]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/mac80211/rx.c
Merge tag 'riscv-for-linus-5.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / net / mac80211 / rx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2020 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 /*
46 * monitor mode reception
47 *
48 * This function cleans up the SKB, i.e. it removes all the stuff
49 * only useful for monitoring.
50 */
51 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
52 unsigned int present_fcs_len,
53 unsigned int rtap_space)
54 {
55 struct ieee80211_hdr *hdr;
56 unsigned int hdrlen;
57 __le16 fc;
58
59 if (present_fcs_len)
60 __pskb_trim(skb, skb->len - present_fcs_len);
61 __pskb_pull(skb, rtap_space);
62
63 hdr = (void *)skb->data;
64 fc = hdr->frame_control;
65
66 /*
67 * Remove the HT-Control field (if present) on management
68 * frames after we've sent the frame to monitoring. We
69 * (currently) don't need it, and don't properly parse
70 * frames with it present, due to the assumption of a
71 * fixed management header length.
72 */
73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
74 return skb;
75
76 hdrlen = ieee80211_hdrlen(fc);
77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
78
79 if (!pskb_may_pull(skb, hdrlen)) {
80 dev_kfree_skb(skb);
81 return NULL;
82 }
83
84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
85 hdrlen - IEEE80211_HT_CTL_LEN);
86 __pskb_pull(skb, IEEE80211_HT_CTL_LEN);
87
88 return skb;
89 }
90
91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
92 unsigned int rtap_space)
93 {
94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
95 struct ieee80211_hdr *hdr;
96
97 hdr = (void *)(skb->data + rtap_space);
98
99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
100 RX_FLAG_FAILED_PLCP_CRC |
101 RX_FLAG_ONLY_MONITOR |
102 RX_FLAG_NO_PSDU))
103 return true;
104
105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
106 return true;
107
108 if (ieee80211_is_ctl(hdr->frame_control) &&
109 !ieee80211_is_pspoll(hdr->frame_control) &&
110 !ieee80211_is_back_req(hdr->frame_control))
111 return true;
112
113 return false;
114 }
115
116 static int
117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
118 struct ieee80211_rx_status *status,
119 struct sk_buff *skb)
120 {
121 int len;
122
123 /* always present fields */
124 len = sizeof(struct ieee80211_radiotap_header) + 8;
125
126 /* allocate extra bitmaps */
127 if (status->chains)
128 len += 4 * hweight8(status->chains);
129 /* vendor presence bitmap */
130 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
131 len += 4;
132
133 if (ieee80211_have_rx_timestamp(status)) {
134 len = ALIGN(len, 8);
135 len += 8;
136 }
137 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
138 len += 1;
139
140 /* antenna field, if we don't have per-chain info */
141 if (!status->chains)
142 len += 1;
143
144 /* padding for RX_FLAGS if necessary */
145 len = ALIGN(len, 2);
146
147 if (status->encoding == RX_ENC_HT) /* HT info */
148 len += 3;
149
150 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
151 len = ALIGN(len, 4);
152 len += 8;
153 }
154
155 if (status->encoding == RX_ENC_VHT) {
156 len = ALIGN(len, 2);
157 len += 12;
158 }
159
160 if (local->hw.radiotap_timestamp.units_pos >= 0) {
161 len = ALIGN(len, 8);
162 len += 12;
163 }
164
165 if (status->encoding == RX_ENC_HE &&
166 status->flag & RX_FLAG_RADIOTAP_HE) {
167 len = ALIGN(len, 2);
168 len += 12;
169 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
170 }
171
172 if (status->encoding == RX_ENC_HE &&
173 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
174 len = ALIGN(len, 2);
175 len += 12;
176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
177 }
178
179 if (status->flag & RX_FLAG_NO_PSDU)
180 len += 1;
181
182 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
183 len = ALIGN(len, 2);
184 len += 4;
185 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
186 }
187
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
191 }
192
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap;
195 int vendor_data_offset = 0;
196
197 /*
198 * The position to look at depends on the existence (or non-
199 * existence) of other elements, so take that into account...
200 */
201 if (status->flag & RX_FLAG_RADIOTAP_HE)
202 vendor_data_offset +=
203 sizeof(struct ieee80211_radiotap_he);
204 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
205 vendor_data_offset +=
206 sizeof(struct ieee80211_radiotap_he_mu);
207 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
208 vendor_data_offset +=
209 sizeof(struct ieee80211_radiotap_lsig);
210
211 rtap = (void *)&skb->data[vendor_data_offset];
212
213 /* alignment for fixed 6-byte vendor data header */
214 len = ALIGN(len, 2);
215 /* vendor data header */
216 len += 6;
217 if (WARN_ON(rtap->align == 0))
218 rtap->align = 1;
219 len = ALIGN(len, rtap->align);
220 len += rtap->len + rtap->pad;
221 }
222
223 return len;
224 }
225
226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
227 struct sk_buff *skb,
228 int rtap_space)
229 {
230 struct {
231 struct ieee80211_hdr_3addr hdr;
232 u8 category;
233 u8 action_code;
234 } __packed __aligned(2) action;
235
236 if (!sdata)
237 return;
238
239 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240
241 if (skb->len < rtap_space + sizeof(action) +
242 VHT_MUMIMO_GROUPS_DATA_LEN)
243 return;
244
245 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
246 return;
247
248 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249
250 if (!ieee80211_is_action(action.hdr.frame_control))
251 return;
252
253 if (action.category != WLAN_CATEGORY_VHT)
254 return;
255
256 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
257 return;
258
259 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
260 return;
261
262 skb = skb_copy(skb, GFP_ATOMIC);
263 if (!skb)
264 return;
265
266 skb_queue_tail(&sdata->skb_queue, skb);
267 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
268 }
269
270 /*
271 * ieee80211_add_rx_radiotap_header - add radiotap header
272 *
273 * add a radiotap header containing all the fields which the hardware provided.
274 */
275 static void
276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
277 struct sk_buff *skb,
278 struct ieee80211_rate *rate,
279 int rtap_len, bool has_fcs)
280 {
281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
282 struct ieee80211_radiotap_header *rthdr;
283 unsigned char *pos;
284 __le32 *it_present;
285 u32 it_present_val;
286 u16 rx_flags = 0;
287 u16 channel_flags = 0;
288 int mpdulen, chain;
289 unsigned long chains = status->chains;
290 struct ieee80211_vendor_radiotap rtap = {};
291 struct ieee80211_radiotap_he he = {};
292 struct ieee80211_radiotap_he_mu he_mu = {};
293 struct ieee80211_radiotap_lsig lsig = {};
294
295 if (status->flag & RX_FLAG_RADIOTAP_HE) {
296 he = *(struct ieee80211_radiotap_he *)skb->data;
297 skb_pull(skb, sizeof(he));
298 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
299 }
300
301 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
302 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
303 skb_pull(skb, sizeof(he_mu));
304 }
305
306 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
307 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
308 skb_pull(skb, sizeof(lsig));
309 }
310
311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
313 /* rtap.len and rtap.pad are undone immediately */
314 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
315 }
316
317 mpdulen = skb->len;
318 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
319 mpdulen += FCS_LEN;
320
321 rthdr = skb_push(skb, rtap_len);
322 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
323 it_present = &rthdr->it_present;
324
325 /* radiotap header, set always present flags */
326 rthdr->it_len = cpu_to_le16(rtap_len);
327 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
328 BIT(IEEE80211_RADIOTAP_CHANNEL) |
329 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330
331 if (!status->chains)
332 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333
334 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
335 it_present_val |=
336 BIT(IEEE80211_RADIOTAP_EXT) |
337 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
338 put_unaligned_le32(it_present_val, it_present);
339 it_present++;
340 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
341 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
342 }
343
344 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
345 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
346 BIT(IEEE80211_RADIOTAP_EXT);
347 put_unaligned_le32(it_present_val, it_present);
348 it_present++;
349 it_present_val = rtap.present;
350 }
351
352 put_unaligned_le32(it_present_val, it_present);
353
354 pos = (void *)(it_present + 1);
355
356 /* the order of the following fields is important */
357
358 /* IEEE80211_RADIOTAP_TSFT */
359 if (ieee80211_have_rx_timestamp(status)) {
360 /* padding */
361 while ((pos - (u8 *)rthdr) & 7)
362 *pos++ = 0;
363 put_unaligned_le64(
364 ieee80211_calculate_rx_timestamp(local, status,
365 mpdulen, 0),
366 pos);
367 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
368 pos += 8;
369 }
370
371 /* IEEE80211_RADIOTAP_FLAGS */
372 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
373 *pos |= IEEE80211_RADIOTAP_F_FCS;
374 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
375 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
376 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
377 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
378 pos++;
379
380 /* IEEE80211_RADIOTAP_RATE */
381 if (!rate || status->encoding != RX_ENC_LEGACY) {
382 /*
383 * Without rate information don't add it. If we have,
384 * MCS information is a separate field in radiotap,
385 * added below. The byte here is needed as padding
386 * for the channel though, so initialise it to 0.
387 */
388 *pos = 0;
389 } else {
390 int shift = 0;
391 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
392 if (status->bw == RATE_INFO_BW_10)
393 shift = 1;
394 else if (status->bw == RATE_INFO_BW_5)
395 shift = 2;
396 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 }
398 pos++;
399
400 /* IEEE80211_RADIOTAP_CHANNEL */
401 /* TODO: frequency offset in KHz */
402 put_unaligned_le16(status->freq, pos);
403 pos += 2;
404 if (status->bw == RATE_INFO_BW_10)
405 channel_flags |= IEEE80211_CHAN_HALF;
406 else if (status->bw == RATE_INFO_BW_5)
407 channel_flags |= IEEE80211_CHAN_QUARTER;
408
409 if (status->band == NL80211_BAND_5GHZ ||
410 status->band == NL80211_BAND_6GHZ)
411 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
412 else if (status->encoding != RX_ENC_LEGACY)
413 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
414 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
415 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
416 else if (rate)
417 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
418 else
419 channel_flags |= IEEE80211_CHAN_2GHZ;
420 put_unaligned_le16(channel_flags, pos);
421 pos += 2;
422
423 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
424 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
425 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
426 *pos = status->signal;
427 rthdr->it_present |=
428 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
429 pos++;
430 }
431
432 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
433
434 if (!status->chains) {
435 /* IEEE80211_RADIOTAP_ANTENNA */
436 *pos = status->antenna;
437 pos++;
438 }
439
440 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
441
442 /* IEEE80211_RADIOTAP_RX_FLAGS */
443 /* ensure 2 byte alignment for the 2 byte field as required */
444 if ((pos - (u8 *)rthdr) & 1)
445 *pos++ = 0;
446 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
447 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
448 put_unaligned_le16(rx_flags, pos);
449 pos += 2;
450
451 if (status->encoding == RX_ENC_HT) {
452 unsigned int stbc;
453
454 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
455 *pos++ = local->hw.radiotap_mcs_details;
456 *pos = 0;
457 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
458 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
459 if (status->bw == RATE_INFO_BW_40)
460 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
461 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
462 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
463 if (status->enc_flags & RX_ENC_FLAG_LDPC)
464 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
465 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
466 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
467 pos++;
468 *pos++ = status->rate_idx;
469 }
470
471 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
472 u16 flags = 0;
473
474 /* ensure 4 byte alignment */
475 while ((pos - (u8 *)rthdr) & 3)
476 pos++;
477 rthdr->it_present |=
478 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
479 put_unaligned_le32(status->ampdu_reference, pos);
480 pos += 4;
481 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
482 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
483 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
484 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
486 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
487 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
488 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
489 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
490 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
491 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
492 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
493 put_unaligned_le16(flags, pos);
494 pos += 2;
495 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
496 *pos++ = status->ampdu_delimiter_crc;
497 else
498 *pos++ = 0;
499 *pos++ = 0;
500 }
501
502 if (status->encoding == RX_ENC_VHT) {
503 u16 known = local->hw.radiotap_vht_details;
504
505 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
506 put_unaligned_le16(known, pos);
507 pos += 2;
508 /* flags */
509 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
510 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
511 /* in VHT, STBC is binary */
512 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
513 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
514 if (status->enc_flags & RX_ENC_FLAG_BF)
515 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
516 pos++;
517 /* bandwidth */
518 switch (status->bw) {
519 case RATE_INFO_BW_80:
520 *pos++ = 4;
521 break;
522 case RATE_INFO_BW_160:
523 *pos++ = 11;
524 break;
525 case RATE_INFO_BW_40:
526 *pos++ = 1;
527 break;
528 default:
529 *pos++ = 0;
530 }
531 /* MCS/NSS */
532 *pos = (status->rate_idx << 4) | status->nss;
533 pos += 4;
534 /* coding field */
535 if (status->enc_flags & RX_ENC_FLAG_LDPC)
536 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
537 pos++;
538 /* group ID */
539 pos++;
540 /* partial_aid */
541 pos += 2;
542 }
543
544 if (local->hw.radiotap_timestamp.units_pos >= 0) {
545 u16 accuracy = 0;
546 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
547
548 rthdr->it_present |=
549 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
550
551 /* ensure 8 byte alignment */
552 while ((pos - (u8 *)rthdr) & 7)
553 pos++;
554
555 put_unaligned_le64(status->device_timestamp, pos);
556 pos += sizeof(u64);
557
558 if (local->hw.radiotap_timestamp.accuracy >= 0) {
559 accuracy = local->hw.radiotap_timestamp.accuracy;
560 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
561 }
562 put_unaligned_le16(accuracy, pos);
563 pos += sizeof(u16);
564
565 *pos++ = local->hw.radiotap_timestamp.units_pos;
566 *pos++ = flags;
567 }
568
569 if (status->encoding == RX_ENC_HE &&
570 status->flag & RX_FLAG_RADIOTAP_HE) {
571 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
572
573 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
574 he.data6 |= HE_PREP(DATA6_NSTS,
575 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
576 status->enc_flags));
577 he.data3 |= HE_PREP(DATA3_STBC, 1);
578 } else {
579 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
580 }
581
582 #define CHECK_GI(s) \
583 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
584 (int)NL80211_RATE_INFO_HE_GI_##s)
585
586 CHECK_GI(0_8);
587 CHECK_GI(1_6);
588 CHECK_GI(3_2);
589
590 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
591 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
592 he.data3 |= HE_PREP(DATA3_CODING,
593 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
594
595 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
596
597 switch (status->bw) {
598 case RATE_INFO_BW_20:
599 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
600 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
601 break;
602 case RATE_INFO_BW_40:
603 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
604 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
605 break;
606 case RATE_INFO_BW_80:
607 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
608 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
609 break;
610 case RATE_INFO_BW_160:
611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
613 break;
614 case RATE_INFO_BW_HE_RU:
615 #define CHECK_RU_ALLOC(s) \
616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
617 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
618
619 CHECK_RU_ALLOC(26);
620 CHECK_RU_ALLOC(52);
621 CHECK_RU_ALLOC(106);
622 CHECK_RU_ALLOC(242);
623 CHECK_RU_ALLOC(484);
624 CHECK_RU_ALLOC(996);
625 CHECK_RU_ALLOC(2x996);
626
627 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
628 status->he_ru + 4);
629 break;
630 default:
631 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
632 }
633
634 /* ensure 2 byte alignment */
635 while ((pos - (u8 *)rthdr) & 1)
636 pos++;
637 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
638 memcpy(pos, &he, sizeof(he));
639 pos += sizeof(he);
640 }
641
642 if (status->encoding == RX_ENC_HE &&
643 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
644 /* ensure 2 byte alignment */
645 while ((pos - (u8 *)rthdr) & 1)
646 pos++;
647 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
648 memcpy(pos, &he_mu, sizeof(he_mu));
649 pos += sizeof(he_mu);
650 }
651
652 if (status->flag & RX_FLAG_NO_PSDU) {
653 rthdr->it_present |=
654 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
655 *pos++ = status->zero_length_psdu_type;
656 }
657
658 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
659 /* ensure 2 byte alignment */
660 while ((pos - (u8 *)rthdr) & 1)
661 pos++;
662 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
663 memcpy(pos, &lsig, sizeof(lsig));
664 pos += sizeof(lsig);
665 }
666
667 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
668 *pos++ = status->chain_signal[chain];
669 *pos++ = chain;
670 }
671
672 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
673 /* ensure 2 byte alignment for the vendor field as required */
674 if ((pos - (u8 *)rthdr) & 1)
675 *pos++ = 0;
676 *pos++ = rtap.oui[0];
677 *pos++ = rtap.oui[1];
678 *pos++ = rtap.oui[2];
679 *pos++ = rtap.subns;
680 put_unaligned_le16(rtap.len, pos);
681 pos += 2;
682 /* align the actual payload as requested */
683 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
684 *pos++ = 0;
685 /* data (and possible padding) already follows */
686 }
687 }
688
689 static struct sk_buff *
690 ieee80211_make_monitor_skb(struct ieee80211_local *local,
691 struct sk_buff **origskb,
692 struct ieee80211_rate *rate,
693 int rtap_space, bool use_origskb)
694 {
695 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
696 int rt_hdrlen, needed_headroom;
697 struct sk_buff *skb;
698
699 /* room for the radiotap header based on driver features */
700 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
701 needed_headroom = rt_hdrlen - rtap_space;
702
703 if (use_origskb) {
704 /* only need to expand headroom if necessary */
705 skb = *origskb;
706 *origskb = NULL;
707
708 /*
709 * This shouldn't trigger often because most devices have an
710 * RX header they pull before we get here, and that should
711 * be big enough for our radiotap information. We should
712 * probably export the length to drivers so that we can have
713 * them allocate enough headroom to start with.
714 */
715 if (skb_headroom(skb) < needed_headroom &&
716 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
717 dev_kfree_skb(skb);
718 return NULL;
719 }
720 } else {
721 /*
722 * Need to make a copy and possibly remove radiotap header
723 * and FCS from the original.
724 */
725 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
726
727 if (!skb)
728 return NULL;
729 }
730
731 /* prepend radiotap information */
732 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
733
734 skb_reset_mac_header(skb);
735 skb->ip_summed = CHECKSUM_UNNECESSARY;
736 skb->pkt_type = PACKET_OTHERHOST;
737 skb->protocol = htons(ETH_P_802_2);
738
739 return skb;
740 }
741
742 /*
743 * This function copies a received frame to all monitor interfaces and
744 * returns a cleaned-up SKB that no longer includes the FCS nor the
745 * radiotap header the driver might have added.
746 */
747 static struct sk_buff *
748 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
749 struct ieee80211_rate *rate)
750 {
751 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
752 struct ieee80211_sub_if_data *sdata;
753 struct sk_buff *monskb = NULL;
754 int present_fcs_len = 0;
755 unsigned int rtap_space = 0;
756 struct ieee80211_sub_if_data *monitor_sdata =
757 rcu_dereference(local->monitor_sdata);
758 bool only_monitor = false;
759 unsigned int min_head_len;
760
761 if (status->flag & RX_FLAG_RADIOTAP_HE)
762 rtap_space += sizeof(struct ieee80211_radiotap_he);
763
764 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
765 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
766
767 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
768 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
769
770 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
771 struct ieee80211_vendor_radiotap *rtap =
772 (void *)(origskb->data + rtap_space);
773
774 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
775 }
776
777 min_head_len = rtap_space;
778
779 /*
780 * First, we may need to make a copy of the skb because
781 * (1) we need to modify it for radiotap (if not present), and
782 * (2) the other RX handlers will modify the skb we got.
783 *
784 * We don't need to, of course, if we aren't going to return
785 * the SKB because it has a bad FCS/PLCP checksum.
786 */
787
788 if (!(status->flag & RX_FLAG_NO_PSDU)) {
789 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
790 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
791 /* driver bug */
792 WARN_ON(1);
793 dev_kfree_skb(origskb);
794 return NULL;
795 }
796 present_fcs_len = FCS_LEN;
797 }
798
799 /* also consider the hdr->frame_control */
800 min_head_len += 2;
801 }
802
803 /* ensure that the expected data elements are in skb head */
804 if (!pskb_may_pull(origskb, min_head_len)) {
805 dev_kfree_skb(origskb);
806 return NULL;
807 }
808
809 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
810
811 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
812 if (only_monitor) {
813 dev_kfree_skb(origskb);
814 return NULL;
815 }
816
817 return ieee80211_clean_skb(origskb, present_fcs_len,
818 rtap_space);
819 }
820
821 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
822
823 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
824 bool last_monitor = list_is_last(&sdata->u.mntr.list,
825 &local->mon_list);
826
827 if (!monskb)
828 monskb = ieee80211_make_monitor_skb(local, &origskb,
829 rate, rtap_space,
830 only_monitor &&
831 last_monitor);
832
833 if (monskb) {
834 struct sk_buff *skb;
835
836 if (last_monitor) {
837 skb = monskb;
838 monskb = NULL;
839 } else {
840 skb = skb_clone(monskb, GFP_ATOMIC);
841 }
842
843 if (skb) {
844 skb->dev = sdata->dev;
845 ieee80211_rx_stats(skb->dev, skb->len);
846 netif_receive_skb(skb);
847 }
848 }
849
850 if (last_monitor)
851 break;
852 }
853
854 /* this happens if last_monitor was erroneously false */
855 dev_kfree_skb(monskb);
856
857 /* ditto */
858 if (!origskb)
859 return NULL;
860
861 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space);
862 }
863
864 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
865 {
866 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
867 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
868 int tid, seqno_idx, security_idx;
869
870 /* does the frame have a qos control field? */
871 if (ieee80211_is_data_qos(hdr->frame_control)) {
872 u8 *qc = ieee80211_get_qos_ctl(hdr);
873 /* frame has qos control */
874 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
875 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
876 status->rx_flags |= IEEE80211_RX_AMSDU;
877
878 seqno_idx = tid;
879 security_idx = tid;
880 } else {
881 /*
882 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
883 *
884 * Sequence numbers for management frames, QoS data
885 * frames with a broadcast/multicast address in the
886 * Address 1 field, and all non-QoS data frames sent
887 * by QoS STAs are assigned using an additional single
888 * modulo-4096 counter, [...]
889 *
890 * We also use that counter for non-QoS STAs.
891 */
892 seqno_idx = IEEE80211_NUM_TIDS;
893 security_idx = 0;
894 if (ieee80211_is_mgmt(hdr->frame_control))
895 security_idx = IEEE80211_NUM_TIDS;
896 tid = 0;
897 }
898
899 rx->seqno_idx = seqno_idx;
900 rx->security_idx = security_idx;
901 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
902 * For now, set skb->priority to 0 for other cases. */
903 rx->skb->priority = (tid > 7) ? 0 : tid;
904 }
905
906 /**
907 * DOC: Packet alignment
908 *
909 * Drivers always need to pass packets that are aligned to two-byte boundaries
910 * to the stack.
911 *
912 * Additionally, should, if possible, align the payload data in a way that
913 * guarantees that the contained IP header is aligned to a four-byte
914 * boundary. In the case of regular frames, this simply means aligning the
915 * payload to a four-byte boundary (because either the IP header is directly
916 * contained, or IV/RFC1042 headers that have a length divisible by four are
917 * in front of it). If the payload data is not properly aligned and the
918 * architecture doesn't support efficient unaligned operations, mac80211
919 * will align the data.
920 *
921 * With A-MSDU frames, however, the payload data address must yield two modulo
922 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
923 * push the IP header further back to a multiple of four again. Thankfully, the
924 * specs were sane enough this time around to require padding each A-MSDU
925 * subframe to a length that is a multiple of four.
926 *
927 * Padding like Atheros hardware adds which is between the 802.11 header and
928 * the payload is not supported, the driver is required to move the 802.11
929 * header to be directly in front of the payload in that case.
930 */
931 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
932 {
933 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
934 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
935 #endif
936 }
937
938
939 /* rx handlers */
940
941 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
942 {
943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944
945 if (is_multicast_ether_addr(hdr->addr1))
946 return 0;
947
948 return ieee80211_is_robust_mgmt_frame(skb);
949 }
950
951
952 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
953 {
954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
955
956 if (!is_multicast_ether_addr(hdr->addr1))
957 return 0;
958
959 return ieee80211_is_robust_mgmt_frame(skb);
960 }
961
962
963 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
964 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
965 {
966 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
967 struct ieee80211_mmie *mmie;
968 struct ieee80211_mmie_16 *mmie16;
969
970 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
971 return -1;
972
973 if (!ieee80211_is_robust_mgmt_frame(skb) &&
974 !ieee80211_is_beacon(hdr->frame_control))
975 return -1; /* not a robust management frame */
976
977 mmie = (struct ieee80211_mmie *)
978 (skb->data + skb->len - sizeof(*mmie));
979 if (mmie->element_id == WLAN_EID_MMIE &&
980 mmie->length == sizeof(*mmie) - 2)
981 return le16_to_cpu(mmie->key_id);
982
983 mmie16 = (struct ieee80211_mmie_16 *)
984 (skb->data + skb->len - sizeof(*mmie16));
985 if (skb->len >= 24 + sizeof(*mmie16) &&
986 mmie16->element_id == WLAN_EID_MMIE &&
987 mmie16->length == sizeof(*mmie16) - 2)
988 return le16_to_cpu(mmie16->key_id);
989
990 return -1;
991 }
992
993 static int ieee80211_get_keyid(struct sk_buff *skb,
994 const struct ieee80211_cipher_scheme *cs)
995 {
996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
997 __le16 fc;
998 int hdrlen;
999 int minlen;
1000 u8 key_idx_off;
1001 u8 key_idx_shift;
1002 u8 keyid;
1003
1004 fc = hdr->frame_control;
1005 hdrlen = ieee80211_hdrlen(fc);
1006
1007 if (cs) {
1008 minlen = hdrlen + cs->hdr_len;
1009 key_idx_off = hdrlen + cs->key_idx_off;
1010 key_idx_shift = cs->key_idx_shift;
1011 } else {
1012 /* WEP, TKIP, CCMP and GCMP */
1013 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1014 key_idx_off = hdrlen + 3;
1015 key_idx_shift = 6;
1016 }
1017
1018 if (unlikely(skb->len < minlen))
1019 return -EINVAL;
1020
1021 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1022
1023 if (cs)
1024 keyid &= cs->key_idx_mask;
1025 keyid >>= key_idx_shift;
1026
1027 /* cs could use more than the usual two bits for the keyid */
1028 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1029 return -EINVAL;
1030
1031 return keyid;
1032 }
1033
1034 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1035 {
1036 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1037 char *dev_addr = rx->sdata->vif.addr;
1038
1039 if (ieee80211_is_data(hdr->frame_control)) {
1040 if (is_multicast_ether_addr(hdr->addr1)) {
1041 if (ieee80211_has_tods(hdr->frame_control) ||
1042 !ieee80211_has_fromds(hdr->frame_control))
1043 return RX_DROP_MONITOR;
1044 if (ether_addr_equal(hdr->addr3, dev_addr))
1045 return RX_DROP_MONITOR;
1046 } else {
1047 if (!ieee80211_has_a4(hdr->frame_control))
1048 return RX_DROP_MONITOR;
1049 if (ether_addr_equal(hdr->addr4, dev_addr))
1050 return RX_DROP_MONITOR;
1051 }
1052 }
1053
1054 /* If there is not an established peer link and this is not a peer link
1055 * establisment frame, beacon or probe, drop the frame.
1056 */
1057
1058 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1059 struct ieee80211_mgmt *mgmt;
1060
1061 if (!ieee80211_is_mgmt(hdr->frame_control))
1062 return RX_DROP_MONITOR;
1063
1064 if (ieee80211_is_action(hdr->frame_control)) {
1065 u8 category;
1066
1067 /* make sure category field is present */
1068 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1069 return RX_DROP_MONITOR;
1070
1071 mgmt = (struct ieee80211_mgmt *)hdr;
1072 category = mgmt->u.action.category;
1073 if (category != WLAN_CATEGORY_MESH_ACTION &&
1074 category != WLAN_CATEGORY_SELF_PROTECTED)
1075 return RX_DROP_MONITOR;
1076 return RX_CONTINUE;
1077 }
1078
1079 if (ieee80211_is_probe_req(hdr->frame_control) ||
1080 ieee80211_is_probe_resp(hdr->frame_control) ||
1081 ieee80211_is_beacon(hdr->frame_control) ||
1082 ieee80211_is_auth(hdr->frame_control))
1083 return RX_CONTINUE;
1084
1085 return RX_DROP_MONITOR;
1086 }
1087
1088 return RX_CONTINUE;
1089 }
1090
1091 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1092 int index)
1093 {
1094 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1095 struct sk_buff *tail = skb_peek_tail(frames);
1096 struct ieee80211_rx_status *status;
1097
1098 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1099 return true;
1100
1101 if (!tail)
1102 return false;
1103
1104 status = IEEE80211_SKB_RXCB(tail);
1105 if (status->flag & RX_FLAG_AMSDU_MORE)
1106 return false;
1107
1108 return true;
1109 }
1110
1111 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1112 struct tid_ampdu_rx *tid_agg_rx,
1113 int index,
1114 struct sk_buff_head *frames)
1115 {
1116 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1117 struct sk_buff *skb;
1118 struct ieee80211_rx_status *status;
1119
1120 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1121
1122 if (skb_queue_empty(skb_list))
1123 goto no_frame;
1124
1125 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1126 __skb_queue_purge(skb_list);
1127 goto no_frame;
1128 }
1129
1130 /* release frames from the reorder ring buffer */
1131 tid_agg_rx->stored_mpdu_num--;
1132 while ((skb = __skb_dequeue(skb_list))) {
1133 status = IEEE80211_SKB_RXCB(skb);
1134 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1135 __skb_queue_tail(frames, skb);
1136 }
1137
1138 no_frame:
1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1141 }
1142
1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1144 struct tid_ampdu_rx *tid_agg_rx,
1145 u16 head_seq_num,
1146 struct sk_buff_head *frames)
1147 {
1148 int index;
1149
1150 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1151
1152 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1155 frames);
1156 }
1157 }
1158
1159 /*
1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1161 * the skb was added to the buffer longer than this time ago, the earlier
1162 * frames that have not yet been received are assumed to be lost and the skb
1163 * can be released for processing. This may also release other skb's from the
1164 * reorder buffer if there are no additional gaps between the frames.
1165 *
1166 * Callers must hold tid_agg_rx->reorder_lock.
1167 */
1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1169
1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1171 struct tid_ampdu_rx *tid_agg_rx,
1172 struct sk_buff_head *frames)
1173 {
1174 int index, i, j;
1175
1176 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1177
1178 /* release the buffer until next missing frame */
1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1181 tid_agg_rx->stored_mpdu_num) {
1182 /*
1183 * No buffers ready to be released, but check whether any
1184 * frames in the reorder buffer have timed out.
1185 */
1186 int skipped = 1;
1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1188 j = (j + 1) % tid_agg_rx->buf_size) {
1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1190 skipped++;
1191 continue;
1192 }
1193 if (skipped &&
1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1195 HT_RX_REORDER_BUF_TIMEOUT))
1196 goto set_release_timer;
1197
1198 /* don't leave incomplete A-MSDUs around */
1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1200 i = (i + 1) % tid_agg_rx->buf_size)
1201 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1202
1203 ht_dbg_ratelimited(sdata,
1204 "release an RX reorder frame due to timeout on earlier frames\n");
1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1206 frames);
1207
1208 /*
1209 * Increment the head seq# also for the skipped slots.
1210 */
1211 tid_agg_rx->head_seq_num =
1212 (tid_agg_rx->head_seq_num +
1213 skipped) & IEEE80211_SN_MASK;
1214 skipped = 0;
1215 }
1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1218 frames);
1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 }
1221
1222 if (tid_agg_rx->stored_mpdu_num) {
1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1224
1225 for (; j != (index - 1) % tid_agg_rx->buf_size;
1226 j = (j + 1) % tid_agg_rx->buf_size) {
1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1228 break;
1229 }
1230
1231 set_release_timer:
1232
1233 if (!tid_agg_rx->removed)
1234 mod_timer(&tid_agg_rx->reorder_timer,
1235 tid_agg_rx->reorder_time[j] + 1 +
1236 HT_RX_REORDER_BUF_TIMEOUT);
1237 } else {
1238 del_timer(&tid_agg_rx->reorder_timer);
1239 }
1240 }
1241
1242 /*
1243 * As this function belongs to the RX path it must be under
1244 * rcu_read_lock protection. It returns false if the frame
1245 * can be processed immediately, true if it was consumed.
1246 */
1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1248 struct tid_ampdu_rx *tid_agg_rx,
1249 struct sk_buff *skb,
1250 struct sk_buff_head *frames)
1251 {
1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1254 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1255 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1256 u16 head_seq_num, buf_size;
1257 int index;
1258 bool ret = true;
1259
1260 spin_lock(&tid_agg_rx->reorder_lock);
1261
1262 /*
1263 * Offloaded BA sessions have no known starting sequence number so pick
1264 * one from first Rxed frame for this tid after BA was started.
1265 */
1266 if (unlikely(tid_agg_rx->auto_seq)) {
1267 tid_agg_rx->auto_seq = false;
1268 tid_agg_rx->ssn = mpdu_seq_num;
1269 tid_agg_rx->head_seq_num = mpdu_seq_num;
1270 }
1271
1272 buf_size = tid_agg_rx->buf_size;
1273 head_seq_num = tid_agg_rx->head_seq_num;
1274
1275 /*
1276 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1277 * be reordered.
1278 */
1279 if (unlikely(!tid_agg_rx->started)) {
1280 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1281 ret = false;
1282 goto out;
1283 }
1284 tid_agg_rx->started = true;
1285 }
1286
1287 /* frame with out of date sequence number */
1288 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1289 dev_kfree_skb(skb);
1290 goto out;
1291 }
1292
1293 /*
1294 * If frame the sequence number exceeds our buffering window
1295 * size release some previous frames to make room for this one.
1296 */
1297 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1298 head_seq_num = ieee80211_sn_inc(
1299 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1300 /* release stored frames up to new head to stack */
1301 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1302 head_seq_num, frames);
1303 }
1304
1305 /* Now the new frame is always in the range of the reordering buffer */
1306
1307 index = mpdu_seq_num % tid_agg_rx->buf_size;
1308
1309 /* check if we already stored this frame */
1310 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1311 dev_kfree_skb(skb);
1312 goto out;
1313 }
1314
1315 /*
1316 * If the current MPDU is in the right order and nothing else
1317 * is stored we can process it directly, no need to buffer it.
1318 * If it is first but there's something stored, we may be able
1319 * to release frames after this one.
1320 */
1321 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1322 tid_agg_rx->stored_mpdu_num == 0) {
1323 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1324 tid_agg_rx->head_seq_num =
1325 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1326 ret = false;
1327 goto out;
1328 }
1329
1330 /* put the frame in the reordering buffer */
1331 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1332 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1333 tid_agg_rx->reorder_time[index] = jiffies;
1334 tid_agg_rx->stored_mpdu_num++;
1335 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1336 }
1337
1338 out:
1339 spin_unlock(&tid_agg_rx->reorder_lock);
1340 return ret;
1341 }
1342
1343 /*
1344 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1345 * true if the MPDU was buffered, false if it should be processed.
1346 */
1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1348 struct sk_buff_head *frames)
1349 {
1350 struct sk_buff *skb = rx->skb;
1351 struct ieee80211_local *local = rx->local;
1352 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1353 struct sta_info *sta = rx->sta;
1354 struct tid_ampdu_rx *tid_agg_rx;
1355 u16 sc;
1356 u8 tid, ack_policy;
1357
1358 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1359 is_multicast_ether_addr(hdr->addr1))
1360 goto dont_reorder;
1361
1362 /*
1363 * filter the QoS data rx stream according to
1364 * STA/TID and check if this STA/TID is on aggregation
1365 */
1366
1367 if (!sta)
1368 goto dont_reorder;
1369
1370 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1371 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1372 tid = ieee80211_get_tid(hdr);
1373
1374 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1375 if (!tid_agg_rx) {
1376 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1377 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1378 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1379 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1380 WLAN_BACK_RECIPIENT,
1381 WLAN_REASON_QSTA_REQUIRE_SETUP);
1382 goto dont_reorder;
1383 }
1384
1385 /* qos null data frames are excluded */
1386 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1387 goto dont_reorder;
1388
1389 /* not part of a BA session */
1390 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1391 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1392 goto dont_reorder;
1393
1394 /* new, potentially un-ordered, ampdu frame - process it */
1395
1396 /* reset session timer */
1397 if (tid_agg_rx->timeout)
1398 tid_agg_rx->last_rx = jiffies;
1399
1400 /* if this mpdu is fragmented - terminate rx aggregation session */
1401 sc = le16_to_cpu(hdr->seq_ctrl);
1402 if (sc & IEEE80211_SCTL_FRAG) {
1403 skb_queue_tail(&rx->sdata->skb_queue, skb);
1404 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1405 return;
1406 }
1407
1408 /*
1409 * No locking needed -- we will only ever process one
1410 * RX packet at a time, and thus own tid_agg_rx. All
1411 * other code manipulating it needs to (and does) make
1412 * sure that we cannot get to it any more before doing
1413 * anything with it.
1414 */
1415 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1416 frames))
1417 return;
1418
1419 dont_reorder:
1420 __skb_queue_tail(frames, skb);
1421 }
1422
1423 static ieee80211_rx_result debug_noinline
1424 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1425 {
1426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1427 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1428
1429 if (status->flag & RX_FLAG_DUP_VALIDATED)
1430 return RX_CONTINUE;
1431
1432 /*
1433 * Drop duplicate 802.11 retransmissions
1434 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1435 */
1436
1437 if (rx->skb->len < 24)
1438 return RX_CONTINUE;
1439
1440 if (ieee80211_is_ctl(hdr->frame_control) ||
1441 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1442 is_multicast_ether_addr(hdr->addr1))
1443 return RX_CONTINUE;
1444
1445 if (!rx->sta)
1446 return RX_CONTINUE;
1447
1448 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1449 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1450 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1451 rx->sta->rx_stats.num_duplicates++;
1452 return RX_DROP_UNUSABLE;
1453 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1454 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1455 }
1456
1457 return RX_CONTINUE;
1458 }
1459
1460 static ieee80211_rx_result debug_noinline
1461 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1462 {
1463 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1464
1465 /* Drop disallowed frame classes based on STA auth/assoc state;
1466 * IEEE 802.11, Chap 5.5.
1467 *
1468 * mac80211 filters only based on association state, i.e. it drops
1469 * Class 3 frames from not associated stations. hostapd sends
1470 * deauth/disassoc frames when needed. In addition, hostapd is
1471 * responsible for filtering on both auth and assoc states.
1472 */
1473
1474 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1475 return ieee80211_rx_mesh_check(rx);
1476
1477 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1478 ieee80211_is_pspoll(hdr->frame_control)) &&
1479 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1480 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1481 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1482 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1483 /*
1484 * accept port control frames from the AP even when it's not
1485 * yet marked ASSOC to prevent a race where we don't set the
1486 * assoc bit quickly enough before it sends the first frame
1487 */
1488 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1489 ieee80211_is_data_present(hdr->frame_control)) {
1490 unsigned int hdrlen;
1491 __be16 ethertype;
1492
1493 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1494
1495 if (rx->skb->len < hdrlen + 8)
1496 return RX_DROP_MONITOR;
1497
1498 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1499 if (ethertype == rx->sdata->control_port_protocol)
1500 return RX_CONTINUE;
1501 }
1502
1503 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1504 cfg80211_rx_spurious_frame(rx->sdata->dev,
1505 hdr->addr2,
1506 GFP_ATOMIC))
1507 return RX_DROP_UNUSABLE;
1508
1509 return RX_DROP_MONITOR;
1510 }
1511
1512 return RX_CONTINUE;
1513 }
1514
1515
1516 static ieee80211_rx_result debug_noinline
1517 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1518 {
1519 struct ieee80211_local *local;
1520 struct ieee80211_hdr *hdr;
1521 struct sk_buff *skb;
1522
1523 local = rx->local;
1524 skb = rx->skb;
1525 hdr = (struct ieee80211_hdr *) skb->data;
1526
1527 if (!local->pspolling)
1528 return RX_CONTINUE;
1529
1530 if (!ieee80211_has_fromds(hdr->frame_control))
1531 /* this is not from AP */
1532 return RX_CONTINUE;
1533
1534 if (!ieee80211_is_data(hdr->frame_control))
1535 return RX_CONTINUE;
1536
1537 if (!ieee80211_has_moredata(hdr->frame_control)) {
1538 /* AP has no more frames buffered for us */
1539 local->pspolling = false;
1540 return RX_CONTINUE;
1541 }
1542
1543 /* more data bit is set, let's request a new frame from the AP */
1544 ieee80211_send_pspoll(local, rx->sdata);
1545
1546 return RX_CONTINUE;
1547 }
1548
1549 static void sta_ps_start(struct sta_info *sta)
1550 {
1551 struct ieee80211_sub_if_data *sdata = sta->sdata;
1552 struct ieee80211_local *local = sdata->local;
1553 struct ps_data *ps;
1554 int tid;
1555
1556 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1557 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1558 ps = &sdata->bss->ps;
1559 else
1560 return;
1561
1562 atomic_inc(&ps->num_sta_ps);
1563 set_sta_flag(sta, WLAN_STA_PS_STA);
1564 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1565 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1566 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1567 sta->sta.addr, sta->sta.aid);
1568
1569 ieee80211_clear_fast_xmit(sta);
1570
1571 if (!sta->sta.txq[0])
1572 return;
1573
1574 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1575 struct ieee80211_txq *txq = sta->sta.txq[tid];
1576 struct txq_info *txqi = to_txq_info(txq);
1577
1578 spin_lock(&local->active_txq_lock[txq->ac]);
1579 if (!list_empty(&txqi->schedule_order))
1580 list_del_init(&txqi->schedule_order);
1581 spin_unlock(&local->active_txq_lock[txq->ac]);
1582
1583 if (txq_has_queue(txq))
1584 set_bit(tid, &sta->txq_buffered_tids);
1585 else
1586 clear_bit(tid, &sta->txq_buffered_tids);
1587 }
1588 }
1589
1590 static void sta_ps_end(struct sta_info *sta)
1591 {
1592 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1593 sta->sta.addr, sta->sta.aid);
1594
1595 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1596 /*
1597 * Clear the flag only if the other one is still set
1598 * so that the TX path won't start TX'ing new frames
1599 * directly ... In the case that the driver flag isn't
1600 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1601 */
1602 clear_sta_flag(sta, WLAN_STA_PS_STA);
1603 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1604 sta->sta.addr, sta->sta.aid);
1605 return;
1606 }
1607
1608 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1609 clear_sta_flag(sta, WLAN_STA_PS_STA);
1610 ieee80211_sta_ps_deliver_wakeup(sta);
1611 }
1612
1613 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1614 {
1615 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1616 bool in_ps;
1617
1618 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1619
1620 /* Don't let the same PS state be set twice */
1621 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1622 if ((start && in_ps) || (!start && !in_ps))
1623 return -EINVAL;
1624
1625 if (start)
1626 sta_ps_start(sta);
1627 else
1628 sta_ps_end(sta);
1629
1630 return 0;
1631 }
1632 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1633
1634 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1635 {
1636 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1637
1638 if (test_sta_flag(sta, WLAN_STA_SP))
1639 return;
1640
1641 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1642 ieee80211_sta_ps_deliver_poll_response(sta);
1643 else
1644 set_sta_flag(sta, WLAN_STA_PSPOLL);
1645 }
1646 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1647
1648 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1649 {
1650 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1651 int ac = ieee80211_ac_from_tid(tid);
1652
1653 /*
1654 * If this AC is not trigger-enabled do nothing unless the
1655 * driver is calling us after it already checked.
1656 *
1657 * NB: This could/should check a separate bitmap of trigger-
1658 * enabled queues, but for now we only implement uAPSD w/o
1659 * TSPEC changes to the ACs, so they're always the same.
1660 */
1661 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1662 tid != IEEE80211_NUM_TIDS)
1663 return;
1664
1665 /* if we are in a service period, do nothing */
1666 if (test_sta_flag(sta, WLAN_STA_SP))
1667 return;
1668
1669 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1670 ieee80211_sta_ps_deliver_uapsd(sta);
1671 else
1672 set_sta_flag(sta, WLAN_STA_UAPSD);
1673 }
1674 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1675
1676 static ieee80211_rx_result debug_noinline
1677 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1678 {
1679 struct ieee80211_sub_if_data *sdata = rx->sdata;
1680 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1681 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1682
1683 if (!rx->sta)
1684 return RX_CONTINUE;
1685
1686 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1687 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1688 return RX_CONTINUE;
1689
1690 /*
1691 * The device handles station powersave, so don't do anything about
1692 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1693 * it to mac80211 since they're handled.)
1694 */
1695 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1696 return RX_CONTINUE;
1697
1698 /*
1699 * Don't do anything if the station isn't already asleep. In
1700 * the uAPSD case, the station will probably be marked asleep,
1701 * in the PS-Poll case the station must be confused ...
1702 */
1703 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1704 return RX_CONTINUE;
1705
1706 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1707 ieee80211_sta_pspoll(&rx->sta->sta);
1708
1709 /* Free PS Poll skb here instead of returning RX_DROP that would
1710 * count as an dropped frame. */
1711 dev_kfree_skb(rx->skb);
1712
1713 return RX_QUEUED;
1714 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1715 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1716 ieee80211_has_pm(hdr->frame_control) &&
1717 (ieee80211_is_data_qos(hdr->frame_control) ||
1718 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1719 u8 tid = ieee80211_get_tid(hdr);
1720
1721 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1722 }
1723
1724 return RX_CONTINUE;
1725 }
1726
1727 static ieee80211_rx_result debug_noinline
1728 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1729 {
1730 struct sta_info *sta = rx->sta;
1731 struct sk_buff *skb = rx->skb;
1732 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1733 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1734 int i;
1735
1736 if (!sta)
1737 return RX_CONTINUE;
1738
1739 /*
1740 * Update last_rx only for IBSS packets which are for the current
1741 * BSSID and for station already AUTHORIZED to avoid keeping the
1742 * current IBSS network alive in cases where other STAs start
1743 * using different BSSID. This will also give the station another
1744 * chance to restart the authentication/authorization in case
1745 * something went wrong the first time.
1746 */
1747 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1748 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1749 NL80211_IFTYPE_ADHOC);
1750 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1751 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1752 sta->rx_stats.last_rx = jiffies;
1753 if (ieee80211_is_data(hdr->frame_control) &&
1754 !is_multicast_ether_addr(hdr->addr1))
1755 sta->rx_stats.last_rate =
1756 sta_stats_encode_rate(status);
1757 }
1758 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1759 sta->rx_stats.last_rx = jiffies;
1760 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) &&
1761 is_multicast_ether_addr(hdr->addr1)) {
1762 /*
1763 * Mesh beacons will update last_rx when if they are found to
1764 * match the current local configuration when processed.
1765 */
1766 sta->rx_stats.last_rx = jiffies;
1767 if (ieee80211_is_data(hdr->frame_control))
1768 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1769 }
1770
1771 sta->rx_stats.fragments++;
1772
1773 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1774 sta->rx_stats.bytes += rx->skb->len;
1775 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1776
1777 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1778 sta->rx_stats.last_signal = status->signal;
1779 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1780 }
1781
1782 if (status->chains) {
1783 sta->rx_stats.chains = status->chains;
1784 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1785 int signal = status->chain_signal[i];
1786
1787 if (!(status->chains & BIT(i)))
1788 continue;
1789
1790 sta->rx_stats.chain_signal_last[i] = signal;
1791 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1792 -signal);
1793 }
1794 }
1795
1796 if (ieee80211_is_s1g_beacon(hdr->frame_control))
1797 return RX_CONTINUE;
1798
1799 /*
1800 * Change STA power saving mode only at the end of a frame
1801 * exchange sequence, and only for a data or management
1802 * frame as specified in IEEE 802.11-2016 11.2.3.2
1803 */
1804 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1805 !ieee80211_has_morefrags(hdr->frame_control) &&
1806 !is_multicast_ether_addr(hdr->addr1) &&
1807 (ieee80211_is_mgmt(hdr->frame_control) ||
1808 ieee80211_is_data(hdr->frame_control)) &&
1809 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1810 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1811 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1812 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1813 if (!ieee80211_has_pm(hdr->frame_control))
1814 sta_ps_end(sta);
1815 } else {
1816 if (ieee80211_has_pm(hdr->frame_control))
1817 sta_ps_start(sta);
1818 }
1819 }
1820
1821 /* mesh power save support */
1822 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1823 ieee80211_mps_rx_h_sta_process(sta, hdr);
1824
1825 /*
1826 * Drop (qos-)data::nullfunc frames silently, since they
1827 * are used only to control station power saving mode.
1828 */
1829 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1830 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1831
1832 /*
1833 * If we receive a 4-addr nullfunc frame from a STA
1834 * that was not moved to a 4-addr STA vlan yet send
1835 * the event to userspace and for older hostapd drop
1836 * the frame to the monitor interface.
1837 */
1838 if (ieee80211_has_a4(hdr->frame_control) &&
1839 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1840 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1841 !rx->sdata->u.vlan.sta))) {
1842 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1843 cfg80211_rx_unexpected_4addr_frame(
1844 rx->sdata->dev, sta->sta.addr,
1845 GFP_ATOMIC);
1846 return RX_DROP_MONITOR;
1847 }
1848 /*
1849 * Update counter and free packet here to avoid
1850 * counting this as a dropped packed.
1851 */
1852 sta->rx_stats.packets++;
1853 dev_kfree_skb(rx->skb);
1854 return RX_QUEUED;
1855 }
1856
1857 return RX_CONTINUE;
1858 } /* ieee80211_rx_h_sta_process */
1859
1860 static struct ieee80211_key *
1861 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1862 {
1863 struct ieee80211_key *key = NULL;
1864 struct ieee80211_sub_if_data *sdata = rx->sdata;
1865 int idx2;
1866
1867 /* Make sure key gets set if either BIGTK key index is set so that
1868 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1869 * Beacon frames and Beacon frames that claim to use another BIGTK key
1870 * index (i.e., a key that we do not have).
1871 */
1872
1873 if (idx < 0) {
1874 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1875 idx2 = idx + 1;
1876 } else {
1877 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1878 idx2 = idx + 1;
1879 else
1880 idx2 = idx - 1;
1881 }
1882
1883 if (rx->sta)
1884 key = rcu_dereference(rx->sta->gtk[idx]);
1885 if (!key)
1886 key = rcu_dereference(sdata->keys[idx]);
1887 if (!key && rx->sta)
1888 key = rcu_dereference(rx->sta->gtk[idx2]);
1889 if (!key)
1890 key = rcu_dereference(sdata->keys[idx2]);
1891
1892 return key;
1893 }
1894
1895 static ieee80211_rx_result debug_noinline
1896 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1897 {
1898 struct sk_buff *skb = rx->skb;
1899 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1900 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1901 int keyidx;
1902 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1903 struct ieee80211_key *sta_ptk = NULL;
1904 struct ieee80211_key *ptk_idx = NULL;
1905 int mmie_keyidx = -1;
1906 __le16 fc;
1907 const struct ieee80211_cipher_scheme *cs = NULL;
1908
1909 if (ieee80211_is_ext(hdr->frame_control))
1910 return RX_CONTINUE;
1911
1912 /*
1913 * Key selection 101
1914 *
1915 * There are five types of keys:
1916 * - GTK (group keys)
1917 * - IGTK (group keys for management frames)
1918 * - BIGTK (group keys for Beacon frames)
1919 * - PTK (pairwise keys)
1920 * - STK (station-to-station pairwise keys)
1921 *
1922 * When selecting a key, we have to distinguish between multicast
1923 * (including broadcast) and unicast frames, the latter can only
1924 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1925 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1926 * then unicast frames can also use key indices like GTKs. Hence, if we
1927 * don't have a PTK/STK we check the key index for a WEP key.
1928 *
1929 * Note that in a regular BSS, multicast frames are sent by the
1930 * AP only, associated stations unicast the frame to the AP first
1931 * which then multicasts it on their behalf.
1932 *
1933 * There is also a slight problem in IBSS mode: GTKs are negotiated
1934 * with each station, that is something we don't currently handle.
1935 * The spec seems to expect that one negotiates the same key with
1936 * every station but there's no such requirement; VLANs could be
1937 * possible.
1938 */
1939
1940 /* start without a key */
1941 rx->key = NULL;
1942 fc = hdr->frame_control;
1943
1944 if (rx->sta) {
1945 int keyid = rx->sta->ptk_idx;
1946 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1947
1948 if (ieee80211_has_protected(fc)) {
1949 cs = rx->sta->cipher_scheme;
1950 keyid = ieee80211_get_keyid(rx->skb, cs);
1951
1952 if (unlikely(keyid < 0))
1953 return RX_DROP_UNUSABLE;
1954
1955 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1956 }
1957 }
1958
1959 if (!ieee80211_has_protected(fc))
1960 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1961
1962 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1963 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1964 if ((status->flag & RX_FLAG_DECRYPTED) &&
1965 (status->flag & RX_FLAG_IV_STRIPPED))
1966 return RX_CONTINUE;
1967 /* Skip decryption if the frame is not protected. */
1968 if (!ieee80211_has_protected(fc))
1969 return RX_CONTINUE;
1970 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1971 /* Broadcast/multicast robust management frame / BIP */
1972 if ((status->flag & RX_FLAG_DECRYPTED) &&
1973 (status->flag & RX_FLAG_IV_STRIPPED))
1974 return RX_CONTINUE;
1975
1976 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1977 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1978 NUM_DEFAULT_BEACON_KEYS) {
1979 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1980 skb->data,
1981 skb->len);
1982 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1983 }
1984
1985 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx);
1986 if (!rx->key)
1987 return RX_CONTINUE; /* Beacon protection not in use */
1988 } else if (mmie_keyidx >= 0) {
1989 /* Broadcast/multicast robust management frame / BIP */
1990 if ((status->flag & RX_FLAG_DECRYPTED) &&
1991 (status->flag & RX_FLAG_IV_STRIPPED))
1992 return RX_CONTINUE;
1993
1994 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1995 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1996 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1997 if (rx->sta) {
1998 if (ieee80211_is_group_privacy_action(skb) &&
1999 test_sta_flag(rx->sta, WLAN_STA_MFP))
2000 return RX_DROP_MONITOR;
2001
2002 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
2003 }
2004 if (!rx->key)
2005 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
2006 } else if (!ieee80211_has_protected(fc)) {
2007 /*
2008 * The frame was not protected, so skip decryption. However, we
2009 * need to set rx->key if there is a key that could have been
2010 * used so that the frame may be dropped if encryption would
2011 * have been expected.
2012 */
2013 struct ieee80211_key *key = NULL;
2014 struct ieee80211_sub_if_data *sdata = rx->sdata;
2015 int i;
2016
2017 if (ieee80211_is_beacon(fc)) {
2018 key = ieee80211_rx_get_bigtk(rx, -1);
2019 } else if (ieee80211_is_mgmt(fc) &&
2020 is_multicast_ether_addr(hdr->addr1)) {
2021 key = rcu_dereference(rx->sdata->default_mgmt_key);
2022 } else {
2023 if (rx->sta) {
2024 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2025 key = rcu_dereference(rx->sta->gtk[i]);
2026 if (key)
2027 break;
2028 }
2029 }
2030 if (!key) {
2031 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2032 key = rcu_dereference(sdata->keys[i]);
2033 if (key)
2034 break;
2035 }
2036 }
2037 }
2038 if (key)
2039 rx->key = key;
2040 return RX_CONTINUE;
2041 } else {
2042 /*
2043 * The device doesn't give us the IV so we won't be
2044 * able to look up the key. That's ok though, we
2045 * don't need to decrypt the frame, we just won't
2046 * be able to keep statistics accurate.
2047 * Except for key threshold notifications, should
2048 * we somehow allow the driver to tell us which key
2049 * the hardware used if this flag is set?
2050 */
2051 if ((status->flag & RX_FLAG_DECRYPTED) &&
2052 (status->flag & RX_FLAG_IV_STRIPPED))
2053 return RX_CONTINUE;
2054
2055 keyidx = ieee80211_get_keyid(rx->skb, cs);
2056
2057 if (unlikely(keyidx < 0))
2058 return RX_DROP_UNUSABLE;
2059
2060 /* check per-station GTK first, if multicast packet */
2061 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2062 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2063
2064 /* if not found, try default key */
2065 if (!rx->key) {
2066 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2067
2068 /*
2069 * RSNA-protected unicast frames should always be
2070 * sent with pairwise or station-to-station keys,
2071 * but for WEP we allow using a key index as well.
2072 */
2073 if (rx->key &&
2074 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2075 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2076 !is_multicast_ether_addr(hdr->addr1))
2077 rx->key = NULL;
2078 }
2079 }
2080
2081 if (rx->key) {
2082 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2083 return RX_DROP_MONITOR;
2084
2085 /* TODO: add threshold stuff again */
2086 } else {
2087 return RX_DROP_MONITOR;
2088 }
2089
2090 switch (rx->key->conf.cipher) {
2091 case WLAN_CIPHER_SUITE_WEP40:
2092 case WLAN_CIPHER_SUITE_WEP104:
2093 result = ieee80211_crypto_wep_decrypt(rx);
2094 break;
2095 case WLAN_CIPHER_SUITE_TKIP:
2096 result = ieee80211_crypto_tkip_decrypt(rx);
2097 break;
2098 case WLAN_CIPHER_SUITE_CCMP:
2099 result = ieee80211_crypto_ccmp_decrypt(
2100 rx, IEEE80211_CCMP_MIC_LEN);
2101 break;
2102 case WLAN_CIPHER_SUITE_CCMP_256:
2103 result = ieee80211_crypto_ccmp_decrypt(
2104 rx, IEEE80211_CCMP_256_MIC_LEN);
2105 break;
2106 case WLAN_CIPHER_SUITE_AES_CMAC:
2107 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2108 break;
2109 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2110 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2111 break;
2112 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2113 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2114 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2115 break;
2116 case WLAN_CIPHER_SUITE_GCMP:
2117 case WLAN_CIPHER_SUITE_GCMP_256:
2118 result = ieee80211_crypto_gcmp_decrypt(rx);
2119 break;
2120 default:
2121 result = ieee80211_crypto_hw_decrypt(rx);
2122 }
2123
2124 /* the hdr variable is invalid after the decrypt handlers */
2125
2126 /* either the frame has been decrypted or will be dropped */
2127 status->flag |= RX_FLAG_DECRYPTED;
2128
2129 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE))
2130 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2131 skb->data, skb->len);
2132
2133 return result;
2134 }
2135
2136 static inline struct ieee80211_fragment_entry *
2137 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2138 unsigned int frag, unsigned int seq, int rx_queue,
2139 struct sk_buff **skb)
2140 {
2141 struct ieee80211_fragment_entry *entry;
2142
2143 entry = &sdata->fragments[sdata->fragment_next++];
2144 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2145 sdata->fragment_next = 0;
2146
2147 if (!skb_queue_empty(&entry->skb_list))
2148 __skb_queue_purge(&entry->skb_list);
2149
2150 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2151 *skb = NULL;
2152 entry->first_frag_time = jiffies;
2153 entry->seq = seq;
2154 entry->rx_queue = rx_queue;
2155 entry->last_frag = frag;
2156 entry->check_sequential_pn = false;
2157 entry->extra_len = 0;
2158
2159 return entry;
2160 }
2161
2162 static inline struct ieee80211_fragment_entry *
2163 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2164 unsigned int frag, unsigned int seq,
2165 int rx_queue, struct ieee80211_hdr *hdr)
2166 {
2167 struct ieee80211_fragment_entry *entry;
2168 int i, idx;
2169
2170 idx = sdata->fragment_next;
2171 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2172 struct ieee80211_hdr *f_hdr;
2173 struct sk_buff *f_skb;
2174
2175 idx--;
2176 if (idx < 0)
2177 idx = IEEE80211_FRAGMENT_MAX - 1;
2178
2179 entry = &sdata->fragments[idx];
2180 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2181 entry->rx_queue != rx_queue ||
2182 entry->last_frag + 1 != frag)
2183 continue;
2184
2185 f_skb = __skb_peek(&entry->skb_list);
2186 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2187
2188 /*
2189 * Check ftype and addresses are equal, else check next fragment
2190 */
2191 if (((hdr->frame_control ^ f_hdr->frame_control) &
2192 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2193 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2194 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2195 continue;
2196
2197 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2198 __skb_queue_purge(&entry->skb_list);
2199 continue;
2200 }
2201 return entry;
2202 }
2203
2204 return NULL;
2205 }
2206
2207 static ieee80211_rx_result debug_noinline
2208 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2209 {
2210 struct ieee80211_hdr *hdr;
2211 u16 sc;
2212 __le16 fc;
2213 unsigned int frag, seq;
2214 struct ieee80211_fragment_entry *entry;
2215 struct sk_buff *skb;
2216
2217 hdr = (struct ieee80211_hdr *)rx->skb->data;
2218 fc = hdr->frame_control;
2219
2220 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2221 return RX_CONTINUE;
2222
2223 sc = le16_to_cpu(hdr->seq_ctrl);
2224 frag = sc & IEEE80211_SCTL_FRAG;
2225
2226 if (is_multicast_ether_addr(hdr->addr1)) {
2227 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2228 goto out_no_led;
2229 }
2230
2231 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2232 goto out;
2233
2234 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2235
2236 if (skb_linearize(rx->skb))
2237 return RX_DROP_UNUSABLE;
2238
2239 /*
2240 * skb_linearize() might change the skb->data and
2241 * previously cached variables (in this case, hdr) need to
2242 * be refreshed with the new data.
2243 */
2244 hdr = (struct ieee80211_hdr *)rx->skb->data;
2245 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2246
2247 if (frag == 0) {
2248 /* This is the first fragment of a new frame. */
2249 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2250 rx->seqno_idx, &(rx->skb));
2251 if (rx->key &&
2252 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2253 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2254 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2255 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2256 ieee80211_has_protected(fc)) {
2257 int queue = rx->security_idx;
2258
2259 /* Store CCMP/GCMP PN so that we can verify that the
2260 * next fragment has a sequential PN value.
2261 */
2262 entry->check_sequential_pn = true;
2263 memcpy(entry->last_pn,
2264 rx->key->u.ccmp.rx_pn[queue],
2265 IEEE80211_CCMP_PN_LEN);
2266 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2267 u.ccmp.rx_pn) !=
2268 offsetof(struct ieee80211_key,
2269 u.gcmp.rx_pn));
2270 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2271 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2272 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2273 IEEE80211_GCMP_PN_LEN);
2274 }
2275 return RX_QUEUED;
2276 }
2277
2278 /* This is a fragment for a frame that should already be pending in
2279 * fragment cache. Add this fragment to the end of the pending entry.
2280 */
2281 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2282 rx->seqno_idx, hdr);
2283 if (!entry) {
2284 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2285 return RX_DROP_MONITOR;
2286 }
2287
2288 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2289 * MPDU PN values are not incrementing in steps of 1."
2290 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2291 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2292 */
2293 if (entry->check_sequential_pn) {
2294 int i;
2295 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2296 int queue;
2297
2298 if (!rx->key ||
2299 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2300 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2301 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2302 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2303 return RX_DROP_UNUSABLE;
2304 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2305 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2306 pn[i]++;
2307 if (pn[i])
2308 break;
2309 }
2310 queue = rx->security_idx;
2311 rpn = rx->key->u.ccmp.rx_pn[queue];
2312 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2313 return RX_DROP_UNUSABLE;
2314 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2315 }
2316
2317 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2318 __skb_queue_tail(&entry->skb_list, rx->skb);
2319 entry->last_frag = frag;
2320 entry->extra_len += rx->skb->len;
2321 if (ieee80211_has_morefrags(fc)) {
2322 rx->skb = NULL;
2323 return RX_QUEUED;
2324 }
2325
2326 rx->skb = __skb_dequeue(&entry->skb_list);
2327 if (skb_tailroom(rx->skb) < entry->extra_len) {
2328 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2329 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2330 GFP_ATOMIC))) {
2331 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2332 __skb_queue_purge(&entry->skb_list);
2333 return RX_DROP_UNUSABLE;
2334 }
2335 }
2336 while ((skb = __skb_dequeue(&entry->skb_list))) {
2337 skb_put_data(rx->skb, skb->data, skb->len);
2338 dev_kfree_skb(skb);
2339 }
2340
2341 out:
2342 ieee80211_led_rx(rx->local);
2343 out_no_led:
2344 if (rx->sta)
2345 rx->sta->rx_stats.packets++;
2346 return RX_CONTINUE;
2347 }
2348
2349 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2350 {
2351 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2352 return -EACCES;
2353
2354 return 0;
2355 }
2356
2357 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2358 {
2359 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
2360 struct sk_buff *skb = rx->skb;
2361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2362
2363 /*
2364 * Pass through unencrypted frames if the hardware has
2365 * decrypted them already.
2366 */
2367 if (status->flag & RX_FLAG_DECRYPTED)
2368 return 0;
2369
2370 /* check mesh EAPOL frames first */
2371 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) &&
2372 ieee80211_is_data(fc))) {
2373 struct ieee80211s_hdr *mesh_hdr;
2374 u16 hdr_len = ieee80211_hdrlen(fc);
2375 u16 ethertype_offset;
2376 __be16 ethertype;
2377
2378 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr))
2379 goto drop_check;
2380
2381 /* make sure fixed part of mesh header is there, also checks skb len */
2382 if (!pskb_may_pull(rx->skb, hdr_len + 6))
2383 goto drop_check;
2384
2385 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len);
2386 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) +
2387 sizeof(rfc1042_header);
2388
2389 if (skb_copy_bits(rx->skb, ethertype_offset, &ethertype, 2) == 0 &&
2390 ethertype == rx->sdata->control_port_protocol)
2391 return 0;
2392 }
2393
2394 drop_check:
2395 /* Drop unencrypted frames if key is set. */
2396 if (unlikely(!ieee80211_has_protected(fc) &&
2397 !ieee80211_is_any_nullfunc(fc) &&
2398 ieee80211_is_data(fc) && rx->key))
2399 return -EACCES;
2400
2401 return 0;
2402 }
2403
2404 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2405 {
2406 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2407 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2408 __le16 fc = hdr->frame_control;
2409
2410 /*
2411 * Pass through unencrypted frames if the hardware has
2412 * decrypted them already.
2413 */
2414 if (status->flag & RX_FLAG_DECRYPTED)
2415 return 0;
2416
2417 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2418 if (unlikely(!ieee80211_has_protected(fc) &&
2419 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2420 rx->key)) {
2421 if (ieee80211_is_deauth(fc) ||
2422 ieee80211_is_disassoc(fc))
2423 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2424 rx->skb->data,
2425 rx->skb->len);
2426 return -EACCES;
2427 }
2428 /* BIP does not use Protected field, so need to check MMIE */
2429 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2430 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2431 if (ieee80211_is_deauth(fc) ||
2432 ieee80211_is_disassoc(fc))
2433 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2434 rx->skb->data,
2435 rx->skb->len);
2436 return -EACCES;
2437 }
2438 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2439 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2440 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2441 rx->skb->data,
2442 rx->skb->len);
2443 return -EACCES;
2444 }
2445 /*
2446 * When using MFP, Action frames are not allowed prior to
2447 * having configured keys.
2448 */
2449 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2450 ieee80211_is_robust_mgmt_frame(rx->skb)))
2451 return -EACCES;
2452 }
2453
2454 return 0;
2455 }
2456
2457 static int
2458 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2459 {
2460 struct ieee80211_sub_if_data *sdata = rx->sdata;
2461 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2462 bool check_port_control = false;
2463 struct ethhdr *ehdr;
2464 int ret;
2465
2466 *port_control = false;
2467 if (ieee80211_has_a4(hdr->frame_control) &&
2468 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2469 return -1;
2470
2471 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2472 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2473
2474 if (!sdata->u.mgd.use_4addr)
2475 return -1;
2476 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2477 check_port_control = true;
2478 }
2479
2480 if (is_multicast_ether_addr(hdr->addr1) &&
2481 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2482 return -1;
2483
2484 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2485 if (ret < 0)
2486 return ret;
2487
2488 ehdr = (struct ethhdr *) rx->skb->data;
2489 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2490 *port_control = true;
2491 else if (check_port_control)
2492 return -1;
2493
2494 return 0;
2495 }
2496
2497 /*
2498 * requires that rx->skb is a frame with ethernet header
2499 */
2500 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2501 {
2502 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2503 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2504 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2505
2506 /*
2507 * Allow EAPOL frames to us/the PAE group address regardless
2508 * of whether the frame was encrypted or not.
2509 */
2510 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2511 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2512 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2513 return true;
2514
2515 if (ieee80211_802_1x_port_control(rx) ||
2516 ieee80211_drop_unencrypted(rx, fc))
2517 return false;
2518
2519 return true;
2520 }
2521
2522 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2523 struct ieee80211_rx_data *rx)
2524 {
2525 struct ieee80211_sub_if_data *sdata = rx->sdata;
2526 struct net_device *dev = sdata->dev;
2527
2528 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2529 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2530 !sdata->control_port_no_preauth)) &&
2531 sdata->control_port_over_nl80211)) {
2532 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2533 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2534
2535 cfg80211_rx_control_port(dev, skb, noencrypt);
2536 dev_kfree_skb(skb);
2537 } else {
2538 memset(skb->cb, 0, sizeof(skb->cb));
2539
2540 /* deliver to local stack */
2541 if (rx->list)
2542 list_add_tail(&skb->list, rx->list);
2543 else
2544 netif_receive_skb(skb);
2545 }
2546 }
2547
2548 /*
2549 * requires that rx->skb is a frame with ethernet header
2550 */
2551 static void
2552 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2553 {
2554 struct ieee80211_sub_if_data *sdata = rx->sdata;
2555 struct net_device *dev = sdata->dev;
2556 struct sk_buff *skb, *xmit_skb;
2557 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2558 struct sta_info *dsta;
2559
2560 skb = rx->skb;
2561 xmit_skb = NULL;
2562
2563 ieee80211_rx_stats(dev, skb->len);
2564
2565 if (rx->sta) {
2566 /* The seqno index has the same property as needed
2567 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2568 * for non-QoS-data frames. Here we know it's a data
2569 * frame, so count MSDUs.
2570 */
2571 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2572 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2573 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2574 }
2575
2576 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2577 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2578 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2579 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2580 if (is_multicast_ether_addr(ehdr->h_dest) &&
2581 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2582 /*
2583 * send multicast frames both to higher layers in
2584 * local net stack and back to the wireless medium
2585 */
2586 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2587 if (!xmit_skb)
2588 net_info_ratelimited("%s: failed to clone multicast frame\n",
2589 dev->name);
2590 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2591 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2592 dsta = sta_info_get(sdata, ehdr->h_dest);
2593 if (dsta) {
2594 /*
2595 * The destination station is associated to
2596 * this AP (in this VLAN), so send the frame
2597 * directly to it and do not pass it to local
2598 * net stack.
2599 */
2600 xmit_skb = skb;
2601 skb = NULL;
2602 }
2603 }
2604 }
2605
2606 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2607 if (skb) {
2608 /* 'align' will only take the values 0 or 2 here since all
2609 * frames are required to be aligned to 2-byte boundaries
2610 * when being passed to mac80211; the code here works just
2611 * as well if that isn't true, but mac80211 assumes it can
2612 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2613 */
2614 int align;
2615
2616 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2617 if (align) {
2618 if (WARN_ON(skb_headroom(skb) < 3)) {
2619 dev_kfree_skb(skb);
2620 skb = NULL;
2621 } else {
2622 u8 *data = skb->data;
2623 size_t len = skb_headlen(skb);
2624 skb->data -= align;
2625 memmove(skb->data, data, len);
2626 skb_set_tail_pointer(skb, len);
2627 }
2628 }
2629 }
2630 #endif
2631
2632 if (skb) {
2633 skb->protocol = eth_type_trans(skb, dev);
2634 ieee80211_deliver_skb_to_local_stack(skb, rx);
2635 }
2636
2637 if (xmit_skb) {
2638 /*
2639 * Send to wireless media and increase priority by 256 to
2640 * keep the received priority instead of reclassifying
2641 * the frame (see cfg80211_classify8021d).
2642 */
2643 xmit_skb->priority += 256;
2644 xmit_skb->protocol = htons(ETH_P_802_3);
2645 skb_reset_network_header(xmit_skb);
2646 skb_reset_mac_header(xmit_skb);
2647 dev_queue_xmit(xmit_skb);
2648 }
2649 }
2650
2651 static ieee80211_rx_result debug_noinline
2652 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2653 {
2654 struct net_device *dev = rx->sdata->dev;
2655 struct sk_buff *skb = rx->skb;
2656 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2657 __le16 fc = hdr->frame_control;
2658 struct sk_buff_head frame_list;
2659 struct ethhdr ethhdr;
2660 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2661
2662 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2663 check_da = NULL;
2664 check_sa = NULL;
2665 } else switch (rx->sdata->vif.type) {
2666 case NL80211_IFTYPE_AP:
2667 case NL80211_IFTYPE_AP_VLAN:
2668 check_da = NULL;
2669 break;
2670 case NL80211_IFTYPE_STATION:
2671 if (!rx->sta ||
2672 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2673 check_sa = NULL;
2674 break;
2675 case NL80211_IFTYPE_MESH_POINT:
2676 check_sa = NULL;
2677 break;
2678 default:
2679 break;
2680 }
2681
2682 skb->dev = dev;
2683 __skb_queue_head_init(&frame_list);
2684
2685 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2686 rx->sdata->vif.addr,
2687 rx->sdata->vif.type,
2688 data_offset))
2689 return RX_DROP_UNUSABLE;
2690
2691 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2692 rx->sdata->vif.type,
2693 rx->local->hw.extra_tx_headroom,
2694 check_da, check_sa);
2695
2696 while (!skb_queue_empty(&frame_list)) {
2697 rx->skb = __skb_dequeue(&frame_list);
2698
2699 if (!ieee80211_frame_allowed(rx, fc)) {
2700 dev_kfree_skb(rx->skb);
2701 continue;
2702 }
2703
2704 ieee80211_deliver_skb(rx);
2705 }
2706
2707 return RX_QUEUED;
2708 }
2709
2710 static ieee80211_rx_result debug_noinline
2711 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2712 {
2713 struct sk_buff *skb = rx->skb;
2714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2715 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2716 __le16 fc = hdr->frame_control;
2717
2718 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2719 return RX_CONTINUE;
2720
2721 if (unlikely(!ieee80211_is_data(fc)))
2722 return RX_CONTINUE;
2723
2724 if (unlikely(!ieee80211_is_data_present(fc)))
2725 return RX_DROP_MONITOR;
2726
2727 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2728 switch (rx->sdata->vif.type) {
2729 case NL80211_IFTYPE_AP_VLAN:
2730 if (!rx->sdata->u.vlan.sta)
2731 return RX_DROP_UNUSABLE;
2732 break;
2733 case NL80211_IFTYPE_STATION:
2734 if (!rx->sdata->u.mgd.use_4addr)
2735 return RX_DROP_UNUSABLE;
2736 break;
2737 default:
2738 return RX_DROP_UNUSABLE;
2739 }
2740 }
2741
2742 if (is_multicast_ether_addr(hdr->addr1))
2743 return RX_DROP_UNUSABLE;
2744
2745 return __ieee80211_rx_h_amsdu(rx, 0);
2746 }
2747
2748 #ifdef CONFIG_MAC80211_MESH
2749 static ieee80211_rx_result
2750 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2751 {
2752 struct ieee80211_hdr *fwd_hdr, *hdr;
2753 struct ieee80211_tx_info *info;
2754 struct ieee80211s_hdr *mesh_hdr;
2755 struct sk_buff *skb = rx->skb, *fwd_skb;
2756 struct ieee80211_local *local = rx->local;
2757 struct ieee80211_sub_if_data *sdata = rx->sdata;
2758 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2759 u16 ac, q, hdrlen;
2760 int tailroom = 0;
2761
2762 hdr = (struct ieee80211_hdr *) skb->data;
2763 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2764
2765 /* make sure fixed part of mesh header is there, also checks skb len */
2766 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2767 return RX_DROP_MONITOR;
2768
2769 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2770
2771 /* make sure full mesh header is there, also checks skb len */
2772 if (!pskb_may_pull(rx->skb,
2773 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2774 return RX_DROP_MONITOR;
2775
2776 /* reload pointers */
2777 hdr = (struct ieee80211_hdr *) skb->data;
2778 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2779
2780 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2781 return RX_DROP_MONITOR;
2782
2783 /* frame is in RMC, don't forward */
2784 if (ieee80211_is_data(hdr->frame_control) &&
2785 is_multicast_ether_addr(hdr->addr1) &&
2786 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2787 return RX_DROP_MONITOR;
2788
2789 if (!ieee80211_is_data(hdr->frame_control))
2790 return RX_CONTINUE;
2791
2792 if (!mesh_hdr->ttl)
2793 return RX_DROP_MONITOR;
2794
2795 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2796 struct mesh_path *mppath;
2797 char *proxied_addr;
2798 char *mpp_addr;
2799
2800 if (is_multicast_ether_addr(hdr->addr1)) {
2801 mpp_addr = hdr->addr3;
2802 proxied_addr = mesh_hdr->eaddr1;
2803 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2804 MESH_FLAGS_AE_A5_A6) {
2805 /* has_a4 already checked in ieee80211_rx_mesh_check */
2806 mpp_addr = hdr->addr4;
2807 proxied_addr = mesh_hdr->eaddr2;
2808 } else {
2809 return RX_DROP_MONITOR;
2810 }
2811
2812 rcu_read_lock();
2813 mppath = mpp_path_lookup(sdata, proxied_addr);
2814 if (!mppath) {
2815 mpp_path_add(sdata, proxied_addr, mpp_addr);
2816 } else {
2817 spin_lock_bh(&mppath->state_lock);
2818 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2819 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2820 mppath->exp_time = jiffies;
2821 spin_unlock_bh(&mppath->state_lock);
2822 }
2823 rcu_read_unlock();
2824 }
2825
2826 /* Frame has reached destination. Don't forward */
2827 if (!is_multicast_ether_addr(hdr->addr1) &&
2828 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2829 return RX_CONTINUE;
2830
2831 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2832 q = sdata->vif.hw_queue[ac];
2833 if (ieee80211_queue_stopped(&local->hw, q)) {
2834 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2835 return RX_DROP_MONITOR;
2836 }
2837 skb_set_queue_mapping(skb, q);
2838
2839 if (!--mesh_hdr->ttl) {
2840 if (!is_multicast_ether_addr(hdr->addr1))
2841 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2842 dropped_frames_ttl);
2843 goto out;
2844 }
2845
2846 if (!ifmsh->mshcfg.dot11MeshForwarding)
2847 goto out;
2848
2849 if (sdata->crypto_tx_tailroom_needed_cnt)
2850 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2851
2852 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2853 sdata->encrypt_headroom,
2854 tailroom, GFP_ATOMIC);
2855 if (!fwd_skb)
2856 goto out;
2857
2858 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2859 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2860 info = IEEE80211_SKB_CB(fwd_skb);
2861 memset(info, 0, sizeof(*info));
2862 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2863 info->control.vif = &rx->sdata->vif;
2864 info->control.jiffies = jiffies;
2865 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2866 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2867 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2868 /* update power mode indication when forwarding */
2869 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2870 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2871 /* mesh power mode flags updated in mesh_nexthop_lookup */
2872 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2873 } else {
2874 /* unable to resolve next hop */
2875 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2876 fwd_hdr->addr3, 0,
2877 WLAN_REASON_MESH_PATH_NOFORWARD,
2878 fwd_hdr->addr2);
2879 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2880 kfree_skb(fwd_skb);
2881 return RX_DROP_MONITOR;
2882 }
2883
2884 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2885 ieee80211_add_pending_skb(local, fwd_skb);
2886 out:
2887 if (is_multicast_ether_addr(hdr->addr1))
2888 return RX_CONTINUE;
2889 return RX_DROP_MONITOR;
2890 }
2891 #endif
2892
2893 static ieee80211_rx_result debug_noinline
2894 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2895 {
2896 struct ieee80211_sub_if_data *sdata = rx->sdata;
2897 struct ieee80211_local *local = rx->local;
2898 struct net_device *dev = sdata->dev;
2899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2900 __le16 fc = hdr->frame_control;
2901 bool port_control;
2902 int err;
2903
2904 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2905 return RX_CONTINUE;
2906
2907 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2908 return RX_DROP_MONITOR;
2909
2910 /*
2911 * Send unexpected-4addr-frame event to hostapd. For older versions,
2912 * also drop the frame to cooked monitor interfaces.
2913 */
2914 if (ieee80211_has_a4(hdr->frame_control) &&
2915 sdata->vif.type == NL80211_IFTYPE_AP) {
2916 if (rx->sta &&
2917 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2918 cfg80211_rx_unexpected_4addr_frame(
2919 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2920 return RX_DROP_MONITOR;
2921 }
2922
2923 err = __ieee80211_data_to_8023(rx, &port_control);
2924 if (unlikely(err))
2925 return RX_DROP_UNUSABLE;
2926
2927 if (!ieee80211_frame_allowed(rx, fc))
2928 return RX_DROP_MONITOR;
2929
2930 /* directly handle TDLS channel switch requests/responses */
2931 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2932 cpu_to_be16(ETH_P_TDLS))) {
2933 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2934
2935 if (pskb_may_pull(rx->skb,
2936 offsetof(struct ieee80211_tdls_data, u)) &&
2937 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2938 tf->category == WLAN_CATEGORY_TDLS &&
2939 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2940 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2941 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2942 schedule_work(&local->tdls_chsw_work);
2943 if (rx->sta)
2944 rx->sta->rx_stats.packets++;
2945
2946 return RX_QUEUED;
2947 }
2948 }
2949
2950 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2951 unlikely(port_control) && sdata->bss) {
2952 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2953 u.ap);
2954 dev = sdata->dev;
2955 rx->sdata = sdata;
2956 }
2957
2958 rx->skb->dev = dev;
2959
2960 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2961 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2962 !is_multicast_ether_addr(
2963 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2964 (!local->scanning &&
2965 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2966 mod_timer(&local->dynamic_ps_timer, jiffies +
2967 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2968
2969 ieee80211_deliver_skb(rx);
2970
2971 return RX_QUEUED;
2972 }
2973
2974 static ieee80211_rx_result debug_noinline
2975 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2976 {
2977 struct sk_buff *skb = rx->skb;
2978 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2979 struct tid_ampdu_rx *tid_agg_rx;
2980 u16 start_seq_num;
2981 u16 tid;
2982
2983 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2984 return RX_CONTINUE;
2985
2986 if (ieee80211_is_back_req(bar->frame_control)) {
2987 struct {
2988 __le16 control, start_seq_num;
2989 } __packed bar_data;
2990 struct ieee80211_event event = {
2991 .type = BAR_RX_EVENT,
2992 };
2993
2994 if (!rx->sta)
2995 return RX_DROP_MONITOR;
2996
2997 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2998 &bar_data, sizeof(bar_data)))
2999 return RX_DROP_MONITOR;
3000
3001 tid = le16_to_cpu(bar_data.control) >> 12;
3002
3003 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3004 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
3005 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
3006 WLAN_BACK_RECIPIENT,
3007 WLAN_REASON_QSTA_REQUIRE_SETUP);
3008
3009 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3010 if (!tid_agg_rx)
3011 return RX_DROP_MONITOR;
3012
3013 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3014 event.u.ba.tid = tid;
3015 event.u.ba.ssn = start_seq_num;
3016 event.u.ba.sta = &rx->sta->sta;
3017
3018 /* reset session timer */
3019 if (tid_agg_rx->timeout)
3020 mod_timer(&tid_agg_rx->session_timer,
3021 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3022
3023 spin_lock(&tid_agg_rx->reorder_lock);
3024 /* release stored frames up to start of BAR */
3025 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
3026 start_seq_num, frames);
3027 spin_unlock(&tid_agg_rx->reorder_lock);
3028
3029 drv_event_callback(rx->local, rx->sdata, &event);
3030
3031 kfree_skb(skb);
3032 return RX_QUEUED;
3033 }
3034
3035 /*
3036 * After this point, we only want management frames,
3037 * so we can drop all remaining control frames to
3038 * cooked monitor interfaces.
3039 */
3040 return RX_DROP_MONITOR;
3041 }
3042
3043 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3044 struct ieee80211_mgmt *mgmt,
3045 size_t len)
3046 {
3047 struct ieee80211_local *local = sdata->local;
3048 struct sk_buff *skb;
3049 struct ieee80211_mgmt *resp;
3050
3051 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
3052 /* Not to own unicast address */
3053 return;
3054 }
3055
3056 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
3057 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
3058 /* Not from the current AP or not associated yet. */
3059 return;
3060 }
3061
3062 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3063 /* Too short SA Query request frame */
3064 return;
3065 }
3066
3067 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
3068 if (skb == NULL)
3069 return;
3070
3071 skb_reserve(skb, local->hw.extra_tx_headroom);
3072 resp = skb_put_zero(skb, 24);
3073 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3074 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3075 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
3076 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3077 IEEE80211_STYPE_ACTION);
3078 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
3079 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3080 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3081 memcpy(resp->u.action.u.sa_query.trans_id,
3082 mgmt->u.action.u.sa_query.trans_id,
3083 WLAN_SA_QUERY_TR_ID_LEN);
3084
3085 ieee80211_tx_skb(sdata, skb);
3086 }
3087
3088 static ieee80211_rx_result debug_noinline
3089 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3090 {
3091 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3092 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3093
3094 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
3095 return RX_CONTINUE;
3096
3097 /*
3098 * From here on, look only at management frames.
3099 * Data and control frames are already handled,
3100 * and unknown (reserved) frames are useless.
3101 */
3102 if (rx->skb->len < 24)
3103 return RX_DROP_MONITOR;
3104
3105 if (!ieee80211_is_mgmt(mgmt->frame_control))
3106 return RX_DROP_MONITOR;
3107
3108 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3109 ieee80211_is_beacon(mgmt->frame_control) &&
3110 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3111 int sig = 0;
3112
3113 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3114 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3115 sig = status->signal;
3116
3117 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy,
3118 rx->skb->data, rx->skb->len,
3119 ieee80211_rx_status_to_khz(status),
3120 sig);
3121 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3122 }
3123
3124 if (ieee80211_drop_unencrypted_mgmt(rx))
3125 return RX_DROP_UNUSABLE;
3126
3127 return RX_CONTINUE;
3128 }
3129
3130 static ieee80211_rx_result debug_noinline
3131 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3132 {
3133 struct ieee80211_local *local = rx->local;
3134 struct ieee80211_sub_if_data *sdata = rx->sdata;
3135 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3136 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3137 int len = rx->skb->len;
3138
3139 if (!ieee80211_is_action(mgmt->frame_control))
3140 return RX_CONTINUE;
3141
3142 /* drop too small frames */
3143 if (len < IEEE80211_MIN_ACTION_SIZE)
3144 return RX_DROP_UNUSABLE;
3145
3146 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3147 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3148 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3149 return RX_DROP_UNUSABLE;
3150
3151 switch (mgmt->u.action.category) {
3152 case WLAN_CATEGORY_HT:
3153 /* reject HT action frames from stations not supporting HT */
3154 if (!rx->sta->sta.ht_cap.ht_supported)
3155 goto invalid;
3156
3157 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3158 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3159 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3160 sdata->vif.type != NL80211_IFTYPE_AP &&
3161 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3162 break;
3163
3164 /* verify action & smps_control/chanwidth are present */
3165 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3166 goto invalid;
3167
3168 switch (mgmt->u.action.u.ht_smps.action) {
3169 case WLAN_HT_ACTION_SMPS: {
3170 struct ieee80211_supported_band *sband;
3171 enum ieee80211_smps_mode smps_mode;
3172 struct sta_opmode_info sta_opmode = {};
3173
3174 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3175 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3176 goto handled;
3177
3178 /* convert to HT capability */
3179 switch (mgmt->u.action.u.ht_smps.smps_control) {
3180 case WLAN_HT_SMPS_CONTROL_DISABLED:
3181 smps_mode = IEEE80211_SMPS_OFF;
3182 break;
3183 case WLAN_HT_SMPS_CONTROL_STATIC:
3184 smps_mode = IEEE80211_SMPS_STATIC;
3185 break;
3186 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3187 smps_mode = IEEE80211_SMPS_DYNAMIC;
3188 break;
3189 default:
3190 goto invalid;
3191 }
3192
3193 /* if no change do nothing */
3194 if (rx->sta->sta.smps_mode == smps_mode)
3195 goto handled;
3196 rx->sta->sta.smps_mode = smps_mode;
3197 sta_opmode.smps_mode =
3198 ieee80211_smps_mode_to_smps_mode(smps_mode);
3199 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3200
3201 sband = rx->local->hw.wiphy->bands[status->band];
3202
3203 rate_control_rate_update(local, sband, rx->sta,
3204 IEEE80211_RC_SMPS_CHANGED);
3205 cfg80211_sta_opmode_change_notify(sdata->dev,
3206 rx->sta->addr,
3207 &sta_opmode,
3208 GFP_ATOMIC);
3209 goto handled;
3210 }
3211 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3212 struct ieee80211_supported_band *sband;
3213 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3214 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3215 struct sta_opmode_info sta_opmode = {};
3216
3217 /* If it doesn't support 40 MHz it can't change ... */
3218 if (!(rx->sta->sta.ht_cap.cap &
3219 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3220 goto handled;
3221
3222 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3223 max_bw = IEEE80211_STA_RX_BW_20;
3224 else
3225 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3226
3227 /* set cur_max_bandwidth and recalc sta bw */
3228 rx->sta->cur_max_bandwidth = max_bw;
3229 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3230
3231 if (rx->sta->sta.bandwidth == new_bw)
3232 goto handled;
3233
3234 rx->sta->sta.bandwidth = new_bw;
3235 sband = rx->local->hw.wiphy->bands[status->band];
3236 sta_opmode.bw =
3237 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3238 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3239
3240 rate_control_rate_update(local, sband, rx->sta,
3241 IEEE80211_RC_BW_CHANGED);
3242 cfg80211_sta_opmode_change_notify(sdata->dev,
3243 rx->sta->addr,
3244 &sta_opmode,
3245 GFP_ATOMIC);
3246 goto handled;
3247 }
3248 default:
3249 goto invalid;
3250 }
3251
3252 break;
3253 case WLAN_CATEGORY_PUBLIC:
3254 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3255 goto invalid;
3256 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3257 break;
3258 if (!rx->sta)
3259 break;
3260 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3261 break;
3262 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3263 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3264 break;
3265 if (len < offsetof(struct ieee80211_mgmt,
3266 u.action.u.ext_chan_switch.variable))
3267 goto invalid;
3268 goto queue;
3269 case WLAN_CATEGORY_VHT:
3270 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3271 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3272 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3273 sdata->vif.type != NL80211_IFTYPE_AP &&
3274 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3275 break;
3276
3277 /* verify action code is present */
3278 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3279 goto invalid;
3280
3281 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3282 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3283 /* verify opmode is present */
3284 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3285 goto invalid;
3286 goto queue;
3287 }
3288 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3289 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3290 goto invalid;
3291 goto queue;
3292 }
3293 default:
3294 break;
3295 }
3296 break;
3297 case WLAN_CATEGORY_BACK:
3298 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3299 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3300 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3301 sdata->vif.type != NL80211_IFTYPE_AP &&
3302 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3303 break;
3304
3305 /* verify action_code is present */
3306 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3307 break;
3308
3309 switch (mgmt->u.action.u.addba_req.action_code) {
3310 case WLAN_ACTION_ADDBA_REQ:
3311 if (len < (IEEE80211_MIN_ACTION_SIZE +
3312 sizeof(mgmt->u.action.u.addba_req)))
3313 goto invalid;
3314 break;
3315 case WLAN_ACTION_ADDBA_RESP:
3316 if (len < (IEEE80211_MIN_ACTION_SIZE +
3317 sizeof(mgmt->u.action.u.addba_resp)))
3318 goto invalid;
3319 break;
3320 case WLAN_ACTION_DELBA:
3321 if (len < (IEEE80211_MIN_ACTION_SIZE +
3322 sizeof(mgmt->u.action.u.delba)))
3323 goto invalid;
3324 break;
3325 default:
3326 goto invalid;
3327 }
3328
3329 goto queue;
3330 case WLAN_CATEGORY_SPECTRUM_MGMT:
3331 /* verify action_code is present */
3332 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3333 break;
3334
3335 switch (mgmt->u.action.u.measurement.action_code) {
3336 case WLAN_ACTION_SPCT_MSR_REQ:
3337 if (status->band != NL80211_BAND_5GHZ)
3338 break;
3339
3340 if (len < (IEEE80211_MIN_ACTION_SIZE +
3341 sizeof(mgmt->u.action.u.measurement)))
3342 break;
3343
3344 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3345 break;
3346
3347 ieee80211_process_measurement_req(sdata, mgmt, len);
3348 goto handled;
3349 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3350 u8 *bssid;
3351 if (len < (IEEE80211_MIN_ACTION_SIZE +
3352 sizeof(mgmt->u.action.u.chan_switch)))
3353 break;
3354
3355 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3356 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3357 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3358 break;
3359
3360 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3361 bssid = sdata->u.mgd.bssid;
3362 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3363 bssid = sdata->u.ibss.bssid;
3364 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3365 bssid = mgmt->sa;
3366 else
3367 break;
3368
3369 if (!ether_addr_equal(mgmt->bssid, bssid))
3370 break;
3371
3372 goto queue;
3373 }
3374 }
3375 break;
3376 case WLAN_CATEGORY_SELF_PROTECTED:
3377 if (len < (IEEE80211_MIN_ACTION_SIZE +
3378 sizeof(mgmt->u.action.u.self_prot.action_code)))
3379 break;
3380
3381 switch (mgmt->u.action.u.self_prot.action_code) {
3382 case WLAN_SP_MESH_PEERING_OPEN:
3383 case WLAN_SP_MESH_PEERING_CLOSE:
3384 case WLAN_SP_MESH_PEERING_CONFIRM:
3385 if (!ieee80211_vif_is_mesh(&sdata->vif))
3386 goto invalid;
3387 if (sdata->u.mesh.user_mpm)
3388 /* userspace handles this frame */
3389 break;
3390 goto queue;
3391 case WLAN_SP_MGK_INFORM:
3392 case WLAN_SP_MGK_ACK:
3393 if (!ieee80211_vif_is_mesh(&sdata->vif))
3394 goto invalid;
3395 break;
3396 }
3397 break;
3398 case WLAN_CATEGORY_MESH_ACTION:
3399 if (len < (IEEE80211_MIN_ACTION_SIZE +
3400 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3401 break;
3402
3403 if (!ieee80211_vif_is_mesh(&sdata->vif))
3404 break;
3405 if (mesh_action_is_path_sel(mgmt) &&
3406 !mesh_path_sel_is_hwmp(sdata))
3407 break;
3408 goto queue;
3409 }
3410
3411 return RX_CONTINUE;
3412
3413 invalid:
3414 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3415 /* will return in the next handlers */
3416 return RX_CONTINUE;
3417
3418 handled:
3419 if (rx->sta)
3420 rx->sta->rx_stats.packets++;
3421 dev_kfree_skb(rx->skb);
3422 return RX_QUEUED;
3423
3424 queue:
3425 skb_queue_tail(&sdata->skb_queue, rx->skb);
3426 ieee80211_queue_work(&local->hw, &sdata->work);
3427 if (rx->sta)
3428 rx->sta->rx_stats.packets++;
3429 return RX_QUEUED;
3430 }
3431
3432 static ieee80211_rx_result debug_noinline
3433 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3434 {
3435 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3436 int sig = 0;
3437
3438 /* skip known-bad action frames and return them in the next handler */
3439 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3440 return RX_CONTINUE;
3441
3442 /*
3443 * Getting here means the kernel doesn't know how to handle
3444 * it, but maybe userspace does ... include returned frames
3445 * so userspace can register for those to know whether ones
3446 * it transmitted were processed or returned.
3447 */
3448
3449 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3450 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3451 sig = status->signal;
3452
3453 if (cfg80211_rx_mgmt_khz(&rx->sdata->wdev,
3454 ieee80211_rx_status_to_khz(status), sig,
3455 rx->skb->data, rx->skb->len, 0)) {
3456 if (rx->sta)
3457 rx->sta->rx_stats.packets++;
3458 dev_kfree_skb(rx->skb);
3459 return RX_QUEUED;
3460 }
3461
3462 return RX_CONTINUE;
3463 }
3464
3465 static ieee80211_rx_result debug_noinline
3466 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3467 {
3468 struct ieee80211_sub_if_data *sdata = rx->sdata;
3469 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3470 int len = rx->skb->len;
3471
3472 if (!ieee80211_is_action(mgmt->frame_control))
3473 return RX_CONTINUE;
3474
3475 switch (mgmt->u.action.category) {
3476 case WLAN_CATEGORY_SA_QUERY:
3477 if (len < (IEEE80211_MIN_ACTION_SIZE +
3478 sizeof(mgmt->u.action.u.sa_query)))
3479 break;
3480
3481 switch (mgmt->u.action.u.sa_query.action) {
3482 case WLAN_ACTION_SA_QUERY_REQUEST:
3483 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3484 break;
3485 ieee80211_process_sa_query_req(sdata, mgmt, len);
3486 goto handled;
3487 }
3488 break;
3489 }
3490
3491 return RX_CONTINUE;
3492
3493 handled:
3494 if (rx->sta)
3495 rx->sta->rx_stats.packets++;
3496 dev_kfree_skb(rx->skb);
3497 return RX_QUEUED;
3498 }
3499
3500 static ieee80211_rx_result debug_noinline
3501 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3502 {
3503 struct ieee80211_local *local = rx->local;
3504 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3505 struct sk_buff *nskb;
3506 struct ieee80211_sub_if_data *sdata = rx->sdata;
3507 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3508
3509 if (!ieee80211_is_action(mgmt->frame_control))
3510 return RX_CONTINUE;
3511
3512 /*
3513 * For AP mode, hostapd is responsible for handling any action
3514 * frames that we didn't handle, including returning unknown
3515 * ones. For all other modes we will return them to the sender,
3516 * setting the 0x80 bit in the action category, as required by
3517 * 802.11-2012 9.24.4.
3518 * Newer versions of hostapd shall also use the management frame
3519 * registration mechanisms, but older ones still use cooked
3520 * monitor interfaces so push all frames there.
3521 */
3522 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3523 (sdata->vif.type == NL80211_IFTYPE_AP ||
3524 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3525 return RX_DROP_MONITOR;
3526
3527 if (is_multicast_ether_addr(mgmt->da))
3528 return RX_DROP_MONITOR;
3529
3530 /* do not return rejected action frames */
3531 if (mgmt->u.action.category & 0x80)
3532 return RX_DROP_UNUSABLE;
3533
3534 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3535 GFP_ATOMIC);
3536 if (nskb) {
3537 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3538
3539 nmgmt->u.action.category |= 0x80;
3540 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3541 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3542
3543 memset(nskb->cb, 0, sizeof(nskb->cb));
3544
3545 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3546 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3547
3548 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3549 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3550 IEEE80211_TX_CTL_NO_CCK_RATE;
3551 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3552 info->hw_queue =
3553 local->hw.offchannel_tx_hw_queue;
3554 }
3555
3556 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3557 status->band);
3558 }
3559 dev_kfree_skb(rx->skb);
3560 return RX_QUEUED;
3561 }
3562
3563 static ieee80211_rx_result debug_noinline
3564 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3565 {
3566 struct ieee80211_sub_if_data *sdata = rx->sdata;
3567 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3568
3569 if (!ieee80211_is_ext(hdr->frame_control))
3570 return RX_CONTINUE;
3571
3572 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3573 return RX_DROP_MONITOR;
3574
3575 /* for now only beacons are ext, so queue them */
3576 skb_queue_tail(&sdata->skb_queue, rx->skb);
3577 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3578 if (rx->sta)
3579 rx->sta->rx_stats.packets++;
3580
3581 return RX_QUEUED;
3582 }
3583
3584 static ieee80211_rx_result debug_noinline
3585 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3586 {
3587 struct ieee80211_sub_if_data *sdata = rx->sdata;
3588 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3589 __le16 stype;
3590
3591 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3592
3593 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3594 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3595 sdata->vif.type != NL80211_IFTYPE_OCB &&
3596 sdata->vif.type != NL80211_IFTYPE_STATION)
3597 return RX_DROP_MONITOR;
3598
3599 switch (stype) {
3600 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3601 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3602 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3603 /* process for all: mesh, mlme, ibss */
3604 break;
3605 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3606 if (is_multicast_ether_addr(mgmt->da) &&
3607 !is_broadcast_ether_addr(mgmt->da))
3608 return RX_DROP_MONITOR;
3609
3610 /* process only for station/IBSS */
3611 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3612 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3613 return RX_DROP_MONITOR;
3614 break;
3615 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3616 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3617 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3618 if (is_multicast_ether_addr(mgmt->da) &&
3619 !is_broadcast_ether_addr(mgmt->da))
3620 return RX_DROP_MONITOR;
3621
3622 /* process only for station */
3623 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3624 return RX_DROP_MONITOR;
3625 break;
3626 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3627 /* process only for ibss and mesh */
3628 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3629 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3630 return RX_DROP_MONITOR;
3631 break;
3632 default:
3633 return RX_DROP_MONITOR;
3634 }
3635
3636 /* queue up frame and kick off work to process it */
3637 skb_queue_tail(&sdata->skb_queue, rx->skb);
3638 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3639 if (rx->sta)
3640 rx->sta->rx_stats.packets++;
3641
3642 return RX_QUEUED;
3643 }
3644
3645 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3646 struct ieee80211_rate *rate)
3647 {
3648 struct ieee80211_sub_if_data *sdata;
3649 struct ieee80211_local *local = rx->local;
3650 struct sk_buff *skb = rx->skb, *skb2;
3651 struct net_device *prev_dev = NULL;
3652 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3653 int needed_headroom;
3654
3655 /*
3656 * If cooked monitor has been processed already, then
3657 * don't do it again. If not, set the flag.
3658 */
3659 if (rx->flags & IEEE80211_RX_CMNTR)
3660 goto out_free_skb;
3661 rx->flags |= IEEE80211_RX_CMNTR;
3662
3663 /* If there are no cooked monitor interfaces, just free the SKB */
3664 if (!local->cooked_mntrs)
3665 goto out_free_skb;
3666
3667 /* vendor data is long removed here */
3668 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3669 /* room for the radiotap header based on driver features */
3670 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3671
3672 if (skb_headroom(skb) < needed_headroom &&
3673 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3674 goto out_free_skb;
3675
3676 /* prepend radiotap information */
3677 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3678 false);
3679
3680 skb_reset_mac_header(skb);
3681 skb->ip_summed = CHECKSUM_UNNECESSARY;
3682 skb->pkt_type = PACKET_OTHERHOST;
3683 skb->protocol = htons(ETH_P_802_2);
3684
3685 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3686 if (!ieee80211_sdata_running(sdata))
3687 continue;
3688
3689 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3690 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3691 continue;
3692
3693 if (prev_dev) {
3694 skb2 = skb_clone(skb, GFP_ATOMIC);
3695 if (skb2) {
3696 skb2->dev = prev_dev;
3697 netif_receive_skb(skb2);
3698 }
3699 }
3700
3701 prev_dev = sdata->dev;
3702 ieee80211_rx_stats(sdata->dev, skb->len);
3703 }
3704
3705 if (prev_dev) {
3706 skb->dev = prev_dev;
3707 netif_receive_skb(skb);
3708 return;
3709 }
3710
3711 out_free_skb:
3712 dev_kfree_skb(skb);
3713 }
3714
3715 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3716 ieee80211_rx_result res)
3717 {
3718 switch (res) {
3719 case RX_DROP_MONITOR:
3720 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3721 if (rx->sta)
3722 rx->sta->rx_stats.dropped++;
3723 fallthrough;
3724 case RX_CONTINUE: {
3725 struct ieee80211_rate *rate = NULL;
3726 struct ieee80211_supported_band *sband;
3727 struct ieee80211_rx_status *status;
3728
3729 status = IEEE80211_SKB_RXCB((rx->skb));
3730
3731 sband = rx->local->hw.wiphy->bands[status->band];
3732 if (status->encoding == RX_ENC_LEGACY)
3733 rate = &sband->bitrates[status->rate_idx];
3734
3735 ieee80211_rx_cooked_monitor(rx, rate);
3736 break;
3737 }
3738 case RX_DROP_UNUSABLE:
3739 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3740 if (rx->sta)
3741 rx->sta->rx_stats.dropped++;
3742 dev_kfree_skb(rx->skb);
3743 break;
3744 case RX_QUEUED:
3745 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3746 break;
3747 }
3748 }
3749
3750 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3751 struct sk_buff_head *frames)
3752 {
3753 ieee80211_rx_result res = RX_DROP_MONITOR;
3754 struct sk_buff *skb;
3755
3756 #define CALL_RXH(rxh) \
3757 do { \
3758 res = rxh(rx); \
3759 if (res != RX_CONTINUE) \
3760 goto rxh_next; \
3761 } while (0)
3762
3763 /* Lock here to avoid hitting all of the data used in the RX
3764 * path (e.g. key data, station data, ...) concurrently when
3765 * a frame is released from the reorder buffer due to timeout
3766 * from the timer, potentially concurrently with RX from the
3767 * driver.
3768 */
3769 spin_lock_bh(&rx->local->rx_path_lock);
3770
3771 while ((skb = __skb_dequeue(frames))) {
3772 /*
3773 * all the other fields are valid across frames
3774 * that belong to an aMPDU since they are on the
3775 * same TID from the same station
3776 */
3777 rx->skb = skb;
3778
3779 CALL_RXH(ieee80211_rx_h_check_more_data);
3780 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3781 CALL_RXH(ieee80211_rx_h_sta_process);
3782 CALL_RXH(ieee80211_rx_h_decrypt);
3783 CALL_RXH(ieee80211_rx_h_defragment);
3784 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3785 /* must be after MMIC verify so header is counted in MPDU mic */
3786 #ifdef CONFIG_MAC80211_MESH
3787 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3788 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3789 #endif
3790 CALL_RXH(ieee80211_rx_h_amsdu);
3791 CALL_RXH(ieee80211_rx_h_data);
3792
3793 /* special treatment -- needs the queue */
3794 res = ieee80211_rx_h_ctrl(rx, frames);
3795 if (res != RX_CONTINUE)
3796 goto rxh_next;
3797
3798 CALL_RXH(ieee80211_rx_h_mgmt_check);
3799 CALL_RXH(ieee80211_rx_h_action);
3800 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3801 CALL_RXH(ieee80211_rx_h_action_post_userspace);
3802 CALL_RXH(ieee80211_rx_h_action_return);
3803 CALL_RXH(ieee80211_rx_h_ext);
3804 CALL_RXH(ieee80211_rx_h_mgmt);
3805
3806 rxh_next:
3807 ieee80211_rx_handlers_result(rx, res);
3808
3809 #undef CALL_RXH
3810 }
3811
3812 spin_unlock_bh(&rx->local->rx_path_lock);
3813 }
3814
3815 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3816 {
3817 struct sk_buff_head reorder_release;
3818 ieee80211_rx_result res = RX_DROP_MONITOR;
3819
3820 __skb_queue_head_init(&reorder_release);
3821
3822 #define CALL_RXH(rxh) \
3823 do { \
3824 res = rxh(rx); \
3825 if (res != RX_CONTINUE) \
3826 goto rxh_next; \
3827 } while (0)
3828
3829 CALL_RXH(ieee80211_rx_h_check_dup);
3830 CALL_RXH(ieee80211_rx_h_check);
3831
3832 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3833
3834 ieee80211_rx_handlers(rx, &reorder_release);
3835 return;
3836
3837 rxh_next:
3838 ieee80211_rx_handlers_result(rx, res);
3839
3840 #undef CALL_RXH
3841 }
3842
3843 /*
3844 * This function makes calls into the RX path, therefore
3845 * it has to be invoked under RCU read lock.
3846 */
3847 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3848 {
3849 struct sk_buff_head frames;
3850 struct ieee80211_rx_data rx = {
3851 .sta = sta,
3852 .sdata = sta->sdata,
3853 .local = sta->local,
3854 /* This is OK -- must be QoS data frame */
3855 .security_idx = tid,
3856 .seqno_idx = tid,
3857 };
3858 struct tid_ampdu_rx *tid_agg_rx;
3859
3860 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3861 if (!tid_agg_rx)
3862 return;
3863
3864 __skb_queue_head_init(&frames);
3865
3866 spin_lock(&tid_agg_rx->reorder_lock);
3867 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3868 spin_unlock(&tid_agg_rx->reorder_lock);
3869
3870 if (!skb_queue_empty(&frames)) {
3871 struct ieee80211_event event = {
3872 .type = BA_FRAME_TIMEOUT,
3873 .u.ba.tid = tid,
3874 .u.ba.sta = &sta->sta,
3875 };
3876 drv_event_callback(rx.local, rx.sdata, &event);
3877 }
3878
3879 ieee80211_rx_handlers(&rx, &frames);
3880 }
3881
3882 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3883 u16 ssn, u64 filtered,
3884 u16 received_mpdus)
3885 {
3886 struct sta_info *sta;
3887 struct tid_ampdu_rx *tid_agg_rx;
3888 struct sk_buff_head frames;
3889 struct ieee80211_rx_data rx = {
3890 /* This is OK -- must be QoS data frame */
3891 .security_idx = tid,
3892 .seqno_idx = tid,
3893 };
3894 int i, diff;
3895
3896 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3897 return;
3898
3899 __skb_queue_head_init(&frames);
3900
3901 sta = container_of(pubsta, struct sta_info, sta);
3902
3903 rx.sta = sta;
3904 rx.sdata = sta->sdata;
3905 rx.local = sta->local;
3906
3907 rcu_read_lock();
3908 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3909 if (!tid_agg_rx)
3910 goto out;
3911
3912 spin_lock_bh(&tid_agg_rx->reorder_lock);
3913
3914 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3915 int release;
3916
3917 /* release all frames in the reorder buffer */
3918 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3919 IEEE80211_SN_MODULO;
3920 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3921 release, &frames);
3922 /* update ssn to match received ssn */
3923 tid_agg_rx->head_seq_num = ssn;
3924 } else {
3925 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3926 &frames);
3927 }
3928
3929 /* handle the case that received ssn is behind the mac ssn.
3930 * it can be tid_agg_rx->buf_size behind and still be valid */
3931 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3932 if (diff >= tid_agg_rx->buf_size) {
3933 tid_agg_rx->reorder_buf_filtered = 0;
3934 goto release;
3935 }
3936 filtered = filtered >> diff;
3937 ssn += diff;
3938
3939 /* update bitmap */
3940 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3941 int index = (ssn + i) % tid_agg_rx->buf_size;
3942
3943 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3944 if (filtered & BIT_ULL(i))
3945 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3946 }
3947
3948 /* now process also frames that the filter marking released */
3949 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3950
3951 release:
3952 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3953
3954 ieee80211_rx_handlers(&rx, &frames);
3955
3956 out:
3957 rcu_read_unlock();
3958 }
3959 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3960
3961 /* main receive path */
3962
3963 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3964 {
3965 struct ieee80211_sub_if_data *sdata = rx->sdata;
3966 struct sk_buff *skb = rx->skb;
3967 struct ieee80211_hdr *hdr = (void *)skb->data;
3968 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3969 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3970 bool multicast = is_multicast_ether_addr(hdr->addr1) ||
3971 ieee80211_is_s1g_beacon(hdr->frame_control);
3972
3973 switch (sdata->vif.type) {
3974 case NL80211_IFTYPE_STATION:
3975 if (!bssid && !sdata->u.mgd.use_4addr)
3976 return false;
3977 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3978 return false;
3979 if (multicast)
3980 return true;
3981 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3982 case NL80211_IFTYPE_ADHOC:
3983 if (!bssid)
3984 return false;
3985 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3986 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3987 return false;
3988 if (ieee80211_is_beacon(hdr->frame_control))
3989 return true;
3990 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3991 return false;
3992 if (!multicast &&
3993 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3994 return false;
3995 if (!rx->sta) {
3996 int rate_idx;
3997 if (status->encoding != RX_ENC_LEGACY)
3998 rate_idx = 0; /* TODO: HT/VHT rates */
3999 else
4000 rate_idx = status->rate_idx;
4001 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
4002 BIT(rate_idx));
4003 }
4004 return true;
4005 case NL80211_IFTYPE_OCB:
4006 if (!bssid)
4007 return false;
4008 if (!ieee80211_is_data_present(hdr->frame_control))
4009 return false;
4010 if (!is_broadcast_ether_addr(bssid))
4011 return false;
4012 if (!multicast &&
4013 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
4014 return false;
4015 if (!rx->sta) {
4016 int rate_idx;
4017 if (status->encoding != RX_ENC_LEGACY)
4018 rate_idx = 0; /* TODO: HT rates */
4019 else
4020 rate_idx = status->rate_idx;
4021 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
4022 BIT(rate_idx));
4023 }
4024 return true;
4025 case NL80211_IFTYPE_MESH_POINT:
4026 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
4027 return false;
4028 if (multicast)
4029 return true;
4030 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4031 case NL80211_IFTYPE_AP_VLAN:
4032 case NL80211_IFTYPE_AP:
4033 if (!bssid)
4034 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
4035
4036 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
4037 /*
4038 * Accept public action frames even when the
4039 * BSSID doesn't match, this is used for P2P
4040 * and location updates. Note that mac80211
4041 * itself never looks at these frames.
4042 */
4043 if (!multicast &&
4044 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
4045 return false;
4046 if (ieee80211_is_public_action(hdr, skb->len))
4047 return true;
4048 return ieee80211_is_beacon(hdr->frame_control);
4049 }
4050
4051 if (!ieee80211_has_tods(hdr->frame_control)) {
4052 /* ignore data frames to TDLS-peers */
4053 if (ieee80211_is_data(hdr->frame_control))
4054 return false;
4055 /* ignore action frames to TDLS-peers */
4056 if (ieee80211_is_action(hdr->frame_control) &&
4057 !is_broadcast_ether_addr(bssid) &&
4058 !ether_addr_equal(bssid, hdr->addr1))
4059 return false;
4060 }
4061
4062 /*
4063 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4064 * the BSSID - we've checked that already but may have accepted
4065 * the wildcard (ff:ff:ff:ff:ff:ff).
4066 *
4067 * It also says:
4068 * The BSSID of the Data frame is determined as follows:
4069 * a) If the STA is contained within an AP or is associated
4070 * with an AP, the BSSID is the address currently in use
4071 * by the STA contained in the AP.
4072 *
4073 * So we should not accept data frames with an address that's
4074 * multicast.
4075 *
4076 * Accepting it also opens a security problem because stations
4077 * could encrypt it with the GTK and inject traffic that way.
4078 */
4079 if (ieee80211_is_data(hdr->frame_control) && multicast)
4080 return false;
4081
4082 return true;
4083 case NL80211_IFTYPE_WDS:
4084 if (bssid || !ieee80211_is_data(hdr->frame_control))
4085 return false;
4086 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
4087 case NL80211_IFTYPE_P2P_DEVICE:
4088 return ieee80211_is_public_action(hdr, skb->len) ||
4089 ieee80211_is_probe_req(hdr->frame_control) ||
4090 ieee80211_is_probe_resp(hdr->frame_control) ||
4091 ieee80211_is_beacon(hdr->frame_control);
4092 case NL80211_IFTYPE_NAN:
4093 /* Currently no frames on NAN interface are allowed */
4094 return false;
4095 default:
4096 break;
4097 }
4098
4099 WARN_ON_ONCE(1);
4100 return false;
4101 }
4102
4103 void ieee80211_check_fast_rx(struct sta_info *sta)
4104 {
4105 struct ieee80211_sub_if_data *sdata = sta->sdata;
4106 struct ieee80211_local *local = sdata->local;
4107 struct ieee80211_key *key;
4108 struct ieee80211_fast_rx fastrx = {
4109 .dev = sdata->dev,
4110 .vif_type = sdata->vif.type,
4111 .control_port_protocol = sdata->control_port_protocol,
4112 }, *old, *new = NULL;
4113 bool assign = false;
4114
4115 /* use sparse to check that we don't return without updating */
4116 __acquire(check_fast_rx);
4117
4118 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4119 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4120 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
4121 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
4122
4123 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4124
4125 /* fast-rx doesn't do reordering */
4126 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4127 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4128 goto clear;
4129
4130 switch (sdata->vif.type) {
4131 case NL80211_IFTYPE_STATION:
4132 if (sta->sta.tdls) {
4133 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4134 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4135 fastrx.expected_ds_bits = 0;
4136 } else {
4137 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4138 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4139 fastrx.expected_ds_bits =
4140 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4141 }
4142
4143 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4144 fastrx.expected_ds_bits |=
4145 cpu_to_le16(IEEE80211_FCTL_TODS);
4146 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4147 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4148 }
4149
4150 if (!sdata->u.mgd.powersave)
4151 break;
4152
4153 /* software powersave is a huge mess, avoid all of it */
4154 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4155 goto clear;
4156 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4157 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4158 goto clear;
4159 break;
4160 case NL80211_IFTYPE_AP_VLAN:
4161 case NL80211_IFTYPE_AP:
4162 /* parallel-rx requires this, at least with calls to
4163 * ieee80211_sta_ps_transition()
4164 */
4165 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4166 goto clear;
4167 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4168 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4169 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4170
4171 fastrx.internal_forward =
4172 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4173 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4174 !sdata->u.vlan.sta);
4175
4176 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4177 sdata->u.vlan.sta) {
4178 fastrx.expected_ds_bits |=
4179 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4180 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4181 fastrx.internal_forward = 0;
4182 }
4183
4184 break;
4185 default:
4186 goto clear;
4187 }
4188
4189 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4190 goto clear;
4191
4192 rcu_read_lock();
4193 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4194 if (key) {
4195 switch (key->conf.cipher) {
4196 case WLAN_CIPHER_SUITE_TKIP:
4197 /* we don't want to deal with MMIC in fast-rx */
4198 goto clear_rcu;
4199 case WLAN_CIPHER_SUITE_CCMP:
4200 case WLAN_CIPHER_SUITE_CCMP_256:
4201 case WLAN_CIPHER_SUITE_GCMP:
4202 case WLAN_CIPHER_SUITE_GCMP_256:
4203 break;
4204 default:
4205 /* We also don't want to deal with
4206 * WEP or cipher scheme.
4207 */
4208 goto clear_rcu;
4209 }
4210
4211 fastrx.key = true;
4212 fastrx.icv_len = key->conf.icv_len;
4213 }
4214
4215 assign = true;
4216 clear_rcu:
4217 rcu_read_unlock();
4218 clear:
4219 __release(check_fast_rx);
4220
4221 if (assign)
4222 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4223
4224 spin_lock_bh(&sta->lock);
4225 old = rcu_dereference_protected(sta->fast_rx, true);
4226 rcu_assign_pointer(sta->fast_rx, new);
4227 spin_unlock_bh(&sta->lock);
4228
4229 if (old)
4230 kfree_rcu(old, rcu_head);
4231 }
4232
4233 void ieee80211_clear_fast_rx(struct sta_info *sta)
4234 {
4235 struct ieee80211_fast_rx *old;
4236
4237 spin_lock_bh(&sta->lock);
4238 old = rcu_dereference_protected(sta->fast_rx, true);
4239 RCU_INIT_POINTER(sta->fast_rx, NULL);
4240 spin_unlock_bh(&sta->lock);
4241
4242 if (old)
4243 kfree_rcu(old, rcu_head);
4244 }
4245
4246 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4247 {
4248 struct ieee80211_local *local = sdata->local;
4249 struct sta_info *sta;
4250
4251 lockdep_assert_held(&local->sta_mtx);
4252
4253 list_for_each_entry(sta, &local->sta_list, list) {
4254 if (sdata != sta->sdata &&
4255 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4256 continue;
4257 ieee80211_check_fast_rx(sta);
4258 }
4259 }
4260
4261 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4262 {
4263 struct ieee80211_local *local = sdata->local;
4264
4265 mutex_lock(&local->sta_mtx);
4266 __ieee80211_check_fast_rx_iface(sdata);
4267 mutex_unlock(&local->sta_mtx);
4268 }
4269
4270 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4271 struct ieee80211_fast_rx *fast_rx)
4272 {
4273 struct sk_buff *skb = rx->skb;
4274 struct ieee80211_hdr *hdr = (void *)skb->data;
4275 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4276 struct sta_info *sta = rx->sta;
4277 int orig_len = skb->len;
4278 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4279 int snap_offs = hdrlen;
4280 struct {
4281 u8 snap[sizeof(rfc1042_header)];
4282 __be16 proto;
4283 } *payload __aligned(2);
4284 struct {
4285 u8 da[ETH_ALEN];
4286 u8 sa[ETH_ALEN];
4287 } addrs __aligned(2);
4288 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4289
4290 if (fast_rx->uses_rss)
4291 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4292
4293 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4294 * to a common data structure; drivers can implement that per queue
4295 * but we don't have that information in mac80211
4296 */
4297 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4298 return false;
4299
4300 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4301
4302 /* If using encryption, we also need to have:
4303 * - PN_VALIDATED: similar, but the implementation is tricky
4304 * - DECRYPTED: necessary for PN_VALIDATED
4305 */
4306 if (fast_rx->key &&
4307 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4308 return false;
4309
4310 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4311 return false;
4312
4313 if (unlikely(ieee80211_is_frag(hdr)))
4314 return false;
4315
4316 /* Since our interface address cannot be multicast, this
4317 * implicitly also rejects multicast frames without the
4318 * explicit check.
4319 *
4320 * We shouldn't get any *data* frames not addressed to us
4321 * (AP mode will accept multicast *management* frames), but
4322 * punting here will make it go through the full checks in
4323 * ieee80211_accept_frame().
4324 */
4325 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4326 return false;
4327
4328 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4329 IEEE80211_FCTL_TODS)) !=
4330 fast_rx->expected_ds_bits)
4331 return false;
4332
4333 /* assign the key to drop unencrypted frames (later)
4334 * and strip the IV/MIC if necessary
4335 */
4336 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4337 /* GCMP header length is the same */
4338 snap_offs += IEEE80211_CCMP_HDR_LEN;
4339 }
4340
4341 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4342 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4343 goto drop;
4344
4345 payload = (void *)(skb->data + snap_offs);
4346
4347 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4348 return false;
4349
4350 /* Don't handle these here since they require special code.
4351 * Accept AARP and IPX even though they should come with a
4352 * bridge-tunnel header - but if we get them this way then
4353 * there's little point in discarding them.
4354 */
4355 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4356 payload->proto == fast_rx->control_port_protocol))
4357 return false;
4358 }
4359
4360 /* after this point, don't punt to the slowpath! */
4361
4362 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4363 pskb_trim(skb, skb->len - fast_rx->icv_len))
4364 goto drop;
4365
4366 /* statistics part of ieee80211_rx_h_sta_process() */
4367 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4368 stats->last_signal = status->signal;
4369 if (!fast_rx->uses_rss)
4370 ewma_signal_add(&sta->rx_stats_avg.signal,
4371 -status->signal);
4372 }
4373
4374 if (status->chains) {
4375 int i;
4376
4377 stats->chains = status->chains;
4378 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4379 int signal = status->chain_signal[i];
4380
4381 if (!(status->chains & BIT(i)))
4382 continue;
4383
4384 stats->chain_signal_last[i] = signal;
4385 if (!fast_rx->uses_rss)
4386 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4387 -signal);
4388 }
4389 }
4390 /* end of statistics */
4391
4392 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4393 goto drop;
4394
4395 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4396 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4397 RX_QUEUED)
4398 goto drop;
4399
4400 return true;
4401 }
4402
4403 stats->last_rx = jiffies;
4404 stats->last_rate = sta_stats_encode_rate(status);
4405
4406 stats->fragments++;
4407 stats->packets++;
4408
4409 /* do the header conversion - first grab the addresses */
4410 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4411 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4412 /* remove the SNAP but leave the ethertype */
4413 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4414 /* push the addresses in front */
4415 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4416
4417 skb->dev = fast_rx->dev;
4418
4419 ieee80211_rx_stats(fast_rx->dev, skb->len);
4420
4421 /* The seqno index has the same property as needed
4422 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4423 * for non-QoS-data frames. Here we know it's a data
4424 * frame, so count MSDUs.
4425 */
4426 u64_stats_update_begin(&stats->syncp);
4427 stats->msdu[rx->seqno_idx]++;
4428 stats->bytes += orig_len;
4429 u64_stats_update_end(&stats->syncp);
4430
4431 if (fast_rx->internal_forward) {
4432 struct sk_buff *xmit_skb = NULL;
4433 if (is_multicast_ether_addr(addrs.da)) {
4434 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4435 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4436 sta_info_get(rx->sdata, addrs.da)) {
4437 xmit_skb = skb;
4438 skb = NULL;
4439 }
4440
4441 if (xmit_skb) {
4442 /*
4443 * Send to wireless media and increase priority by 256
4444 * to keep the received priority instead of
4445 * reclassifying the frame (see cfg80211_classify8021d).
4446 */
4447 xmit_skb->priority += 256;
4448 xmit_skb->protocol = htons(ETH_P_802_3);
4449 skb_reset_network_header(xmit_skb);
4450 skb_reset_mac_header(xmit_skb);
4451 dev_queue_xmit(xmit_skb);
4452 }
4453
4454 if (!skb)
4455 return true;
4456 }
4457
4458 /* deliver to local stack */
4459 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4460 memset(skb->cb, 0, sizeof(skb->cb));
4461 if (rx->list)
4462 list_add_tail(&skb->list, rx->list);
4463 else
4464 netif_receive_skb(skb);
4465
4466 return true;
4467 drop:
4468 dev_kfree_skb(skb);
4469 stats->dropped++;
4470 return true;
4471 }
4472
4473 /*
4474 * This function returns whether or not the SKB
4475 * was destined for RX processing or not, which,
4476 * if consume is true, is equivalent to whether
4477 * or not the skb was consumed.
4478 */
4479 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4480 struct sk_buff *skb, bool consume)
4481 {
4482 struct ieee80211_local *local = rx->local;
4483 struct ieee80211_sub_if_data *sdata = rx->sdata;
4484
4485 rx->skb = skb;
4486
4487 /* See if we can do fast-rx; if we have to copy we already lost,
4488 * so punt in that case. We should never have to deliver a data
4489 * frame to multiple interfaces anyway.
4490 *
4491 * We skip the ieee80211_accept_frame() call and do the necessary
4492 * checking inside ieee80211_invoke_fast_rx().
4493 */
4494 if (consume && rx->sta) {
4495 struct ieee80211_fast_rx *fast_rx;
4496
4497 fast_rx = rcu_dereference(rx->sta->fast_rx);
4498 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4499 return true;
4500 }
4501
4502 if (!ieee80211_accept_frame(rx))
4503 return false;
4504
4505 if (!consume) {
4506 skb = skb_copy(skb, GFP_ATOMIC);
4507 if (!skb) {
4508 if (net_ratelimit())
4509 wiphy_debug(local->hw.wiphy,
4510 "failed to copy skb for %s\n",
4511 sdata->name);
4512 return true;
4513 }
4514
4515 rx->skb = skb;
4516 }
4517
4518 ieee80211_invoke_rx_handlers(rx);
4519 return true;
4520 }
4521
4522 /*
4523 * This is the actual Rx frames handler. as it belongs to Rx path it must
4524 * be called with rcu_read_lock protection.
4525 */
4526 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4527 struct ieee80211_sta *pubsta,
4528 struct sk_buff *skb,
4529 struct list_head *list)
4530 {
4531 struct ieee80211_local *local = hw_to_local(hw);
4532 struct ieee80211_sub_if_data *sdata;
4533 struct ieee80211_hdr *hdr;
4534 __le16 fc;
4535 struct ieee80211_rx_data rx;
4536 struct ieee80211_sub_if_data *prev;
4537 struct rhlist_head *tmp;
4538 int err = 0;
4539
4540 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4541 memset(&rx, 0, sizeof(rx));
4542 rx.skb = skb;
4543 rx.local = local;
4544 rx.list = list;
4545
4546 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4547 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4548
4549 if (ieee80211_is_mgmt(fc)) {
4550 /* drop frame if too short for header */
4551 if (skb->len < ieee80211_hdrlen(fc))
4552 err = -ENOBUFS;
4553 else
4554 err = skb_linearize(skb);
4555 } else {
4556 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4557 }
4558
4559 if (err) {
4560 dev_kfree_skb(skb);
4561 return;
4562 }
4563
4564 hdr = (struct ieee80211_hdr *)skb->data;
4565 ieee80211_parse_qos(&rx);
4566 ieee80211_verify_alignment(&rx);
4567
4568 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4569 ieee80211_is_beacon(hdr->frame_control) ||
4570 ieee80211_is_s1g_beacon(hdr->frame_control)))
4571 ieee80211_scan_rx(local, skb);
4572
4573 if (ieee80211_is_data(fc)) {
4574 struct sta_info *sta, *prev_sta;
4575
4576 if (pubsta) {
4577 rx.sta = container_of(pubsta, struct sta_info, sta);
4578 rx.sdata = rx.sta->sdata;
4579 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4580 return;
4581 goto out;
4582 }
4583
4584 prev_sta = NULL;
4585
4586 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4587 if (!prev_sta) {
4588 prev_sta = sta;
4589 continue;
4590 }
4591
4592 rx.sta = prev_sta;
4593 rx.sdata = prev_sta->sdata;
4594 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4595
4596 prev_sta = sta;
4597 }
4598
4599 if (prev_sta) {
4600 rx.sta = prev_sta;
4601 rx.sdata = prev_sta->sdata;
4602
4603 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4604 return;
4605 goto out;
4606 }
4607 }
4608
4609 prev = NULL;
4610
4611 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4612 if (!ieee80211_sdata_running(sdata))
4613 continue;
4614
4615 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4616 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4617 continue;
4618
4619 /*
4620 * frame is destined for this interface, but if it's
4621 * not also for the previous one we handle that after
4622 * the loop to avoid copying the SKB once too much
4623 */
4624
4625 if (!prev) {
4626 prev = sdata;
4627 continue;
4628 }
4629
4630 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4631 rx.sdata = prev;
4632 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4633
4634 prev = sdata;
4635 }
4636
4637 if (prev) {
4638 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4639 rx.sdata = prev;
4640
4641 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4642 return;
4643 }
4644
4645 out:
4646 dev_kfree_skb(skb);
4647 }
4648
4649 /*
4650 * This is the receive path handler. It is called by a low level driver when an
4651 * 802.11 MPDU is received from the hardware.
4652 */
4653 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4654 struct sk_buff *skb, struct list_head *list)
4655 {
4656 struct ieee80211_local *local = hw_to_local(hw);
4657 struct ieee80211_rate *rate = NULL;
4658 struct ieee80211_supported_band *sband;
4659 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4660
4661 WARN_ON_ONCE(softirq_count() == 0);
4662
4663 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4664 goto drop;
4665
4666 sband = local->hw.wiphy->bands[status->band];
4667 if (WARN_ON(!sband))
4668 goto drop;
4669
4670 /*
4671 * If we're suspending, it is possible although not too likely
4672 * that we'd be receiving frames after having already partially
4673 * quiesced the stack. We can't process such frames then since
4674 * that might, for example, cause stations to be added or other
4675 * driver callbacks be invoked.
4676 */
4677 if (unlikely(local->quiescing || local->suspended))
4678 goto drop;
4679
4680 /* We might be during a HW reconfig, prevent Rx for the same reason */
4681 if (unlikely(local->in_reconfig))
4682 goto drop;
4683
4684 /*
4685 * The same happens when we're not even started,
4686 * but that's worth a warning.
4687 */
4688 if (WARN_ON(!local->started))
4689 goto drop;
4690
4691 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4692 /*
4693 * Validate the rate, unless a PLCP error means that
4694 * we probably can't have a valid rate here anyway.
4695 */
4696
4697 switch (status->encoding) {
4698 case RX_ENC_HT:
4699 /*
4700 * rate_idx is MCS index, which can be [0-76]
4701 * as documented on:
4702 *
4703 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
4704 *
4705 * Anything else would be some sort of driver or
4706 * hardware error. The driver should catch hardware
4707 * errors.
4708 */
4709 if (WARN(status->rate_idx > 76,
4710 "Rate marked as an HT rate but passed "
4711 "status->rate_idx is not "
4712 "an MCS index [0-76]: %d (0x%02x)\n",
4713 status->rate_idx,
4714 status->rate_idx))
4715 goto drop;
4716 break;
4717 case RX_ENC_VHT:
4718 if (WARN_ONCE(status->rate_idx > 9 ||
4719 !status->nss ||
4720 status->nss > 8,
4721 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4722 status->rate_idx, status->nss))
4723 goto drop;
4724 break;
4725 case RX_ENC_HE:
4726 if (WARN_ONCE(status->rate_idx > 11 ||
4727 !status->nss ||
4728 status->nss > 8,
4729 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4730 status->rate_idx, status->nss))
4731 goto drop;
4732 break;
4733 default:
4734 WARN_ON_ONCE(1);
4735 fallthrough;
4736 case RX_ENC_LEGACY:
4737 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4738 goto drop;
4739 rate = &sband->bitrates[status->rate_idx];
4740 }
4741 }
4742
4743 status->rx_flags = 0;
4744
4745 /*
4746 * Frames with failed FCS/PLCP checksum are not returned,
4747 * all other frames are returned without radiotap header
4748 * if it was previously present.
4749 * Also, frames with less than 16 bytes are dropped.
4750 */
4751 skb = ieee80211_rx_monitor(local, skb, rate);
4752 if (!skb)
4753 return;
4754
4755 ieee80211_tpt_led_trig_rx(local,
4756 ((struct ieee80211_hdr *)skb->data)->frame_control,
4757 skb->len);
4758
4759 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
4760
4761 return;
4762 drop:
4763 kfree_skb(skb);
4764 }
4765 EXPORT_SYMBOL(ieee80211_rx_list);
4766
4767 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4768 struct sk_buff *skb, struct napi_struct *napi)
4769 {
4770 struct sk_buff *tmp;
4771 LIST_HEAD(list);
4772
4773
4774 /*
4775 * key references and virtual interfaces are protected using RCU
4776 * and this requires that we are in a read-side RCU section during
4777 * receive processing
4778 */
4779 rcu_read_lock();
4780 ieee80211_rx_list(hw, pubsta, skb, &list);
4781 rcu_read_unlock();
4782
4783 if (!napi) {
4784 netif_receive_skb_list(&list);
4785 return;
4786 }
4787
4788 list_for_each_entry_safe(skb, tmp, &list, list) {
4789 skb_list_del_init(skb);
4790 napi_gro_receive(napi, skb);
4791 }
4792 }
4793 EXPORT_SYMBOL(ieee80211_rx_napi);
4794
4795 /* This is a version of the rx handler that can be called from hard irq
4796 * context. Post the skb on the queue and schedule the tasklet */
4797 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4798 {
4799 struct ieee80211_local *local = hw_to_local(hw);
4800
4801 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4802
4803 skb->pkt_type = IEEE80211_RX_MSG;
4804 skb_queue_tail(&local->skb_queue, skb);
4805 tasklet_schedule(&local->tasklet);
4806 }
4807 EXPORT_SYMBOL(ieee80211_rx_irqsafe);