]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/key.c
Merge tag 'nfs-for-4.1-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / key.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27 #include "aes_gmac.h"
28 #include "aes_gcm.h"
29
30
31 /**
32 * DOC: Key handling basics
33 *
34 * Key handling in mac80211 is done based on per-interface (sub_if_data)
35 * keys and per-station keys. Since each station belongs to an interface,
36 * each station key also belongs to that interface.
37 *
38 * Hardware acceleration is done on a best-effort basis for algorithms
39 * that are implemented in software, for each key the hardware is asked
40 * to enable that key for offloading but if it cannot do that the key is
41 * simply kept for software encryption (unless it is for an algorithm
42 * that isn't implemented in software).
43 * There is currently no way of knowing whether a key is handled in SW
44 * or HW except by looking into debugfs.
45 *
46 * All key management is internally protected by a mutex. Within all
47 * other parts of mac80211, key references are, just as STA structure
48 * references, protected by RCU. Note, however, that some things are
49 * unprotected, namely the key->sta dereferences within the hardware
50 * acceleration functions. This means that sta_info_destroy() must
51 * remove the key which waits for an RCU grace period.
52 */
53
54 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
55
56 static void assert_key_lock(struct ieee80211_local *local)
57 {
58 lockdep_assert_held(&local->key_mtx);
59 }
60
61 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
62 {
63 /*
64 * When this count is zero, SKB resizing for allocating tailroom
65 * for IV or MMIC is skipped. But, this check has created two race
66 * cases in xmit path while transiting from zero count to one:
67 *
68 * 1. SKB resize was skipped because no key was added but just before
69 * the xmit key is added and SW encryption kicks off.
70 *
71 * 2. SKB resize was skipped because all the keys were hw planted but
72 * just before xmit one of the key is deleted and SW encryption kicks
73 * off.
74 *
75 * In both the above case SW encryption will find not enough space for
76 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
77 *
78 * Solution has been explained at
79 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
80 */
81
82 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
83 /*
84 * Flush all XMIT packets currently using HW encryption or no
85 * encryption at all if the count transition is from 0 -> 1.
86 */
87 synchronize_net();
88 }
89 }
90
91 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
92 {
93 struct ieee80211_sub_if_data *sdata;
94 struct sta_info *sta;
95 int ret = -EOPNOTSUPP;
96
97 might_sleep();
98
99 if (key->flags & KEY_FLAG_TAINTED) {
100 /* If we get here, it's during resume and the key is
101 * tainted so shouldn't be used/programmed any more.
102 * However, its flags may still indicate that it was
103 * programmed into the device (since we're in resume)
104 * so clear that flag now to avoid trying to remove
105 * it again later.
106 */
107 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
108 return -EINVAL;
109 }
110
111 if (!key->local->ops->set_key)
112 goto out_unsupported;
113
114 assert_key_lock(key->local);
115
116 sta = key->sta;
117
118 /*
119 * If this is a per-STA GTK, check if it
120 * is supported; if not, return.
121 */
122 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
123 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
124 goto out_unsupported;
125
126 if (sta && !sta->uploaded)
127 goto out_unsupported;
128
129 sdata = key->sdata;
130 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
131 /*
132 * The driver doesn't know anything about VLAN interfaces.
133 * Hence, don't send GTKs for VLAN interfaces to the driver.
134 */
135 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
136 goto out_unsupported;
137 }
138
139 ret = drv_set_key(key->local, SET_KEY, sdata,
140 sta ? &sta->sta : NULL, &key->conf);
141
142 if (!ret) {
143 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
144
145 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
146 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
147 sdata->crypto_tx_tailroom_needed_cnt--;
148
149 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
150 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
151
152 return 0;
153 }
154
155 if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
156 sdata_err(sdata,
157 "failed to set key (%d, %pM) to hardware (%d)\n",
158 key->conf.keyidx,
159 sta ? sta->sta.addr : bcast_addr, ret);
160
161 out_unsupported:
162 switch (key->conf.cipher) {
163 case WLAN_CIPHER_SUITE_WEP40:
164 case WLAN_CIPHER_SUITE_WEP104:
165 case WLAN_CIPHER_SUITE_TKIP:
166 case WLAN_CIPHER_SUITE_CCMP:
167 case WLAN_CIPHER_SUITE_CCMP_256:
168 case WLAN_CIPHER_SUITE_AES_CMAC:
169 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
170 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
171 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
172 case WLAN_CIPHER_SUITE_GCMP:
173 case WLAN_CIPHER_SUITE_GCMP_256:
174 /* all of these we can do in software - if driver can */
175 if (ret == 1)
176 return 0;
177 if (key->local->hw.flags & IEEE80211_HW_SW_CRYPTO_CONTROL)
178 return -EINVAL;
179 return 0;
180 default:
181 return -EINVAL;
182 }
183 }
184
185 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
186 {
187 struct ieee80211_sub_if_data *sdata;
188 struct sta_info *sta;
189 int ret;
190
191 might_sleep();
192
193 if (!key || !key->local->ops->set_key)
194 return;
195
196 assert_key_lock(key->local);
197
198 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
199 return;
200
201 sta = key->sta;
202 sdata = key->sdata;
203
204 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
205 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
206 increment_tailroom_need_count(sdata);
207
208 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
209 sta ? &sta->sta : NULL, &key->conf);
210
211 if (ret)
212 sdata_err(sdata,
213 "failed to remove key (%d, %pM) from hardware (%d)\n",
214 key->conf.keyidx,
215 sta ? sta->sta.addr : bcast_addr, ret);
216
217 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
218 }
219
220 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
221 int idx, bool uni, bool multi)
222 {
223 struct ieee80211_key *key = NULL;
224
225 assert_key_lock(sdata->local);
226
227 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
228 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
229
230 if (uni) {
231 rcu_assign_pointer(sdata->default_unicast_key, key);
232 drv_set_default_unicast_key(sdata->local, sdata, idx);
233 }
234
235 if (multi)
236 rcu_assign_pointer(sdata->default_multicast_key, key);
237
238 ieee80211_debugfs_key_update_default(sdata);
239 }
240
241 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
242 bool uni, bool multi)
243 {
244 mutex_lock(&sdata->local->key_mtx);
245 __ieee80211_set_default_key(sdata, idx, uni, multi);
246 mutex_unlock(&sdata->local->key_mtx);
247 }
248
249 static void
250 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
251 {
252 struct ieee80211_key *key = NULL;
253
254 assert_key_lock(sdata->local);
255
256 if (idx >= NUM_DEFAULT_KEYS &&
257 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
258 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
259
260 rcu_assign_pointer(sdata->default_mgmt_key, key);
261
262 ieee80211_debugfs_key_update_default(sdata);
263 }
264
265 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
266 int idx)
267 {
268 mutex_lock(&sdata->local->key_mtx);
269 __ieee80211_set_default_mgmt_key(sdata, idx);
270 mutex_unlock(&sdata->local->key_mtx);
271 }
272
273
274 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
275 struct sta_info *sta,
276 bool pairwise,
277 struct ieee80211_key *old,
278 struct ieee80211_key *new)
279 {
280 int idx;
281 bool defunikey, defmultikey, defmgmtkey;
282
283 /* caller must provide at least one old/new */
284 if (WARN_ON(!new && !old))
285 return;
286
287 if (new)
288 list_add_tail(&new->list, &sdata->key_list);
289
290 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
291
292 if (old)
293 idx = old->conf.keyidx;
294 else
295 idx = new->conf.keyidx;
296
297 if (sta) {
298 if (pairwise) {
299 rcu_assign_pointer(sta->ptk[idx], new);
300 sta->ptk_idx = idx;
301 } else {
302 rcu_assign_pointer(sta->gtk[idx], new);
303 sta->gtk_idx = idx;
304 }
305 } else {
306 defunikey = old &&
307 old == key_mtx_dereference(sdata->local,
308 sdata->default_unicast_key);
309 defmultikey = old &&
310 old == key_mtx_dereference(sdata->local,
311 sdata->default_multicast_key);
312 defmgmtkey = old &&
313 old == key_mtx_dereference(sdata->local,
314 sdata->default_mgmt_key);
315
316 if (defunikey && !new)
317 __ieee80211_set_default_key(sdata, -1, true, false);
318 if (defmultikey && !new)
319 __ieee80211_set_default_key(sdata, -1, false, true);
320 if (defmgmtkey && !new)
321 __ieee80211_set_default_mgmt_key(sdata, -1);
322
323 rcu_assign_pointer(sdata->keys[idx], new);
324 if (defunikey && new)
325 __ieee80211_set_default_key(sdata, new->conf.keyidx,
326 true, false);
327 if (defmultikey && new)
328 __ieee80211_set_default_key(sdata, new->conf.keyidx,
329 false, true);
330 if (defmgmtkey && new)
331 __ieee80211_set_default_mgmt_key(sdata,
332 new->conf.keyidx);
333 }
334
335 if (old)
336 list_del(&old->list);
337 }
338
339 struct ieee80211_key *
340 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
341 const u8 *key_data,
342 size_t seq_len, const u8 *seq,
343 const struct ieee80211_cipher_scheme *cs)
344 {
345 struct ieee80211_key *key;
346 int i, j, err;
347
348 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
349 return ERR_PTR(-EINVAL);
350
351 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
352 if (!key)
353 return ERR_PTR(-ENOMEM);
354
355 /*
356 * Default to software encryption; we'll later upload the
357 * key to the hardware if possible.
358 */
359 key->conf.flags = 0;
360 key->flags = 0;
361
362 key->conf.cipher = cipher;
363 key->conf.keyidx = idx;
364 key->conf.keylen = key_len;
365 switch (cipher) {
366 case WLAN_CIPHER_SUITE_WEP40:
367 case WLAN_CIPHER_SUITE_WEP104:
368 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
369 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
370 break;
371 case WLAN_CIPHER_SUITE_TKIP:
372 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
373 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
374 if (seq) {
375 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
376 key->u.tkip.rx[i].iv32 =
377 get_unaligned_le32(&seq[2]);
378 key->u.tkip.rx[i].iv16 =
379 get_unaligned_le16(seq);
380 }
381 }
382 spin_lock_init(&key->u.tkip.txlock);
383 break;
384 case WLAN_CIPHER_SUITE_CCMP:
385 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
386 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
387 if (seq) {
388 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
389 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
390 key->u.ccmp.rx_pn[i][j] =
391 seq[IEEE80211_CCMP_PN_LEN - j - 1];
392 }
393 /*
394 * Initialize AES key state here as an optimization so that
395 * it does not need to be initialized for every packet.
396 */
397 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
398 key_data, key_len, IEEE80211_CCMP_MIC_LEN);
399 if (IS_ERR(key->u.ccmp.tfm)) {
400 err = PTR_ERR(key->u.ccmp.tfm);
401 kfree(key);
402 return ERR_PTR(err);
403 }
404 break;
405 case WLAN_CIPHER_SUITE_CCMP_256:
406 key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
407 key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
408 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
409 for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
410 key->u.ccmp.rx_pn[i][j] =
411 seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
412 /* Initialize AES key state here as an optimization so that
413 * it does not need to be initialized for every packet.
414 */
415 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
416 key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
417 if (IS_ERR(key->u.ccmp.tfm)) {
418 err = PTR_ERR(key->u.ccmp.tfm);
419 kfree(key);
420 return ERR_PTR(err);
421 }
422 break;
423 case WLAN_CIPHER_SUITE_AES_CMAC:
424 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
425 key->conf.iv_len = 0;
426 if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
427 key->conf.icv_len = sizeof(struct ieee80211_mmie);
428 else
429 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
430 if (seq)
431 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
432 key->u.aes_cmac.rx_pn[j] =
433 seq[IEEE80211_CMAC_PN_LEN - j - 1];
434 /*
435 * Initialize AES key state here as an optimization so that
436 * it does not need to be initialized for every packet.
437 */
438 key->u.aes_cmac.tfm =
439 ieee80211_aes_cmac_key_setup(key_data, key_len);
440 if (IS_ERR(key->u.aes_cmac.tfm)) {
441 err = PTR_ERR(key->u.aes_cmac.tfm);
442 kfree(key);
443 return ERR_PTR(err);
444 }
445 break;
446 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448 key->conf.iv_len = 0;
449 key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
450 if (seq)
451 for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
452 key->u.aes_gmac.rx_pn[j] =
453 seq[IEEE80211_GMAC_PN_LEN - j - 1];
454 /* Initialize AES key state here as an optimization so that
455 * it does not need to be initialized for every packet.
456 */
457 key->u.aes_gmac.tfm =
458 ieee80211_aes_gmac_key_setup(key_data, key_len);
459 if (IS_ERR(key->u.aes_gmac.tfm)) {
460 err = PTR_ERR(key->u.aes_gmac.tfm);
461 kfree(key);
462 return ERR_PTR(err);
463 }
464 break;
465 case WLAN_CIPHER_SUITE_GCMP:
466 case WLAN_CIPHER_SUITE_GCMP_256:
467 key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
468 key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
469 for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
470 for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
471 key->u.gcmp.rx_pn[i][j] =
472 seq[IEEE80211_GCMP_PN_LEN - j - 1];
473 /* Initialize AES key state here as an optimization so that
474 * it does not need to be initialized for every packet.
475 */
476 key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
477 key_len);
478 if (IS_ERR(key->u.gcmp.tfm)) {
479 err = PTR_ERR(key->u.gcmp.tfm);
480 kfree(key);
481 return ERR_PTR(err);
482 }
483 break;
484 default:
485 if (cs) {
486 size_t len = (seq_len > MAX_PN_LEN) ?
487 MAX_PN_LEN : seq_len;
488
489 key->conf.iv_len = cs->hdr_len;
490 key->conf.icv_len = cs->mic_len;
491 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
492 for (j = 0; j < len; j++)
493 key->u.gen.rx_pn[i][j] =
494 seq[len - j - 1];
495 key->flags |= KEY_FLAG_CIPHER_SCHEME;
496 }
497 }
498 memcpy(key->conf.key, key_data, key_len);
499 INIT_LIST_HEAD(&key->list);
500
501 return key;
502 }
503
504 static void ieee80211_key_free_common(struct ieee80211_key *key)
505 {
506 switch (key->conf.cipher) {
507 case WLAN_CIPHER_SUITE_CCMP:
508 case WLAN_CIPHER_SUITE_CCMP_256:
509 ieee80211_aes_key_free(key->u.ccmp.tfm);
510 break;
511 case WLAN_CIPHER_SUITE_AES_CMAC:
512 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
513 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
514 break;
515 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
516 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
517 ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
518 break;
519 case WLAN_CIPHER_SUITE_GCMP:
520 case WLAN_CIPHER_SUITE_GCMP_256:
521 ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
522 break;
523 }
524 kzfree(key);
525 }
526
527 static void __ieee80211_key_destroy(struct ieee80211_key *key,
528 bool delay_tailroom)
529 {
530 if (key->local)
531 ieee80211_key_disable_hw_accel(key);
532
533 if (key->local) {
534 struct ieee80211_sub_if_data *sdata = key->sdata;
535
536 ieee80211_debugfs_key_remove(key);
537
538 if (delay_tailroom) {
539 /* see ieee80211_delayed_tailroom_dec */
540 sdata->crypto_tx_tailroom_pending_dec++;
541 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
542 HZ/2);
543 } else {
544 sdata->crypto_tx_tailroom_needed_cnt--;
545 }
546 }
547
548 ieee80211_key_free_common(key);
549 }
550
551 static void ieee80211_key_destroy(struct ieee80211_key *key,
552 bool delay_tailroom)
553 {
554 if (!key)
555 return;
556
557 /*
558 * Synchronize so the TX path can no longer be using
559 * this key before we free/remove it.
560 */
561 synchronize_net();
562
563 __ieee80211_key_destroy(key, delay_tailroom);
564 }
565
566 void ieee80211_key_free_unused(struct ieee80211_key *key)
567 {
568 WARN_ON(key->sdata || key->local);
569 ieee80211_key_free_common(key);
570 }
571
572 int ieee80211_key_link(struct ieee80211_key *key,
573 struct ieee80211_sub_if_data *sdata,
574 struct sta_info *sta)
575 {
576 struct ieee80211_local *local = sdata->local;
577 struct ieee80211_key *old_key;
578 int idx, ret;
579 bool pairwise;
580
581 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
582 idx = key->conf.keyidx;
583 key->local = sdata->local;
584 key->sdata = sdata;
585 key->sta = sta;
586
587 mutex_lock(&sdata->local->key_mtx);
588
589 if (sta && pairwise)
590 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
591 else if (sta)
592 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
593 else
594 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
595
596 increment_tailroom_need_count(sdata);
597
598 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
599 ieee80211_key_destroy(old_key, true);
600
601 ieee80211_debugfs_key_add(key);
602
603 if (!local->wowlan) {
604 ret = ieee80211_key_enable_hw_accel(key);
605 if (ret)
606 ieee80211_key_free(key, true);
607 } else {
608 ret = 0;
609 }
610
611 mutex_unlock(&sdata->local->key_mtx);
612
613 return ret;
614 }
615
616 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
617 {
618 if (!key)
619 return;
620
621 /*
622 * Replace key with nothingness if it was ever used.
623 */
624 if (key->sdata)
625 ieee80211_key_replace(key->sdata, key->sta,
626 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
627 key, NULL);
628 ieee80211_key_destroy(key, delay_tailroom);
629 }
630
631 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
632 {
633 struct ieee80211_key *key;
634
635 ASSERT_RTNL();
636
637 if (WARN_ON(!ieee80211_sdata_running(sdata)))
638 return;
639
640 mutex_lock(&sdata->local->key_mtx);
641
642 sdata->crypto_tx_tailroom_needed_cnt = 0;
643
644 list_for_each_entry(key, &sdata->key_list, list) {
645 increment_tailroom_need_count(sdata);
646 ieee80211_key_enable_hw_accel(key);
647 }
648
649 mutex_unlock(&sdata->local->key_mtx);
650 }
651
652 void ieee80211_iter_keys(struct ieee80211_hw *hw,
653 struct ieee80211_vif *vif,
654 void (*iter)(struct ieee80211_hw *hw,
655 struct ieee80211_vif *vif,
656 struct ieee80211_sta *sta,
657 struct ieee80211_key_conf *key,
658 void *data),
659 void *iter_data)
660 {
661 struct ieee80211_local *local = hw_to_local(hw);
662 struct ieee80211_key *key, *tmp;
663 struct ieee80211_sub_if_data *sdata;
664
665 ASSERT_RTNL();
666
667 mutex_lock(&local->key_mtx);
668 if (vif) {
669 sdata = vif_to_sdata(vif);
670 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
671 iter(hw, &sdata->vif,
672 key->sta ? &key->sta->sta : NULL,
673 &key->conf, iter_data);
674 } else {
675 list_for_each_entry(sdata, &local->interfaces, list)
676 list_for_each_entry_safe(key, tmp,
677 &sdata->key_list, list)
678 iter(hw, &sdata->vif,
679 key->sta ? &key->sta->sta : NULL,
680 &key->conf, iter_data);
681 }
682 mutex_unlock(&local->key_mtx);
683 }
684 EXPORT_SYMBOL(ieee80211_iter_keys);
685
686 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
687 struct list_head *keys)
688 {
689 struct ieee80211_key *key, *tmp;
690
691 sdata->crypto_tx_tailroom_needed_cnt -=
692 sdata->crypto_tx_tailroom_pending_dec;
693 sdata->crypto_tx_tailroom_pending_dec = 0;
694
695 ieee80211_debugfs_key_remove_mgmt_default(sdata);
696
697 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
698 ieee80211_key_replace(key->sdata, key->sta,
699 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
700 key, NULL);
701 list_add_tail(&key->list, keys);
702 }
703
704 ieee80211_debugfs_key_update_default(sdata);
705 }
706
707 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
708 bool force_synchronize)
709 {
710 struct ieee80211_local *local = sdata->local;
711 struct ieee80211_sub_if_data *vlan;
712 struct ieee80211_key *key, *tmp;
713 LIST_HEAD(keys);
714
715 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
716
717 mutex_lock(&local->key_mtx);
718
719 ieee80211_free_keys_iface(sdata, &keys);
720
721 if (sdata->vif.type == NL80211_IFTYPE_AP) {
722 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
723 ieee80211_free_keys_iface(vlan, &keys);
724 }
725
726 if (!list_empty(&keys) || force_synchronize)
727 synchronize_net();
728 list_for_each_entry_safe(key, tmp, &keys, list)
729 __ieee80211_key_destroy(key, false);
730
731 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
732 sdata->crypto_tx_tailroom_pending_dec);
733 if (sdata->vif.type == NL80211_IFTYPE_AP) {
734 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
735 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
736 vlan->crypto_tx_tailroom_pending_dec);
737 }
738
739 mutex_unlock(&local->key_mtx);
740 }
741
742 void ieee80211_free_sta_keys(struct ieee80211_local *local,
743 struct sta_info *sta)
744 {
745 struct ieee80211_key *key;
746 int i;
747
748 mutex_lock(&local->key_mtx);
749 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
750 key = key_mtx_dereference(local, sta->gtk[i]);
751 if (!key)
752 continue;
753 ieee80211_key_replace(key->sdata, key->sta,
754 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
755 key, NULL);
756 __ieee80211_key_destroy(key, true);
757 }
758
759 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
760 key = key_mtx_dereference(local, sta->ptk[i]);
761 if (!key)
762 continue;
763 ieee80211_key_replace(key->sdata, key->sta,
764 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
765 key, NULL);
766 __ieee80211_key_destroy(key, true);
767 }
768
769 mutex_unlock(&local->key_mtx);
770 }
771
772 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
773 {
774 struct ieee80211_sub_if_data *sdata;
775
776 sdata = container_of(wk, struct ieee80211_sub_if_data,
777 dec_tailroom_needed_wk.work);
778
779 /*
780 * The reason for the delayed tailroom needed decrementing is to
781 * make roaming faster: during roaming, all keys are first deleted
782 * and then new keys are installed. The first new key causes the
783 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
784 * the cost of synchronize_net() (which can be slow). Avoid this
785 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
786 * key removal for a while, so if we roam the value is larger than
787 * zero and no 0->1 transition happens.
788 *
789 * The cost is that if the AP switching was from an AP with keys
790 * to one without, we still allocate tailroom while it would no
791 * longer be needed. However, in the typical (fast) roaming case
792 * within an ESS this usually won't happen.
793 */
794
795 mutex_lock(&sdata->local->key_mtx);
796 sdata->crypto_tx_tailroom_needed_cnt -=
797 sdata->crypto_tx_tailroom_pending_dec;
798 sdata->crypto_tx_tailroom_pending_dec = 0;
799 mutex_unlock(&sdata->local->key_mtx);
800 }
801
802 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
803 const u8 *replay_ctr, gfp_t gfp)
804 {
805 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
806
807 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
808
809 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
810 }
811 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
812
813 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
814 struct ieee80211_key_seq *seq)
815 {
816 struct ieee80211_key *key;
817 u64 pn64;
818
819 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
820 return;
821
822 key = container_of(keyconf, struct ieee80211_key, conf);
823
824 switch (key->conf.cipher) {
825 case WLAN_CIPHER_SUITE_TKIP:
826 seq->tkip.iv32 = key->u.tkip.tx.iv32;
827 seq->tkip.iv16 = key->u.tkip.tx.iv16;
828 break;
829 case WLAN_CIPHER_SUITE_CCMP:
830 case WLAN_CIPHER_SUITE_CCMP_256:
831 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
832 seq->ccmp.pn[5] = pn64;
833 seq->ccmp.pn[4] = pn64 >> 8;
834 seq->ccmp.pn[3] = pn64 >> 16;
835 seq->ccmp.pn[2] = pn64 >> 24;
836 seq->ccmp.pn[1] = pn64 >> 32;
837 seq->ccmp.pn[0] = pn64 >> 40;
838 break;
839 case WLAN_CIPHER_SUITE_AES_CMAC:
840 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
841 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
842 seq->ccmp.pn[5] = pn64;
843 seq->ccmp.pn[4] = pn64 >> 8;
844 seq->ccmp.pn[3] = pn64 >> 16;
845 seq->ccmp.pn[2] = pn64 >> 24;
846 seq->ccmp.pn[1] = pn64 >> 32;
847 seq->ccmp.pn[0] = pn64 >> 40;
848 break;
849 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
850 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
851 pn64 = atomic64_read(&key->u.aes_gmac.tx_pn);
852 seq->ccmp.pn[5] = pn64;
853 seq->ccmp.pn[4] = pn64 >> 8;
854 seq->ccmp.pn[3] = pn64 >> 16;
855 seq->ccmp.pn[2] = pn64 >> 24;
856 seq->ccmp.pn[1] = pn64 >> 32;
857 seq->ccmp.pn[0] = pn64 >> 40;
858 break;
859 case WLAN_CIPHER_SUITE_GCMP:
860 case WLAN_CIPHER_SUITE_GCMP_256:
861 pn64 = atomic64_read(&key->u.gcmp.tx_pn);
862 seq->gcmp.pn[5] = pn64;
863 seq->gcmp.pn[4] = pn64 >> 8;
864 seq->gcmp.pn[3] = pn64 >> 16;
865 seq->gcmp.pn[2] = pn64 >> 24;
866 seq->gcmp.pn[1] = pn64 >> 32;
867 seq->gcmp.pn[0] = pn64 >> 40;
868 break;
869 default:
870 WARN_ON(1);
871 }
872 }
873 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
874
875 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
876 int tid, struct ieee80211_key_seq *seq)
877 {
878 struct ieee80211_key *key;
879 const u8 *pn;
880
881 key = container_of(keyconf, struct ieee80211_key, conf);
882
883 switch (key->conf.cipher) {
884 case WLAN_CIPHER_SUITE_TKIP:
885 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
886 return;
887 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
888 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
889 break;
890 case WLAN_CIPHER_SUITE_CCMP:
891 case WLAN_CIPHER_SUITE_CCMP_256:
892 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
893 return;
894 if (tid < 0)
895 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
896 else
897 pn = key->u.ccmp.rx_pn[tid];
898 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
899 break;
900 case WLAN_CIPHER_SUITE_AES_CMAC:
901 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
902 if (WARN_ON(tid != 0))
903 return;
904 pn = key->u.aes_cmac.rx_pn;
905 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
906 break;
907 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
908 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
909 if (WARN_ON(tid != 0))
910 return;
911 pn = key->u.aes_gmac.rx_pn;
912 memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
913 break;
914 case WLAN_CIPHER_SUITE_GCMP:
915 case WLAN_CIPHER_SUITE_GCMP_256:
916 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
917 return;
918 if (tid < 0)
919 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
920 else
921 pn = key->u.gcmp.rx_pn[tid];
922 memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
923 break;
924 }
925 }
926 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
927
928 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
929 struct ieee80211_key_seq *seq)
930 {
931 struct ieee80211_key *key;
932 u64 pn64;
933
934 key = container_of(keyconf, struct ieee80211_key, conf);
935
936 switch (key->conf.cipher) {
937 case WLAN_CIPHER_SUITE_TKIP:
938 key->u.tkip.tx.iv32 = seq->tkip.iv32;
939 key->u.tkip.tx.iv16 = seq->tkip.iv16;
940 break;
941 case WLAN_CIPHER_SUITE_CCMP:
942 case WLAN_CIPHER_SUITE_CCMP_256:
943 pn64 = (u64)seq->ccmp.pn[5] |
944 ((u64)seq->ccmp.pn[4] << 8) |
945 ((u64)seq->ccmp.pn[3] << 16) |
946 ((u64)seq->ccmp.pn[2] << 24) |
947 ((u64)seq->ccmp.pn[1] << 32) |
948 ((u64)seq->ccmp.pn[0] << 40);
949 atomic64_set(&key->u.ccmp.tx_pn, pn64);
950 break;
951 case WLAN_CIPHER_SUITE_AES_CMAC:
952 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
953 pn64 = (u64)seq->aes_cmac.pn[5] |
954 ((u64)seq->aes_cmac.pn[4] << 8) |
955 ((u64)seq->aes_cmac.pn[3] << 16) |
956 ((u64)seq->aes_cmac.pn[2] << 24) |
957 ((u64)seq->aes_cmac.pn[1] << 32) |
958 ((u64)seq->aes_cmac.pn[0] << 40);
959 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
960 break;
961 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
962 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
963 pn64 = (u64)seq->aes_gmac.pn[5] |
964 ((u64)seq->aes_gmac.pn[4] << 8) |
965 ((u64)seq->aes_gmac.pn[3] << 16) |
966 ((u64)seq->aes_gmac.pn[2] << 24) |
967 ((u64)seq->aes_gmac.pn[1] << 32) |
968 ((u64)seq->aes_gmac.pn[0] << 40);
969 atomic64_set(&key->u.aes_gmac.tx_pn, pn64);
970 break;
971 case WLAN_CIPHER_SUITE_GCMP:
972 case WLAN_CIPHER_SUITE_GCMP_256:
973 pn64 = (u64)seq->gcmp.pn[5] |
974 ((u64)seq->gcmp.pn[4] << 8) |
975 ((u64)seq->gcmp.pn[3] << 16) |
976 ((u64)seq->gcmp.pn[2] << 24) |
977 ((u64)seq->gcmp.pn[1] << 32) |
978 ((u64)seq->gcmp.pn[0] << 40);
979 atomic64_set(&key->u.gcmp.tx_pn, pn64);
980 break;
981 default:
982 WARN_ON(1);
983 break;
984 }
985 }
986 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
987
988 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
989 int tid, struct ieee80211_key_seq *seq)
990 {
991 struct ieee80211_key *key;
992 u8 *pn;
993
994 key = container_of(keyconf, struct ieee80211_key, conf);
995
996 switch (key->conf.cipher) {
997 case WLAN_CIPHER_SUITE_TKIP:
998 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
999 return;
1000 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
1001 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
1002 break;
1003 case WLAN_CIPHER_SUITE_CCMP:
1004 case WLAN_CIPHER_SUITE_CCMP_256:
1005 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1006 return;
1007 if (tid < 0)
1008 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
1009 else
1010 pn = key->u.ccmp.rx_pn[tid];
1011 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
1012 break;
1013 case WLAN_CIPHER_SUITE_AES_CMAC:
1014 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1015 if (WARN_ON(tid != 0))
1016 return;
1017 pn = key->u.aes_cmac.rx_pn;
1018 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
1019 break;
1020 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1021 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1022 if (WARN_ON(tid != 0))
1023 return;
1024 pn = key->u.aes_gmac.rx_pn;
1025 memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
1026 break;
1027 case WLAN_CIPHER_SUITE_GCMP:
1028 case WLAN_CIPHER_SUITE_GCMP_256:
1029 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
1030 return;
1031 if (tid < 0)
1032 pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
1033 else
1034 pn = key->u.gcmp.rx_pn[tid];
1035 memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
1036 break;
1037 default:
1038 WARN_ON(1);
1039 break;
1040 }
1041 }
1042 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
1043
1044 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
1045 {
1046 struct ieee80211_key *key;
1047
1048 key = container_of(keyconf, struct ieee80211_key, conf);
1049
1050 assert_key_lock(key->local);
1051
1052 /*
1053 * if key was uploaded, we assume the driver will/has remove(d)
1054 * it, so adjust bookkeeping accordingly
1055 */
1056 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
1057 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
1058
1059 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
1060 (key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
1061 increment_tailroom_need_count(key->sdata);
1062 }
1063
1064 ieee80211_key_free(key, false);
1065 }
1066 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
1067
1068 struct ieee80211_key_conf *
1069 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
1070 struct ieee80211_key_conf *keyconf)
1071 {
1072 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1073 struct ieee80211_local *local = sdata->local;
1074 struct ieee80211_key *key;
1075 int err;
1076
1077 if (WARN_ON(!local->wowlan))
1078 return ERR_PTR(-EINVAL);
1079
1080 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1081 return ERR_PTR(-EINVAL);
1082
1083 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
1084 keyconf->keylen, keyconf->key,
1085 0, NULL, NULL);
1086 if (IS_ERR(key))
1087 return ERR_CAST(key);
1088
1089 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
1090 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
1091
1092 err = ieee80211_key_link(key, sdata, NULL);
1093 if (err)
1094 return ERR_PTR(err);
1095
1096 return &key->conf;
1097 }
1098 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);