]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/rx.c
Merge branch 'v4.13/sps' into v4.13/drivers
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
45 }
46
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
49 {
50 __le16 fc = hdr->frame_control;
51
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
55
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
62
63 return hdr->addr3;
64 }
65
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
75
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
85 }
86 }
87 }
88
89 return NULL;
90 }
91
92 /*
93 * monitor mode reception
94 *
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
97 */
98 static void remove_monitor_info(struct sk_buff *skb,
99 unsigned int present_fcs_len,
100 unsigned int rtap_vendor_space)
101 {
102 if (present_fcs_len)
103 __pskb_trim(skb, skb->len - present_fcs_len);
104 __pskb_pull(skb, rtap_vendor_space);
105 }
106
107 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
108 unsigned int rtap_vendor_space)
109 {
110 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
111 struct ieee80211_hdr *hdr;
112
113 hdr = (void *)(skb->data + rtap_vendor_space);
114
115 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
116 RX_FLAG_FAILED_PLCP_CRC |
117 RX_FLAG_ONLY_MONITOR))
118 return true;
119
120 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
121 return true;
122
123 if (ieee80211_is_ctl(hdr->frame_control) &&
124 !ieee80211_is_pspoll(hdr->frame_control) &&
125 !ieee80211_is_back_req(hdr->frame_control))
126 return true;
127
128 return false;
129 }
130
131 static int
132 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
133 struct ieee80211_rx_status *status,
134 struct sk_buff *skb)
135 {
136 int len;
137
138 /* always present fields */
139 len = sizeof(struct ieee80211_radiotap_header) + 8;
140
141 /* allocate extra bitmaps */
142 if (status->chains)
143 len += 4 * hweight8(status->chains);
144
145 if (ieee80211_have_rx_timestamp(status)) {
146 len = ALIGN(len, 8);
147 len += 8;
148 }
149 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
150 len += 1;
151
152 /* antenna field, if we don't have per-chain info */
153 if (!status->chains)
154 len += 1;
155
156 /* padding for RX_FLAGS if necessary */
157 len = ALIGN(len, 2);
158
159 if (status->encoding == RX_ENC_HT) /* HT info */
160 len += 3;
161
162 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
163 len = ALIGN(len, 4);
164 len += 8;
165 }
166
167 if (status->encoding == RX_ENC_VHT) {
168 len = ALIGN(len, 2);
169 len += 12;
170 }
171
172 if (local->hw.radiotap_timestamp.units_pos >= 0) {
173 len = ALIGN(len, 8);
174 len += 12;
175 }
176
177 if (status->chains) {
178 /* antenna and antenna signal fields */
179 len += 2 * hweight8(status->chains);
180 }
181
182 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
183 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
184
185 /* vendor presence bitmap */
186 len += 4;
187 /* alignment for fixed 6-byte vendor data header */
188 len = ALIGN(len, 2);
189 /* vendor data header */
190 len += 6;
191 if (WARN_ON(rtap->align == 0))
192 rtap->align = 1;
193 len = ALIGN(len, rtap->align);
194 len += rtap->len + rtap->pad;
195 }
196
197 return len;
198 }
199
200 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
201 struct sk_buff *skb,
202 int rtap_vendor_space)
203 {
204 struct {
205 struct ieee80211_hdr_3addr hdr;
206 u8 category;
207 u8 action_code;
208 } __packed action;
209
210 if (!sdata)
211 return;
212
213 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
214
215 if (skb->len < rtap_vendor_space + sizeof(action) +
216 VHT_MUMIMO_GROUPS_DATA_LEN)
217 return;
218
219 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
220 return;
221
222 skb_copy_bits(skb, rtap_vendor_space, &action, sizeof(action));
223
224 if (!ieee80211_is_action(action.hdr.frame_control))
225 return;
226
227 if (action.category != WLAN_CATEGORY_VHT)
228 return;
229
230 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
231 return;
232
233 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
234 return;
235
236 skb = skb_copy(skb, GFP_ATOMIC);
237 if (!skb)
238 return;
239
240 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
241 skb_queue_tail(&sdata->skb_queue, skb);
242 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
243 }
244
245 /*
246 * ieee80211_add_rx_radiotap_header - add radiotap header
247 *
248 * add a radiotap header containing all the fields which the hardware provided.
249 */
250 static void
251 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
252 struct sk_buff *skb,
253 struct ieee80211_rate *rate,
254 int rtap_len, bool has_fcs)
255 {
256 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
257 struct ieee80211_radiotap_header *rthdr;
258 unsigned char *pos;
259 __le32 *it_present;
260 u32 it_present_val;
261 u16 rx_flags = 0;
262 u16 channel_flags = 0;
263 int mpdulen, chain;
264 unsigned long chains = status->chains;
265 struct ieee80211_vendor_radiotap rtap = {};
266
267 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
268 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
269 /* rtap.len and rtap.pad are undone immediately */
270 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
271 }
272
273 mpdulen = skb->len;
274 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
275 mpdulen += FCS_LEN;
276
277 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
278 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
279 it_present = &rthdr->it_present;
280
281 /* radiotap header, set always present flags */
282 rthdr->it_len = cpu_to_le16(rtap_len);
283 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
284 BIT(IEEE80211_RADIOTAP_CHANNEL) |
285 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
286
287 if (!status->chains)
288 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
289
290 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
291 it_present_val |=
292 BIT(IEEE80211_RADIOTAP_EXT) |
293 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
294 put_unaligned_le32(it_present_val, it_present);
295 it_present++;
296 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
297 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
298 }
299
300 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
301 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
302 BIT(IEEE80211_RADIOTAP_EXT);
303 put_unaligned_le32(it_present_val, it_present);
304 it_present++;
305 it_present_val = rtap.present;
306 }
307
308 put_unaligned_le32(it_present_val, it_present);
309
310 pos = (void *)(it_present + 1);
311
312 /* the order of the following fields is important */
313
314 /* IEEE80211_RADIOTAP_TSFT */
315 if (ieee80211_have_rx_timestamp(status)) {
316 /* padding */
317 while ((pos - (u8 *)rthdr) & 7)
318 *pos++ = 0;
319 put_unaligned_le64(
320 ieee80211_calculate_rx_timestamp(local, status,
321 mpdulen, 0),
322 pos);
323 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
324 pos += 8;
325 }
326
327 /* IEEE80211_RADIOTAP_FLAGS */
328 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
329 *pos |= IEEE80211_RADIOTAP_F_FCS;
330 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
331 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
332 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
333 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
334 pos++;
335
336 /* IEEE80211_RADIOTAP_RATE */
337 if (!rate || status->encoding != RX_ENC_LEGACY) {
338 /*
339 * Without rate information don't add it. If we have,
340 * MCS information is a separate field in radiotap,
341 * added below. The byte here is needed as padding
342 * for the channel though, so initialise it to 0.
343 */
344 *pos = 0;
345 } else {
346 int shift = 0;
347 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
348 if (status->bw == RATE_INFO_BW_10)
349 shift = 1;
350 else if (status->bw == RATE_INFO_BW_5)
351 shift = 2;
352 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
353 }
354 pos++;
355
356 /* IEEE80211_RADIOTAP_CHANNEL */
357 put_unaligned_le16(status->freq, pos);
358 pos += 2;
359 if (status->bw == RATE_INFO_BW_10)
360 channel_flags |= IEEE80211_CHAN_HALF;
361 else if (status->bw == RATE_INFO_BW_5)
362 channel_flags |= IEEE80211_CHAN_QUARTER;
363
364 if (status->band == NL80211_BAND_5GHZ)
365 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
366 else if (status->encoding != RX_ENC_LEGACY)
367 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
368 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
369 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
370 else if (rate)
371 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
372 else
373 channel_flags |= IEEE80211_CHAN_2GHZ;
374 put_unaligned_le16(channel_flags, pos);
375 pos += 2;
376
377 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
378 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
379 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
380 *pos = status->signal;
381 rthdr->it_present |=
382 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
383 pos++;
384 }
385
386 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
387
388 if (!status->chains) {
389 /* IEEE80211_RADIOTAP_ANTENNA */
390 *pos = status->antenna;
391 pos++;
392 }
393
394 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
395
396 /* IEEE80211_RADIOTAP_RX_FLAGS */
397 /* ensure 2 byte alignment for the 2 byte field as required */
398 if ((pos - (u8 *)rthdr) & 1)
399 *pos++ = 0;
400 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
401 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
402 put_unaligned_le16(rx_flags, pos);
403 pos += 2;
404
405 if (status->encoding == RX_ENC_HT) {
406 unsigned int stbc;
407
408 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
409 *pos++ = local->hw.radiotap_mcs_details;
410 *pos = 0;
411 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
412 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
413 if (status->bw == RATE_INFO_BW_40)
414 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
415 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
416 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
417 if (status->enc_flags & RX_ENC_FLAG_LDPC)
418 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
419 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
420 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
421 pos++;
422 *pos++ = status->rate_idx;
423 }
424
425 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
426 u16 flags = 0;
427
428 /* ensure 4 byte alignment */
429 while ((pos - (u8 *)rthdr) & 3)
430 pos++;
431 rthdr->it_present |=
432 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
433 put_unaligned_le32(status->ampdu_reference, pos);
434 pos += 4;
435 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
436 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
437 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
438 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
439 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
440 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
441 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
442 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
443 put_unaligned_le16(flags, pos);
444 pos += 2;
445 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
446 *pos++ = status->ampdu_delimiter_crc;
447 else
448 *pos++ = 0;
449 *pos++ = 0;
450 }
451
452 if (status->encoding == RX_ENC_VHT) {
453 u16 known = local->hw.radiotap_vht_details;
454
455 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
456 put_unaligned_le16(known, pos);
457 pos += 2;
458 /* flags */
459 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
460 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
461 /* in VHT, STBC is binary */
462 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
463 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
464 if (status->enc_flags & RX_ENC_FLAG_BF)
465 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
466 pos++;
467 /* bandwidth */
468 switch (status->bw) {
469 case RATE_INFO_BW_80:
470 *pos++ = 4;
471 break;
472 case RATE_INFO_BW_160:
473 *pos++ = 11;
474 break;
475 case RATE_INFO_BW_40:
476 *pos++ = 1;
477 break;
478 default:
479 *pos++ = 0;
480 }
481 /* MCS/NSS */
482 *pos = (status->rate_idx << 4) | status->nss;
483 pos += 4;
484 /* coding field */
485 if (status->enc_flags & RX_ENC_FLAG_LDPC)
486 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
487 pos++;
488 /* group ID */
489 pos++;
490 /* partial_aid */
491 pos += 2;
492 }
493
494 if (local->hw.radiotap_timestamp.units_pos >= 0) {
495 u16 accuracy = 0;
496 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
497
498 rthdr->it_present |=
499 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
500
501 /* ensure 8 byte alignment */
502 while ((pos - (u8 *)rthdr) & 7)
503 pos++;
504
505 put_unaligned_le64(status->device_timestamp, pos);
506 pos += sizeof(u64);
507
508 if (local->hw.radiotap_timestamp.accuracy >= 0) {
509 accuracy = local->hw.radiotap_timestamp.accuracy;
510 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
511 }
512 put_unaligned_le16(accuracy, pos);
513 pos += sizeof(u16);
514
515 *pos++ = local->hw.radiotap_timestamp.units_pos;
516 *pos++ = flags;
517 }
518
519 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
520 *pos++ = status->chain_signal[chain];
521 *pos++ = chain;
522 }
523
524 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
525 /* ensure 2 byte alignment for the vendor field as required */
526 if ((pos - (u8 *)rthdr) & 1)
527 *pos++ = 0;
528 *pos++ = rtap.oui[0];
529 *pos++ = rtap.oui[1];
530 *pos++ = rtap.oui[2];
531 *pos++ = rtap.subns;
532 put_unaligned_le16(rtap.len, pos);
533 pos += 2;
534 /* align the actual payload as requested */
535 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
536 *pos++ = 0;
537 /* data (and possible padding) already follows */
538 }
539 }
540
541 static struct sk_buff *
542 ieee80211_make_monitor_skb(struct ieee80211_local *local,
543 struct sk_buff **origskb,
544 struct ieee80211_rate *rate,
545 int rtap_vendor_space, bool use_origskb)
546 {
547 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
548 int rt_hdrlen, needed_headroom;
549 struct sk_buff *skb;
550
551 /* room for the radiotap header based on driver features */
552 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
553 needed_headroom = rt_hdrlen - rtap_vendor_space;
554
555 if (use_origskb) {
556 /* only need to expand headroom if necessary */
557 skb = *origskb;
558 *origskb = NULL;
559
560 /*
561 * This shouldn't trigger often because most devices have an
562 * RX header they pull before we get here, and that should
563 * be big enough for our radiotap information. We should
564 * probably export the length to drivers so that we can have
565 * them allocate enough headroom to start with.
566 */
567 if (skb_headroom(skb) < needed_headroom &&
568 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
569 dev_kfree_skb(skb);
570 return NULL;
571 }
572 } else {
573 /*
574 * Need to make a copy and possibly remove radiotap header
575 * and FCS from the original.
576 */
577 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
578
579 if (!skb)
580 return NULL;
581 }
582
583 /* prepend radiotap information */
584 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
585
586 skb_reset_mac_header(skb);
587 skb->ip_summed = CHECKSUM_UNNECESSARY;
588 skb->pkt_type = PACKET_OTHERHOST;
589 skb->protocol = htons(ETH_P_802_2);
590
591 return skb;
592 }
593
594 /*
595 * This function copies a received frame to all monitor interfaces and
596 * returns a cleaned-up SKB that no longer includes the FCS nor the
597 * radiotap header the driver might have added.
598 */
599 static struct sk_buff *
600 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
601 struct ieee80211_rate *rate)
602 {
603 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
604 struct ieee80211_sub_if_data *sdata;
605 struct sk_buff *monskb = NULL;
606 int present_fcs_len = 0;
607 unsigned int rtap_vendor_space = 0;
608 struct ieee80211_sub_if_data *monitor_sdata =
609 rcu_dereference(local->monitor_sdata);
610 bool only_monitor = false;
611
612 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
613 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
614
615 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
616 }
617
618 /*
619 * First, we may need to make a copy of the skb because
620 * (1) we need to modify it for radiotap (if not present), and
621 * (2) the other RX handlers will modify the skb we got.
622 *
623 * We don't need to, of course, if we aren't going to return
624 * the SKB because it has a bad FCS/PLCP checksum.
625 */
626
627 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
628 if (unlikely(origskb->len <= FCS_LEN)) {
629 /* driver bug */
630 WARN_ON(1);
631 dev_kfree_skb(origskb);
632 return NULL;
633 }
634 present_fcs_len = FCS_LEN;
635 }
636
637 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
638 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
639 dev_kfree_skb(origskb);
640 return NULL;
641 }
642
643 only_monitor = should_drop_frame(origskb, present_fcs_len,
644 rtap_vendor_space);
645
646 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
647 if (only_monitor) {
648 dev_kfree_skb(origskb);
649 return NULL;
650 }
651
652 remove_monitor_info(origskb, present_fcs_len,
653 rtap_vendor_space);
654 return origskb;
655 }
656
657 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_vendor_space);
658
659 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
660 bool last_monitor = list_is_last(&sdata->u.mntr.list,
661 &local->mon_list);
662
663 if (!monskb)
664 monskb = ieee80211_make_monitor_skb(local, &origskb,
665 rate,
666 rtap_vendor_space,
667 only_monitor &&
668 last_monitor);
669
670 if (monskb) {
671 struct sk_buff *skb;
672
673 if (last_monitor) {
674 skb = monskb;
675 monskb = NULL;
676 } else {
677 skb = skb_clone(monskb, GFP_ATOMIC);
678 }
679
680 if (skb) {
681 skb->dev = sdata->dev;
682 ieee80211_rx_stats(skb->dev, skb->len);
683 netif_receive_skb(skb);
684 }
685 }
686
687 if (last_monitor)
688 break;
689 }
690
691 /* this happens if last_monitor was erroneously false */
692 dev_kfree_skb(monskb);
693
694 /* ditto */
695 if (!origskb)
696 return NULL;
697
698 remove_monitor_info(origskb, present_fcs_len, rtap_vendor_space);
699 return origskb;
700 }
701
702 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
703 {
704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
705 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
706 int tid, seqno_idx, security_idx;
707
708 /* does the frame have a qos control field? */
709 if (ieee80211_is_data_qos(hdr->frame_control)) {
710 u8 *qc = ieee80211_get_qos_ctl(hdr);
711 /* frame has qos control */
712 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
713 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
714 status->rx_flags |= IEEE80211_RX_AMSDU;
715
716 seqno_idx = tid;
717 security_idx = tid;
718 } else {
719 /*
720 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
721 *
722 * Sequence numbers for management frames, QoS data
723 * frames with a broadcast/multicast address in the
724 * Address 1 field, and all non-QoS data frames sent
725 * by QoS STAs are assigned using an additional single
726 * modulo-4096 counter, [...]
727 *
728 * We also use that counter for non-QoS STAs.
729 */
730 seqno_idx = IEEE80211_NUM_TIDS;
731 security_idx = 0;
732 if (ieee80211_is_mgmt(hdr->frame_control))
733 security_idx = IEEE80211_NUM_TIDS;
734 tid = 0;
735 }
736
737 rx->seqno_idx = seqno_idx;
738 rx->security_idx = security_idx;
739 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
740 * For now, set skb->priority to 0 for other cases. */
741 rx->skb->priority = (tid > 7) ? 0 : tid;
742 }
743
744 /**
745 * DOC: Packet alignment
746 *
747 * Drivers always need to pass packets that are aligned to two-byte boundaries
748 * to the stack.
749 *
750 * Additionally, should, if possible, align the payload data in a way that
751 * guarantees that the contained IP header is aligned to a four-byte
752 * boundary. In the case of regular frames, this simply means aligning the
753 * payload to a four-byte boundary (because either the IP header is directly
754 * contained, or IV/RFC1042 headers that have a length divisible by four are
755 * in front of it). If the payload data is not properly aligned and the
756 * architecture doesn't support efficient unaligned operations, mac80211
757 * will align the data.
758 *
759 * With A-MSDU frames, however, the payload data address must yield two modulo
760 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
761 * push the IP header further back to a multiple of four again. Thankfully, the
762 * specs were sane enough this time around to require padding each A-MSDU
763 * subframe to a length that is a multiple of four.
764 *
765 * Padding like Atheros hardware adds which is between the 802.11 header and
766 * the payload is not supported, the driver is required to move the 802.11
767 * header to be directly in front of the payload in that case.
768 */
769 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
770 {
771 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
772 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
773 #endif
774 }
775
776
777 /* rx handlers */
778
779 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
780 {
781 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
782
783 if (is_multicast_ether_addr(hdr->addr1))
784 return 0;
785
786 return ieee80211_is_robust_mgmt_frame(skb);
787 }
788
789
790 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
791 {
792 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
793
794 if (!is_multicast_ether_addr(hdr->addr1))
795 return 0;
796
797 return ieee80211_is_robust_mgmt_frame(skb);
798 }
799
800
801 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
802 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
803 {
804 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
805 struct ieee80211_mmie *mmie;
806 struct ieee80211_mmie_16 *mmie16;
807
808 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
809 return -1;
810
811 if (!ieee80211_is_robust_mgmt_frame(skb))
812 return -1; /* not a robust management frame */
813
814 mmie = (struct ieee80211_mmie *)
815 (skb->data + skb->len - sizeof(*mmie));
816 if (mmie->element_id == WLAN_EID_MMIE &&
817 mmie->length == sizeof(*mmie) - 2)
818 return le16_to_cpu(mmie->key_id);
819
820 mmie16 = (struct ieee80211_mmie_16 *)
821 (skb->data + skb->len - sizeof(*mmie16));
822 if (skb->len >= 24 + sizeof(*mmie16) &&
823 mmie16->element_id == WLAN_EID_MMIE &&
824 mmie16->length == sizeof(*mmie16) - 2)
825 return le16_to_cpu(mmie16->key_id);
826
827 return -1;
828 }
829
830 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
831 struct sk_buff *skb)
832 {
833 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
834 __le16 fc;
835 int hdrlen;
836 u8 keyid;
837
838 fc = hdr->frame_control;
839 hdrlen = ieee80211_hdrlen(fc);
840
841 if (skb->len < hdrlen + cs->hdr_len)
842 return -EINVAL;
843
844 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
845 keyid &= cs->key_idx_mask;
846 keyid >>= cs->key_idx_shift;
847
848 return keyid;
849 }
850
851 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
852 {
853 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
854 char *dev_addr = rx->sdata->vif.addr;
855
856 if (ieee80211_is_data(hdr->frame_control)) {
857 if (is_multicast_ether_addr(hdr->addr1)) {
858 if (ieee80211_has_tods(hdr->frame_control) ||
859 !ieee80211_has_fromds(hdr->frame_control))
860 return RX_DROP_MONITOR;
861 if (ether_addr_equal(hdr->addr3, dev_addr))
862 return RX_DROP_MONITOR;
863 } else {
864 if (!ieee80211_has_a4(hdr->frame_control))
865 return RX_DROP_MONITOR;
866 if (ether_addr_equal(hdr->addr4, dev_addr))
867 return RX_DROP_MONITOR;
868 }
869 }
870
871 /* If there is not an established peer link and this is not a peer link
872 * establisment frame, beacon or probe, drop the frame.
873 */
874
875 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
876 struct ieee80211_mgmt *mgmt;
877
878 if (!ieee80211_is_mgmt(hdr->frame_control))
879 return RX_DROP_MONITOR;
880
881 if (ieee80211_is_action(hdr->frame_control)) {
882 u8 category;
883
884 /* make sure category field is present */
885 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
886 return RX_DROP_MONITOR;
887
888 mgmt = (struct ieee80211_mgmt *)hdr;
889 category = mgmt->u.action.category;
890 if (category != WLAN_CATEGORY_MESH_ACTION &&
891 category != WLAN_CATEGORY_SELF_PROTECTED)
892 return RX_DROP_MONITOR;
893 return RX_CONTINUE;
894 }
895
896 if (ieee80211_is_probe_req(hdr->frame_control) ||
897 ieee80211_is_probe_resp(hdr->frame_control) ||
898 ieee80211_is_beacon(hdr->frame_control) ||
899 ieee80211_is_auth(hdr->frame_control))
900 return RX_CONTINUE;
901
902 return RX_DROP_MONITOR;
903 }
904
905 return RX_CONTINUE;
906 }
907
908 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
909 int index)
910 {
911 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
912 struct sk_buff *tail = skb_peek_tail(frames);
913 struct ieee80211_rx_status *status;
914
915 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
916 return true;
917
918 if (!tail)
919 return false;
920
921 status = IEEE80211_SKB_RXCB(tail);
922 if (status->flag & RX_FLAG_AMSDU_MORE)
923 return false;
924
925 return true;
926 }
927
928 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
929 struct tid_ampdu_rx *tid_agg_rx,
930 int index,
931 struct sk_buff_head *frames)
932 {
933 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
934 struct sk_buff *skb;
935 struct ieee80211_rx_status *status;
936
937 lockdep_assert_held(&tid_agg_rx->reorder_lock);
938
939 if (skb_queue_empty(skb_list))
940 goto no_frame;
941
942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
943 __skb_queue_purge(skb_list);
944 goto no_frame;
945 }
946
947 /* release frames from the reorder ring buffer */
948 tid_agg_rx->stored_mpdu_num--;
949 while ((skb = __skb_dequeue(skb_list))) {
950 status = IEEE80211_SKB_RXCB(skb);
951 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
952 __skb_queue_tail(frames, skb);
953 }
954
955 no_frame:
956 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
957 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
958 }
959
960 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
961 struct tid_ampdu_rx *tid_agg_rx,
962 u16 head_seq_num,
963 struct sk_buff_head *frames)
964 {
965 int index;
966
967 lockdep_assert_held(&tid_agg_rx->reorder_lock);
968
969 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
970 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
971 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
972 frames);
973 }
974 }
975
976 /*
977 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
978 * the skb was added to the buffer longer than this time ago, the earlier
979 * frames that have not yet been received are assumed to be lost and the skb
980 * can be released for processing. This may also release other skb's from the
981 * reorder buffer if there are no additional gaps between the frames.
982 *
983 * Callers must hold tid_agg_rx->reorder_lock.
984 */
985 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
986
987 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
988 struct tid_ampdu_rx *tid_agg_rx,
989 struct sk_buff_head *frames)
990 {
991 int index, i, j;
992
993 lockdep_assert_held(&tid_agg_rx->reorder_lock);
994
995 /* release the buffer until next missing frame */
996 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
997 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
998 tid_agg_rx->stored_mpdu_num) {
999 /*
1000 * No buffers ready to be released, but check whether any
1001 * frames in the reorder buffer have timed out.
1002 */
1003 int skipped = 1;
1004 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1005 j = (j + 1) % tid_agg_rx->buf_size) {
1006 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1007 skipped++;
1008 continue;
1009 }
1010 if (skipped &&
1011 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1012 HT_RX_REORDER_BUF_TIMEOUT))
1013 goto set_release_timer;
1014
1015 /* don't leave incomplete A-MSDUs around */
1016 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1017 i = (i + 1) % tid_agg_rx->buf_size)
1018 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1019
1020 ht_dbg_ratelimited(sdata,
1021 "release an RX reorder frame due to timeout on earlier frames\n");
1022 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1023 frames);
1024
1025 /*
1026 * Increment the head seq# also for the skipped slots.
1027 */
1028 tid_agg_rx->head_seq_num =
1029 (tid_agg_rx->head_seq_num +
1030 skipped) & IEEE80211_SN_MASK;
1031 skipped = 0;
1032 }
1033 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1034 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1035 frames);
1036 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1037 }
1038
1039 if (tid_agg_rx->stored_mpdu_num) {
1040 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1041
1042 for (; j != (index - 1) % tid_agg_rx->buf_size;
1043 j = (j + 1) % tid_agg_rx->buf_size) {
1044 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1045 break;
1046 }
1047
1048 set_release_timer:
1049
1050 if (!tid_agg_rx->removed)
1051 mod_timer(&tid_agg_rx->reorder_timer,
1052 tid_agg_rx->reorder_time[j] + 1 +
1053 HT_RX_REORDER_BUF_TIMEOUT);
1054 } else {
1055 del_timer(&tid_agg_rx->reorder_timer);
1056 }
1057 }
1058
1059 /*
1060 * As this function belongs to the RX path it must be under
1061 * rcu_read_lock protection. It returns false if the frame
1062 * can be processed immediately, true if it was consumed.
1063 */
1064 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1065 struct tid_ampdu_rx *tid_agg_rx,
1066 struct sk_buff *skb,
1067 struct sk_buff_head *frames)
1068 {
1069 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1070 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1071 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1072 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1073 u16 head_seq_num, buf_size;
1074 int index;
1075 bool ret = true;
1076
1077 spin_lock(&tid_agg_rx->reorder_lock);
1078
1079 /*
1080 * Offloaded BA sessions have no known starting sequence number so pick
1081 * one from first Rxed frame for this tid after BA was started.
1082 */
1083 if (unlikely(tid_agg_rx->auto_seq)) {
1084 tid_agg_rx->auto_seq = false;
1085 tid_agg_rx->ssn = mpdu_seq_num;
1086 tid_agg_rx->head_seq_num = mpdu_seq_num;
1087 }
1088
1089 buf_size = tid_agg_rx->buf_size;
1090 head_seq_num = tid_agg_rx->head_seq_num;
1091
1092 /*
1093 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1094 * be reordered.
1095 */
1096 if (unlikely(!tid_agg_rx->started)) {
1097 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1098 ret = false;
1099 goto out;
1100 }
1101 tid_agg_rx->started = true;
1102 }
1103
1104 /* frame with out of date sequence number */
1105 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1106 dev_kfree_skb(skb);
1107 goto out;
1108 }
1109
1110 /*
1111 * If frame the sequence number exceeds our buffering window
1112 * size release some previous frames to make room for this one.
1113 */
1114 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1115 head_seq_num = ieee80211_sn_inc(
1116 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1117 /* release stored frames up to new head to stack */
1118 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1119 head_seq_num, frames);
1120 }
1121
1122 /* Now the new frame is always in the range of the reordering buffer */
1123
1124 index = mpdu_seq_num % tid_agg_rx->buf_size;
1125
1126 /* check if we already stored this frame */
1127 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1128 dev_kfree_skb(skb);
1129 goto out;
1130 }
1131
1132 /*
1133 * If the current MPDU is in the right order and nothing else
1134 * is stored we can process it directly, no need to buffer it.
1135 * If it is first but there's something stored, we may be able
1136 * to release frames after this one.
1137 */
1138 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1139 tid_agg_rx->stored_mpdu_num == 0) {
1140 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1141 tid_agg_rx->head_seq_num =
1142 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1143 ret = false;
1144 goto out;
1145 }
1146
1147 /* put the frame in the reordering buffer */
1148 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1149 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1150 tid_agg_rx->reorder_time[index] = jiffies;
1151 tid_agg_rx->stored_mpdu_num++;
1152 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1153 }
1154
1155 out:
1156 spin_unlock(&tid_agg_rx->reorder_lock);
1157 return ret;
1158 }
1159
1160 /*
1161 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1162 * true if the MPDU was buffered, false if it should be processed.
1163 */
1164 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1165 struct sk_buff_head *frames)
1166 {
1167 struct sk_buff *skb = rx->skb;
1168 struct ieee80211_local *local = rx->local;
1169 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1170 struct sta_info *sta = rx->sta;
1171 struct tid_ampdu_rx *tid_agg_rx;
1172 u16 sc;
1173 u8 tid, ack_policy;
1174
1175 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1176 is_multicast_ether_addr(hdr->addr1))
1177 goto dont_reorder;
1178
1179 /*
1180 * filter the QoS data rx stream according to
1181 * STA/TID and check if this STA/TID is on aggregation
1182 */
1183
1184 if (!sta)
1185 goto dont_reorder;
1186
1187 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1188 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1189 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1190
1191 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1192 if (!tid_agg_rx) {
1193 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1194 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1195 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1196 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1197 WLAN_BACK_RECIPIENT,
1198 WLAN_REASON_QSTA_REQUIRE_SETUP);
1199 goto dont_reorder;
1200 }
1201
1202 /* qos null data frames are excluded */
1203 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1204 goto dont_reorder;
1205
1206 /* not part of a BA session */
1207 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1208 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1209 goto dont_reorder;
1210
1211 /* new, potentially un-ordered, ampdu frame - process it */
1212
1213 /* reset session timer */
1214 if (tid_agg_rx->timeout)
1215 tid_agg_rx->last_rx = jiffies;
1216
1217 /* if this mpdu is fragmented - terminate rx aggregation session */
1218 sc = le16_to_cpu(hdr->seq_ctrl);
1219 if (sc & IEEE80211_SCTL_FRAG) {
1220 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1221 skb_queue_tail(&rx->sdata->skb_queue, skb);
1222 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1223 return;
1224 }
1225
1226 /*
1227 * No locking needed -- we will only ever process one
1228 * RX packet at a time, and thus own tid_agg_rx. All
1229 * other code manipulating it needs to (and does) make
1230 * sure that we cannot get to it any more before doing
1231 * anything with it.
1232 */
1233 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1234 frames))
1235 return;
1236
1237 dont_reorder:
1238 __skb_queue_tail(frames, skb);
1239 }
1240
1241 static ieee80211_rx_result debug_noinline
1242 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1243 {
1244 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1246
1247 if (status->flag & RX_FLAG_DUP_VALIDATED)
1248 return RX_CONTINUE;
1249
1250 /*
1251 * Drop duplicate 802.11 retransmissions
1252 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1253 */
1254
1255 if (rx->skb->len < 24)
1256 return RX_CONTINUE;
1257
1258 if (ieee80211_is_ctl(hdr->frame_control) ||
1259 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1260 is_multicast_ether_addr(hdr->addr1))
1261 return RX_CONTINUE;
1262
1263 if (!rx->sta)
1264 return RX_CONTINUE;
1265
1266 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1267 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1268 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1269 rx->sta->rx_stats.num_duplicates++;
1270 return RX_DROP_UNUSABLE;
1271 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1272 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1273 }
1274
1275 return RX_CONTINUE;
1276 }
1277
1278 static ieee80211_rx_result debug_noinline
1279 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1280 {
1281 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1282
1283 /* Drop disallowed frame classes based on STA auth/assoc state;
1284 * IEEE 802.11, Chap 5.5.
1285 *
1286 * mac80211 filters only based on association state, i.e. it drops
1287 * Class 3 frames from not associated stations. hostapd sends
1288 * deauth/disassoc frames when needed. In addition, hostapd is
1289 * responsible for filtering on both auth and assoc states.
1290 */
1291
1292 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1293 return ieee80211_rx_mesh_check(rx);
1294
1295 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1296 ieee80211_is_pspoll(hdr->frame_control)) &&
1297 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1298 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1299 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1300 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1301 /*
1302 * accept port control frames from the AP even when it's not
1303 * yet marked ASSOC to prevent a race where we don't set the
1304 * assoc bit quickly enough before it sends the first frame
1305 */
1306 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1307 ieee80211_is_data_present(hdr->frame_control)) {
1308 unsigned int hdrlen;
1309 __be16 ethertype;
1310
1311 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1312
1313 if (rx->skb->len < hdrlen + 8)
1314 return RX_DROP_MONITOR;
1315
1316 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1317 if (ethertype == rx->sdata->control_port_protocol)
1318 return RX_CONTINUE;
1319 }
1320
1321 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1322 cfg80211_rx_spurious_frame(rx->sdata->dev,
1323 hdr->addr2,
1324 GFP_ATOMIC))
1325 return RX_DROP_UNUSABLE;
1326
1327 return RX_DROP_MONITOR;
1328 }
1329
1330 return RX_CONTINUE;
1331 }
1332
1333
1334 static ieee80211_rx_result debug_noinline
1335 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1336 {
1337 struct ieee80211_local *local;
1338 struct ieee80211_hdr *hdr;
1339 struct sk_buff *skb;
1340
1341 local = rx->local;
1342 skb = rx->skb;
1343 hdr = (struct ieee80211_hdr *) skb->data;
1344
1345 if (!local->pspolling)
1346 return RX_CONTINUE;
1347
1348 if (!ieee80211_has_fromds(hdr->frame_control))
1349 /* this is not from AP */
1350 return RX_CONTINUE;
1351
1352 if (!ieee80211_is_data(hdr->frame_control))
1353 return RX_CONTINUE;
1354
1355 if (!ieee80211_has_moredata(hdr->frame_control)) {
1356 /* AP has no more frames buffered for us */
1357 local->pspolling = false;
1358 return RX_CONTINUE;
1359 }
1360
1361 /* more data bit is set, let's request a new frame from the AP */
1362 ieee80211_send_pspoll(local, rx->sdata);
1363
1364 return RX_CONTINUE;
1365 }
1366
1367 static void sta_ps_start(struct sta_info *sta)
1368 {
1369 struct ieee80211_sub_if_data *sdata = sta->sdata;
1370 struct ieee80211_local *local = sdata->local;
1371 struct ps_data *ps;
1372 int tid;
1373
1374 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1375 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1376 ps = &sdata->bss->ps;
1377 else
1378 return;
1379
1380 atomic_inc(&ps->num_sta_ps);
1381 set_sta_flag(sta, WLAN_STA_PS_STA);
1382 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1383 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1384 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1385 sta->sta.addr, sta->sta.aid);
1386
1387 ieee80211_clear_fast_xmit(sta);
1388
1389 if (!sta->sta.txq[0])
1390 return;
1391
1392 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1393 if (txq_has_queue(sta->sta.txq[tid]))
1394 set_bit(tid, &sta->txq_buffered_tids);
1395 else
1396 clear_bit(tid, &sta->txq_buffered_tids);
1397 }
1398 }
1399
1400 static void sta_ps_end(struct sta_info *sta)
1401 {
1402 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1403 sta->sta.addr, sta->sta.aid);
1404
1405 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1406 /*
1407 * Clear the flag only if the other one is still set
1408 * so that the TX path won't start TX'ing new frames
1409 * directly ... In the case that the driver flag isn't
1410 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1411 */
1412 clear_sta_flag(sta, WLAN_STA_PS_STA);
1413 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1414 sta->sta.addr, sta->sta.aid);
1415 return;
1416 }
1417
1418 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1419 clear_sta_flag(sta, WLAN_STA_PS_STA);
1420 ieee80211_sta_ps_deliver_wakeup(sta);
1421 }
1422
1423 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1424 {
1425 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1426 bool in_ps;
1427
1428 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1429
1430 /* Don't let the same PS state be set twice */
1431 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1432 if ((start && in_ps) || (!start && !in_ps))
1433 return -EINVAL;
1434
1435 if (start)
1436 sta_ps_start(sta);
1437 else
1438 sta_ps_end(sta);
1439
1440 return 0;
1441 }
1442 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1443
1444 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1445 {
1446 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1447
1448 if (test_sta_flag(sta, WLAN_STA_SP))
1449 return;
1450
1451 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1452 ieee80211_sta_ps_deliver_poll_response(sta);
1453 else
1454 set_sta_flag(sta, WLAN_STA_PSPOLL);
1455 }
1456 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1457
1458 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1459 {
1460 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1461 int ac = ieee80211_ac_from_tid(tid);
1462
1463 /*
1464 * If this AC is not trigger-enabled do nothing unless the
1465 * driver is calling us after it already checked.
1466 *
1467 * NB: This could/should check a separate bitmap of trigger-
1468 * enabled queues, but for now we only implement uAPSD w/o
1469 * TSPEC changes to the ACs, so they're always the same.
1470 */
1471 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1472 tid != IEEE80211_NUM_TIDS)
1473 return;
1474
1475 /* if we are in a service period, do nothing */
1476 if (test_sta_flag(sta, WLAN_STA_SP))
1477 return;
1478
1479 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1480 ieee80211_sta_ps_deliver_uapsd(sta);
1481 else
1482 set_sta_flag(sta, WLAN_STA_UAPSD);
1483 }
1484 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1485
1486 static ieee80211_rx_result debug_noinline
1487 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1488 {
1489 struct ieee80211_sub_if_data *sdata = rx->sdata;
1490 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1492
1493 if (!rx->sta)
1494 return RX_CONTINUE;
1495
1496 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1497 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1498 return RX_CONTINUE;
1499
1500 /*
1501 * The device handles station powersave, so don't do anything about
1502 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1503 * it to mac80211 since they're handled.)
1504 */
1505 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1506 return RX_CONTINUE;
1507
1508 /*
1509 * Don't do anything if the station isn't already asleep. In
1510 * the uAPSD case, the station will probably be marked asleep,
1511 * in the PS-Poll case the station must be confused ...
1512 */
1513 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1514 return RX_CONTINUE;
1515
1516 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1517 ieee80211_sta_pspoll(&rx->sta->sta);
1518
1519 /* Free PS Poll skb here instead of returning RX_DROP that would
1520 * count as an dropped frame. */
1521 dev_kfree_skb(rx->skb);
1522
1523 return RX_QUEUED;
1524 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1525 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1526 ieee80211_has_pm(hdr->frame_control) &&
1527 (ieee80211_is_data_qos(hdr->frame_control) ||
1528 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1529 u8 tid;
1530
1531 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1532
1533 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1534 }
1535
1536 return RX_CONTINUE;
1537 }
1538
1539 static ieee80211_rx_result debug_noinline
1540 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1541 {
1542 struct sta_info *sta = rx->sta;
1543 struct sk_buff *skb = rx->skb;
1544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1545 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1546 int i;
1547
1548 if (!sta)
1549 return RX_CONTINUE;
1550
1551 /*
1552 * Update last_rx only for IBSS packets which are for the current
1553 * BSSID and for station already AUTHORIZED to avoid keeping the
1554 * current IBSS network alive in cases where other STAs start
1555 * using different BSSID. This will also give the station another
1556 * chance to restart the authentication/authorization in case
1557 * something went wrong the first time.
1558 */
1559 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1560 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1561 NL80211_IFTYPE_ADHOC);
1562 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1563 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1564 sta->rx_stats.last_rx = jiffies;
1565 if (ieee80211_is_data(hdr->frame_control) &&
1566 !is_multicast_ether_addr(hdr->addr1))
1567 sta->rx_stats.last_rate =
1568 sta_stats_encode_rate(status);
1569 }
1570 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1571 sta->rx_stats.last_rx = jiffies;
1572 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1573 /*
1574 * Mesh beacons will update last_rx when if they are found to
1575 * match the current local configuration when processed.
1576 */
1577 sta->rx_stats.last_rx = jiffies;
1578 if (ieee80211_is_data(hdr->frame_control))
1579 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1580 }
1581
1582 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1583 ieee80211_sta_rx_notify(rx->sdata, hdr);
1584
1585 sta->rx_stats.fragments++;
1586
1587 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1588 sta->rx_stats.bytes += rx->skb->len;
1589 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1590
1591 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1592 sta->rx_stats.last_signal = status->signal;
1593 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1594 }
1595
1596 if (status->chains) {
1597 sta->rx_stats.chains = status->chains;
1598 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1599 int signal = status->chain_signal[i];
1600
1601 if (!(status->chains & BIT(i)))
1602 continue;
1603
1604 sta->rx_stats.chain_signal_last[i] = signal;
1605 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1606 -signal);
1607 }
1608 }
1609
1610 /*
1611 * Change STA power saving mode only at the end of a frame
1612 * exchange sequence.
1613 */
1614 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1615 !ieee80211_has_morefrags(hdr->frame_control) &&
1616 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1617 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1618 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1619 /* PM bit is only checked in frames where it isn't reserved,
1620 * in AP mode it's reserved in non-bufferable management frames
1621 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1622 */
1623 (!ieee80211_is_mgmt(hdr->frame_control) ||
1624 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1625 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1626 if (!ieee80211_has_pm(hdr->frame_control))
1627 sta_ps_end(sta);
1628 } else {
1629 if (ieee80211_has_pm(hdr->frame_control))
1630 sta_ps_start(sta);
1631 }
1632 }
1633
1634 /* mesh power save support */
1635 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1636 ieee80211_mps_rx_h_sta_process(sta, hdr);
1637
1638 /*
1639 * Drop (qos-)data::nullfunc frames silently, since they
1640 * are used only to control station power saving mode.
1641 */
1642 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1643 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1644 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1645
1646 /*
1647 * If we receive a 4-addr nullfunc frame from a STA
1648 * that was not moved to a 4-addr STA vlan yet send
1649 * the event to userspace and for older hostapd drop
1650 * the frame to the monitor interface.
1651 */
1652 if (ieee80211_has_a4(hdr->frame_control) &&
1653 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1654 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1655 !rx->sdata->u.vlan.sta))) {
1656 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1657 cfg80211_rx_unexpected_4addr_frame(
1658 rx->sdata->dev, sta->sta.addr,
1659 GFP_ATOMIC);
1660 return RX_DROP_MONITOR;
1661 }
1662 /*
1663 * Update counter and free packet here to avoid
1664 * counting this as a dropped packed.
1665 */
1666 sta->rx_stats.packets++;
1667 dev_kfree_skb(rx->skb);
1668 return RX_QUEUED;
1669 }
1670
1671 return RX_CONTINUE;
1672 } /* ieee80211_rx_h_sta_process */
1673
1674 static ieee80211_rx_result debug_noinline
1675 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1676 {
1677 struct sk_buff *skb = rx->skb;
1678 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1679 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1680 int keyidx;
1681 int hdrlen;
1682 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1683 struct ieee80211_key *sta_ptk = NULL;
1684 int mmie_keyidx = -1;
1685 __le16 fc;
1686 const struct ieee80211_cipher_scheme *cs = NULL;
1687
1688 /*
1689 * Key selection 101
1690 *
1691 * There are four types of keys:
1692 * - GTK (group keys)
1693 * - IGTK (group keys for management frames)
1694 * - PTK (pairwise keys)
1695 * - STK (station-to-station pairwise keys)
1696 *
1697 * When selecting a key, we have to distinguish between multicast
1698 * (including broadcast) and unicast frames, the latter can only
1699 * use PTKs and STKs while the former always use GTKs and IGTKs.
1700 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1701 * unicast frames can also use key indices like GTKs. Hence, if we
1702 * don't have a PTK/STK we check the key index for a WEP key.
1703 *
1704 * Note that in a regular BSS, multicast frames are sent by the
1705 * AP only, associated stations unicast the frame to the AP first
1706 * which then multicasts it on their behalf.
1707 *
1708 * There is also a slight problem in IBSS mode: GTKs are negotiated
1709 * with each station, that is something we don't currently handle.
1710 * The spec seems to expect that one negotiates the same key with
1711 * every station but there's no such requirement; VLANs could be
1712 * possible.
1713 */
1714
1715 /* start without a key */
1716 rx->key = NULL;
1717 fc = hdr->frame_control;
1718
1719 if (rx->sta) {
1720 int keyid = rx->sta->ptk_idx;
1721
1722 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1723 cs = rx->sta->cipher_scheme;
1724 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1725 if (unlikely(keyid < 0))
1726 return RX_DROP_UNUSABLE;
1727 }
1728 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1729 }
1730
1731 if (!ieee80211_has_protected(fc))
1732 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1733
1734 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1735 rx->key = sta_ptk;
1736 if ((status->flag & RX_FLAG_DECRYPTED) &&
1737 (status->flag & RX_FLAG_IV_STRIPPED))
1738 return RX_CONTINUE;
1739 /* Skip decryption if the frame is not protected. */
1740 if (!ieee80211_has_protected(fc))
1741 return RX_CONTINUE;
1742 } else if (mmie_keyidx >= 0) {
1743 /* Broadcast/multicast robust management frame / BIP */
1744 if ((status->flag & RX_FLAG_DECRYPTED) &&
1745 (status->flag & RX_FLAG_IV_STRIPPED))
1746 return RX_CONTINUE;
1747
1748 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1749 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1750 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1751 if (rx->sta) {
1752 if (ieee80211_is_group_privacy_action(skb) &&
1753 test_sta_flag(rx->sta, WLAN_STA_MFP))
1754 return RX_DROP_MONITOR;
1755
1756 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1757 }
1758 if (!rx->key)
1759 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1760 } else if (!ieee80211_has_protected(fc)) {
1761 /*
1762 * The frame was not protected, so skip decryption. However, we
1763 * need to set rx->key if there is a key that could have been
1764 * used so that the frame may be dropped if encryption would
1765 * have been expected.
1766 */
1767 struct ieee80211_key *key = NULL;
1768 struct ieee80211_sub_if_data *sdata = rx->sdata;
1769 int i;
1770
1771 if (ieee80211_is_mgmt(fc) &&
1772 is_multicast_ether_addr(hdr->addr1) &&
1773 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1774 rx->key = key;
1775 else {
1776 if (rx->sta) {
1777 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1778 key = rcu_dereference(rx->sta->gtk[i]);
1779 if (key)
1780 break;
1781 }
1782 }
1783 if (!key) {
1784 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1785 key = rcu_dereference(sdata->keys[i]);
1786 if (key)
1787 break;
1788 }
1789 }
1790 if (key)
1791 rx->key = key;
1792 }
1793 return RX_CONTINUE;
1794 } else {
1795 u8 keyid;
1796
1797 /*
1798 * The device doesn't give us the IV so we won't be
1799 * able to look up the key. That's ok though, we
1800 * don't need to decrypt the frame, we just won't
1801 * be able to keep statistics accurate.
1802 * Except for key threshold notifications, should
1803 * we somehow allow the driver to tell us which key
1804 * the hardware used if this flag is set?
1805 */
1806 if ((status->flag & RX_FLAG_DECRYPTED) &&
1807 (status->flag & RX_FLAG_IV_STRIPPED))
1808 return RX_CONTINUE;
1809
1810 hdrlen = ieee80211_hdrlen(fc);
1811
1812 if (cs) {
1813 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1814
1815 if (unlikely(keyidx < 0))
1816 return RX_DROP_UNUSABLE;
1817 } else {
1818 if (rx->skb->len < 8 + hdrlen)
1819 return RX_DROP_UNUSABLE; /* TODO: count this? */
1820 /*
1821 * no need to call ieee80211_wep_get_keyidx,
1822 * it verifies a bunch of things we've done already
1823 */
1824 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1825 keyidx = keyid >> 6;
1826 }
1827
1828 /* check per-station GTK first, if multicast packet */
1829 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1830 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1831
1832 /* if not found, try default key */
1833 if (!rx->key) {
1834 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1835
1836 /*
1837 * RSNA-protected unicast frames should always be
1838 * sent with pairwise or station-to-station keys,
1839 * but for WEP we allow using a key index as well.
1840 */
1841 if (rx->key &&
1842 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1843 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1844 !is_multicast_ether_addr(hdr->addr1))
1845 rx->key = NULL;
1846 }
1847 }
1848
1849 if (rx->key) {
1850 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1851 return RX_DROP_MONITOR;
1852
1853 /* TODO: add threshold stuff again */
1854 } else {
1855 return RX_DROP_MONITOR;
1856 }
1857
1858 switch (rx->key->conf.cipher) {
1859 case WLAN_CIPHER_SUITE_WEP40:
1860 case WLAN_CIPHER_SUITE_WEP104:
1861 result = ieee80211_crypto_wep_decrypt(rx);
1862 break;
1863 case WLAN_CIPHER_SUITE_TKIP:
1864 result = ieee80211_crypto_tkip_decrypt(rx);
1865 break;
1866 case WLAN_CIPHER_SUITE_CCMP:
1867 result = ieee80211_crypto_ccmp_decrypt(
1868 rx, IEEE80211_CCMP_MIC_LEN);
1869 break;
1870 case WLAN_CIPHER_SUITE_CCMP_256:
1871 result = ieee80211_crypto_ccmp_decrypt(
1872 rx, IEEE80211_CCMP_256_MIC_LEN);
1873 break;
1874 case WLAN_CIPHER_SUITE_AES_CMAC:
1875 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1876 break;
1877 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1878 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1879 break;
1880 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1881 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1882 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1883 break;
1884 case WLAN_CIPHER_SUITE_GCMP:
1885 case WLAN_CIPHER_SUITE_GCMP_256:
1886 result = ieee80211_crypto_gcmp_decrypt(rx);
1887 break;
1888 default:
1889 result = ieee80211_crypto_hw_decrypt(rx);
1890 }
1891
1892 /* the hdr variable is invalid after the decrypt handlers */
1893
1894 /* either the frame has been decrypted or will be dropped */
1895 status->flag |= RX_FLAG_DECRYPTED;
1896
1897 return result;
1898 }
1899
1900 static inline struct ieee80211_fragment_entry *
1901 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1902 unsigned int frag, unsigned int seq, int rx_queue,
1903 struct sk_buff **skb)
1904 {
1905 struct ieee80211_fragment_entry *entry;
1906
1907 entry = &sdata->fragments[sdata->fragment_next++];
1908 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1909 sdata->fragment_next = 0;
1910
1911 if (!skb_queue_empty(&entry->skb_list))
1912 __skb_queue_purge(&entry->skb_list);
1913
1914 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1915 *skb = NULL;
1916 entry->first_frag_time = jiffies;
1917 entry->seq = seq;
1918 entry->rx_queue = rx_queue;
1919 entry->last_frag = frag;
1920 entry->check_sequential_pn = false;
1921 entry->extra_len = 0;
1922
1923 return entry;
1924 }
1925
1926 static inline struct ieee80211_fragment_entry *
1927 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1928 unsigned int frag, unsigned int seq,
1929 int rx_queue, struct ieee80211_hdr *hdr)
1930 {
1931 struct ieee80211_fragment_entry *entry;
1932 int i, idx;
1933
1934 idx = sdata->fragment_next;
1935 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1936 struct ieee80211_hdr *f_hdr;
1937
1938 idx--;
1939 if (idx < 0)
1940 idx = IEEE80211_FRAGMENT_MAX - 1;
1941
1942 entry = &sdata->fragments[idx];
1943 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1944 entry->rx_queue != rx_queue ||
1945 entry->last_frag + 1 != frag)
1946 continue;
1947
1948 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1949
1950 /*
1951 * Check ftype and addresses are equal, else check next fragment
1952 */
1953 if (((hdr->frame_control ^ f_hdr->frame_control) &
1954 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1955 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1956 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1957 continue;
1958
1959 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1960 __skb_queue_purge(&entry->skb_list);
1961 continue;
1962 }
1963 return entry;
1964 }
1965
1966 return NULL;
1967 }
1968
1969 static ieee80211_rx_result debug_noinline
1970 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1971 {
1972 struct ieee80211_hdr *hdr;
1973 u16 sc;
1974 __le16 fc;
1975 unsigned int frag, seq;
1976 struct ieee80211_fragment_entry *entry;
1977 struct sk_buff *skb;
1978
1979 hdr = (struct ieee80211_hdr *)rx->skb->data;
1980 fc = hdr->frame_control;
1981
1982 if (ieee80211_is_ctl(fc))
1983 return RX_CONTINUE;
1984
1985 sc = le16_to_cpu(hdr->seq_ctrl);
1986 frag = sc & IEEE80211_SCTL_FRAG;
1987
1988 if (is_multicast_ether_addr(hdr->addr1)) {
1989 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1990 goto out_no_led;
1991 }
1992
1993 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1994 goto out;
1995
1996 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1997
1998 if (skb_linearize(rx->skb))
1999 return RX_DROP_UNUSABLE;
2000
2001 /*
2002 * skb_linearize() might change the skb->data and
2003 * previously cached variables (in this case, hdr) need to
2004 * be refreshed with the new data.
2005 */
2006 hdr = (struct ieee80211_hdr *)rx->skb->data;
2007 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2008
2009 if (frag == 0) {
2010 /* This is the first fragment of a new frame. */
2011 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2012 rx->seqno_idx, &(rx->skb));
2013 if (rx->key &&
2014 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2015 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2016 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2017 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2018 ieee80211_has_protected(fc)) {
2019 int queue = rx->security_idx;
2020
2021 /* Store CCMP/GCMP PN so that we can verify that the
2022 * next fragment has a sequential PN value.
2023 */
2024 entry->check_sequential_pn = true;
2025 memcpy(entry->last_pn,
2026 rx->key->u.ccmp.rx_pn[queue],
2027 IEEE80211_CCMP_PN_LEN);
2028 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2029 u.ccmp.rx_pn) !=
2030 offsetof(struct ieee80211_key,
2031 u.gcmp.rx_pn));
2032 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2033 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2034 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2035 IEEE80211_GCMP_PN_LEN);
2036 }
2037 return RX_QUEUED;
2038 }
2039
2040 /* This is a fragment for a frame that should already be pending in
2041 * fragment cache. Add this fragment to the end of the pending entry.
2042 */
2043 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2044 rx->seqno_idx, hdr);
2045 if (!entry) {
2046 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2047 return RX_DROP_MONITOR;
2048 }
2049
2050 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2051 * MPDU PN values are not incrementing in steps of 1."
2052 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2053 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2054 */
2055 if (entry->check_sequential_pn) {
2056 int i;
2057 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2058 int queue;
2059
2060 if (!rx->key ||
2061 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2062 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2063 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2064 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2065 return RX_DROP_UNUSABLE;
2066 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2067 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2068 pn[i]++;
2069 if (pn[i])
2070 break;
2071 }
2072 queue = rx->security_idx;
2073 rpn = rx->key->u.ccmp.rx_pn[queue];
2074 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2075 return RX_DROP_UNUSABLE;
2076 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2077 }
2078
2079 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2080 __skb_queue_tail(&entry->skb_list, rx->skb);
2081 entry->last_frag = frag;
2082 entry->extra_len += rx->skb->len;
2083 if (ieee80211_has_morefrags(fc)) {
2084 rx->skb = NULL;
2085 return RX_QUEUED;
2086 }
2087
2088 rx->skb = __skb_dequeue(&entry->skb_list);
2089 if (skb_tailroom(rx->skb) < entry->extra_len) {
2090 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2091 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2092 GFP_ATOMIC))) {
2093 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2094 __skb_queue_purge(&entry->skb_list);
2095 return RX_DROP_UNUSABLE;
2096 }
2097 }
2098 while ((skb = __skb_dequeue(&entry->skb_list))) {
2099 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2100 dev_kfree_skb(skb);
2101 }
2102
2103 out:
2104 ieee80211_led_rx(rx->local);
2105 out_no_led:
2106 if (rx->sta)
2107 rx->sta->rx_stats.packets++;
2108 return RX_CONTINUE;
2109 }
2110
2111 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2112 {
2113 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2114 return -EACCES;
2115
2116 return 0;
2117 }
2118
2119 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2120 {
2121 struct sk_buff *skb = rx->skb;
2122 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2123
2124 /*
2125 * Pass through unencrypted frames if the hardware has
2126 * decrypted them already.
2127 */
2128 if (status->flag & RX_FLAG_DECRYPTED)
2129 return 0;
2130
2131 /* Drop unencrypted frames if key is set. */
2132 if (unlikely(!ieee80211_has_protected(fc) &&
2133 !ieee80211_is_nullfunc(fc) &&
2134 ieee80211_is_data(fc) && rx->key))
2135 return -EACCES;
2136
2137 return 0;
2138 }
2139
2140 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2141 {
2142 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2143 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2144 __le16 fc = hdr->frame_control;
2145
2146 /*
2147 * Pass through unencrypted frames if the hardware has
2148 * decrypted them already.
2149 */
2150 if (status->flag & RX_FLAG_DECRYPTED)
2151 return 0;
2152
2153 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2154 if (unlikely(!ieee80211_has_protected(fc) &&
2155 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2156 rx->key)) {
2157 if (ieee80211_is_deauth(fc) ||
2158 ieee80211_is_disassoc(fc))
2159 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2160 rx->skb->data,
2161 rx->skb->len);
2162 return -EACCES;
2163 }
2164 /* BIP does not use Protected field, so need to check MMIE */
2165 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2166 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2167 if (ieee80211_is_deauth(fc) ||
2168 ieee80211_is_disassoc(fc))
2169 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2170 rx->skb->data,
2171 rx->skb->len);
2172 return -EACCES;
2173 }
2174 /*
2175 * When using MFP, Action frames are not allowed prior to
2176 * having configured keys.
2177 */
2178 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2179 ieee80211_is_robust_mgmt_frame(rx->skb)))
2180 return -EACCES;
2181 }
2182
2183 return 0;
2184 }
2185
2186 static int
2187 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2188 {
2189 struct ieee80211_sub_if_data *sdata = rx->sdata;
2190 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2191 bool check_port_control = false;
2192 struct ethhdr *ehdr;
2193 int ret;
2194
2195 *port_control = false;
2196 if (ieee80211_has_a4(hdr->frame_control) &&
2197 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2198 return -1;
2199
2200 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2201 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2202
2203 if (!sdata->u.mgd.use_4addr)
2204 return -1;
2205 else
2206 check_port_control = true;
2207 }
2208
2209 if (is_multicast_ether_addr(hdr->addr1) &&
2210 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2211 return -1;
2212
2213 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2214 if (ret < 0)
2215 return ret;
2216
2217 ehdr = (struct ethhdr *) rx->skb->data;
2218 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2219 *port_control = true;
2220 else if (check_port_control)
2221 return -1;
2222
2223 return 0;
2224 }
2225
2226 /*
2227 * requires that rx->skb is a frame with ethernet header
2228 */
2229 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2230 {
2231 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2232 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2233 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2234
2235 /*
2236 * Allow EAPOL frames to us/the PAE group address regardless
2237 * of whether the frame was encrypted or not.
2238 */
2239 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2240 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2241 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2242 return true;
2243
2244 if (ieee80211_802_1x_port_control(rx) ||
2245 ieee80211_drop_unencrypted(rx, fc))
2246 return false;
2247
2248 return true;
2249 }
2250
2251 /*
2252 * requires that rx->skb is a frame with ethernet header
2253 */
2254 static void
2255 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2256 {
2257 struct ieee80211_sub_if_data *sdata = rx->sdata;
2258 struct net_device *dev = sdata->dev;
2259 struct sk_buff *skb, *xmit_skb;
2260 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2261 struct sta_info *dsta;
2262
2263 skb = rx->skb;
2264 xmit_skb = NULL;
2265
2266 ieee80211_rx_stats(dev, skb->len);
2267
2268 if (rx->sta) {
2269 /* The seqno index has the same property as needed
2270 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2271 * for non-QoS-data frames. Here we know it's a data
2272 * frame, so count MSDUs.
2273 */
2274 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2275 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2276 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2277 }
2278
2279 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2280 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2281 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2282 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2283 if (is_multicast_ether_addr(ehdr->h_dest) &&
2284 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2285 /*
2286 * send multicast frames both to higher layers in
2287 * local net stack and back to the wireless medium
2288 */
2289 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2290 if (!xmit_skb)
2291 net_info_ratelimited("%s: failed to clone multicast frame\n",
2292 dev->name);
2293 } else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2294 dsta = sta_info_get(sdata, skb->data);
2295 if (dsta) {
2296 /*
2297 * The destination station is associated to
2298 * this AP (in this VLAN), so send the frame
2299 * directly to it and do not pass it to local
2300 * net stack.
2301 */
2302 xmit_skb = skb;
2303 skb = NULL;
2304 }
2305 }
2306 }
2307
2308 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2309 if (skb) {
2310 /* 'align' will only take the values 0 or 2 here since all
2311 * frames are required to be aligned to 2-byte boundaries
2312 * when being passed to mac80211; the code here works just
2313 * as well if that isn't true, but mac80211 assumes it can
2314 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2315 */
2316 int align;
2317
2318 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2319 if (align) {
2320 if (WARN_ON(skb_headroom(skb) < 3)) {
2321 dev_kfree_skb(skb);
2322 skb = NULL;
2323 } else {
2324 u8 *data = skb->data;
2325 size_t len = skb_headlen(skb);
2326 skb->data -= align;
2327 memmove(skb->data, data, len);
2328 skb_set_tail_pointer(skb, len);
2329 }
2330 }
2331 }
2332 #endif
2333
2334 if (skb) {
2335 /* deliver to local stack */
2336 skb->protocol = eth_type_trans(skb, dev);
2337 memset(skb->cb, 0, sizeof(skb->cb));
2338 if (rx->napi)
2339 napi_gro_receive(rx->napi, skb);
2340 else
2341 netif_receive_skb(skb);
2342 }
2343
2344 if (xmit_skb) {
2345 /*
2346 * Send to wireless media and increase priority by 256 to
2347 * keep the received priority instead of reclassifying
2348 * the frame (see cfg80211_classify8021d).
2349 */
2350 xmit_skb->priority += 256;
2351 xmit_skb->protocol = htons(ETH_P_802_3);
2352 skb_reset_network_header(xmit_skb);
2353 skb_reset_mac_header(xmit_skb);
2354 dev_queue_xmit(xmit_skb);
2355 }
2356 }
2357
2358 static ieee80211_rx_result debug_noinline
2359 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2360 {
2361 struct net_device *dev = rx->sdata->dev;
2362 struct sk_buff *skb = rx->skb;
2363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2364 __le16 fc = hdr->frame_control;
2365 struct sk_buff_head frame_list;
2366 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2367 struct ethhdr ethhdr;
2368 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2369
2370 if (unlikely(!ieee80211_is_data(fc)))
2371 return RX_CONTINUE;
2372
2373 if (unlikely(!ieee80211_is_data_present(fc)))
2374 return RX_DROP_MONITOR;
2375
2376 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2377 return RX_CONTINUE;
2378
2379 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2380 switch (rx->sdata->vif.type) {
2381 case NL80211_IFTYPE_AP_VLAN:
2382 if (!rx->sdata->u.vlan.sta)
2383 return RX_DROP_UNUSABLE;
2384 break;
2385 case NL80211_IFTYPE_STATION:
2386 if (!rx->sdata->u.mgd.use_4addr)
2387 return RX_DROP_UNUSABLE;
2388 break;
2389 default:
2390 return RX_DROP_UNUSABLE;
2391 }
2392 check_da = NULL;
2393 check_sa = NULL;
2394 } else switch (rx->sdata->vif.type) {
2395 case NL80211_IFTYPE_AP:
2396 case NL80211_IFTYPE_AP_VLAN:
2397 check_da = NULL;
2398 break;
2399 case NL80211_IFTYPE_STATION:
2400 if (!rx->sta ||
2401 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2402 check_sa = NULL;
2403 break;
2404 case NL80211_IFTYPE_MESH_POINT:
2405 check_sa = NULL;
2406 break;
2407 default:
2408 break;
2409 }
2410
2411 if (is_multicast_ether_addr(hdr->addr1))
2412 return RX_DROP_UNUSABLE;
2413
2414 skb->dev = dev;
2415 __skb_queue_head_init(&frame_list);
2416
2417 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2418 rx->sdata->vif.addr,
2419 rx->sdata->vif.type))
2420 return RX_DROP_UNUSABLE;
2421
2422 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2423 rx->sdata->vif.type,
2424 rx->local->hw.extra_tx_headroom,
2425 check_da, check_sa);
2426
2427 while (!skb_queue_empty(&frame_list)) {
2428 rx->skb = __skb_dequeue(&frame_list);
2429
2430 if (!ieee80211_frame_allowed(rx, fc)) {
2431 dev_kfree_skb(rx->skb);
2432 continue;
2433 }
2434
2435 ieee80211_deliver_skb(rx);
2436 }
2437
2438 return RX_QUEUED;
2439 }
2440
2441 #ifdef CONFIG_MAC80211_MESH
2442 static ieee80211_rx_result
2443 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2444 {
2445 struct ieee80211_hdr *fwd_hdr, *hdr;
2446 struct ieee80211_tx_info *info;
2447 struct ieee80211s_hdr *mesh_hdr;
2448 struct sk_buff *skb = rx->skb, *fwd_skb;
2449 struct ieee80211_local *local = rx->local;
2450 struct ieee80211_sub_if_data *sdata = rx->sdata;
2451 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2452 u16 ac, q, hdrlen;
2453
2454 hdr = (struct ieee80211_hdr *) skb->data;
2455 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2456
2457 /* make sure fixed part of mesh header is there, also checks skb len */
2458 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2459 return RX_DROP_MONITOR;
2460
2461 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2462
2463 /* make sure full mesh header is there, also checks skb len */
2464 if (!pskb_may_pull(rx->skb,
2465 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2466 return RX_DROP_MONITOR;
2467
2468 /* reload pointers */
2469 hdr = (struct ieee80211_hdr *) skb->data;
2470 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2471
2472 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2473 return RX_DROP_MONITOR;
2474
2475 /* frame is in RMC, don't forward */
2476 if (ieee80211_is_data(hdr->frame_control) &&
2477 is_multicast_ether_addr(hdr->addr1) &&
2478 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2479 return RX_DROP_MONITOR;
2480
2481 if (!ieee80211_is_data(hdr->frame_control))
2482 return RX_CONTINUE;
2483
2484 if (!mesh_hdr->ttl)
2485 return RX_DROP_MONITOR;
2486
2487 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2488 struct mesh_path *mppath;
2489 char *proxied_addr;
2490 char *mpp_addr;
2491
2492 if (is_multicast_ether_addr(hdr->addr1)) {
2493 mpp_addr = hdr->addr3;
2494 proxied_addr = mesh_hdr->eaddr1;
2495 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2496 /* has_a4 already checked in ieee80211_rx_mesh_check */
2497 mpp_addr = hdr->addr4;
2498 proxied_addr = mesh_hdr->eaddr2;
2499 } else {
2500 return RX_DROP_MONITOR;
2501 }
2502
2503 rcu_read_lock();
2504 mppath = mpp_path_lookup(sdata, proxied_addr);
2505 if (!mppath) {
2506 mpp_path_add(sdata, proxied_addr, mpp_addr);
2507 } else {
2508 spin_lock_bh(&mppath->state_lock);
2509 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2510 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2511 mppath->exp_time = jiffies;
2512 spin_unlock_bh(&mppath->state_lock);
2513 }
2514 rcu_read_unlock();
2515 }
2516
2517 /* Frame has reached destination. Don't forward */
2518 if (!is_multicast_ether_addr(hdr->addr1) &&
2519 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2520 return RX_CONTINUE;
2521
2522 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2523 q = sdata->vif.hw_queue[ac];
2524 if (ieee80211_queue_stopped(&local->hw, q)) {
2525 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2526 return RX_DROP_MONITOR;
2527 }
2528 skb_set_queue_mapping(skb, q);
2529
2530 if (!--mesh_hdr->ttl) {
2531 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2532 goto out;
2533 }
2534
2535 if (!ifmsh->mshcfg.dot11MeshForwarding)
2536 goto out;
2537
2538 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2539 sdata->encrypt_headroom, 0, GFP_ATOMIC);
2540 if (!fwd_skb) {
2541 net_info_ratelimited("%s: failed to clone mesh frame\n",
2542 sdata->name);
2543 goto out;
2544 }
2545
2546 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2547 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2548 info = IEEE80211_SKB_CB(fwd_skb);
2549 memset(info, 0, sizeof(*info));
2550 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2551 info->control.vif = &rx->sdata->vif;
2552 info->control.jiffies = jiffies;
2553 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2554 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2555 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2556 /* update power mode indication when forwarding */
2557 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2558 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2559 /* mesh power mode flags updated in mesh_nexthop_lookup */
2560 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2561 } else {
2562 /* unable to resolve next hop */
2563 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2564 fwd_hdr->addr3, 0,
2565 WLAN_REASON_MESH_PATH_NOFORWARD,
2566 fwd_hdr->addr2);
2567 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2568 kfree_skb(fwd_skb);
2569 return RX_DROP_MONITOR;
2570 }
2571
2572 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2573 ieee80211_add_pending_skb(local, fwd_skb);
2574 out:
2575 if (is_multicast_ether_addr(hdr->addr1))
2576 return RX_CONTINUE;
2577 return RX_DROP_MONITOR;
2578 }
2579 #endif
2580
2581 static ieee80211_rx_result debug_noinline
2582 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2583 {
2584 struct ieee80211_sub_if_data *sdata = rx->sdata;
2585 struct ieee80211_local *local = rx->local;
2586 struct net_device *dev = sdata->dev;
2587 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2588 __le16 fc = hdr->frame_control;
2589 bool port_control;
2590 int err;
2591
2592 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2593 return RX_CONTINUE;
2594
2595 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2596 return RX_DROP_MONITOR;
2597
2598 /*
2599 * Send unexpected-4addr-frame event to hostapd. For older versions,
2600 * also drop the frame to cooked monitor interfaces.
2601 */
2602 if (ieee80211_has_a4(hdr->frame_control) &&
2603 sdata->vif.type == NL80211_IFTYPE_AP) {
2604 if (rx->sta &&
2605 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2606 cfg80211_rx_unexpected_4addr_frame(
2607 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2608 return RX_DROP_MONITOR;
2609 }
2610
2611 err = __ieee80211_data_to_8023(rx, &port_control);
2612 if (unlikely(err))
2613 return RX_DROP_UNUSABLE;
2614
2615 if (!ieee80211_frame_allowed(rx, fc))
2616 return RX_DROP_MONITOR;
2617
2618 /* directly handle TDLS channel switch requests/responses */
2619 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2620 cpu_to_be16(ETH_P_TDLS))) {
2621 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2622
2623 if (pskb_may_pull(rx->skb,
2624 offsetof(struct ieee80211_tdls_data, u)) &&
2625 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2626 tf->category == WLAN_CATEGORY_TDLS &&
2627 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2628 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2629 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2630 schedule_work(&local->tdls_chsw_work);
2631 if (rx->sta)
2632 rx->sta->rx_stats.packets++;
2633
2634 return RX_QUEUED;
2635 }
2636 }
2637
2638 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2639 unlikely(port_control) && sdata->bss) {
2640 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2641 u.ap);
2642 dev = sdata->dev;
2643 rx->sdata = sdata;
2644 }
2645
2646 rx->skb->dev = dev;
2647
2648 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2649 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2650 !is_multicast_ether_addr(
2651 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2652 (!local->scanning &&
2653 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2654 mod_timer(&local->dynamic_ps_timer, jiffies +
2655 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2656
2657 ieee80211_deliver_skb(rx);
2658
2659 return RX_QUEUED;
2660 }
2661
2662 static ieee80211_rx_result debug_noinline
2663 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2664 {
2665 struct sk_buff *skb = rx->skb;
2666 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2667 struct tid_ampdu_rx *tid_agg_rx;
2668 u16 start_seq_num;
2669 u16 tid;
2670
2671 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2672 return RX_CONTINUE;
2673
2674 if (ieee80211_is_back_req(bar->frame_control)) {
2675 struct {
2676 __le16 control, start_seq_num;
2677 } __packed bar_data;
2678 struct ieee80211_event event = {
2679 .type = BAR_RX_EVENT,
2680 };
2681
2682 if (!rx->sta)
2683 return RX_DROP_MONITOR;
2684
2685 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2686 &bar_data, sizeof(bar_data)))
2687 return RX_DROP_MONITOR;
2688
2689 tid = le16_to_cpu(bar_data.control) >> 12;
2690
2691 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2692 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2693 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2694 WLAN_BACK_RECIPIENT,
2695 WLAN_REASON_QSTA_REQUIRE_SETUP);
2696
2697 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2698 if (!tid_agg_rx)
2699 return RX_DROP_MONITOR;
2700
2701 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2702 event.u.ba.tid = tid;
2703 event.u.ba.ssn = start_seq_num;
2704 event.u.ba.sta = &rx->sta->sta;
2705
2706 /* reset session timer */
2707 if (tid_agg_rx->timeout)
2708 mod_timer(&tid_agg_rx->session_timer,
2709 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2710
2711 spin_lock(&tid_agg_rx->reorder_lock);
2712 /* release stored frames up to start of BAR */
2713 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2714 start_seq_num, frames);
2715 spin_unlock(&tid_agg_rx->reorder_lock);
2716
2717 drv_event_callback(rx->local, rx->sdata, &event);
2718
2719 kfree_skb(skb);
2720 return RX_QUEUED;
2721 }
2722
2723 /*
2724 * After this point, we only want management frames,
2725 * so we can drop all remaining control frames to
2726 * cooked monitor interfaces.
2727 */
2728 return RX_DROP_MONITOR;
2729 }
2730
2731 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2732 struct ieee80211_mgmt *mgmt,
2733 size_t len)
2734 {
2735 struct ieee80211_local *local = sdata->local;
2736 struct sk_buff *skb;
2737 struct ieee80211_mgmt *resp;
2738
2739 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2740 /* Not to own unicast address */
2741 return;
2742 }
2743
2744 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2745 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2746 /* Not from the current AP or not associated yet. */
2747 return;
2748 }
2749
2750 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2751 /* Too short SA Query request frame */
2752 return;
2753 }
2754
2755 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2756 if (skb == NULL)
2757 return;
2758
2759 skb_reserve(skb, local->hw.extra_tx_headroom);
2760 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2761 memset(resp, 0, 24);
2762 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2763 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2764 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2765 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2766 IEEE80211_STYPE_ACTION);
2767 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2768 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2769 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2770 memcpy(resp->u.action.u.sa_query.trans_id,
2771 mgmt->u.action.u.sa_query.trans_id,
2772 WLAN_SA_QUERY_TR_ID_LEN);
2773
2774 ieee80211_tx_skb(sdata, skb);
2775 }
2776
2777 static ieee80211_rx_result debug_noinline
2778 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2779 {
2780 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2781 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2782
2783 /*
2784 * From here on, look only at management frames.
2785 * Data and control frames are already handled,
2786 * and unknown (reserved) frames are useless.
2787 */
2788 if (rx->skb->len < 24)
2789 return RX_DROP_MONITOR;
2790
2791 if (!ieee80211_is_mgmt(mgmt->frame_control))
2792 return RX_DROP_MONITOR;
2793
2794 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2795 ieee80211_is_beacon(mgmt->frame_control) &&
2796 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2797 int sig = 0;
2798
2799 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2800 sig = status->signal;
2801
2802 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2803 rx->skb->data, rx->skb->len,
2804 status->freq, sig);
2805 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2806 }
2807
2808 if (ieee80211_drop_unencrypted_mgmt(rx))
2809 return RX_DROP_UNUSABLE;
2810
2811 return RX_CONTINUE;
2812 }
2813
2814 static ieee80211_rx_result debug_noinline
2815 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2816 {
2817 struct ieee80211_local *local = rx->local;
2818 struct ieee80211_sub_if_data *sdata = rx->sdata;
2819 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2820 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2821 int len = rx->skb->len;
2822
2823 if (!ieee80211_is_action(mgmt->frame_control))
2824 return RX_CONTINUE;
2825
2826 /* drop too small frames */
2827 if (len < IEEE80211_MIN_ACTION_SIZE)
2828 return RX_DROP_UNUSABLE;
2829
2830 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2831 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2832 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2833 return RX_DROP_UNUSABLE;
2834
2835 switch (mgmt->u.action.category) {
2836 case WLAN_CATEGORY_HT:
2837 /* reject HT action frames from stations not supporting HT */
2838 if (!rx->sta->sta.ht_cap.ht_supported)
2839 goto invalid;
2840
2841 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2842 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2843 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2844 sdata->vif.type != NL80211_IFTYPE_AP &&
2845 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2846 break;
2847
2848 /* verify action & smps_control/chanwidth are present */
2849 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2850 goto invalid;
2851
2852 switch (mgmt->u.action.u.ht_smps.action) {
2853 case WLAN_HT_ACTION_SMPS: {
2854 struct ieee80211_supported_band *sband;
2855 enum ieee80211_smps_mode smps_mode;
2856
2857 /* convert to HT capability */
2858 switch (mgmt->u.action.u.ht_smps.smps_control) {
2859 case WLAN_HT_SMPS_CONTROL_DISABLED:
2860 smps_mode = IEEE80211_SMPS_OFF;
2861 break;
2862 case WLAN_HT_SMPS_CONTROL_STATIC:
2863 smps_mode = IEEE80211_SMPS_STATIC;
2864 break;
2865 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2866 smps_mode = IEEE80211_SMPS_DYNAMIC;
2867 break;
2868 default:
2869 goto invalid;
2870 }
2871
2872 /* if no change do nothing */
2873 if (rx->sta->sta.smps_mode == smps_mode)
2874 goto handled;
2875 rx->sta->sta.smps_mode = smps_mode;
2876
2877 sband = rx->local->hw.wiphy->bands[status->band];
2878
2879 rate_control_rate_update(local, sband, rx->sta,
2880 IEEE80211_RC_SMPS_CHANGED);
2881 goto handled;
2882 }
2883 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2884 struct ieee80211_supported_band *sband;
2885 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2886 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2887
2888 /* If it doesn't support 40 MHz it can't change ... */
2889 if (!(rx->sta->sta.ht_cap.cap &
2890 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2891 goto handled;
2892
2893 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2894 max_bw = IEEE80211_STA_RX_BW_20;
2895 else
2896 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2897
2898 /* set cur_max_bandwidth and recalc sta bw */
2899 rx->sta->cur_max_bandwidth = max_bw;
2900 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2901
2902 if (rx->sta->sta.bandwidth == new_bw)
2903 goto handled;
2904
2905 rx->sta->sta.bandwidth = new_bw;
2906 sband = rx->local->hw.wiphy->bands[status->band];
2907
2908 rate_control_rate_update(local, sband, rx->sta,
2909 IEEE80211_RC_BW_CHANGED);
2910 goto handled;
2911 }
2912 default:
2913 goto invalid;
2914 }
2915
2916 break;
2917 case WLAN_CATEGORY_PUBLIC:
2918 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2919 goto invalid;
2920 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2921 break;
2922 if (!rx->sta)
2923 break;
2924 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2925 break;
2926 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2927 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2928 break;
2929 if (len < offsetof(struct ieee80211_mgmt,
2930 u.action.u.ext_chan_switch.variable))
2931 goto invalid;
2932 goto queue;
2933 case WLAN_CATEGORY_VHT:
2934 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2935 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2936 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2937 sdata->vif.type != NL80211_IFTYPE_AP &&
2938 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2939 break;
2940
2941 /* verify action code is present */
2942 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2943 goto invalid;
2944
2945 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2946 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2947 /* verify opmode is present */
2948 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2949 goto invalid;
2950 goto queue;
2951 }
2952 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2953 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2954 goto invalid;
2955 goto queue;
2956 }
2957 default:
2958 break;
2959 }
2960 break;
2961 case WLAN_CATEGORY_BACK:
2962 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2963 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2964 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2965 sdata->vif.type != NL80211_IFTYPE_AP &&
2966 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2967 break;
2968
2969 /* verify action_code is present */
2970 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2971 break;
2972
2973 switch (mgmt->u.action.u.addba_req.action_code) {
2974 case WLAN_ACTION_ADDBA_REQ:
2975 if (len < (IEEE80211_MIN_ACTION_SIZE +
2976 sizeof(mgmt->u.action.u.addba_req)))
2977 goto invalid;
2978 break;
2979 case WLAN_ACTION_ADDBA_RESP:
2980 if (len < (IEEE80211_MIN_ACTION_SIZE +
2981 sizeof(mgmt->u.action.u.addba_resp)))
2982 goto invalid;
2983 break;
2984 case WLAN_ACTION_DELBA:
2985 if (len < (IEEE80211_MIN_ACTION_SIZE +
2986 sizeof(mgmt->u.action.u.delba)))
2987 goto invalid;
2988 break;
2989 default:
2990 goto invalid;
2991 }
2992
2993 goto queue;
2994 case WLAN_CATEGORY_SPECTRUM_MGMT:
2995 /* verify action_code is present */
2996 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2997 break;
2998
2999 switch (mgmt->u.action.u.measurement.action_code) {
3000 case WLAN_ACTION_SPCT_MSR_REQ:
3001 if (status->band != NL80211_BAND_5GHZ)
3002 break;
3003
3004 if (len < (IEEE80211_MIN_ACTION_SIZE +
3005 sizeof(mgmt->u.action.u.measurement)))
3006 break;
3007
3008 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3009 break;
3010
3011 ieee80211_process_measurement_req(sdata, mgmt, len);
3012 goto handled;
3013 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3014 u8 *bssid;
3015 if (len < (IEEE80211_MIN_ACTION_SIZE +
3016 sizeof(mgmt->u.action.u.chan_switch)))
3017 break;
3018
3019 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3020 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3021 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3022 break;
3023
3024 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3025 bssid = sdata->u.mgd.bssid;
3026 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3027 bssid = sdata->u.ibss.bssid;
3028 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3029 bssid = mgmt->sa;
3030 else
3031 break;
3032
3033 if (!ether_addr_equal(mgmt->bssid, bssid))
3034 break;
3035
3036 goto queue;
3037 }
3038 }
3039 break;
3040 case WLAN_CATEGORY_SA_QUERY:
3041 if (len < (IEEE80211_MIN_ACTION_SIZE +
3042 sizeof(mgmt->u.action.u.sa_query)))
3043 break;
3044
3045 switch (mgmt->u.action.u.sa_query.action) {
3046 case WLAN_ACTION_SA_QUERY_REQUEST:
3047 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3048 break;
3049 ieee80211_process_sa_query_req(sdata, mgmt, len);
3050 goto handled;
3051 }
3052 break;
3053 case WLAN_CATEGORY_SELF_PROTECTED:
3054 if (len < (IEEE80211_MIN_ACTION_SIZE +
3055 sizeof(mgmt->u.action.u.self_prot.action_code)))
3056 break;
3057
3058 switch (mgmt->u.action.u.self_prot.action_code) {
3059 case WLAN_SP_MESH_PEERING_OPEN:
3060 case WLAN_SP_MESH_PEERING_CLOSE:
3061 case WLAN_SP_MESH_PEERING_CONFIRM:
3062 if (!ieee80211_vif_is_mesh(&sdata->vif))
3063 goto invalid;
3064 if (sdata->u.mesh.user_mpm)
3065 /* userspace handles this frame */
3066 break;
3067 goto queue;
3068 case WLAN_SP_MGK_INFORM:
3069 case WLAN_SP_MGK_ACK:
3070 if (!ieee80211_vif_is_mesh(&sdata->vif))
3071 goto invalid;
3072 break;
3073 }
3074 break;
3075 case WLAN_CATEGORY_MESH_ACTION:
3076 if (len < (IEEE80211_MIN_ACTION_SIZE +
3077 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3078 break;
3079
3080 if (!ieee80211_vif_is_mesh(&sdata->vif))
3081 break;
3082 if (mesh_action_is_path_sel(mgmt) &&
3083 !mesh_path_sel_is_hwmp(sdata))
3084 break;
3085 goto queue;
3086 }
3087
3088 return RX_CONTINUE;
3089
3090 invalid:
3091 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3092 /* will return in the next handlers */
3093 return RX_CONTINUE;
3094
3095 handled:
3096 if (rx->sta)
3097 rx->sta->rx_stats.packets++;
3098 dev_kfree_skb(rx->skb);
3099 return RX_QUEUED;
3100
3101 queue:
3102 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3103 skb_queue_tail(&sdata->skb_queue, rx->skb);
3104 ieee80211_queue_work(&local->hw, &sdata->work);
3105 if (rx->sta)
3106 rx->sta->rx_stats.packets++;
3107 return RX_QUEUED;
3108 }
3109
3110 static ieee80211_rx_result debug_noinline
3111 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3112 {
3113 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3114 int sig = 0;
3115
3116 /* skip known-bad action frames and return them in the next handler */
3117 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3118 return RX_CONTINUE;
3119
3120 /*
3121 * Getting here means the kernel doesn't know how to handle
3122 * it, but maybe userspace does ... include returned frames
3123 * so userspace can register for those to know whether ones
3124 * it transmitted were processed or returned.
3125 */
3126
3127 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3128 sig = status->signal;
3129
3130 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3131 rx->skb->data, rx->skb->len, 0)) {
3132 if (rx->sta)
3133 rx->sta->rx_stats.packets++;
3134 dev_kfree_skb(rx->skb);
3135 return RX_QUEUED;
3136 }
3137
3138 return RX_CONTINUE;
3139 }
3140
3141 static ieee80211_rx_result debug_noinline
3142 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3143 {
3144 struct ieee80211_local *local = rx->local;
3145 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3146 struct sk_buff *nskb;
3147 struct ieee80211_sub_if_data *sdata = rx->sdata;
3148 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3149
3150 if (!ieee80211_is_action(mgmt->frame_control))
3151 return RX_CONTINUE;
3152
3153 /*
3154 * For AP mode, hostapd is responsible for handling any action
3155 * frames that we didn't handle, including returning unknown
3156 * ones. For all other modes we will return them to the sender,
3157 * setting the 0x80 bit in the action category, as required by
3158 * 802.11-2012 9.24.4.
3159 * Newer versions of hostapd shall also use the management frame
3160 * registration mechanisms, but older ones still use cooked
3161 * monitor interfaces so push all frames there.
3162 */
3163 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3164 (sdata->vif.type == NL80211_IFTYPE_AP ||
3165 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3166 return RX_DROP_MONITOR;
3167
3168 if (is_multicast_ether_addr(mgmt->da))
3169 return RX_DROP_MONITOR;
3170
3171 /* do not return rejected action frames */
3172 if (mgmt->u.action.category & 0x80)
3173 return RX_DROP_UNUSABLE;
3174
3175 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3176 GFP_ATOMIC);
3177 if (nskb) {
3178 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3179
3180 nmgmt->u.action.category |= 0x80;
3181 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3182 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3183
3184 memset(nskb->cb, 0, sizeof(nskb->cb));
3185
3186 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3187 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3188
3189 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3190 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3191 IEEE80211_TX_CTL_NO_CCK_RATE;
3192 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3193 info->hw_queue =
3194 local->hw.offchannel_tx_hw_queue;
3195 }
3196
3197 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3198 status->band);
3199 }
3200 dev_kfree_skb(rx->skb);
3201 return RX_QUEUED;
3202 }
3203
3204 static ieee80211_rx_result debug_noinline
3205 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3206 {
3207 struct ieee80211_sub_if_data *sdata = rx->sdata;
3208 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3209 __le16 stype;
3210
3211 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3212
3213 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3214 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3215 sdata->vif.type != NL80211_IFTYPE_OCB &&
3216 sdata->vif.type != NL80211_IFTYPE_STATION)
3217 return RX_DROP_MONITOR;
3218
3219 switch (stype) {
3220 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3221 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3222 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3223 /* process for all: mesh, mlme, ibss */
3224 break;
3225 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3226 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3227 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3228 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3229 if (is_multicast_ether_addr(mgmt->da) &&
3230 !is_broadcast_ether_addr(mgmt->da))
3231 return RX_DROP_MONITOR;
3232
3233 /* process only for station */
3234 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3235 return RX_DROP_MONITOR;
3236 break;
3237 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3238 /* process only for ibss and mesh */
3239 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3240 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3241 return RX_DROP_MONITOR;
3242 break;
3243 default:
3244 return RX_DROP_MONITOR;
3245 }
3246
3247 /* queue up frame and kick off work to process it */
3248 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3249 skb_queue_tail(&sdata->skb_queue, rx->skb);
3250 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3251 if (rx->sta)
3252 rx->sta->rx_stats.packets++;
3253
3254 return RX_QUEUED;
3255 }
3256
3257 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3258 struct ieee80211_rate *rate)
3259 {
3260 struct ieee80211_sub_if_data *sdata;
3261 struct ieee80211_local *local = rx->local;
3262 struct sk_buff *skb = rx->skb, *skb2;
3263 struct net_device *prev_dev = NULL;
3264 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3265 int needed_headroom;
3266
3267 /*
3268 * If cooked monitor has been processed already, then
3269 * don't do it again. If not, set the flag.
3270 */
3271 if (rx->flags & IEEE80211_RX_CMNTR)
3272 goto out_free_skb;
3273 rx->flags |= IEEE80211_RX_CMNTR;
3274
3275 /* If there are no cooked monitor interfaces, just free the SKB */
3276 if (!local->cooked_mntrs)
3277 goto out_free_skb;
3278
3279 /* vendor data is long removed here */
3280 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3281 /* room for the radiotap header based on driver features */
3282 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3283
3284 if (skb_headroom(skb) < needed_headroom &&
3285 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3286 goto out_free_skb;
3287
3288 /* prepend radiotap information */
3289 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3290 false);
3291
3292 skb_reset_mac_header(skb);
3293 skb->ip_summed = CHECKSUM_UNNECESSARY;
3294 skb->pkt_type = PACKET_OTHERHOST;
3295 skb->protocol = htons(ETH_P_802_2);
3296
3297 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3298 if (!ieee80211_sdata_running(sdata))
3299 continue;
3300
3301 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3302 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3303 continue;
3304
3305 if (prev_dev) {
3306 skb2 = skb_clone(skb, GFP_ATOMIC);
3307 if (skb2) {
3308 skb2->dev = prev_dev;
3309 netif_receive_skb(skb2);
3310 }
3311 }
3312
3313 prev_dev = sdata->dev;
3314 ieee80211_rx_stats(sdata->dev, skb->len);
3315 }
3316
3317 if (prev_dev) {
3318 skb->dev = prev_dev;
3319 netif_receive_skb(skb);
3320 return;
3321 }
3322
3323 out_free_skb:
3324 dev_kfree_skb(skb);
3325 }
3326
3327 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3328 ieee80211_rx_result res)
3329 {
3330 switch (res) {
3331 case RX_DROP_MONITOR:
3332 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3333 if (rx->sta)
3334 rx->sta->rx_stats.dropped++;
3335 /* fall through */
3336 case RX_CONTINUE: {
3337 struct ieee80211_rate *rate = NULL;
3338 struct ieee80211_supported_band *sband;
3339 struct ieee80211_rx_status *status;
3340
3341 status = IEEE80211_SKB_RXCB((rx->skb));
3342
3343 sband = rx->local->hw.wiphy->bands[status->band];
3344 if (!(status->encoding == RX_ENC_HT) &&
3345 !(status->encoding == RX_ENC_VHT))
3346 rate = &sband->bitrates[status->rate_idx];
3347
3348 ieee80211_rx_cooked_monitor(rx, rate);
3349 break;
3350 }
3351 case RX_DROP_UNUSABLE:
3352 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3353 if (rx->sta)
3354 rx->sta->rx_stats.dropped++;
3355 dev_kfree_skb(rx->skb);
3356 break;
3357 case RX_QUEUED:
3358 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3359 break;
3360 }
3361 }
3362
3363 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3364 struct sk_buff_head *frames)
3365 {
3366 ieee80211_rx_result res = RX_DROP_MONITOR;
3367 struct sk_buff *skb;
3368
3369 #define CALL_RXH(rxh) \
3370 do { \
3371 res = rxh(rx); \
3372 if (res != RX_CONTINUE) \
3373 goto rxh_next; \
3374 } while (0)
3375
3376 /* Lock here to avoid hitting all of the data used in the RX
3377 * path (e.g. key data, station data, ...) concurrently when
3378 * a frame is released from the reorder buffer due to timeout
3379 * from the timer, potentially concurrently with RX from the
3380 * driver.
3381 */
3382 spin_lock_bh(&rx->local->rx_path_lock);
3383
3384 while ((skb = __skb_dequeue(frames))) {
3385 /*
3386 * all the other fields are valid across frames
3387 * that belong to an aMPDU since they are on the
3388 * same TID from the same station
3389 */
3390 rx->skb = skb;
3391
3392 CALL_RXH(ieee80211_rx_h_check_more_data);
3393 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3394 CALL_RXH(ieee80211_rx_h_sta_process);
3395 CALL_RXH(ieee80211_rx_h_decrypt);
3396 CALL_RXH(ieee80211_rx_h_defragment);
3397 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3398 /* must be after MMIC verify so header is counted in MPDU mic */
3399 #ifdef CONFIG_MAC80211_MESH
3400 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3401 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3402 #endif
3403 CALL_RXH(ieee80211_rx_h_amsdu);
3404 CALL_RXH(ieee80211_rx_h_data);
3405
3406 /* special treatment -- needs the queue */
3407 res = ieee80211_rx_h_ctrl(rx, frames);
3408 if (res != RX_CONTINUE)
3409 goto rxh_next;
3410
3411 CALL_RXH(ieee80211_rx_h_mgmt_check);
3412 CALL_RXH(ieee80211_rx_h_action);
3413 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3414 CALL_RXH(ieee80211_rx_h_action_return);
3415 CALL_RXH(ieee80211_rx_h_mgmt);
3416
3417 rxh_next:
3418 ieee80211_rx_handlers_result(rx, res);
3419
3420 #undef CALL_RXH
3421 }
3422
3423 spin_unlock_bh(&rx->local->rx_path_lock);
3424 }
3425
3426 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3427 {
3428 struct sk_buff_head reorder_release;
3429 ieee80211_rx_result res = RX_DROP_MONITOR;
3430
3431 __skb_queue_head_init(&reorder_release);
3432
3433 #define CALL_RXH(rxh) \
3434 do { \
3435 res = rxh(rx); \
3436 if (res != RX_CONTINUE) \
3437 goto rxh_next; \
3438 } while (0)
3439
3440 CALL_RXH(ieee80211_rx_h_check_dup);
3441 CALL_RXH(ieee80211_rx_h_check);
3442
3443 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3444
3445 ieee80211_rx_handlers(rx, &reorder_release);
3446 return;
3447
3448 rxh_next:
3449 ieee80211_rx_handlers_result(rx, res);
3450
3451 #undef CALL_RXH
3452 }
3453
3454 /*
3455 * This function makes calls into the RX path, therefore
3456 * it has to be invoked under RCU read lock.
3457 */
3458 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3459 {
3460 struct sk_buff_head frames;
3461 struct ieee80211_rx_data rx = {
3462 .sta = sta,
3463 .sdata = sta->sdata,
3464 .local = sta->local,
3465 /* This is OK -- must be QoS data frame */
3466 .security_idx = tid,
3467 .seqno_idx = tid,
3468 .napi = NULL, /* must be NULL to not have races */
3469 };
3470 struct tid_ampdu_rx *tid_agg_rx;
3471
3472 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3473 if (!tid_agg_rx)
3474 return;
3475
3476 __skb_queue_head_init(&frames);
3477
3478 spin_lock(&tid_agg_rx->reorder_lock);
3479 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3480 spin_unlock(&tid_agg_rx->reorder_lock);
3481
3482 if (!skb_queue_empty(&frames)) {
3483 struct ieee80211_event event = {
3484 .type = BA_FRAME_TIMEOUT,
3485 .u.ba.tid = tid,
3486 .u.ba.sta = &sta->sta,
3487 };
3488 drv_event_callback(rx.local, rx.sdata, &event);
3489 }
3490
3491 ieee80211_rx_handlers(&rx, &frames);
3492 }
3493
3494 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3495 u16 ssn, u64 filtered,
3496 u16 received_mpdus)
3497 {
3498 struct sta_info *sta;
3499 struct tid_ampdu_rx *tid_agg_rx;
3500 struct sk_buff_head frames;
3501 struct ieee80211_rx_data rx = {
3502 /* This is OK -- must be QoS data frame */
3503 .security_idx = tid,
3504 .seqno_idx = tid,
3505 };
3506 int i, diff;
3507
3508 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3509 return;
3510
3511 __skb_queue_head_init(&frames);
3512
3513 sta = container_of(pubsta, struct sta_info, sta);
3514
3515 rx.sta = sta;
3516 rx.sdata = sta->sdata;
3517 rx.local = sta->local;
3518
3519 rcu_read_lock();
3520 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3521 if (!tid_agg_rx)
3522 goto out;
3523
3524 spin_lock_bh(&tid_agg_rx->reorder_lock);
3525
3526 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3527 int release;
3528
3529 /* release all frames in the reorder buffer */
3530 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3531 IEEE80211_SN_MODULO;
3532 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3533 release, &frames);
3534 /* update ssn to match received ssn */
3535 tid_agg_rx->head_seq_num = ssn;
3536 } else {
3537 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3538 &frames);
3539 }
3540
3541 /* handle the case that received ssn is behind the mac ssn.
3542 * it can be tid_agg_rx->buf_size behind and still be valid */
3543 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3544 if (diff >= tid_agg_rx->buf_size) {
3545 tid_agg_rx->reorder_buf_filtered = 0;
3546 goto release;
3547 }
3548 filtered = filtered >> diff;
3549 ssn += diff;
3550
3551 /* update bitmap */
3552 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3553 int index = (ssn + i) % tid_agg_rx->buf_size;
3554
3555 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3556 if (filtered & BIT_ULL(i))
3557 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3558 }
3559
3560 /* now process also frames that the filter marking released */
3561 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3562
3563 release:
3564 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3565
3566 ieee80211_rx_handlers(&rx, &frames);
3567
3568 out:
3569 rcu_read_unlock();
3570 }
3571 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3572
3573 /* main receive path */
3574
3575 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3576 {
3577 struct ieee80211_sub_if_data *sdata = rx->sdata;
3578 struct sk_buff *skb = rx->skb;
3579 struct ieee80211_hdr *hdr = (void *)skb->data;
3580 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3581 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3582 bool multicast = is_multicast_ether_addr(hdr->addr1);
3583
3584 switch (sdata->vif.type) {
3585 case NL80211_IFTYPE_STATION:
3586 if (!bssid && !sdata->u.mgd.use_4addr)
3587 return false;
3588 if (multicast)
3589 return true;
3590 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3591 case NL80211_IFTYPE_ADHOC:
3592 if (!bssid)
3593 return false;
3594 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3595 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3596 return false;
3597 if (ieee80211_is_beacon(hdr->frame_control))
3598 return true;
3599 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3600 return false;
3601 if (!multicast &&
3602 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3603 return false;
3604 if (!rx->sta) {
3605 int rate_idx;
3606 if (status->encoding != RX_ENC_LEGACY)
3607 rate_idx = 0; /* TODO: HT/VHT rates */
3608 else
3609 rate_idx = status->rate_idx;
3610 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3611 BIT(rate_idx));
3612 }
3613 return true;
3614 case NL80211_IFTYPE_OCB:
3615 if (!bssid)
3616 return false;
3617 if (!ieee80211_is_data_present(hdr->frame_control))
3618 return false;
3619 if (!is_broadcast_ether_addr(bssid))
3620 return false;
3621 if (!multicast &&
3622 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3623 return false;
3624 if (!rx->sta) {
3625 int rate_idx;
3626 if (status->encoding != RX_ENC_LEGACY)
3627 rate_idx = 0; /* TODO: HT rates */
3628 else
3629 rate_idx = status->rate_idx;
3630 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3631 BIT(rate_idx));
3632 }
3633 return true;
3634 case NL80211_IFTYPE_MESH_POINT:
3635 if (multicast)
3636 return true;
3637 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3638 case NL80211_IFTYPE_AP_VLAN:
3639 case NL80211_IFTYPE_AP:
3640 if (!bssid)
3641 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3642
3643 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3644 /*
3645 * Accept public action frames even when the
3646 * BSSID doesn't match, this is used for P2P
3647 * and location updates. Note that mac80211
3648 * itself never looks at these frames.
3649 */
3650 if (!multicast &&
3651 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3652 return false;
3653 if (ieee80211_is_public_action(hdr, skb->len))
3654 return true;
3655 return ieee80211_is_beacon(hdr->frame_control);
3656 }
3657
3658 if (!ieee80211_has_tods(hdr->frame_control)) {
3659 /* ignore data frames to TDLS-peers */
3660 if (ieee80211_is_data(hdr->frame_control))
3661 return false;
3662 /* ignore action frames to TDLS-peers */
3663 if (ieee80211_is_action(hdr->frame_control) &&
3664 !is_broadcast_ether_addr(bssid) &&
3665 !ether_addr_equal(bssid, hdr->addr1))
3666 return false;
3667 }
3668
3669 /*
3670 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3671 * the BSSID - we've checked that already but may have accepted
3672 * the wildcard (ff:ff:ff:ff:ff:ff).
3673 *
3674 * It also says:
3675 * The BSSID of the Data frame is determined as follows:
3676 * a) If the STA is contained within an AP or is associated
3677 * with an AP, the BSSID is the address currently in use
3678 * by the STA contained in the AP.
3679 *
3680 * So we should not accept data frames with an address that's
3681 * multicast.
3682 *
3683 * Accepting it also opens a security problem because stations
3684 * could encrypt it with the GTK and inject traffic that way.
3685 */
3686 if (ieee80211_is_data(hdr->frame_control) && multicast)
3687 return false;
3688
3689 return true;
3690 case NL80211_IFTYPE_WDS:
3691 if (bssid || !ieee80211_is_data(hdr->frame_control))
3692 return false;
3693 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3694 case NL80211_IFTYPE_P2P_DEVICE:
3695 return ieee80211_is_public_action(hdr, skb->len) ||
3696 ieee80211_is_probe_req(hdr->frame_control) ||
3697 ieee80211_is_probe_resp(hdr->frame_control) ||
3698 ieee80211_is_beacon(hdr->frame_control);
3699 case NL80211_IFTYPE_NAN:
3700 /* Currently no frames on NAN interface are allowed */
3701 return false;
3702 default:
3703 break;
3704 }
3705
3706 WARN_ON_ONCE(1);
3707 return false;
3708 }
3709
3710 void ieee80211_check_fast_rx(struct sta_info *sta)
3711 {
3712 struct ieee80211_sub_if_data *sdata = sta->sdata;
3713 struct ieee80211_local *local = sdata->local;
3714 struct ieee80211_key *key;
3715 struct ieee80211_fast_rx fastrx = {
3716 .dev = sdata->dev,
3717 .vif_type = sdata->vif.type,
3718 .control_port_protocol = sdata->control_port_protocol,
3719 }, *old, *new = NULL;
3720 bool assign = false;
3721
3722 /* use sparse to check that we don't return without updating */
3723 __acquire(check_fast_rx);
3724
3725 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3726 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3727 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3728 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3729
3730 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3731
3732 /* fast-rx doesn't do reordering */
3733 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3734 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3735 goto clear;
3736
3737 switch (sdata->vif.type) {
3738 case NL80211_IFTYPE_STATION:
3739 /* 4-addr is harder to deal with, later maybe */
3740 if (sdata->u.mgd.use_4addr)
3741 goto clear;
3742 /* software powersave is a huge mess, avoid all of it */
3743 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3744 goto clear;
3745 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3746 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3747 goto clear;
3748 if (sta->sta.tdls) {
3749 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3750 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3751 fastrx.expected_ds_bits = 0;
3752 } else {
3753 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3754 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3755 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3756 fastrx.expected_ds_bits =
3757 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3758 }
3759 break;
3760 case NL80211_IFTYPE_AP_VLAN:
3761 case NL80211_IFTYPE_AP:
3762 /* parallel-rx requires this, at least with calls to
3763 * ieee80211_sta_ps_transition()
3764 */
3765 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3766 goto clear;
3767 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3768 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3769 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3770
3771 fastrx.internal_forward =
3772 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3773 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3774 !sdata->u.vlan.sta);
3775 break;
3776 default:
3777 goto clear;
3778 }
3779
3780 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3781 goto clear;
3782
3783 rcu_read_lock();
3784 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3785 if (key) {
3786 switch (key->conf.cipher) {
3787 case WLAN_CIPHER_SUITE_TKIP:
3788 /* we don't want to deal with MMIC in fast-rx */
3789 goto clear_rcu;
3790 case WLAN_CIPHER_SUITE_CCMP:
3791 case WLAN_CIPHER_SUITE_CCMP_256:
3792 case WLAN_CIPHER_SUITE_GCMP:
3793 case WLAN_CIPHER_SUITE_GCMP_256:
3794 break;
3795 default:
3796 /* we also don't want to deal with WEP or cipher scheme
3797 * since those require looking up the key idx in the
3798 * frame, rather than assuming the PTK is used
3799 * (we need to revisit this once we implement the real
3800 * PTK index, which is now valid in the spec, but we
3801 * haven't implemented that part yet)
3802 */
3803 goto clear_rcu;
3804 }
3805
3806 fastrx.key = true;
3807 fastrx.icv_len = key->conf.icv_len;
3808 }
3809
3810 assign = true;
3811 clear_rcu:
3812 rcu_read_unlock();
3813 clear:
3814 __release(check_fast_rx);
3815
3816 if (assign)
3817 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3818
3819 spin_lock_bh(&sta->lock);
3820 old = rcu_dereference_protected(sta->fast_rx, true);
3821 rcu_assign_pointer(sta->fast_rx, new);
3822 spin_unlock_bh(&sta->lock);
3823
3824 if (old)
3825 kfree_rcu(old, rcu_head);
3826 }
3827
3828 void ieee80211_clear_fast_rx(struct sta_info *sta)
3829 {
3830 struct ieee80211_fast_rx *old;
3831
3832 spin_lock_bh(&sta->lock);
3833 old = rcu_dereference_protected(sta->fast_rx, true);
3834 RCU_INIT_POINTER(sta->fast_rx, NULL);
3835 spin_unlock_bh(&sta->lock);
3836
3837 if (old)
3838 kfree_rcu(old, rcu_head);
3839 }
3840
3841 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3842 {
3843 struct ieee80211_local *local = sdata->local;
3844 struct sta_info *sta;
3845
3846 lockdep_assert_held(&local->sta_mtx);
3847
3848 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3849 if (sdata != sta->sdata &&
3850 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3851 continue;
3852 ieee80211_check_fast_rx(sta);
3853 }
3854 }
3855
3856 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3857 {
3858 struct ieee80211_local *local = sdata->local;
3859
3860 mutex_lock(&local->sta_mtx);
3861 __ieee80211_check_fast_rx_iface(sdata);
3862 mutex_unlock(&local->sta_mtx);
3863 }
3864
3865 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3866 struct ieee80211_fast_rx *fast_rx)
3867 {
3868 struct sk_buff *skb = rx->skb;
3869 struct ieee80211_hdr *hdr = (void *)skb->data;
3870 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3871 struct sta_info *sta = rx->sta;
3872 int orig_len = skb->len;
3873 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3874 struct {
3875 u8 snap[sizeof(rfc1042_header)];
3876 __be16 proto;
3877 } *payload __aligned(2);
3878 struct {
3879 u8 da[ETH_ALEN];
3880 u8 sa[ETH_ALEN];
3881 } addrs __aligned(2);
3882 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3883
3884 if (fast_rx->uses_rss)
3885 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3886
3887 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3888 * to a common data structure; drivers can implement that per queue
3889 * but we don't have that information in mac80211
3890 */
3891 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3892 return false;
3893
3894 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3895
3896 /* If using encryption, we also need to have:
3897 * - PN_VALIDATED: similar, but the implementation is tricky
3898 * - DECRYPTED: necessary for PN_VALIDATED
3899 */
3900 if (fast_rx->key &&
3901 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3902 return false;
3903
3904 /* we don't deal with A-MSDU deaggregation here */
3905 if (status->rx_flags & IEEE80211_RX_AMSDU)
3906 return false;
3907
3908 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3909 return false;
3910
3911 if (unlikely(ieee80211_is_frag(hdr)))
3912 return false;
3913
3914 /* Since our interface address cannot be multicast, this
3915 * implicitly also rejects multicast frames without the
3916 * explicit check.
3917 *
3918 * We shouldn't get any *data* frames not addressed to us
3919 * (AP mode will accept multicast *management* frames), but
3920 * punting here will make it go through the full checks in
3921 * ieee80211_accept_frame().
3922 */
3923 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3924 return false;
3925
3926 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3927 IEEE80211_FCTL_TODS)) !=
3928 fast_rx->expected_ds_bits)
3929 goto drop;
3930
3931 /* assign the key to drop unencrypted frames (later)
3932 * and strip the IV/MIC if necessary
3933 */
3934 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3935 /* GCMP header length is the same */
3936 snap_offs += IEEE80211_CCMP_HDR_LEN;
3937 }
3938
3939 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3940 goto drop;
3941 payload = (void *)(skb->data + snap_offs);
3942
3943 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3944 return false;
3945
3946 /* Don't handle these here since they require special code.
3947 * Accept AARP and IPX even though they should come with a
3948 * bridge-tunnel header - but if we get them this way then
3949 * there's little point in discarding them.
3950 */
3951 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3952 payload->proto == fast_rx->control_port_protocol))
3953 return false;
3954
3955 /* after this point, don't punt to the slowpath! */
3956
3957 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3958 pskb_trim(skb, skb->len - fast_rx->icv_len))
3959 goto drop;
3960
3961 if (unlikely(fast_rx->sta_notify)) {
3962 ieee80211_sta_rx_notify(rx->sdata, hdr);
3963 fast_rx->sta_notify = false;
3964 }
3965
3966 /* statistics part of ieee80211_rx_h_sta_process() */
3967 stats->last_rx = jiffies;
3968 stats->last_rate = sta_stats_encode_rate(status);
3969
3970 stats->fragments++;
3971 stats->packets++;
3972
3973 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3974 stats->last_signal = status->signal;
3975 if (!fast_rx->uses_rss)
3976 ewma_signal_add(&sta->rx_stats_avg.signal,
3977 -status->signal);
3978 }
3979
3980 if (status->chains) {
3981 int i;
3982
3983 stats->chains = status->chains;
3984 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3985 int signal = status->chain_signal[i];
3986
3987 if (!(status->chains & BIT(i)))
3988 continue;
3989
3990 stats->chain_signal_last[i] = signal;
3991 if (!fast_rx->uses_rss)
3992 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3993 -signal);
3994 }
3995 }
3996 /* end of statistics */
3997
3998 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3999 goto drop;
4000
4001 /* do the header conversion - first grab the addresses */
4002 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4003 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4004 /* remove the SNAP but leave the ethertype */
4005 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4006 /* push the addresses in front */
4007 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4008
4009 skb->dev = fast_rx->dev;
4010
4011 ieee80211_rx_stats(fast_rx->dev, skb->len);
4012
4013 /* The seqno index has the same property as needed
4014 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4015 * for non-QoS-data frames. Here we know it's a data
4016 * frame, so count MSDUs.
4017 */
4018 u64_stats_update_begin(&stats->syncp);
4019 stats->msdu[rx->seqno_idx]++;
4020 stats->bytes += orig_len;
4021 u64_stats_update_end(&stats->syncp);
4022
4023 if (fast_rx->internal_forward) {
4024 struct sk_buff *xmit_skb = NULL;
4025 bool multicast = is_multicast_ether_addr(skb->data);
4026
4027 if (multicast) {
4028 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4029 } else if (sta_info_get(rx->sdata, skb->data)) {
4030 xmit_skb = skb;
4031 skb = NULL;
4032 }
4033
4034 if (xmit_skb) {
4035 /*
4036 * Send to wireless media and increase priority by 256
4037 * to keep the received priority instead of
4038 * reclassifying the frame (see cfg80211_classify8021d).
4039 */
4040 xmit_skb->priority += 256;
4041 xmit_skb->protocol = htons(ETH_P_802_3);
4042 skb_reset_network_header(xmit_skb);
4043 skb_reset_mac_header(xmit_skb);
4044 dev_queue_xmit(xmit_skb);
4045 }
4046
4047 if (!skb)
4048 return true;
4049 }
4050
4051 /* deliver to local stack */
4052 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4053 memset(skb->cb, 0, sizeof(skb->cb));
4054 if (rx->napi)
4055 napi_gro_receive(rx->napi, skb);
4056 else
4057 netif_receive_skb(skb);
4058
4059 return true;
4060 drop:
4061 dev_kfree_skb(skb);
4062 stats->dropped++;
4063 return true;
4064 }
4065
4066 /*
4067 * This function returns whether or not the SKB
4068 * was destined for RX processing or not, which,
4069 * if consume is true, is equivalent to whether
4070 * or not the skb was consumed.
4071 */
4072 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4073 struct sk_buff *skb, bool consume)
4074 {
4075 struct ieee80211_local *local = rx->local;
4076 struct ieee80211_sub_if_data *sdata = rx->sdata;
4077
4078 rx->skb = skb;
4079
4080 /* See if we can do fast-rx; if we have to copy we already lost,
4081 * so punt in that case. We should never have to deliver a data
4082 * frame to multiple interfaces anyway.
4083 *
4084 * We skip the ieee80211_accept_frame() call and do the necessary
4085 * checking inside ieee80211_invoke_fast_rx().
4086 */
4087 if (consume && rx->sta) {
4088 struct ieee80211_fast_rx *fast_rx;
4089
4090 fast_rx = rcu_dereference(rx->sta->fast_rx);
4091 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4092 return true;
4093 }
4094
4095 if (!ieee80211_accept_frame(rx))
4096 return false;
4097
4098 if (!consume) {
4099 skb = skb_copy(skb, GFP_ATOMIC);
4100 if (!skb) {
4101 if (net_ratelimit())
4102 wiphy_debug(local->hw.wiphy,
4103 "failed to copy skb for %s\n",
4104 sdata->name);
4105 return true;
4106 }
4107
4108 rx->skb = skb;
4109 }
4110
4111 ieee80211_invoke_rx_handlers(rx);
4112 return true;
4113 }
4114
4115 /*
4116 * This is the actual Rx frames handler. as it belongs to Rx path it must
4117 * be called with rcu_read_lock protection.
4118 */
4119 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4120 struct ieee80211_sta *pubsta,
4121 struct sk_buff *skb,
4122 struct napi_struct *napi)
4123 {
4124 struct ieee80211_local *local = hw_to_local(hw);
4125 struct ieee80211_sub_if_data *sdata;
4126 struct ieee80211_hdr *hdr;
4127 __le16 fc;
4128 struct ieee80211_rx_data rx;
4129 struct ieee80211_sub_if_data *prev;
4130 struct rhlist_head *tmp;
4131 int err = 0;
4132
4133 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4134 memset(&rx, 0, sizeof(rx));
4135 rx.skb = skb;
4136 rx.local = local;
4137 rx.napi = napi;
4138
4139 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4140 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4141
4142 if (ieee80211_is_mgmt(fc)) {
4143 /* drop frame if too short for header */
4144 if (skb->len < ieee80211_hdrlen(fc))
4145 err = -ENOBUFS;
4146 else
4147 err = skb_linearize(skb);
4148 } else {
4149 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4150 }
4151
4152 if (err) {
4153 dev_kfree_skb(skb);
4154 return;
4155 }
4156
4157 hdr = (struct ieee80211_hdr *)skb->data;
4158 ieee80211_parse_qos(&rx);
4159 ieee80211_verify_alignment(&rx);
4160
4161 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4162 ieee80211_is_beacon(hdr->frame_control)))
4163 ieee80211_scan_rx(local, skb);
4164
4165 if (ieee80211_is_data(fc)) {
4166 struct sta_info *sta, *prev_sta;
4167
4168 if (pubsta) {
4169 rx.sta = container_of(pubsta, struct sta_info, sta);
4170 rx.sdata = rx.sta->sdata;
4171 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4172 return;
4173 goto out;
4174 }
4175
4176 prev_sta = NULL;
4177
4178 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4179 if (!prev_sta) {
4180 prev_sta = sta;
4181 continue;
4182 }
4183
4184 rx.sta = prev_sta;
4185 rx.sdata = prev_sta->sdata;
4186 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4187
4188 prev_sta = sta;
4189 }
4190
4191 if (prev_sta) {
4192 rx.sta = prev_sta;
4193 rx.sdata = prev_sta->sdata;
4194
4195 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4196 return;
4197 goto out;
4198 }
4199 }
4200
4201 prev = NULL;
4202
4203 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4204 if (!ieee80211_sdata_running(sdata))
4205 continue;
4206
4207 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4208 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4209 continue;
4210
4211 /*
4212 * frame is destined for this interface, but if it's
4213 * not also for the previous one we handle that after
4214 * the loop to avoid copying the SKB once too much
4215 */
4216
4217 if (!prev) {
4218 prev = sdata;
4219 continue;
4220 }
4221
4222 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4223 rx.sdata = prev;
4224 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4225
4226 prev = sdata;
4227 }
4228
4229 if (prev) {
4230 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4231 rx.sdata = prev;
4232
4233 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4234 return;
4235 }
4236
4237 out:
4238 dev_kfree_skb(skb);
4239 }
4240
4241 /*
4242 * This is the receive path handler. It is called by a low level driver when an
4243 * 802.11 MPDU is received from the hardware.
4244 */
4245 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4246 struct sk_buff *skb, struct napi_struct *napi)
4247 {
4248 struct ieee80211_local *local = hw_to_local(hw);
4249 struct ieee80211_rate *rate = NULL;
4250 struct ieee80211_supported_band *sband;
4251 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4252
4253 WARN_ON_ONCE(softirq_count() == 0);
4254
4255 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4256 goto drop;
4257
4258 sband = local->hw.wiphy->bands[status->band];
4259 if (WARN_ON(!sband))
4260 goto drop;
4261
4262 /*
4263 * If we're suspending, it is possible although not too likely
4264 * that we'd be receiving frames after having already partially
4265 * quiesced the stack. We can't process such frames then since
4266 * that might, for example, cause stations to be added or other
4267 * driver callbacks be invoked.
4268 */
4269 if (unlikely(local->quiescing || local->suspended))
4270 goto drop;
4271
4272 /* We might be during a HW reconfig, prevent Rx for the same reason */
4273 if (unlikely(local->in_reconfig))
4274 goto drop;
4275
4276 /*
4277 * The same happens when we're not even started,
4278 * but that's worth a warning.
4279 */
4280 if (WARN_ON(!local->started))
4281 goto drop;
4282
4283 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4284 /*
4285 * Validate the rate, unless a PLCP error means that
4286 * we probably can't have a valid rate here anyway.
4287 */
4288
4289 switch (status->encoding) {
4290 case RX_ENC_HT:
4291 /*
4292 * rate_idx is MCS index, which can be [0-76]
4293 * as documented on:
4294 *
4295 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4296 *
4297 * Anything else would be some sort of driver or
4298 * hardware error. The driver should catch hardware
4299 * errors.
4300 */
4301 if (WARN(status->rate_idx > 76,
4302 "Rate marked as an HT rate but passed "
4303 "status->rate_idx is not "
4304 "an MCS index [0-76]: %d (0x%02x)\n",
4305 status->rate_idx,
4306 status->rate_idx))
4307 goto drop;
4308 break;
4309 case RX_ENC_VHT:
4310 if (WARN_ONCE(status->rate_idx > 9 ||
4311 !status->nss ||
4312 status->nss > 8,
4313 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4314 status->rate_idx, status->nss))
4315 goto drop;
4316 break;
4317 default:
4318 WARN_ON_ONCE(1);
4319 /* fall through */
4320 case RX_ENC_LEGACY:
4321 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4322 goto drop;
4323 rate = &sband->bitrates[status->rate_idx];
4324 }
4325 }
4326
4327 status->rx_flags = 0;
4328
4329 /*
4330 * key references and virtual interfaces are protected using RCU
4331 * and this requires that we are in a read-side RCU section during
4332 * receive processing
4333 */
4334 rcu_read_lock();
4335
4336 /*
4337 * Frames with failed FCS/PLCP checksum are not returned,
4338 * all other frames are returned without radiotap header
4339 * if it was previously present.
4340 * Also, frames with less than 16 bytes are dropped.
4341 */
4342 skb = ieee80211_rx_monitor(local, skb, rate);
4343 if (!skb) {
4344 rcu_read_unlock();
4345 return;
4346 }
4347
4348 ieee80211_tpt_led_trig_rx(local,
4349 ((struct ieee80211_hdr *)skb->data)->frame_control,
4350 skb->len);
4351
4352 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4353
4354 rcu_read_unlock();
4355
4356 return;
4357 drop:
4358 kfree_skb(skb);
4359 }
4360 EXPORT_SYMBOL(ieee80211_rx_napi);
4361
4362 /* This is a version of the rx handler that can be called from hard irq
4363 * context. Post the skb on the queue and schedule the tasklet */
4364 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4365 {
4366 struct ieee80211_local *local = hw_to_local(hw);
4367
4368 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4369
4370 skb->pkt_type = IEEE80211_RX_MSG;
4371 skb_queue_tail(&local->skb_queue, skb);
4372 tasklet_schedule(&local->tasklet);
4373 }
4374 EXPORT_SYMBOL(ieee80211_rx_irqsafe);