]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/rx.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 return len;
89 }
90
91 /*
92 * ieee80211_add_rx_radiotap_header - add radiotap header
93 *
94 * add a radiotap header containing all the fields which the hardware provided.
95 */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
101 {
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
106
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
109
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
117
118 pos = (unsigned char *)(rthdr+1);
119
120 /* the order of the following fields is important */
121
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
128 }
129
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
138
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
141 /*
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196 }
197
198 /*
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
202 */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
206 {
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
213
214 /*
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
218 *
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
221 */
222
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
228
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
233 }
234
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
239 }
240
241 return remove_monitor_info(local, origskb);
242 }
243
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
248
249 /*
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
255 */
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
260 }
261 } else {
262 /*
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
265 */
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268 origskb = remove_monitor_info(local, origskb);
269
270 if (!skb)
271 return origskb;
272 }
273
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
281
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
285
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
288
289 if (!ieee80211_sdata_running(sdata))
290 continue;
291
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_receive_skb(skb2);
297 }
298 }
299
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
303 }
304
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_receive_skb(skb);
308 } else
309 dev_kfree_skb(skb);
310
311 return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319 int tid;
320
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr->frame_control)) {
323 u8 *qc = ieee80211_get_qos_ctl(hdr);
324 /* frame has qos control */
325 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 status->rx_flags |= IEEE80211_RX_AMSDU;
328 } else {
329 /*
330 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331 *
332 * Sequence numbers for management frames, QoS data
333 * frames with a broadcast/multicast address in the
334 * Address 1 field, and all non-QoS data frames sent
335 * by QoS STAs are assigned using an additional single
336 * modulo-4096 counter, [...]
337 *
338 * We also use that counter for non-QoS STAs.
339 */
340 tid = NUM_RX_DATA_QUEUES - 1;
341 }
342
343 rx->queue = tid;
344 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 * For now, set skb->priority to 0 for other cases. */
346 rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348
349 /**
350 * DOC: Packet alignment
351 *
352 * Drivers always need to pass packets that are aligned to two-byte boundaries
353 * to the stack.
354 *
355 * Additionally, should, if possible, align the payload data in a way that
356 * guarantees that the contained IP header is aligned to a four-byte
357 * boundary. In the case of regular frames, this simply means aligning the
358 * payload to a four-byte boundary (because either the IP header is directly
359 * contained, or IV/RFC1042 headers that have a length divisible by four are
360 * in front of it). If the payload data is not properly aligned and the
361 * architecture doesn't support efficient unaligned operations, mac80211
362 * will align the data.
363 *
364 * With A-MSDU frames, however, the payload data address must yield two modulo
365 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366 * push the IP header further back to a multiple of four again. Thankfully, the
367 * specs were sane enough this time around to require padding each A-MSDU
368 * subframe to a length that is a multiple of four.
369 *
370 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371 * the payload is not supported, the driver is required to move the 802.11
372 * header to be directly in front of the payload in that case.
373 */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 WARN_ONCE((unsigned long)rx->skb->data & 1,
378 "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381
382
383 /* rx handlers */
384
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388 struct ieee80211_local *local = rx->local;
389 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390 struct sk_buff *skb = rx->skb;
391
392 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393 return RX_CONTINUE;
394
395 if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396 return ieee80211_scan_rx(rx->sdata, skb);
397
398 if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399 /* drop all the other packets during a software scan anyway */
400 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401 dev_kfree_skb(skb);
402 return RX_QUEUED;
403 }
404
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 return RX_DROP_UNUSABLE;
408 }
409
410
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414
415 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416 return 0;
417
418 return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420
421
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427 return 0;
428
429 return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437 struct ieee80211_mmie *mmie;
438
439 if (skb->len < 24 + sizeof(*mmie) ||
440 !is_multicast_ether_addr(hdr->da))
441 return -1;
442
443 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444 return -1; /* not a robust management frame */
445
446 mmie = (struct ieee80211_mmie *)
447 (skb->data + skb->len - sizeof(*mmie));
448 if (mmie->element_id != WLAN_EID_MMIE ||
449 mmie->length != sizeof(*mmie) - 2)
450 return -1;
451
452 return le16_to_cpu(mmie->key_id);
453 }
454
455
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461 char *dev_addr = rx->sdata->vif.addr;
462
463 if (ieee80211_is_data(hdr->frame_control)) {
464 if (is_multicast_ether_addr(hdr->addr1)) {
465 if (ieee80211_has_tods(hdr->frame_control) ||
466 !ieee80211_has_fromds(hdr->frame_control))
467 return RX_DROP_MONITOR;
468 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469 return RX_DROP_MONITOR;
470 } else {
471 if (!ieee80211_has_a4(hdr->frame_control))
472 return RX_DROP_MONITOR;
473 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474 return RX_DROP_MONITOR;
475 }
476 }
477
478 /* If there is not an established peer link and this is not a peer link
479 * establisment frame, beacon or probe, drop the frame.
480 */
481
482 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483 struct ieee80211_mgmt *mgmt;
484
485 if (!ieee80211_is_mgmt(hdr->frame_control))
486 return RX_DROP_MONITOR;
487
488 if (ieee80211_is_action(hdr->frame_control)) {
489 mgmt = (struct ieee80211_mgmt *)hdr;
490 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491 return RX_DROP_MONITOR;
492 return RX_CONTINUE;
493 }
494
495 if (ieee80211_is_probe_req(hdr->frame_control) ||
496 ieee80211_is_probe_resp(hdr->frame_control) ||
497 ieee80211_is_beacon(hdr->frame_control))
498 return RX_CONTINUE;
499
500 return RX_DROP_MONITOR;
501
502 }
503
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505
506 if (ieee80211_is_data(hdr->frame_control) &&
507 is_multicast_ether_addr(hdr->addr1) &&
508 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509 return RX_DROP_MONITOR;
510 #undef msh_h_get
511
512 return RX_CONTINUE;
513 }
514
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK 0xfff
517
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522
523 static inline u16 seq_inc(u16 sq)
524 {
525 return (sq + 1) & SEQ_MASK;
526 }
527
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530 return (sq1 - sq2) & SEQ_MASK;
531 }
532
533
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535 struct tid_ampdu_rx *tid_agg_rx,
536 int index)
537 {
538 struct ieee80211_local *local = hw_to_local(hw);
539 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540 struct ieee80211_rx_status *status;
541
542 lockdep_assert_held(&tid_agg_rx->reorder_lock);
543
544 if (!skb)
545 goto no_frame;
546
547 /* release the frame from the reorder ring buffer */
548 tid_agg_rx->stored_mpdu_num--;
549 tid_agg_rx->reorder_buf[index] = NULL;
550 status = IEEE80211_SKB_RXCB(skb);
551 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
552 skb_queue_tail(&local->rx_skb_queue, skb);
553
554 no_frame:
555 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
556 }
557
558 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
559 struct tid_ampdu_rx *tid_agg_rx,
560 u16 head_seq_num)
561 {
562 int index;
563
564 lockdep_assert_held(&tid_agg_rx->reorder_lock);
565
566 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
567 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
568 tid_agg_rx->buf_size;
569 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
570 }
571 }
572
573 /*
574 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
575 * the skb was added to the buffer longer than this time ago, the earlier
576 * frames that have not yet been received are assumed to be lost and the skb
577 * can be released for processing. This may also release other skb's from the
578 * reorder buffer if there are no additional gaps between the frames.
579 *
580 * Callers must hold tid_agg_rx->reorder_lock.
581 */
582 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
583
584 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
585 struct tid_ampdu_rx *tid_agg_rx)
586 {
587 int index, j;
588
589 lockdep_assert_held(&tid_agg_rx->reorder_lock);
590
591 /* release the buffer until next missing frame */
592 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
593 tid_agg_rx->buf_size;
594 if (!tid_agg_rx->reorder_buf[index] &&
595 tid_agg_rx->stored_mpdu_num > 1) {
596 /*
597 * No buffers ready to be released, but check whether any
598 * frames in the reorder buffer have timed out.
599 */
600 int skipped = 1;
601 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
602 j = (j + 1) % tid_agg_rx->buf_size) {
603 if (!tid_agg_rx->reorder_buf[j]) {
604 skipped++;
605 continue;
606 }
607 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
608 HT_RX_REORDER_BUF_TIMEOUT))
609 goto set_release_timer;
610
611 #ifdef CONFIG_MAC80211_HT_DEBUG
612 if (net_ratelimit())
613 wiphy_debug(hw->wiphy,
614 "release an RX reorder frame due to timeout on earlier frames\n");
615 #endif
616 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
617
618 /*
619 * Increment the head seq# also for the skipped slots.
620 */
621 tid_agg_rx->head_seq_num =
622 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
623 skipped = 0;
624 }
625 } else while (tid_agg_rx->reorder_buf[index]) {
626 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
627 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
628 tid_agg_rx->buf_size;
629 }
630
631 if (tid_agg_rx->stored_mpdu_num) {
632 j = index = seq_sub(tid_agg_rx->head_seq_num,
633 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
634
635 for (; j != (index - 1) % tid_agg_rx->buf_size;
636 j = (j + 1) % tid_agg_rx->buf_size) {
637 if (tid_agg_rx->reorder_buf[j])
638 break;
639 }
640
641 set_release_timer:
642
643 mod_timer(&tid_agg_rx->reorder_timer,
644 tid_agg_rx->reorder_time[j] +
645 HT_RX_REORDER_BUF_TIMEOUT);
646 } else {
647 del_timer(&tid_agg_rx->reorder_timer);
648 }
649 }
650
651 /*
652 * As this function belongs to the RX path it must be under
653 * rcu_read_lock protection. It returns false if the frame
654 * can be processed immediately, true if it was consumed.
655 */
656 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
657 struct tid_ampdu_rx *tid_agg_rx,
658 struct sk_buff *skb)
659 {
660 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
661 u16 sc = le16_to_cpu(hdr->seq_ctrl);
662 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
663 u16 head_seq_num, buf_size;
664 int index;
665 bool ret = true;
666
667 spin_lock(&tid_agg_rx->reorder_lock);
668
669 buf_size = tid_agg_rx->buf_size;
670 head_seq_num = tid_agg_rx->head_seq_num;
671
672 /* frame with out of date sequence number */
673 if (seq_less(mpdu_seq_num, head_seq_num)) {
674 dev_kfree_skb(skb);
675 goto out;
676 }
677
678 /*
679 * If frame the sequence number exceeds our buffering window
680 * size release some previous frames to make room for this one.
681 */
682 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
683 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
684 /* release stored frames up to new head to stack */
685 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
686 }
687
688 /* Now the new frame is always in the range of the reordering buffer */
689
690 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
691
692 /* check if we already stored this frame */
693 if (tid_agg_rx->reorder_buf[index]) {
694 dev_kfree_skb(skb);
695 goto out;
696 }
697
698 /*
699 * If the current MPDU is in the right order and nothing else
700 * is stored we can process it directly, no need to buffer it.
701 */
702 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
703 tid_agg_rx->stored_mpdu_num == 0) {
704 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
705 ret = false;
706 goto out;
707 }
708
709 /* put the frame in the reordering buffer */
710 tid_agg_rx->reorder_buf[index] = skb;
711 tid_agg_rx->reorder_time[index] = jiffies;
712 tid_agg_rx->stored_mpdu_num++;
713 ieee80211_sta_reorder_release(hw, tid_agg_rx);
714
715 out:
716 spin_unlock(&tid_agg_rx->reorder_lock);
717 return ret;
718 }
719
720 /*
721 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
722 * true if the MPDU was buffered, false if it should be processed.
723 */
724 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
725 {
726 struct sk_buff *skb = rx->skb;
727 struct ieee80211_local *local = rx->local;
728 struct ieee80211_hw *hw = &local->hw;
729 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
730 struct sta_info *sta = rx->sta;
731 struct tid_ampdu_rx *tid_agg_rx;
732 u16 sc;
733 int tid;
734
735 if (!ieee80211_is_data_qos(hdr->frame_control))
736 goto dont_reorder;
737
738 /*
739 * filter the QoS data rx stream according to
740 * STA/TID and check if this STA/TID is on aggregation
741 */
742
743 if (!sta)
744 goto dont_reorder;
745
746 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
747
748 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
749 if (!tid_agg_rx)
750 goto dont_reorder;
751
752 /* qos null data frames are excluded */
753 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
754 goto dont_reorder;
755
756 /* new, potentially un-ordered, ampdu frame - process it */
757
758 /* reset session timer */
759 if (tid_agg_rx->timeout)
760 mod_timer(&tid_agg_rx->session_timer,
761 TU_TO_EXP_TIME(tid_agg_rx->timeout));
762
763 /* if this mpdu is fragmented - terminate rx aggregation session */
764 sc = le16_to_cpu(hdr->seq_ctrl);
765 if (sc & IEEE80211_SCTL_FRAG) {
766 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
767 skb_queue_tail(&rx->sdata->skb_queue, skb);
768 ieee80211_queue_work(&local->hw, &rx->sdata->work);
769 return;
770 }
771
772 /*
773 * No locking needed -- we will only ever process one
774 * RX packet at a time, and thus own tid_agg_rx. All
775 * other code manipulating it needs to (and does) make
776 * sure that we cannot get to it any more before doing
777 * anything with it.
778 */
779 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
780 return;
781
782 dont_reorder:
783 skb_queue_tail(&local->rx_skb_queue, skb);
784 }
785
786 static ieee80211_rx_result debug_noinline
787 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
788 {
789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
790 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
791
792 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
793 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
794 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
795 rx->sta->last_seq_ctrl[rx->queue] ==
796 hdr->seq_ctrl)) {
797 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
798 rx->local->dot11FrameDuplicateCount++;
799 rx->sta->num_duplicates++;
800 }
801 return RX_DROP_MONITOR;
802 } else
803 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
804 }
805
806 if (unlikely(rx->skb->len < 16)) {
807 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
808 return RX_DROP_MONITOR;
809 }
810
811 /* Drop disallowed frame classes based on STA auth/assoc state;
812 * IEEE 802.11, Chap 5.5.
813 *
814 * mac80211 filters only based on association state, i.e. it drops
815 * Class 3 frames from not associated stations. hostapd sends
816 * deauth/disassoc frames when needed. In addition, hostapd is
817 * responsible for filtering on both auth and assoc states.
818 */
819
820 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
821 return ieee80211_rx_mesh_check(rx);
822
823 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
824 ieee80211_is_pspoll(hdr->frame_control)) &&
825 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
826 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
827 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
828 if ((!ieee80211_has_fromds(hdr->frame_control) &&
829 !ieee80211_has_tods(hdr->frame_control) &&
830 ieee80211_is_data(hdr->frame_control)) ||
831 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
832 /* Drop IBSS frames and frames for other hosts
833 * silently. */
834 return RX_DROP_MONITOR;
835 }
836
837 return RX_DROP_MONITOR;
838 }
839
840 return RX_CONTINUE;
841 }
842
843
844 static ieee80211_rx_result debug_noinline
845 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
846 {
847 struct sk_buff *skb = rx->skb;
848 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
849 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
850 int keyidx;
851 int hdrlen;
852 ieee80211_rx_result result = RX_DROP_UNUSABLE;
853 struct ieee80211_key *sta_ptk = NULL;
854 int mmie_keyidx = -1;
855 __le16 fc;
856
857 /*
858 * Key selection 101
859 *
860 * There are four types of keys:
861 * - GTK (group keys)
862 * - IGTK (group keys for management frames)
863 * - PTK (pairwise keys)
864 * - STK (station-to-station pairwise keys)
865 *
866 * When selecting a key, we have to distinguish between multicast
867 * (including broadcast) and unicast frames, the latter can only
868 * use PTKs and STKs while the former always use GTKs and IGTKs.
869 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
870 * unicast frames can also use key indices like GTKs. Hence, if we
871 * don't have a PTK/STK we check the key index for a WEP key.
872 *
873 * Note that in a regular BSS, multicast frames are sent by the
874 * AP only, associated stations unicast the frame to the AP first
875 * which then multicasts it on their behalf.
876 *
877 * There is also a slight problem in IBSS mode: GTKs are negotiated
878 * with each station, that is something we don't currently handle.
879 * The spec seems to expect that one negotiates the same key with
880 * every station but there's no such requirement; VLANs could be
881 * possible.
882 */
883
884 /*
885 * No point in finding a key and decrypting if the frame is neither
886 * addressed to us nor a multicast frame.
887 */
888 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
889 return RX_CONTINUE;
890
891 /* start without a key */
892 rx->key = NULL;
893
894 if (rx->sta)
895 sta_ptk = rcu_dereference(rx->sta->ptk);
896
897 fc = hdr->frame_control;
898
899 if (!ieee80211_has_protected(fc))
900 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
901
902 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
903 rx->key = sta_ptk;
904 if ((status->flag & RX_FLAG_DECRYPTED) &&
905 (status->flag & RX_FLAG_IV_STRIPPED))
906 return RX_CONTINUE;
907 /* Skip decryption if the frame is not protected. */
908 if (!ieee80211_has_protected(fc))
909 return RX_CONTINUE;
910 } else if (mmie_keyidx >= 0) {
911 /* Broadcast/multicast robust management frame / BIP */
912 if ((status->flag & RX_FLAG_DECRYPTED) &&
913 (status->flag & RX_FLAG_IV_STRIPPED))
914 return RX_CONTINUE;
915
916 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
917 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
918 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
919 if (rx->sta)
920 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
921 if (!rx->key)
922 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
923 } else if (!ieee80211_has_protected(fc)) {
924 /*
925 * The frame was not protected, so skip decryption. However, we
926 * need to set rx->key if there is a key that could have been
927 * used so that the frame may be dropped if encryption would
928 * have been expected.
929 */
930 struct ieee80211_key *key = NULL;
931 struct ieee80211_sub_if_data *sdata = rx->sdata;
932 int i;
933
934 if (ieee80211_is_mgmt(fc) &&
935 is_multicast_ether_addr(hdr->addr1) &&
936 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
937 rx->key = key;
938 else {
939 if (rx->sta) {
940 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
941 key = rcu_dereference(rx->sta->gtk[i]);
942 if (key)
943 break;
944 }
945 }
946 if (!key) {
947 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
948 key = rcu_dereference(sdata->keys[i]);
949 if (key)
950 break;
951 }
952 }
953 if (key)
954 rx->key = key;
955 }
956 return RX_CONTINUE;
957 } else {
958 u8 keyid;
959 /*
960 * The device doesn't give us the IV so we won't be
961 * able to look up the key. That's ok though, we
962 * don't need to decrypt the frame, we just won't
963 * be able to keep statistics accurate.
964 * Except for key threshold notifications, should
965 * we somehow allow the driver to tell us which key
966 * the hardware used if this flag is set?
967 */
968 if ((status->flag & RX_FLAG_DECRYPTED) &&
969 (status->flag & RX_FLAG_IV_STRIPPED))
970 return RX_CONTINUE;
971
972 hdrlen = ieee80211_hdrlen(fc);
973
974 if (rx->skb->len < 8 + hdrlen)
975 return RX_DROP_UNUSABLE; /* TODO: count this? */
976
977 /*
978 * no need to call ieee80211_wep_get_keyidx,
979 * it verifies a bunch of things we've done already
980 */
981 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
982 keyidx = keyid >> 6;
983
984 /* check per-station GTK first, if multicast packet */
985 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
986 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
987
988 /* if not found, try default key */
989 if (!rx->key) {
990 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
991
992 /*
993 * RSNA-protected unicast frames should always be
994 * sent with pairwise or station-to-station keys,
995 * but for WEP we allow using a key index as well.
996 */
997 if (rx->key &&
998 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
999 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1000 !is_multicast_ether_addr(hdr->addr1))
1001 rx->key = NULL;
1002 }
1003 }
1004
1005 if (rx->key) {
1006 rx->key->tx_rx_count++;
1007 /* TODO: add threshold stuff again */
1008 } else {
1009 return RX_DROP_MONITOR;
1010 }
1011
1012 if (skb_linearize(rx->skb))
1013 return RX_DROP_UNUSABLE;
1014 /* the hdr variable is invalid now! */
1015
1016 switch (rx->key->conf.cipher) {
1017 case WLAN_CIPHER_SUITE_WEP40:
1018 case WLAN_CIPHER_SUITE_WEP104:
1019 /* Check for weak IVs if possible */
1020 if (rx->sta && ieee80211_is_data(fc) &&
1021 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1022 !(status->flag & RX_FLAG_DECRYPTED)) &&
1023 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1024 rx->sta->wep_weak_iv_count++;
1025
1026 result = ieee80211_crypto_wep_decrypt(rx);
1027 break;
1028 case WLAN_CIPHER_SUITE_TKIP:
1029 result = ieee80211_crypto_tkip_decrypt(rx);
1030 break;
1031 case WLAN_CIPHER_SUITE_CCMP:
1032 result = ieee80211_crypto_ccmp_decrypt(rx);
1033 break;
1034 case WLAN_CIPHER_SUITE_AES_CMAC:
1035 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1036 break;
1037 default:
1038 /*
1039 * We can reach here only with HW-only algorithms
1040 * but why didn't it decrypt the frame?!
1041 */
1042 return RX_DROP_UNUSABLE;
1043 }
1044
1045 /* either the frame has been decrypted or will be dropped */
1046 status->flag |= RX_FLAG_DECRYPTED;
1047
1048 return result;
1049 }
1050
1051 static ieee80211_rx_result debug_noinline
1052 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1053 {
1054 struct ieee80211_local *local;
1055 struct ieee80211_hdr *hdr;
1056 struct sk_buff *skb;
1057
1058 local = rx->local;
1059 skb = rx->skb;
1060 hdr = (struct ieee80211_hdr *) skb->data;
1061
1062 if (!local->pspolling)
1063 return RX_CONTINUE;
1064
1065 if (!ieee80211_has_fromds(hdr->frame_control))
1066 /* this is not from AP */
1067 return RX_CONTINUE;
1068
1069 if (!ieee80211_is_data(hdr->frame_control))
1070 return RX_CONTINUE;
1071
1072 if (!ieee80211_has_moredata(hdr->frame_control)) {
1073 /* AP has no more frames buffered for us */
1074 local->pspolling = false;
1075 return RX_CONTINUE;
1076 }
1077
1078 /* more data bit is set, let's request a new frame from the AP */
1079 ieee80211_send_pspoll(local, rx->sdata);
1080
1081 return RX_CONTINUE;
1082 }
1083
1084 static void ap_sta_ps_start(struct sta_info *sta)
1085 {
1086 struct ieee80211_sub_if_data *sdata = sta->sdata;
1087 struct ieee80211_local *local = sdata->local;
1088
1089 atomic_inc(&sdata->bss->num_sta_ps);
1090 set_sta_flags(sta, WLAN_STA_PS_STA);
1091 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1092 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1093 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1094 sdata->name, sta->sta.addr, sta->sta.aid);
1095 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1096 }
1097
1098 static void ap_sta_ps_end(struct sta_info *sta)
1099 {
1100 struct ieee80211_sub_if_data *sdata = sta->sdata;
1101
1102 atomic_dec(&sdata->bss->num_sta_ps);
1103
1104 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1105 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1106 sdata->name, sta->sta.addr, sta->sta.aid);
1107 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1108
1109 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1110 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1111 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1112 sdata->name, sta->sta.addr, sta->sta.aid);
1113 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1114 return;
1115 }
1116
1117 ieee80211_sta_ps_deliver_wakeup(sta);
1118 }
1119
1120 static ieee80211_rx_result debug_noinline
1121 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1122 {
1123 struct sta_info *sta = rx->sta;
1124 struct sk_buff *skb = rx->skb;
1125 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1126 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1127
1128 if (!sta)
1129 return RX_CONTINUE;
1130
1131 /*
1132 * Update last_rx only for IBSS packets which are for the current
1133 * BSSID to avoid keeping the current IBSS network alive in cases
1134 * where other STAs start using different BSSID.
1135 */
1136 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1137 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1138 NL80211_IFTYPE_ADHOC);
1139 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1140 sta->last_rx = jiffies;
1141 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1142 /*
1143 * Mesh beacons will update last_rx when if they are found to
1144 * match the current local configuration when processed.
1145 */
1146 sta->last_rx = jiffies;
1147 }
1148
1149 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1150 return RX_CONTINUE;
1151
1152 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1153 ieee80211_sta_rx_notify(rx->sdata, hdr);
1154
1155 sta->rx_fragments++;
1156 sta->rx_bytes += rx->skb->len;
1157 sta->last_signal = status->signal;
1158 ewma_add(&sta->avg_signal, -status->signal);
1159
1160 /*
1161 * Change STA power saving mode only at the end of a frame
1162 * exchange sequence.
1163 */
1164 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1165 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1166 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1167 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1168 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1169 /*
1170 * Ignore doze->wake transitions that are
1171 * indicated by non-data frames, the standard
1172 * is unclear here, but for example going to
1173 * PS mode and then scanning would cause a
1174 * doze->wake transition for the probe request,
1175 * and that is clearly undesirable.
1176 */
1177 if (ieee80211_is_data(hdr->frame_control) &&
1178 !ieee80211_has_pm(hdr->frame_control))
1179 ap_sta_ps_end(sta);
1180 } else {
1181 if (ieee80211_has_pm(hdr->frame_control))
1182 ap_sta_ps_start(sta);
1183 }
1184 }
1185
1186 /*
1187 * Drop (qos-)data::nullfunc frames silently, since they
1188 * are used only to control station power saving mode.
1189 */
1190 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1191 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1192 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1193
1194 /*
1195 * If we receive a 4-addr nullfunc frame from a STA
1196 * that was not moved to a 4-addr STA vlan yet, drop
1197 * the frame to the monitor interface, to make sure
1198 * that hostapd sees it
1199 */
1200 if (ieee80211_has_a4(hdr->frame_control) &&
1201 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1202 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1203 !rx->sdata->u.vlan.sta)))
1204 return RX_DROP_MONITOR;
1205 /*
1206 * Update counter and free packet here to avoid
1207 * counting this as a dropped packed.
1208 */
1209 sta->rx_packets++;
1210 dev_kfree_skb(rx->skb);
1211 return RX_QUEUED;
1212 }
1213
1214 return RX_CONTINUE;
1215 } /* ieee80211_rx_h_sta_process */
1216
1217 static inline struct ieee80211_fragment_entry *
1218 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1219 unsigned int frag, unsigned int seq, int rx_queue,
1220 struct sk_buff **skb)
1221 {
1222 struct ieee80211_fragment_entry *entry;
1223 int idx;
1224
1225 idx = sdata->fragment_next;
1226 entry = &sdata->fragments[sdata->fragment_next++];
1227 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1228 sdata->fragment_next = 0;
1229
1230 if (!skb_queue_empty(&entry->skb_list)) {
1231 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1232 struct ieee80211_hdr *hdr =
1233 (struct ieee80211_hdr *) entry->skb_list.next->data;
1234 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1235 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1236 "addr1=%pM addr2=%pM\n",
1237 sdata->name, idx,
1238 jiffies - entry->first_frag_time, entry->seq,
1239 entry->last_frag, hdr->addr1, hdr->addr2);
1240 #endif
1241 __skb_queue_purge(&entry->skb_list);
1242 }
1243
1244 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1245 *skb = NULL;
1246 entry->first_frag_time = jiffies;
1247 entry->seq = seq;
1248 entry->rx_queue = rx_queue;
1249 entry->last_frag = frag;
1250 entry->ccmp = 0;
1251 entry->extra_len = 0;
1252
1253 return entry;
1254 }
1255
1256 static inline struct ieee80211_fragment_entry *
1257 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1258 unsigned int frag, unsigned int seq,
1259 int rx_queue, struct ieee80211_hdr *hdr)
1260 {
1261 struct ieee80211_fragment_entry *entry;
1262 int i, idx;
1263
1264 idx = sdata->fragment_next;
1265 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1266 struct ieee80211_hdr *f_hdr;
1267
1268 idx--;
1269 if (idx < 0)
1270 idx = IEEE80211_FRAGMENT_MAX - 1;
1271
1272 entry = &sdata->fragments[idx];
1273 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1274 entry->rx_queue != rx_queue ||
1275 entry->last_frag + 1 != frag)
1276 continue;
1277
1278 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1279
1280 /*
1281 * Check ftype and addresses are equal, else check next fragment
1282 */
1283 if (((hdr->frame_control ^ f_hdr->frame_control) &
1284 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1285 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1286 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1287 continue;
1288
1289 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1290 __skb_queue_purge(&entry->skb_list);
1291 continue;
1292 }
1293 return entry;
1294 }
1295
1296 return NULL;
1297 }
1298
1299 static ieee80211_rx_result debug_noinline
1300 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1301 {
1302 struct ieee80211_hdr *hdr;
1303 u16 sc;
1304 __le16 fc;
1305 unsigned int frag, seq;
1306 struct ieee80211_fragment_entry *entry;
1307 struct sk_buff *skb;
1308 struct ieee80211_rx_status *status;
1309
1310 hdr = (struct ieee80211_hdr *)rx->skb->data;
1311 fc = hdr->frame_control;
1312 sc = le16_to_cpu(hdr->seq_ctrl);
1313 frag = sc & IEEE80211_SCTL_FRAG;
1314
1315 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1316 (rx->skb)->len < 24 ||
1317 is_multicast_ether_addr(hdr->addr1))) {
1318 /* not fragmented */
1319 goto out;
1320 }
1321 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1322
1323 if (skb_linearize(rx->skb))
1324 return RX_DROP_UNUSABLE;
1325
1326 /*
1327 * skb_linearize() might change the skb->data and
1328 * previously cached variables (in this case, hdr) need to
1329 * be refreshed with the new data.
1330 */
1331 hdr = (struct ieee80211_hdr *)rx->skb->data;
1332 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1333
1334 if (frag == 0) {
1335 /* This is the first fragment of a new frame. */
1336 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1337 rx->queue, &(rx->skb));
1338 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1339 ieee80211_has_protected(fc)) {
1340 int queue = ieee80211_is_mgmt(fc) ?
1341 NUM_RX_DATA_QUEUES : rx->queue;
1342 /* Store CCMP PN so that we can verify that the next
1343 * fragment has a sequential PN value. */
1344 entry->ccmp = 1;
1345 memcpy(entry->last_pn,
1346 rx->key->u.ccmp.rx_pn[queue],
1347 CCMP_PN_LEN);
1348 }
1349 return RX_QUEUED;
1350 }
1351
1352 /* This is a fragment for a frame that should already be pending in
1353 * fragment cache. Add this fragment to the end of the pending entry.
1354 */
1355 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1356 if (!entry) {
1357 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1358 return RX_DROP_MONITOR;
1359 }
1360
1361 /* Verify that MPDUs within one MSDU have sequential PN values.
1362 * (IEEE 802.11i, 8.3.3.4.5) */
1363 if (entry->ccmp) {
1364 int i;
1365 u8 pn[CCMP_PN_LEN], *rpn;
1366 int queue;
1367 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1368 return RX_DROP_UNUSABLE;
1369 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1370 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1371 pn[i]++;
1372 if (pn[i])
1373 break;
1374 }
1375 queue = ieee80211_is_mgmt(fc) ?
1376 NUM_RX_DATA_QUEUES : rx->queue;
1377 rpn = rx->key->u.ccmp.rx_pn[queue];
1378 if (memcmp(pn, rpn, CCMP_PN_LEN))
1379 return RX_DROP_UNUSABLE;
1380 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1381 }
1382
1383 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1384 __skb_queue_tail(&entry->skb_list, rx->skb);
1385 entry->last_frag = frag;
1386 entry->extra_len += rx->skb->len;
1387 if (ieee80211_has_morefrags(fc)) {
1388 rx->skb = NULL;
1389 return RX_QUEUED;
1390 }
1391
1392 rx->skb = __skb_dequeue(&entry->skb_list);
1393 if (skb_tailroom(rx->skb) < entry->extra_len) {
1394 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1395 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1396 GFP_ATOMIC))) {
1397 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1398 __skb_queue_purge(&entry->skb_list);
1399 return RX_DROP_UNUSABLE;
1400 }
1401 }
1402 while ((skb = __skb_dequeue(&entry->skb_list))) {
1403 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1404 dev_kfree_skb(skb);
1405 }
1406
1407 /* Complete frame has been reassembled - process it now */
1408 status = IEEE80211_SKB_RXCB(rx->skb);
1409 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1410
1411 out:
1412 if (rx->sta)
1413 rx->sta->rx_packets++;
1414 if (is_multicast_ether_addr(hdr->addr1))
1415 rx->local->dot11MulticastReceivedFrameCount++;
1416 else
1417 ieee80211_led_rx(rx->local);
1418 return RX_CONTINUE;
1419 }
1420
1421 static ieee80211_rx_result debug_noinline
1422 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1423 {
1424 struct ieee80211_sub_if_data *sdata = rx->sdata;
1425 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1426 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1427
1428 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1429 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1430 return RX_CONTINUE;
1431
1432 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1433 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1434 return RX_DROP_UNUSABLE;
1435
1436 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1437 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1438 else
1439 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1440
1441 /* Free PS Poll skb here instead of returning RX_DROP that would
1442 * count as an dropped frame. */
1443 dev_kfree_skb(rx->skb);
1444
1445 return RX_QUEUED;
1446 }
1447
1448 static ieee80211_rx_result debug_noinline
1449 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1450 {
1451 u8 *data = rx->skb->data;
1452 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1453
1454 if (!ieee80211_is_data_qos(hdr->frame_control))
1455 return RX_CONTINUE;
1456
1457 /* remove the qos control field, update frame type and meta-data */
1458 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1459 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1460 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1461 /* change frame type to non QOS */
1462 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1463
1464 return RX_CONTINUE;
1465 }
1466
1467 static int
1468 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1469 {
1470 if (unlikely(!rx->sta ||
1471 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1472 return -EACCES;
1473
1474 return 0;
1475 }
1476
1477 static int
1478 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1479 {
1480 struct sk_buff *skb = rx->skb;
1481 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1482
1483 /*
1484 * Pass through unencrypted frames if the hardware has
1485 * decrypted them already.
1486 */
1487 if (status->flag & RX_FLAG_DECRYPTED)
1488 return 0;
1489
1490 /* Drop unencrypted frames if key is set. */
1491 if (unlikely(!ieee80211_has_protected(fc) &&
1492 !ieee80211_is_nullfunc(fc) &&
1493 ieee80211_is_data(fc) &&
1494 (rx->key || rx->sdata->drop_unencrypted)))
1495 return -EACCES;
1496
1497 return 0;
1498 }
1499
1500 static int
1501 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1502 {
1503 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1504 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1505 __le16 fc = hdr->frame_control;
1506
1507 /*
1508 * Pass through unencrypted frames if the hardware has
1509 * decrypted them already.
1510 */
1511 if (status->flag & RX_FLAG_DECRYPTED)
1512 return 0;
1513
1514 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1515 if (unlikely(!ieee80211_has_protected(fc) &&
1516 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1517 rx->key)) {
1518 if (ieee80211_is_deauth(fc))
1519 cfg80211_send_unprot_deauth(rx->sdata->dev,
1520 rx->skb->data,
1521 rx->skb->len);
1522 else if (ieee80211_is_disassoc(fc))
1523 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1524 rx->skb->data,
1525 rx->skb->len);
1526 return -EACCES;
1527 }
1528 /* BIP does not use Protected field, so need to check MMIE */
1529 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1530 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1531 if (ieee80211_is_deauth(fc))
1532 cfg80211_send_unprot_deauth(rx->sdata->dev,
1533 rx->skb->data,
1534 rx->skb->len);
1535 else if (ieee80211_is_disassoc(fc))
1536 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1537 rx->skb->data,
1538 rx->skb->len);
1539 return -EACCES;
1540 }
1541 /*
1542 * When using MFP, Action frames are not allowed prior to
1543 * having configured keys.
1544 */
1545 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1546 ieee80211_is_robust_mgmt_frame(
1547 (struct ieee80211_hdr *) rx->skb->data)))
1548 return -EACCES;
1549 }
1550
1551 return 0;
1552 }
1553
1554 static int
1555 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1556 {
1557 struct ieee80211_sub_if_data *sdata = rx->sdata;
1558 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1559
1560 if (ieee80211_has_a4(hdr->frame_control) &&
1561 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1562 return -1;
1563
1564 if (is_multicast_ether_addr(hdr->addr1) &&
1565 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1566 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1567 return -1;
1568
1569 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1570 }
1571
1572 /*
1573 * requires that rx->skb is a frame with ethernet header
1574 */
1575 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1576 {
1577 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1578 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1579 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1580
1581 /*
1582 * Allow EAPOL frames to us/the PAE group address regardless
1583 * of whether the frame was encrypted or not.
1584 */
1585 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1586 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1587 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1588 return true;
1589
1590 if (ieee80211_802_1x_port_control(rx) ||
1591 ieee80211_drop_unencrypted(rx, fc))
1592 return false;
1593
1594 return true;
1595 }
1596
1597 /*
1598 * requires that rx->skb is a frame with ethernet header
1599 */
1600 static void
1601 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1602 {
1603 struct ieee80211_sub_if_data *sdata = rx->sdata;
1604 struct net_device *dev = sdata->dev;
1605 struct sk_buff *skb, *xmit_skb;
1606 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1607 struct sta_info *dsta;
1608 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1609
1610 skb = rx->skb;
1611 xmit_skb = NULL;
1612
1613 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1614 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1615 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1616 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1617 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1618 if (is_multicast_ether_addr(ehdr->h_dest)) {
1619 /*
1620 * send multicast frames both to higher layers in
1621 * local net stack and back to the wireless medium
1622 */
1623 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1624 if (!xmit_skb && net_ratelimit())
1625 printk(KERN_DEBUG "%s: failed to clone "
1626 "multicast frame\n", dev->name);
1627 } else {
1628 dsta = sta_info_get(sdata, skb->data);
1629 if (dsta) {
1630 /*
1631 * The destination station is associated to
1632 * this AP (in this VLAN), so send the frame
1633 * directly to it and do not pass it to local
1634 * net stack.
1635 */
1636 xmit_skb = skb;
1637 skb = NULL;
1638 }
1639 }
1640 }
1641
1642 if (skb) {
1643 int align __maybe_unused;
1644
1645 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1646 /*
1647 * 'align' will only take the values 0 or 2 here
1648 * since all frames are required to be aligned
1649 * to 2-byte boundaries when being passed to
1650 * mac80211. That also explains the __skb_push()
1651 * below.
1652 */
1653 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1654 if (align) {
1655 if (WARN_ON(skb_headroom(skb) < 3)) {
1656 dev_kfree_skb(skb);
1657 skb = NULL;
1658 } else {
1659 u8 *data = skb->data;
1660 size_t len = skb_headlen(skb);
1661 skb->data -= align;
1662 memmove(skb->data, data, len);
1663 skb_set_tail_pointer(skb, len);
1664 }
1665 }
1666 #endif
1667
1668 if (skb) {
1669 /* deliver to local stack */
1670 skb->protocol = eth_type_trans(skb, dev);
1671 memset(skb->cb, 0, sizeof(skb->cb));
1672 netif_receive_skb(skb);
1673 }
1674 }
1675
1676 if (xmit_skb) {
1677 /* send to wireless media */
1678 xmit_skb->protocol = htons(ETH_P_802_3);
1679 skb_reset_network_header(xmit_skb);
1680 skb_reset_mac_header(xmit_skb);
1681 dev_queue_xmit(xmit_skb);
1682 }
1683 }
1684
1685 static ieee80211_rx_result debug_noinline
1686 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1687 {
1688 struct net_device *dev = rx->sdata->dev;
1689 struct sk_buff *skb = rx->skb;
1690 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1691 __le16 fc = hdr->frame_control;
1692 struct sk_buff_head frame_list;
1693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1694
1695 if (unlikely(!ieee80211_is_data(fc)))
1696 return RX_CONTINUE;
1697
1698 if (unlikely(!ieee80211_is_data_present(fc)))
1699 return RX_DROP_MONITOR;
1700
1701 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1702 return RX_CONTINUE;
1703
1704 if (ieee80211_has_a4(hdr->frame_control) &&
1705 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1706 !rx->sdata->u.vlan.sta)
1707 return RX_DROP_UNUSABLE;
1708
1709 if (is_multicast_ether_addr(hdr->addr1) &&
1710 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1711 rx->sdata->u.vlan.sta) ||
1712 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1713 rx->sdata->u.mgd.use_4addr)))
1714 return RX_DROP_UNUSABLE;
1715
1716 skb->dev = dev;
1717 __skb_queue_head_init(&frame_list);
1718
1719 if (skb_linearize(skb))
1720 return RX_DROP_UNUSABLE;
1721
1722 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1723 rx->sdata->vif.type,
1724 rx->local->hw.extra_tx_headroom);
1725
1726 while (!skb_queue_empty(&frame_list)) {
1727 rx->skb = __skb_dequeue(&frame_list);
1728
1729 if (!ieee80211_frame_allowed(rx, fc)) {
1730 dev_kfree_skb(rx->skb);
1731 continue;
1732 }
1733 dev->stats.rx_packets++;
1734 dev->stats.rx_bytes += rx->skb->len;
1735
1736 ieee80211_deliver_skb(rx);
1737 }
1738
1739 return RX_QUEUED;
1740 }
1741
1742 #ifdef CONFIG_MAC80211_MESH
1743 static ieee80211_rx_result
1744 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1745 {
1746 struct ieee80211_hdr *hdr;
1747 struct ieee80211s_hdr *mesh_hdr;
1748 unsigned int hdrlen;
1749 struct sk_buff *skb = rx->skb, *fwd_skb;
1750 struct ieee80211_local *local = rx->local;
1751 struct ieee80211_sub_if_data *sdata = rx->sdata;
1752 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1753
1754 hdr = (struct ieee80211_hdr *) skb->data;
1755 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1756 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1757
1758 if (!ieee80211_is_data(hdr->frame_control))
1759 return RX_CONTINUE;
1760
1761 if (!mesh_hdr->ttl)
1762 /* illegal frame */
1763 return RX_DROP_MONITOR;
1764
1765 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1766 struct mesh_path *mppath;
1767 char *proxied_addr;
1768 char *mpp_addr;
1769
1770 if (is_multicast_ether_addr(hdr->addr1)) {
1771 mpp_addr = hdr->addr3;
1772 proxied_addr = mesh_hdr->eaddr1;
1773 } else {
1774 mpp_addr = hdr->addr4;
1775 proxied_addr = mesh_hdr->eaddr2;
1776 }
1777
1778 rcu_read_lock();
1779 mppath = mpp_path_lookup(proxied_addr, sdata);
1780 if (!mppath) {
1781 mpp_path_add(proxied_addr, mpp_addr, sdata);
1782 } else {
1783 spin_lock_bh(&mppath->state_lock);
1784 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1785 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1786 spin_unlock_bh(&mppath->state_lock);
1787 }
1788 rcu_read_unlock();
1789 }
1790
1791 /* Frame has reached destination. Don't forward */
1792 if (!is_multicast_ether_addr(hdr->addr1) &&
1793 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1794 return RX_CONTINUE;
1795
1796 mesh_hdr->ttl--;
1797
1798 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1799 if (!mesh_hdr->ttl)
1800 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1801 dropped_frames_ttl);
1802 else {
1803 struct ieee80211_hdr *fwd_hdr;
1804 struct ieee80211_tx_info *info;
1805
1806 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1807
1808 if (!fwd_skb && net_ratelimit())
1809 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1810 sdata->name);
1811 if (!fwd_skb)
1812 goto out;
1813
1814 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1815 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1816 info = IEEE80211_SKB_CB(fwd_skb);
1817 memset(info, 0, sizeof(*info));
1818 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1819 info->control.vif = &rx->sdata->vif;
1820 skb_set_queue_mapping(skb,
1821 ieee80211_select_queue(rx->sdata, fwd_skb));
1822 ieee80211_set_qos_hdr(local, skb);
1823 if (is_multicast_ether_addr(fwd_hdr->addr1))
1824 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1825 fwded_mcast);
1826 else {
1827 int err;
1828 /*
1829 * Save TA to addr1 to send TA a path error if a
1830 * suitable next hop is not found
1831 */
1832 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1833 ETH_ALEN);
1834 err = mesh_nexthop_lookup(fwd_skb, sdata);
1835 /* Failed to immediately resolve next hop:
1836 * fwded frame was dropped or will be added
1837 * later to the pending skb queue. */
1838 if (err)
1839 return RX_DROP_MONITOR;
1840
1841 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1842 fwded_unicast);
1843 }
1844 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1845 fwded_frames);
1846 ieee80211_add_pending_skb(local, fwd_skb);
1847 }
1848 }
1849
1850 out:
1851 if (is_multicast_ether_addr(hdr->addr1) ||
1852 sdata->dev->flags & IFF_PROMISC)
1853 return RX_CONTINUE;
1854 else
1855 return RX_DROP_MONITOR;
1856 }
1857 #endif
1858
1859 static ieee80211_rx_result debug_noinline
1860 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1861 {
1862 struct ieee80211_sub_if_data *sdata = rx->sdata;
1863 struct ieee80211_local *local = rx->local;
1864 struct net_device *dev = sdata->dev;
1865 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1866 __le16 fc = hdr->frame_control;
1867 int err;
1868
1869 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1870 return RX_CONTINUE;
1871
1872 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1873 return RX_DROP_MONITOR;
1874
1875 /*
1876 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1877 * that a 4-addr station can be detected and moved into a separate VLAN
1878 */
1879 if (ieee80211_has_a4(hdr->frame_control) &&
1880 sdata->vif.type == NL80211_IFTYPE_AP)
1881 return RX_DROP_MONITOR;
1882
1883 err = __ieee80211_data_to_8023(rx);
1884 if (unlikely(err))
1885 return RX_DROP_UNUSABLE;
1886
1887 if (!ieee80211_frame_allowed(rx, fc))
1888 return RX_DROP_MONITOR;
1889
1890 rx->skb->dev = dev;
1891
1892 dev->stats.rx_packets++;
1893 dev->stats.rx_bytes += rx->skb->len;
1894
1895 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1896 !is_multicast_ether_addr(((struct ethhdr *)rx->skb->data)->h_dest)) {
1897 mod_timer(&local->dynamic_ps_timer, jiffies +
1898 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1899 }
1900
1901 ieee80211_deliver_skb(rx);
1902
1903 return RX_QUEUED;
1904 }
1905
1906 static ieee80211_rx_result debug_noinline
1907 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1908 {
1909 struct ieee80211_local *local = rx->local;
1910 struct ieee80211_hw *hw = &local->hw;
1911 struct sk_buff *skb = rx->skb;
1912 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1913 struct tid_ampdu_rx *tid_agg_rx;
1914 u16 start_seq_num;
1915 u16 tid;
1916
1917 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1918 return RX_CONTINUE;
1919
1920 if (ieee80211_is_back_req(bar->frame_control)) {
1921 struct {
1922 __le16 control, start_seq_num;
1923 } __packed bar_data;
1924
1925 if (!rx->sta)
1926 return RX_DROP_MONITOR;
1927
1928 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1929 &bar_data, sizeof(bar_data)))
1930 return RX_DROP_MONITOR;
1931
1932 tid = le16_to_cpu(bar_data.control) >> 12;
1933
1934 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1935 if (!tid_agg_rx)
1936 return RX_DROP_MONITOR;
1937
1938 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1939
1940 /* reset session timer */
1941 if (tid_agg_rx->timeout)
1942 mod_timer(&tid_agg_rx->session_timer,
1943 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1944
1945 spin_lock(&tid_agg_rx->reorder_lock);
1946 /* release stored frames up to start of BAR */
1947 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
1948 spin_unlock(&tid_agg_rx->reorder_lock);
1949
1950 kfree_skb(skb);
1951 return RX_QUEUED;
1952 }
1953
1954 /*
1955 * After this point, we only want management frames,
1956 * so we can drop all remaining control frames to
1957 * cooked monitor interfaces.
1958 */
1959 return RX_DROP_MONITOR;
1960 }
1961
1962 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1963 struct ieee80211_mgmt *mgmt,
1964 size_t len)
1965 {
1966 struct ieee80211_local *local = sdata->local;
1967 struct sk_buff *skb;
1968 struct ieee80211_mgmt *resp;
1969
1970 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1971 /* Not to own unicast address */
1972 return;
1973 }
1974
1975 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1976 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1977 /* Not from the current AP or not associated yet. */
1978 return;
1979 }
1980
1981 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1982 /* Too short SA Query request frame */
1983 return;
1984 }
1985
1986 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1987 if (skb == NULL)
1988 return;
1989
1990 skb_reserve(skb, local->hw.extra_tx_headroom);
1991 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1992 memset(resp, 0, 24);
1993 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1994 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1995 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1996 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1997 IEEE80211_STYPE_ACTION);
1998 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1999 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2000 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2001 memcpy(resp->u.action.u.sa_query.trans_id,
2002 mgmt->u.action.u.sa_query.trans_id,
2003 WLAN_SA_QUERY_TR_ID_LEN);
2004
2005 ieee80211_tx_skb(sdata, skb);
2006 }
2007
2008 static ieee80211_rx_result debug_noinline
2009 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2010 {
2011 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2012 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2013
2014 /*
2015 * From here on, look only at management frames.
2016 * Data and control frames are already handled,
2017 * and unknown (reserved) frames are useless.
2018 */
2019 if (rx->skb->len < 24)
2020 return RX_DROP_MONITOR;
2021
2022 if (!ieee80211_is_mgmt(mgmt->frame_control))
2023 return RX_DROP_MONITOR;
2024
2025 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2026 return RX_DROP_MONITOR;
2027
2028 if (ieee80211_drop_unencrypted_mgmt(rx))
2029 return RX_DROP_UNUSABLE;
2030
2031 return RX_CONTINUE;
2032 }
2033
2034 static ieee80211_rx_result debug_noinline
2035 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2036 {
2037 struct ieee80211_local *local = rx->local;
2038 struct ieee80211_sub_if_data *sdata = rx->sdata;
2039 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2040 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2041 int len = rx->skb->len;
2042
2043 if (!ieee80211_is_action(mgmt->frame_control))
2044 return RX_CONTINUE;
2045
2046 /* drop too small frames */
2047 if (len < IEEE80211_MIN_ACTION_SIZE)
2048 return RX_DROP_UNUSABLE;
2049
2050 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2051 return RX_DROP_UNUSABLE;
2052
2053 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2054 return RX_DROP_UNUSABLE;
2055
2056 switch (mgmt->u.action.category) {
2057 case WLAN_CATEGORY_BACK:
2058 /*
2059 * The aggregation code is not prepared to handle
2060 * anything but STA/AP due to the BSSID handling;
2061 * IBSS could work in the code but isn't supported
2062 * by drivers or the standard.
2063 */
2064 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2065 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2066 sdata->vif.type != NL80211_IFTYPE_AP)
2067 break;
2068
2069 /* verify action_code is present */
2070 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2071 break;
2072
2073 switch (mgmt->u.action.u.addba_req.action_code) {
2074 case WLAN_ACTION_ADDBA_REQ:
2075 if (len < (IEEE80211_MIN_ACTION_SIZE +
2076 sizeof(mgmt->u.action.u.addba_req)))
2077 goto invalid;
2078 break;
2079 case WLAN_ACTION_ADDBA_RESP:
2080 if (len < (IEEE80211_MIN_ACTION_SIZE +
2081 sizeof(mgmt->u.action.u.addba_resp)))
2082 goto invalid;
2083 break;
2084 case WLAN_ACTION_DELBA:
2085 if (len < (IEEE80211_MIN_ACTION_SIZE +
2086 sizeof(mgmt->u.action.u.delba)))
2087 goto invalid;
2088 break;
2089 default:
2090 goto invalid;
2091 }
2092
2093 goto queue;
2094 case WLAN_CATEGORY_SPECTRUM_MGMT:
2095 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2096 break;
2097
2098 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2099 break;
2100
2101 /* verify action_code is present */
2102 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2103 break;
2104
2105 switch (mgmt->u.action.u.measurement.action_code) {
2106 case WLAN_ACTION_SPCT_MSR_REQ:
2107 if (len < (IEEE80211_MIN_ACTION_SIZE +
2108 sizeof(mgmt->u.action.u.measurement)))
2109 break;
2110 ieee80211_process_measurement_req(sdata, mgmt, len);
2111 goto handled;
2112 case WLAN_ACTION_SPCT_CHL_SWITCH:
2113 if (len < (IEEE80211_MIN_ACTION_SIZE +
2114 sizeof(mgmt->u.action.u.chan_switch)))
2115 break;
2116
2117 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2118 break;
2119
2120 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2121 break;
2122
2123 goto queue;
2124 }
2125 break;
2126 case WLAN_CATEGORY_SA_QUERY:
2127 if (len < (IEEE80211_MIN_ACTION_SIZE +
2128 sizeof(mgmt->u.action.u.sa_query)))
2129 break;
2130
2131 switch (mgmt->u.action.u.sa_query.action) {
2132 case WLAN_ACTION_SA_QUERY_REQUEST:
2133 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2134 break;
2135 ieee80211_process_sa_query_req(sdata, mgmt, len);
2136 goto handled;
2137 }
2138 break;
2139 case WLAN_CATEGORY_MESH_PLINK:
2140 if (!ieee80211_vif_is_mesh(&sdata->vif))
2141 break;
2142 goto queue;
2143 case WLAN_CATEGORY_MESH_PATH_SEL:
2144 if (!mesh_path_sel_is_hwmp(sdata))
2145 break;
2146 goto queue;
2147 }
2148
2149 return RX_CONTINUE;
2150
2151 invalid:
2152 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2153 /* will return in the next handlers */
2154 return RX_CONTINUE;
2155
2156 handled:
2157 if (rx->sta)
2158 rx->sta->rx_packets++;
2159 dev_kfree_skb(rx->skb);
2160 return RX_QUEUED;
2161
2162 queue:
2163 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2164 skb_queue_tail(&sdata->skb_queue, rx->skb);
2165 ieee80211_queue_work(&local->hw, &sdata->work);
2166 if (rx->sta)
2167 rx->sta->rx_packets++;
2168 return RX_QUEUED;
2169 }
2170
2171 static ieee80211_rx_result debug_noinline
2172 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2173 {
2174 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2175
2176 /* skip known-bad action frames and return them in the next handler */
2177 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2178 return RX_CONTINUE;
2179
2180 /*
2181 * Getting here means the kernel doesn't know how to handle
2182 * it, but maybe userspace does ... include returned frames
2183 * so userspace can register for those to know whether ones
2184 * it transmitted were processed or returned.
2185 */
2186
2187 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2188 rx->skb->data, rx->skb->len,
2189 GFP_ATOMIC)) {
2190 if (rx->sta)
2191 rx->sta->rx_packets++;
2192 dev_kfree_skb(rx->skb);
2193 return RX_QUEUED;
2194 }
2195
2196
2197 return RX_CONTINUE;
2198 }
2199
2200 static ieee80211_rx_result debug_noinline
2201 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2202 {
2203 struct ieee80211_local *local = rx->local;
2204 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2205 struct sk_buff *nskb;
2206 struct ieee80211_sub_if_data *sdata = rx->sdata;
2207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2208
2209 if (!ieee80211_is_action(mgmt->frame_control))
2210 return RX_CONTINUE;
2211
2212 /*
2213 * For AP mode, hostapd is responsible for handling any action
2214 * frames that we didn't handle, including returning unknown
2215 * ones. For all other modes we will return them to the sender,
2216 * setting the 0x80 bit in the action category, as required by
2217 * 802.11-2007 7.3.1.11.
2218 * Newer versions of hostapd shall also use the management frame
2219 * registration mechanisms, but older ones still use cooked
2220 * monitor interfaces so push all frames there.
2221 */
2222 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2223 (sdata->vif.type == NL80211_IFTYPE_AP ||
2224 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2225 return RX_DROP_MONITOR;
2226
2227 /* do not return rejected action frames */
2228 if (mgmt->u.action.category & 0x80)
2229 return RX_DROP_UNUSABLE;
2230
2231 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2232 GFP_ATOMIC);
2233 if (nskb) {
2234 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2235
2236 nmgmt->u.action.category |= 0x80;
2237 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2238 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2239
2240 memset(nskb->cb, 0, sizeof(nskb->cb));
2241
2242 ieee80211_tx_skb(rx->sdata, nskb);
2243 }
2244 dev_kfree_skb(rx->skb);
2245 return RX_QUEUED;
2246 }
2247
2248 static ieee80211_rx_result debug_noinline
2249 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2250 {
2251 struct ieee80211_sub_if_data *sdata = rx->sdata;
2252 ieee80211_rx_result rxs;
2253 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2254 __le16 stype;
2255
2256 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2257 if (rxs != RX_CONTINUE)
2258 return rxs;
2259
2260 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2261
2262 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2263 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2264 sdata->vif.type != NL80211_IFTYPE_STATION)
2265 return RX_DROP_MONITOR;
2266
2267 switch (stype) {
2268 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2269 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2270 /* process for all: mesh, mlme, ibss */
2271 break;
2272 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2273 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2274 if (is_multicast_ether_addr(mgmt->da) &&
2275 !is_broadcast_ether_addr(mgmt->da))
2276 return RX_DROP_MONITOR;
2277
2278 /* process only for station */
2279 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2280 return RX_DROP_MONITOR;
2281 break;
2282 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2283 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2284 /* process only for ibss */
2285 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2286 return RX_DROP_MONITOR;
2287 break;
2288 default:
2289 return RX_DROP_MONITOR;
2290 }
2291
2292 /* queue up frame and kick off work to process it */
2293 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2294 skb_queue_tail(&sdata->skb_queue, rx->skb);
2295 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2296 if (rx->sta)
2297 rx->sta->rx_packets++;
2298
2299 return RX_QUEUED;
2300 }
2301
2302 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2303 struct ieee80211_rx_data *rx)
2304 {
2305 int keyidx;
2306 unsigned int hdrlen;
2307
2308 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2309 if (rx->skb->len >= hdrlen + 4)
2310 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2311 else
2312 keyidx = -1;
2313
2314 if (!rx->sta) {
2315 /*
2316 * Some hardware seem to generate incorrect Michael MIC
2317 * reports; ignore them to avoid triggering countermeasures.
2318 */
2319 return;
2320 }
2321
2322 if (!ieee80211_has_protected(hdr->frame_control))
2323 return;
2324
2325 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2326 /*
2327 * APs with pairwise keys should never receive Michael MIC
2328 * errors for non-zero keyidx because these are reserved for
2329 * group keys and only the AP is sending real multicast
2330 * frames in the BSS.
2331 */
2332 return;
2333 }
2334
2335 if (!ieee80211_is_data(hdr->frame_control) &&
2336 !ieee80211_is_auth(hdr->frame_control))
2337 return;
2338
2339 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2340 GFP_ATOMIC);
2341 }
2342
2343 /* TODO: use IEEE80211_RX_FRAGMENTED */
2344 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2345 struct ieee80211_rate *rate)
2346 {
2347 struct ieee80211_sub_if_data *sdata;
2348 struct ieee80211_local *local = rx->local;
2349 struct ieee80211_rtap_hdr {
2350 struct ieee80211_radiotap_header hdr;
2351 u8 flags;
2352 u8 rate_or_pad;
2353 __le16 chan_freq;
2354 __le16 chan_flags;
2355 } __packed *rthdr;
2356 struct sk_buff *skb = rx->skb, *skb2;
2357 struct net_device *prev_dev = NULL;
2358 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2359
2360 /*
2361 * If cooked monitor has been processed already, then
2362 * don't do it again. If not, set the flag.
2363 */
2364 if (rx->flags & IEEE80211_RX_CMNTR)
2365 goto out_free_skb;
2366 rx->flags |= IEEE80211_RX_CMNTR;
2367
2368 if (skb_headroom(skb) < sizeof(*rthdr) &&
2369 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2370 goto out_free_skb;
2371
2372 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2373 memset(rthdr, 0, sizeof(*rthdr));
2374 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2375 rthdr->hdr.it_present =
2376 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2377 (1 << IEEE80211_RADIOTAP_CHANNEL));
2378
2379 if (rate) {
2380 rthdr->rate_or_pad = rate->bitrate / 5;
2381 rthdr->hdr.it_present |=
2382 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2383 }
2384 rthdr->chan_freq = cpu_to_le16(status->freq);
2385
2386 if (status->band == IEEE80211_BAND_5GHZ)
2387 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2388 IEEE80211_CHAN_5GHZ);
2389 else
2390 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2391 IEEE80211_CHAN_2GHZ);
2392
2393 skb_set_mac_header(skb, 0);
2394 skb->ip_summed = CHECKSUM_UNNECESSARY;
2395 skb->pkt_type = PACKET_OTHERHOST;
2396 skb->protocol = htons(ETH_P_802_2);
2397
2398 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2399 if (!ieee80211_sdata_running(sdata))
2400 continue;
2401
2402 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2403 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2404 continue;
2405
2406 if (prev_dev) {
2407 skb2 = skb_clone(skb, GFP_ATOMIC);
2408 if (skb2) {
2409 skb2->dev = prev_dev;
2410 netif_receive_skb(skb2);
2411 }
2412 }
2413
2414 prev_dev = sdata->dev;
2415 sdata->dev->stats.rx_packets++;
2416 sdata->dev->stats.rx_bytes += skb->len;
2417 }
2418
2419 if (prev_dev) {
2420 skb->dev = prev_dev;
2421 netif_receive_skb(skb);
2422 return;
2423 }
2424
2425 out_free_skb:
2426 dev_kfree_skb(skb);
2427 }
2428
2429 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2430 ieee80211_rx_result res)
2431 {
2432 switch (res) {
2433 case RX_DROP_MONITOR:
2434 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2435 if (rx->sta)
2436 rx->sta->rx_dropped++;
2437 /* fall through */
2438 case RX_CONTINUE: {
2439 struct ieee80211_rate *rate = NULL;
2440 struct ieee80211_supported_band *sband;
2441 struct ieee80211_rx_status *status;
2442
2443 status = IEEE80211_SKB_RXCB((rx->skb));
2444
2445 sband = rx->local->hw.wiphy->bands[status->band];
2446 if (!(status->flag & RX_FLAG_HT))
2447 rate = &sband->bitrates[status->rate_idx];
2448
2449 ieee80211_rx_cooked_monitor(rx, rate);
2450 break;
2451 }
2452 case RX_DROP_UNUSABLE:
2453 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2454 if (rx->sta)
2455 rx->sta->rx_dropped++;
2456 dev_kfree_skb(rx->skb);
2457 break;
2458 case RX_QUEUED:
2459 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2460 break;
2461 }
2462 }
2463
2464 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2465 {
2466 ieee80211_rx_result res = RX_DROP_MONITOR;
2467 struct sk_buff *skb;
2468
2469 #define CALL_RXH(rxh) \
2470 do { \
2471 res = rxh(rx); \
2472 if (res != RX_CONTINUE) \
2473 goto rxh_next; \
2474 } while (0);
2475
2476 spin_lock(&rx->local->rx_skb_queue.lock);
2477 if (rx->local->running_rx_handler)
2478 goto unlock;
2479
2480 rx->local->running_rx_handler = true;
2481
2482 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2483 spin_unlock(&rx->local->rx_skb_queue.lock);
2484
2485 /*
2486 * all the other fields are valid across frames
2487 * that belong to an aMPDU since they are on the
2488 * same TID from the same station
2489 */
2490 rx->skb = skb;
2491 rx->flags = 0;
2492
2493 CALL_RXH(ieee80211_rx_h_decrypt)
2494 CALL_RXH(ieee80211_rx_h_check_more_data)
2495 CALL_RXH(ieee80211_rx_h_sta_process)
2496 CALL_RXH(ieee80211_rx_h_defragment)
2497 CALL_RXH(ieee80211_rx_h_ps_poll)
2498 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2499 /* must be after MMIC verify so header is counted in MPDU mic */
2500 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2501 CALL_RXH(ieee80211_rx_h_amsdu)
2502 #ifdef CONFIG_MAC80211_MESH
2503 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2504 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2505 #endif
2506 CALL_RXH(ieee80211_rx_h_data)
2507 CALL_RXH(ieee80211_rx_h_ctrl);
2508 CALL_RXH(ieee80211_rx_h_mgmt_check)
2509 CALL_RXH(ieee80211_rx_h_action)
2510 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2511 CALL_RXH(ieee80211_rx_h_action_return)
2512 CALL_RXH(ieee80211_rx_h_mgmt)
2513
2514 rxh_next:
2515 ieee80211_rx_handlers_result(rx, res);
2516 spin_lock(&rx->local->rx_skb_queue.lock);
2517 #undef CALL_RXH
2518 }
2519
2520 rx->local->running_rx_handler = false;
2521
2522 unlock:
2523 spin_unlock(&rx->local->rx_skb_queue.lock);
2524 }
2525
2526 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2527 {
2528 ieee80211_rx_result res = RX_DROP_MONITOR;
2529
2530 #define CALL_RXH(rxh) \
2531 do { \
2532 res = rxh(rx); \
2533 if (res != RX_CONTINUE) \
2534 goto rxh_next; \
2535 } while (0);
2536
2537 CALL_RXH(ieee80211_rx_h_passive_scan)
2538 CALL_RXH(ieee80211_rx_h_check)
2539
2540 ieee80211_rx_reorder_ampdu(rx);
2541
2542 ieee80211_rx_handlers(rx);
2543 return;
2544
2545 rxh_next:
2546 ieee80211_rx_handlers_result(rx, res);
2547
2548 #undef CALL_RXH
2549 }
2550
2551 /*
2552 * This function makes calls into the RX path, therefore
2553 * it has to be invoked under RCU read lock.
2554 */
2555 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2556 {
2557 struct ieee80211_rx_data rx = {
2558 .sta = sta,
2559 .sdata = sta->sdata,
2560 .local = sta->local,
2561 .queue = tid,
2562 };
2563 struct tid_ampdu_rx *tid_agg_rx;
2564
2565 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2566 if (!tid_agg_rx)
2567 return;
2568
2569 spin_lock(&tid_agg_rx->reorder_lock);
2570 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2571 spin_unlock(&tid_agg_rx->reorder_lock);
2572
2573 ieee80211_rx_handlers(&rx);
2574 }
2575
2576 /* main receive path */
2577
2578 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2579 struct ieee80211_hdr *hdr)
2580 {
2581 struct ieee80211_sub_if_data *sdata = rx->sdata;
2582 struct sk_buff *skb = rx->skb;
2583 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2584 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2585 int multicast = is_multicast_ether_addr(hdr->addr1);
2586
2587 switch (sdata->vif.type) {
2588 case NL80211_IFTYPE_STATION:
2589 if (!bssid && !sdata->u.mgd.use_4addr)
2590 return 0;
2591 if (!multicast &&
2592 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2593 if (!(sdata->dev->flags & IFF_PROMISC))
2594 return 0;
2595 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2596 }
2597 break;
2598 case NL80211_IFTYPE_ADHOC:
2599 if (!bssid)
2600 return 0;
2601 if (ieee80211_is_beacon(hdr->frame_control)) {
2602 return 1;
2603 }
2604 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2605 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2606 return 0;
2607 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2608 } else if (!multicast &&
2609 compare_ether_addr(sdata->vif.addr,
2610 hdr->addr1) != 0) {
2611 if (!(sdata->dev->flags & IFF_PROMISC))
2612 return 0;
2613 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2614 } else if (!rx->sta) {
2615 int rate_idx;
2616 if (status->flag & RX_FLAG_HT)
2617 rate_idx = 0; /* TODO: HT rates */
2618 else
2619 rate_idx = status->rate_idx;
2620 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2621 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2622 }
2623 break;
2624 case NL80211_IFTYPE_MESH_POINT:
2625 if (!multicast &&
2626 compare_ether_addr(sdata->vif.addr,
2627 hdr->addr1) != 0) {
2628 if (!(sdata->dev->flags & IFF_PROMISC))
2629 return 0;
2630
2631 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2632 }
2633 break;
2634 case NL80211_IFTYPE_AP_VLAN:
2635 case NL80211_IFTYPE_AP:
2636 if (!bssid) {
2637 if (compare_ether_addr(sdata->vif.addr,
2638 hdr->addr1))
2639 return 0;
2640 } else if (!ieee80211_bssid_match(bssid,
2641 sdata->vif.addr)) {
2642 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2643 return 0;
2644 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2645 }
2646 break;
2647 case NL80211_IFTYPE_WDS:
2648 if (bssid || !ieee80211_is_data(hdr->frame_control))
2649 return 0;
2650 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2651 return 0;
2652 break;
2653 default:
2654 /* should never get here */
2655 WARN_ON(1);
2656 break;
2657 }
2658
2659 return 1;
2660 }
2661
2662 /*
2663 * This function returns whether or not the SKB
2664 * was destined for RX processing or not, which,
2665 * if consume is true, is equivalent to whether
2666 * or not the skb was consumed.
2667 */
2668 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2669 struct sk_buff *skb, bool consume)
2670 {
2671 struct ieee80211_local *local = rx->local;
2672 struct ieee80211_sub_if_data *sdata = rx->sdata;
2673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2674 struct ieee80211_hdr *hdr = (void *)skb->data;
2675 int prepares;
2676
2677 rx->skb = skb;
2678 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2679 prepares = prepare_for_handlers(rx, hdr);
2680
2681 if (!prepares)
2682 return false;
2683
2684 if (status->flag & RX_FLAG_MMIC_ERROR) {
2685 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2686 ieee80211_rx_michael_mic_report(hdr, rx);
2687 return false;
2688 }
2689
2690 if (!consume) {
2691 skb = skb_copy(skb, GFP_ATOMIC);
2692 if (!skb) {
2693 if (net_ratelimit())
2694 wiphy_debug(local->hw.wiphy,
2695 "failed to copy multicast frame for %s\n",
2696 sdata->name);
2697 return true;
2698 }
2699
2700 rx->skb = skb;
2701 }
2702
2703 ieee80211_invoke_rx_handlers(rx);
2704 return true;
2705 }
2706
2707 /*
2708 * This is the actual Rx frames handler. as it blongs to Rx path it must
2709 * be called with rcu_read_lock protection.
2710 */
2711 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2712 struct sk_buff *skb)
2713 {
2714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2715 struct ieee80211_local *local = hw_to_local(hw);
2716 struct ieee80211_sub_if_data *sdata;
2717 struct ieee80211_hdr *hdr;
2718 __le16 fc;
2719 struct ieee80211_rx_data rx;
2720 struct ieee80211_sub_if_data *prev;
2721 struct sta_info *sta, *tmp, *prev_sta;
2722 int err = 0;
2723
2724 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2725 memset(&rx, 0, sizeof(rx));
2726 rx.skb = skb;
2727 rx.local = local;
2728
2729 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2730 local->dot11ReceivedFragmentCount++;
2731
2732 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2733 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2734 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2735
2736 if (ieee80211_is_mgmt(fc))
2737 err = skb_linearize(skb);
2738 else
2739 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2740
2741 if (err) {
2742 dev_kfree_skb(skb);
2743 return;
2744 }
2745
2746 hdr = (struct ieee80211_hdr *)skb->data;
2747 ieee80211_parse_qos(&rx);
2748 ieee80211_verify_alignment(&rx);
2749
2750 if (ieee80211_is_data(fc)) {
2751 prev_sta = NULL;
2752
2753 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2754 if (!prev_sta) {
2755 prev_sta = sta;
2756 continue;
2757 }
2758
2759 rx.sta = prev_sta;
2760 rx.sdata = prev_sta->sdata;
2761 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2762
2763 prev_sta = sta;
2764 }
2765
2766 if (prev_sta) {
2767 rx.sta = prev_sta;
2768 rx.sdata = prev_sta->sdata;
2769
2770 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2771 return;
2772 goto out;
2773 }
2774 }
2775
2776 prev = NULL;
2777
2778 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2779 if (!ieee80211_sdata_running(sdata))
2780 continue;
2781
2782 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2783 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2784 continue;
2785
2786 /*
2787 * frame is destined for this interface, but if it's
2788 * not also for the previous one we handle that after
2789 * the loop to avoid copying the SKB once too much
2790 */
2791
2792 if (!prev) {
2793 prev = sdata;
2794 continue;
2795 }
2796
2797 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2798 rx.sdata = prev;
2799 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2800
2801 prev = sdata;
2802 }
2803
2804 if (prev) {
2805 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2806 rx.sdata = prev;
2807
2808 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2809 return;
2810 }
2811
2812 out:
2813 dev_kfree_skb(skb);
2814 }
2815
2816 /*
2817 * This is the receive path handler. It is called by a low level driver when an
2818 * 802.11 MPDU is received from the hardware.
2819 */
2820 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2821 {
2822 struct ieee80211_local *local = hw_to_local(hw);
2823 struct ieee80211_rate *rate = NULL;
2824 struct ieee80211_supported_band *sband;
2825 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2826
2827 WARN_ON_ONCE(softirq_count() == 0);
2828
2829 if (WARN_ON(status->band < 0 ||
2830 status->band >= IEEE80211_NUM_BANDS))
2831 goto drop;
2832
2833 sband = local->hw.wiphy->bands[status->band];
2834 if (WARN_ON(!sband))
2835 goto drop;
2836
2837 /*
2838 * If we're suspending, it is possible although not too likely
2839 * that we'd be receiving frames after having already partially
2840 * quiesced the stack. We can't process such frames then since
2841 * that might, for example, cause stations to be added or other
2842 * driver callbacks be invoked.
2843 */
2844 if (unlikely(local->quiescing || local->suspended))
2845 goto drop;
2846
2847 /*
2848 * The same happens when we're not even started,
2849 * but that's worth a warning.
2850 */
2851 if (WARN_ON(!local->started))
2852 goto drop;
2853
2854 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2855 /*
2856 * Validate the rate, unless a PLCP error means that
2857 * we probably can't have a valid rate here anyway.
2858 */
2859
2860 if (status->flag & RX_FLAG_HT) {
2861 /*
2862 * rate_idx is MCS index, which can be [0-76]
2863 * as documented on:
2864 *
2865 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2866 *
2867 * Anything else would be some sort of driver or
2868 * hardware error. The driver should catch hardware
2869 * errors.
2870 */
2871 if (WARN((status->rate_idx < 0 ||
2872 status->rate_idx > 76),
2873 "Rate marked as an HT rate but passed "
2874 "status->rate_idx is not "
2875 "an MCS index [0-76]: %d (0x%02x)\n",
2876 status->rate_idx,
2877 status->rate_idx))
2878 goto drop;
2879 } else {
2880 if (WARN_ON(status->rate_idx < 0 ||
2881 status->rate_idx >= sband->n_bitrates))
2882 goto drop;
2883 rate = &sband->bitrates[status->rate_idx];
2884 }
2885 }
2886
2887 status->rx_flags = 0;
2888
2889 /*
2890 * key references and virtual interfaces are protected using RCU
2891 * and this requires that we are in a read-side RCU section during
2892 * receive processing
2893 */
2894 rcu_read_lock();
2895
2896 /*
2897 * Frames with failed FCS/PLCP checksum are not returned,
2898 * all other frames are returned without radiotap header
2899 * if it was previously present.
2900 * Also, frames with less than 16 bytes are dropped.
2901 */
2902 skb = ieee80211_rx_monitor(local, skb, rate);
2903 if (!skb) {
2904 rcu_read_unlock();
2905 return;
2906 }
2907
2908 __ieee80211_rx_handle_packet(hw, skb);
2909
2910 rcu_read_unlock();
2911
2912 return;
2913 drop:
2914 kfree_skb(skb);
2915 }
2916 EXPORT_SYMBOL(ieee80211_rx);
2917
2918 /* This is a version of the rx handler that can be called from hard irq
2919 * context. Post the skb on the queue and schedule the tasklet */
2920 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2921 {
2922 struct ieee80211_local *local = hw_to_local(hw);
2923
2924 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2925
2926 skb->pkt_type = IEEE80211_RX_MSG;
2927 skb_queue_tail(&local->skb_queue, skb);
2928 tasklet_schedule(&local->tasklet);
2929 }
2930 EXPORT_SYMBOL(ieee80211_rx_irqsafe);