(key, &sdata->key_list, list) {
691 increment_tailroom_need_count(sdata);
692 ieee80211_key_enable_hw_accel(key);
693 }
694
695 mutex_unlock(&sdata->local->key_mtx);
696 }
697
698 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data *sdata)
699 {
700 struct ieee80211_sub_if_data *vlan;
701
702 mutex_lock(&sdata->local->key_mtx);
703
704 sdata->crypto_tx_tailroom_needed_cnt = 0;
705
706 if (sdata->vif.type == NL80211_IFTYPE_AP) {
707 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
708 vlan->crypto_tx_tailroom_needed_cnt = 0;
709 }
710
711 mutex_unlock(&sdata->local->key_mtx);
712 }
713
714 void ieee80211_iter_keys(struct ieee80211_hw *hw,
715 struct ieee80211_vif *vif,
716 void (*iter)(struct ieee80211_hw *hw,
717 struct ieee80211_vif *vif,
718 struct ieee80211_sta *sta,
719 struct ieee80211_key_conf *key,
720 void *data),
721 void *iter_data)
722 {
723 struct ieee80211_local *local = hw_to_local(hw);
724 struct ieee80211_key *key, *tmp;
725 struct ieee80211_sub_if_data *sdata;
726
727 ASSERT_RTNL();
728
729 mutex_lock(&local->key_mtx);
730 if (vif) {
731 sdata = vif_to_sdata(vif);
732 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
733 iter(hw, &sdata->vif,
734 key->sta ? &key->sta->sta : NULL,
735 &key->conf, iter_data);
736 } else {
737 list_for_each_entry(sdata, &local->interfaces, list)
738 list_for_each_entry_safe(key, tmp,
739 &sdata->key_list, list)
740 iter(hw, &sdata->vif,
741 key->sta ? &key->sta->sta : NULL,
742 &key->conf, iter_data);
743 }
744 mutex_unlock(&local->key_mtx);
745 }
746 EXPORT_SYMBOL(ieee80211_iter_keys);
747
748 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
749 struct list_head *keys)
750 {
751 struct ieee80211_key *key, *tmp;
752
753 decrease_tailroom_need_count(sdata,
754 sdata->crypto_tx_tailroom_pending_dec);
755 sdata->crypto_tx_tailroom_pending_dec = 0;
756
757 ieee80211_debugfs_key_remove_mgmt_default(sdata);
758
759 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
760 ieee80211_key_replace(key->sdata, key->sta,
761 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
762 key, NULL);
763 list_add_tail(&key->list, keys);
764 }
765
766 ieee80211_debugfs_key_update_default(sdata);
767 }
768
769 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
770 bool force_synchronize)
771 {
772 struct ieee80211_local *local = sdata->local;
773 struct ieee80211_sub_if_data *vlan;
774 struct ieee80211_sub_if_data *master;
775 struct ieee80211_key *key, *tmp;
776 LIST_HEAD(keys);
777
778 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
779
780 mutex_lock(&local->key_mtx);
781
782 ieee80211_free_keys_iface(sdata, &keys);
783
784 if (sdata->vif.type == NL80211_IFTYPE_AP) {
785 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
786 ieee80211_free_keys_iface(vlan, &keys);
787 }
788
789 if (!list_empty(&keys) || force_synchronize)
790 synchronize_net();
791 list_for_each_entry_safe(key, tmp, &keys, list)
792 __ieee80211_key_destroy(key, false);
793
794 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
795 if (sdata->bss) {
796 master = container_of(sdata->bss,
797 struct ieee80211_sub_if_data,
798 u.ap);
799
800 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
801 master->crypto_tx_tailroom_needed_cnt);
802 }
803 } else {
804 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
805 sdata->crypto_tx_tailroom_pending_dec);
806 }
807
808 if (sdata->vif.type == NL80211_IFTYPE_AP) {
809 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
810 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
811 vlan->crypto_tx_tailroom_pending_dec);
812 }
813
814 mutex_unlock(&local->key_mtx);
815 }
816
817 void ieee80211_free_sta_keys(struct ieee80211_local *local,
818 struct sta_info *sta)
819 {
820 struct ieee80211_key *key;
821 int i;
822
823 mutex_lock(&local->key_mtx);
824 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
825 key = key_mtx_dereference(local, sta->gtk[i]);
826 if (!key)
827 continue;
828 ieee80211_key_replace(key->sdata, key->sta,
829 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
830 key, NULL);
831 __ieee80211_key_destroy(key, true);
832 }
833
834 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
835 key = key_mtx_dereference(local, sta->ptk[i]);
836 if (!key)
837 continue;
838 ieee80211_key_replace(key->sdata, key->sta,
839 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
840 key, NULL);
841 __ieee80211_key_destroy(key, true);
842 }
843
844 mutex_unlock(&local->key_mtx);
845 }
846
847 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
848 {
849 struct ieee80211_sub_if_data *sdata;
850
851 sdata = container_of(wk, struct ieee80211_sub_if_data,
852 dec_tailroom_needed_wk.work);
853
854 /*
855 * The reason for the delayed tailroom needed decrementing is to
856 * make roaming faster: during roaming, all keys are first deleted
857 * and then new keys are installed. The first new key causes the
858 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
859 * the cost of synchronize_net() (which can be slow). Avoid this
860 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
861 * key removal for a while, so if we roam the value is larger than
862 * zero and no 0->1 transition happens.
863 *
864 * The cost is that if the AP switching was from an AP with keys
865 * to one without, we still allocate tailroom while it would no
866 * longer be needed. However, in the typical (fast) roaming case
867 * within an ESS this usually won't happen.
868 */
869
870 mutex_lock(&sdata->local->key_mtx);
871 decrease_tailroom_need_count(sdata,
872 sdata->crypto_tx_tailroom_pending_dec);
873 sdata->crypto_tx_tailroom_pending_dec = 0;
874 mutex_unlock(&sdata->local->key_mtx);
875 }
876
877 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
878 const u8 *replay_ctr, gfp_t gfp)
879 {
880 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
881
882 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
883
884 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
885 }
886 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
887
888 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
889 struct ieee80211_key_seq *seq)
890 {
891 struct ieee80211_key *key;
892 u64 pn64;
893
894 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
895 return;
896
897 key = container_of(keyconf, struct ieee80211_key, conf);
898
899 switch (key->conf.cipher) {
900 case WLAN_CIPHER_SUITE_TKIP:
901 seq->tkip.iv32 = key->u.tkip.tx.iv32;
902 seq->tkip.iv16 = key->u.tkip.tx.iv16;
903 break;
904 case WLAN_CIPHER_SUITE_CCMP:
905 case WLAN_CIPHER_SUITE_CCMP_256:
906 case WLAN_CIPHER_SUITE_AES_CMAC:
907 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
908 BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
909 offsetof(typeof(*seq), aes_cmac));
910 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
911 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
912 BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
913 offsetof(typeof(*seq), aes_gmac));
914 case WLAN_CIPHER_SUITE_GCMP:
915 case WLAN_CIPHER_SUITE_GCMP_256:
916 BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
917 offsetof(typeof(*seq), gcmp));
918 pn64 = atomic64_read(&key->conf.tx_pn);
919 seq->ccmp.pn[5] = pn64;
920 seq->ccmp.pn[4] = pn64 >> 8;
921 seq->ccmp.pn[3] = pn64 >> 16;
922 seq->ccmp.pn[2] = pn64 >> 24;
923 seq->ccmp.pn[1] = pn64 >> 32;
924 seq->ccmp.pn[0] = pn64 >> 40;
925 break;
926 default:
927 WARN_ON(1);
928 }
929 }
930 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
931
932 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
933 int tid, struct ieee80211_key_seq *seq)
934 {
935 struct ieee80211_key *key;
936 const u8 *pn;
937
938 key = container_of(keyconf, struct ieee80211_key, conf);
939
940 switch (key->conf.cipher) {
941 case WLAN_CIPHER_SUITE_TKIP:
942 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
943 return;
944 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
945 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
946 break;
947 case WLAN_CIPHER_SUITE_CCMP:
948 case WLAN_CIPHER_SUITE_CCMP_256:
949 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
950 return;
951 if (tid < 0)
952 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
953 else
954 pn = key->u.ccmp.rx_pn[tid];
955 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
956 break;
957 case WLAN_CIPHER_SUITE_AES_CMAC:
958 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
959 if (WARN_ON(tid != 0))
960 return;
961 pn = key->u.aes_cmac.rx_pn;
962 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
963 break;
964 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
965 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
966 if (WARN_ON(tid != 0))
967 return;
968 pn = key->u.aes_gmac.rx_pn;
969 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
970 break;
971 case WLAN_CIPHER_SUITE_GCMP:
972 case WLAN_CIPHER_SUITE_GCMP_256:
973 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
974 return;
975 if (tid < 0)
976 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
977 else
978 pn = key->u.gcmp.rx_pn[tid];
979 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
980 break;
981 }
982 }
983 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
984
985 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
986 struct ieee80211_key_seq *seq)
987 {
988 struct ieee80211_key *key;
989 u64 pn64;
990
991 key = container_of(keyconf, struct ieee80211_key, conf);
992
993 switch (key->conf.cipher) {
994 case WLAN_CIPHER_SUITE_TKIP:
995 key->u.tkip.tx.iv32 = seq->tkip.iv32;
996 key->u.tkip.tx.iv16 = seq->tkip.iv16;
997 break;
998 case WLAN_CIPHER_SUITE_CCMP:
999 case WLAN_CIPHER_SUITE_CCMP_256:
1000 case WLAN_CIPHER_SUITE_AES_CMAC:
1001 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1002 BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1003 offsetof(typeof(*seq), aes_cmac));
1004 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1005 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1006 BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1007 offsetof(typeof(*seq), aes_gmac));
1008 case WLAN_CIPHER_SUITE_GCMP:
1009 case WLAN_CIPHER_SUITE_GCMP_256:
1010 BUILD_BUG_ON(offsetof(typeof(*seq), ccmp) !=
1011 offsetof(typeof(*seq), gcmp));
1012 pn64 = (u64)seq->ccmp.pn[5] |
1013 ((u64)seq->ccmp.pn[4] << 8) |
1014 ((u64)seq->ccmp.pn[3] << 16) |
1015 ((u64)seq->ccmp.pn[2] << 24) |
1016 ((u64)seq->ccmp.pn[1] << 32) |
1017 ((u64)seq->ccmp.pn[0] << 40);
1018 atomic64_set(&key->conf.tx_pn, pn64);
1019 break;
1020 default:
1021 WARN_ON(1);
1022 break;
1023 }
1024 }
1025 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
1026
1027 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
1028 int tid, struct ieee80211_key_seq *seq)
1029 {
1030 struct ieee80211_key *key;
1031 u8 *pn;
1032
1033 key = container_of(keyconf, struct ieee80211_key, conf);
1034
1035 switch (key->conf.cipher) {
1036 case WLAN_CIPHER_SUITE_TKIP:
1037 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
1038 return;
1039 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1040 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1041 break;
1042 case WLAN_CIPHER_SUITE_CCMP:
1043 case WLAN_CIPHER_SUITE_CCMP_256:
1044 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1045 return;
1046 if (tid < 0)
1047 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1048 else
1049 pn = key->u.ccmp.rx_pn[tid];
1050 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1051 break;
1052 case WLAN_CIPHER_SUITE_AES_CMAC:
1053 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1054 if (WARN_ON(tid != 0))
1055 return;
1056 pn = key->u.aes_cmac.rx_pn;
1057 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1058 break;
1059 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1060 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1061 if (WARN_ON(tid != 0))
1062 return;
1063 pn = key->u.aes_gmac.rx_pn;
1064 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1065 break;
1066 case WLAN_CIPHER_SUITE_GCMP:
1067 case WLAN_CIPHER_SUITE_GCMP_256:
1068 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1069 return;
1070 if (tid < 0)
1071 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1072 else
1073 pn = key->u.gcmp.rx_pn[tid];
1074 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1075 break;
1076 default:
1077 WARN_ON(1);
1078 break;
1079 }
1080 }
1081 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1082
1083 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1084 {
1085 struct ieee80211_key *key;
1086
1087 key = container_of(keyconf, struct ieee80211_key, conf);
1088
1089 assert_key_lock(key->local);
1090
1091 /*
1092 * if key was uploaded, we assume the driver will/has remove(d)
1093 * it, so adjust bookkeeping accordingly
1094 */
1095 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1096 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1097
1098 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1099 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1100 increment_tailroom_need_count(key->sdata);
1101 }
1102
1103 ieee80211_key_free(key, false);
1104 }
1105 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1106
1107 struct ieee80211_key_conf *
1108 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1109 struct ieee80211_key_conf *keyconf)
1110 {
1111 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1112 struct ieee80211_local *local = sdata->local;
1113 struct ieee80211_key *key;
1114 int err;
1115
1116 if (WARN_ON(!local->wowlan))
1117 return ERR_PTR(-EINVAL);
1118
1119 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1120 return ERR_PTR(-EINVAL);
1121
1122 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1123 keyconf->keylen, keyconf->key,
1124 0, NULL, NULL);
1125 if (IS_ERR(key))
1126 return ERR_CAST(key);
1127
1128 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1129 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1130
1131 err = ieee80211_key_link(key, sdata, NULL);
1132 if (err)
1133 return ERR_PTR(err);
1134
1135 return &key->conf;
1136 }
1137 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);