]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/mac80211/rx.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
37
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
39 {
40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
41
42 u64_stats_update_begin(&tstats->syncp);
43 tstats->rx_packets++;
44 tstats->rx_bytes += len;
45 u64_stats_update_end(&tstats->syncp);
46 }
47
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 enum nl80211_iftype type)
50 {
51 __le16 fc = hdr->frame_control;
52
53 if (ieee80211_is_data(fc)) {
54 if (len < 24) /* drop incorrect hdr len (data) */
55 return NULL;
56
57 if (ieee80211_has_a4(fc))
58 return NULL;
59 if (ieee80211_has_tods(fc))
60 return hdr->addr1;
61 if (ieee80211_has_fromds(fc))
62 return hdr->addr2;
63
64 return hdr->addr3;
65 }
66
67 if (ieee80211_is_mgmt(fc)) {
68 if (len < 24) /* drop incorrect hdr len (mgmt) */
69 return NULL;
70 return hdr->addr3;
71 }
72
73 if (ieee80211_is_ctl(fc)) {
74 if (ieee80211_is_pspoll(fc))
75 return hdr->addr1;
76
77 if (ieee80211_is_back_req(fc)) {
78 switch (type) {
79 case NL80211_IFTYPE_STATION:
80 return hdr->addr2;
81 case NL80211_IFTYPE_AP:
82 case NL80211_IFTYPE_AP_VLAN:
83 return hdr->addr1;
84 default:
85 break; /* fall through to the return */
86 }
87 }
88 }
89
90 return NULL;
91 }
92
93 /*
94 * monitor mode reception
95 *
96 * This function cleans up the SKB, i.e. it removes all the stuff
97 * only useful for monitoring.
98 */
99 static void remove_monitor_info(struct sk_buff *skb,
100 unsigned int present_fcs_len,
101 unsigned int rtap_space)
102 {
103 if (present_fcs_len)
104 __pskb_trim(skb, skb->len - present_fcs_len);
105 __pskb_pull(skb, rtap_space);
106 }
107
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 unsigned int rtap_space)
110 {
111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 struct ieee80211_hdr *hdr;
113
114 hdr = (void *)(skb->data + rtap_space);
115
116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 RX_FLAG_FAILED_PLCP_CRC |
118 RX_FLAG_ONLY_MONITOR |
119 RX_FLAG_NO_PSDU))
120 return true;
121
122 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
123 return true;
124
125 if (ieee80211_is_ctl(hdr->frame_control) &&
126 !ieee80211_is_pspoll(hdr->frame_control) &&
127 !ieee80211_is_back_req(hdr->frame_control))
128 return true;
129
130 return false;
131 }
132
133 static int
134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
135 struct ieee80211_rx_status *status,
136 struct sk_buff *skb)
137 {
138 int len;
139
140 /* always present fields */
141 len = sizeof(struct ieee80211_radiotap_header) + 8;
142
143 /* allocate extra bitmaps */
144 if (status->chains)
145 len += 4 * hweight8(status->chains);
146 /* vendor presence bitmap */
147 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
148 len += 4;
149
150 if (ieee80211_have_rx_timestamp(status)) {
151 len = ALIGN(len, 8);
152 len += 8;
153 }
154 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
155 len += 1;
156
157 /* antenna field, if we don't have per-chain info */
158 if (!status->chains)
159 len += 1;
160
161 /* padding for RX_FLAGS if necessary */
162 len = ALIGN(len, 2);
163
164 if (status->encoding == RX_ENC_HT) /* HT info */
165 len += 3;
166
167 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
168 len = ALIGN(len, 4);
169 len += 8;
170 }
171
172 if (status->encoding == RX_ENC_VHT) {
173 len = ALIGN(len, 2);
174 len += 12;
175 }
176
177 if (local->hw.radiotap_timestamp.units_pos >= 0) {
178 len = ALIGN(len, 8);
179 len += 12;
180 }
181
182 if (status->encoding == RX_ENC_HE &&
183 status->flag & RX_FLAG_RADIOTAP_HE) {
184 len = ALIGN(len, 2);
185 len += 12;
186 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
187 }
188
189 if (status->encoding == RX_ENC_HE &&
190 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
191 len = ALIGN(len, 2);
192 len += 12;
193 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
194 }
195
196 if (status->flag & RX_FLAG_NO_PSDU)
197 len += 1;
198
199 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
200 len = ALIGN(len, 2);
201 len += 4;
202 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
203 }
204
205 if (status->chains) {
206 /* antenna and antenna signal fields */
207 len += 2 * hweight8(status->chains);
208 }
209
210 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
211 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
212
213 /* alignment for fixed 6-byte vendor data header */
214 len = ALIGN(len, 2);
215 /* vendor data header */
216 len += 6;
217 if (WARN_ON(rtap->align == 0))
218 rtap->align = 1;
219 len = ALIGN(len, rtap->align);
220 len += rtap->len + rtap->pad;
221 }
222
223 return len;
224 }
225
226 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
227 struct sk_buff *skb,
228 int rtap_space)
229 {
230 struct {
231 struct ieee80211_hdr_3addr hdr;
232 u8 category;
233 u8 action_code;
234 } __packed action;
235
236 if (!sdata)
237 return;
238
239 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240
241 if (skb->len < rtap_space + sizeof(action) +
242 VHT_MUMIMO_GROUPS_DATA_LEN)
243 return;
244
245 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
246 return;
247
248 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249
250 if (!ieee80211_is_action(action.hdr.frame_control))
251 return;
252
253 if (action.category != WLAN_CATEGORY_VHT)
254 return;
255
256 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
257 return;
258
259 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
260 return;
261
262 skb = skb_copy(skb, GFP_ATOMIC);
263 if (!skb)
264 return;
265
266 skb_queue_tail(&sdata->skb_queue, skb);
267 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
268 }
269
270 /*
271 * ieee80211_add_rx_radiotap_header - add radiotap header
272 *
273 * add a radiotap header containing all the fields which the hardware provided.
274 */
275 static void
276 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
277 struct sk_buff *skb,
278 struct ieee80211_rate *rate,
279 int rtap_len, bool has_fcs)
280 {
281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
282 struct ieee80211_radiotap_header *rthdr;
283 unsigned char *pos;
284 __le32 *it_present;
285 u32 it_present_val;
286 u16 rx_flags = 0;
287 u16 channel_flags = 0;
288 int mpdulen, chain;
289 unsigned long chains = status->chains;
290 struct ieee80211_vendor_radiotap rtap = {};
291 struct ieee80211_radiotap_he he = {};
292 struct ieee80211_radiotap_he_mu he_mu = {};
293 struct ieee80211_radiotap_lsig lsig = {};
294
295 if (status->flag & RX_FLAG_RADIOTAP_HE) {
296 he = *(struct ieee80211_radiotap_he *)skb->data;
297 skb_pull(skb, sizeof(he));
298 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
299 }
300
301 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
302 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
303 skb_pull(skb, sizeof(he_mu));
304 }
305
306 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
307 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
308 skb_pull(skb, sizeof(lsig));
309 }
310
311 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
312 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
313 /* rtap.len and rtap.pad are undone immediately */
314 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
315 }
316
317 mpdulen = skb->len;
318 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
319 mpdulen += FCS_LEN;
320
321 rthdr = skb_push(skb, rtap_len);
322 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
323 it_present = &rthdr->it_present;
324
325 /* radiotap header, set always present flags */
326 rthdr->it_len = cpu_to_le16(rtap_len);
327 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
328 BIT(IEEE80211_RADIOTAP_CHANNEL) |
329 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330
331 if (!status->chains)
332 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333
334 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
335 it_present_val |=
336 BIT(IEEE80211_RADIOTAP_EXT) |
337 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
338 put_unaligned_le32(it_present_val, it_present);
339 it_present++;
340 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
341 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
342 }
343
344 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
345 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
346 BIT(IEEE80211_RADIOTAP_EXT);
347 put_unaligned_le32(it_present_val, it_present);
348 it_present++;
349 it_present_val = rtap.present;
350 }
351
352 put_unaligned_le32(it_present_val, it_present);
353
354 pos = (void *)(it_present + 1);
355
356 /* the order of the following fields is important */
357
358 /* IEEE80211_RADIOTAP_TSFT */
359 if (ieee80211_have_rx_timestamp(status)) {
360 /* padding */
361 while ((pos - (u8 *)rthdr) & 7)
362 *pos++ = 0;
363 put_unaligned_le64(
364 ieee80211_calculate_rx_timestamp(local, status,
365 mpdulen, 0),
366 pos);
367 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
368 pos += 8;
369 }
370
371 /* IEEE80211_RADIOTAP_FLAGS */
372 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
373 *pos |= IEEE80211_RADIOTAP_F_FCS;
374 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
375 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
376 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
377 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
378 pos++;
379
380 /* IEEE80211_RADIOTAP_RATE */
381 if (!rate || status->encoding != RX_ENC_LEGACY) {
382 /*
383 * Without rate information don't add it. If we have,
384 * MCS information is a separate field in radiotap,
385 * added below. The byte here is needed as padding
386 * for the channel though, so initialise it to 0.
387 */
388 *pos = 0;
389 } else {
390 int shift = 0;
391 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
392 if (status->bw == RATE_INFO_BW_10)
393 shift = 1;
394 else if (status->bw == RATE_INFO_BW_5)
395 shift = 2;
396 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 }
398 pos++;
399
400 /* IEEE80211_RADIOTAP_CHANNEL */
401 put_unaligned_le16(status->freq, pos);
402 pos += 2;
403 if (status->bw == RATE_INFO_BW_10)
404 channel_flags |= IEEE80211_CHAN_HALF;
405 else if (status->bw == RATE_INFO_BW_5)
406 channel_flags |= IEEE80211_CHAN_QUARTER;
407
408 if (status->band == NL80211_BAND_5GHZ)
409 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
410 else if (status->encoding != RX_ENC_LEGACY)
411 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
412 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
413 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
414 else if (rate)
415 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
416 else
417 channel_flags |= IEEE80211_CHAN_2GHZ;
418 put_unaligned_le16(channel_flags, pos);
419 pos += 2;
420
421 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
422 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
423 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
424 *pos = status->signal;
425 rthdr->it_present |=
426 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
427 pos++;
428 }
429
430 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
431
432 if (!status->chains) {
433 /* IEEE80211_RADIOTAP_ANTENNA */
434 *pos = status->antenna;
435 pos++;
436 }
437
438 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
439
440 /* IEEE80211_RADIOTAP_RX_FLAGS */
441 /* ensure 2 byte alignment for the 2 byte field as required */
442 if ((pos - (u8 *)rthdr) & 1)
443 *pos++ = 0;
444 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
445 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
446 put_unaligned_le16(rx_flags, pos);
447 pos += 2;
448
449 if (status->encoding == RX_ENC_HT) {
450 unsigned int stbc;
451
452 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
453 *pos++ = local->hw.radiotap_mcs_details;
454 *pos = 0;
455 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
456 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
457 if (status->bw == RATE_INFO_BW_40)
458 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
459 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
460 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
461 if (status->enc_flags & RX_ENC_FLAG_LDPC)
462 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
463 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
464 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
465 pos++;
466 *pos++ = status->rate_idx;
467 }
468
469 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
470 u16 flags = 0;
471
472 /* ensure 4 byte alignment */
473 while ((pos - (u8 *)rthdr) & 3)
474 pos++;
475 rthdr->it_present |=
476 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
477 put_unaligned_le32(status->ampdu_reference, pos);
478 pos += 4;
479 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
480 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
481 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
482 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
483 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
484 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
485 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
486 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
487 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
488 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
489 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
490 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
491 put_unaligned_le16(flags, pos);
492 pos += 2;
493 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
494 *pos++ = status->ampdu_delimiter_crc;
495 else
496 *pos++ = 0;
497 *pos++ = 0;
498 }
499
500 if (status->encoding == RX_ENC_VHT) {
501 u16 known = local->hw.radiotap_vht_details;
502
503 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
504 put_unaligned_le16(known, pos);
505 pos += 2;
506 /* flags */
507 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
508 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
509 /* in VHT, STBC is binary */
510 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
511 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
512 if (status->enc_flags & RX_ENC_FLAG_BF)
513 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
514 pos++;
515 /* bandwidth */
516 switch (status->bw) {
517 case RATE_INFO_BW_80:
518 *pos++ = 4;
519 break;
520 case RATE_INFO_BW_160:
521 *pos++ = 11;
522 break;
523 case RATE_INFO_BW_40:
524 *pos++ = 1;
525 break;
526 default:
527 *pos++ = 0;
528 }
529 /* MCS/NSS */
530 *pos = (status->rate_idx << 4) | status->nss;
531 pos += 4;
532 /* coding field */
533 if (status->enc_flags & RX_ENC_FLAG_LDPC)
534 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
535 pos++;
536 /* group ID */
537 pos++;
538 /* partial_aid */
539 pos += 2;
540 }
541
542 if (local->hw.radiotap_timestamp.units_pos >= 0) {
543 u16 accuracy = 0;
544 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
545
546 rthdr->it_present |=
547 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
548
549 /* ensure 8 byte alignment */
550 while ((pos - (u8 *)rthdr) & 7)
551 pos++;
552
553 put_unaligned_le64(status->device_timestamp, pos);
554 pos += sizeof(u64);
555
556 if (local->hw.radiotap_timestamp.accuracy >= 0) {
557 accuracy = local->hw.radiotap_timestamp.accuracy;
558 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
559 }
560 put_unaligned_le16(accuracy, pos);
561 pos += sizeof(u16);
562
563 *pos++ = local->hw.radiotap_timestamp.units_pos;
564 *pos++ = flags;
565 }
566
567 if (status->encoding == RX_ENC_HE &&
568 status->flag & RX_FLAG_RADIOTAP_HE) {
569 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
570
571 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
572 he.data6 |= HE_PREP(DATA6_NSTS,
573 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
574 status->enc_flags));
575 he.data3 |= HE_PREP(DATA3_STBC, 1);
576 } else {
577 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
578 }
579
580 #define CHECK_GI(s) \
581 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
582 (int)NL80211_RATE_INFO_HE_GI_##s)
583
584 CHECK_GI(0_8);
585 CHECK_GI(1_6);
586 CHECK_GI(3_2);
587
588 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
589 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
590 he.data3 |= HE_PREP(DATA3_CODING,
591 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
592
593 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
594
595 switch (status->bw) {
596 case RATE_INFO_BW_20:
597 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
598 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
599 break;
600 case RATE_INFO_BW_40:
601 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
602 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
603 break;
604 case RATE_INFO_BW_80:
605 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
606 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
607 break;
608 case RATE_INFO_BW_160:
609 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
610 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
611 break;
612 case RATE_INFO_BW_HE_RU:
613 #define CHECK_RU_ALLOC(s) \
614 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
615 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
616
617 CHECK_RU_ALLOC(26);
618 CHECK_RU_ALLOC(52);
619 CHECK_RU_ALLOC(106);
620 CHECK_RU_ALLOC(242);
621 CHECK_RU_ALLOC(484);
622 CHECK_RU_ALLOC(996);
623 CHECK_RU_ALLOC(2x996);
624
625 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
626 status->he_ru + 4);
627 break;
628 default:
629 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
630 }
631
632 /* ensure 2 byte alignment */
633 while ((pos - (u8 *)rthdr) & 1)
634 pos++;
635 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
636 memcpy(pos, &he, sizeof(he));
637 pos += sizeof(he);
638 }
639
640 if (status->encoding == RX_ENC_HE &&
641 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
642 /* ensure 2 byte alignment */
643 while ((pos - (u8 *)rthdr) & 1)
644 pos++;
645 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
646 memcpy(pos, &he_mu, sizeof(he_mu));
647 pos += sizeof(he_mu);
648 }
649
650 if (status->flag & RX_FLAG_NO_PSDU) {
651 rthdr->it_present |=
652 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
653 *pos++ = status->zero_length_psdu_type;
654 }
655
656 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
657 /* ensure 2 byte alignment */
658 while ((pos - (u8 *)rthdr) & 1)
659 pos++;
660 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
661 memcpy(pos, &lsig, sizeof(lsig));
662 pos += sizeof(lsig);
663 }
664
665 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
666 *pos++ = status->chain_signal[chain];
667 *pos++ = chain;
668 }
669
670 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
671 /* ensure 2 byte alignment for the vendor field as required */
672 if ((pos - (u8 *)rthdr) & 1)
673 *pos++ = 0;
674 *pos++ = rtap.oui[0];
675 *pos++ = rtap.oui[1];
676 *pos++ = rtap.oui[2];
677 *pos++ = rtap.subns;
678 put_unaligned_le16(rtap.len, pos);
679 pos += 2;
680 /* align the actual payload as requested */
681 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
682 *pos++ = 0;
683 /* data (and possible padding) already follows */
684 }
685 }
686
687 static struct sk_buff *
688 ieee80211_make_monitor_skb(struct ieee80211_local *local,
689 struct sk_buff **origskb,
690 struct ieee80211_rate *rate,
691 int rtap_space, bool use_origskb)
692 {
693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
694 int rt_hdrlen, needed_headroom;
695 struct sk_buff *skb;
696
697 /* room for the radiotap header based on driver features */
698 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
699 needed_headroom = rt_hdrlen - rtap_space;
700
701 if (use_origskb) {
702 /* only need to expand headroom if necessary */
703 skb = *origskb;
704 *origskb = NULL;
705
706 /*
707 * This shouldn't trigger often because most devices have an
708 * RX header they pull before we get here, and that should
709 * be big enough for our radiotap information. We should
710 * probably export the length to drivers so that we can have
711 * them allocate enough headroom to start with.
712 */
713 if (skb_headroom(skb) < needed_headroom &&
714 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
715 dev_kfree_skb(skb);
716 return NULL;
717 }
718 } else {
719 /*
720 * Need to make a copy and possibly remove radiotap header
721 * and FCS from the original.
722 */
723 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
724
725 if (!skb)
726 return NULL;
727 }
728
729 /* prepend radiotap information */
730 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
731
732 skb_reset_mac_header(skb);
733 skb->ip_summed = CHECKSUM_UNNECESSARY;
734 skb->pkt_type = PACKET_OTHERHOST;
735 skb->protocol = htons(ETH_P_802_2);
736
737 return skb;
738 }
739
740 /*
741 * This function copies a received frame to all monitor interfaces and
742 * returns a cleaned-up SKB that no longer includes the FCS nor the
743 * radiotap header the driver might have added.
744 */
745 static struct sk_buff *
746 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
747 struct ieee80211_rate *rate)
748 {
749 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
750 struct ieee80211_sub_if_data *sdata;
751 struct sk_buff *monskb = NULL;
752 int present_fcs_len = 0;
753 unsigned int rtap_space = 0;
754 struct ieee80211_sub_if_data *monitor_sdata =
755 rcu_dereference(local->monitor_sdata);
756 bool only_monitor = false;
757 unsigned int min_head_len;
758
759 if (status->flag & RX_FLAG_RADIOTAP_HE)
760 rtap_space += sizeof(struct ieee80211_radiotap_he);
761
762 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
763 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
764
765 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
766 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
767
768 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
769 struct ieee80211_vendor_radiotap *rtap =
770 (void *)(origskb->data + rtap_space);
771
772 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
773 }
774
775 min_head_len = rtap_space;
776
777 /*
778 * First, we may need to make a copy of the skb because
779 * (1) we need to modify it for radiotap (if not present), and
780 * (2) the other RX handlers will modify the skb we got.
781 *
782 * We don't need to, of course, if we aren't going to return
783 * the SKB because it has a bad FCS/PLCP checksum.
784 */
785
786 if (!(status->flag & RX_FLAG_NO_PSDU)) {
787 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
788 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
789 /* driver bug */
790 WARN_ON(1);
791 dev_kfree_skb(origskb);
792 return NULL;
793 }
794 present_fcs_len = FCS_LEN;
795 }
796
797 /* also consider the hdr->frame_control */
798 min_head_len += 2;
799 }
800
801 /* ensure that the expected data elements are in skb head */
802 if (!pskb_may_pull(origskb, min_head_len)) {
803 dev_kfree_skb(origskb);
804 return NULL;
805 }
806
807 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
808
809 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
810 if (only_monitor) {
811 dev_kfree_skb(origskb);
812 return NULL;
813 }
814
815 remove_monitor_info(origskb, present_fcs_len, rtap_space);
816 return origskb;
817 }
818
819 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
820
821 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
822 bool last_monitor = list_is_last(&sdata->u.mntr.list,
823 &local->mon_list);
824
825 if (!monskb)
826 monskb = ieee80211_make_monitor_skb(local, &origskb,
827 rate, rtap_space,
828 only_monitor &&
829 last_monitor);
830
831 if (monskb) {
832 struct sk_buff *skb;
833
834 if (last_monitor) {
835 skb = monskb;
836 monskb = NULL;
837 } else {
838 skb = skb_clone(monskb, GFP_ATOMIC);
839 }
840
841 if (skb) {
842 skb->dev = sdata->dev;
843 ieee80211_rx_stats(skb->dev, skb->len);
844 netif_receive_skb(skb);
845 }
846 }
847
848 if (last_monitor)
849 break;
850 }
851
852 /* this happens if last_monitor was erroneously false */
853 dev_kfree_skb(monskb);
854
855 /* ditto */
856 if (!origskb)
857 return NULL;
858
859 remove_monitor_info(origskb, present_fcs_len, rtap_space);
860 return origskb;
861 }
862
863 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
864 {
865 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
866 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
867 int tid, seqno_idx, security_idx;
868
869 /* does the frame have a qos control field? */
870 if (ieee80211_is_data_qos(hdr->frame_control)) {
871 u8 *qc = ieee80211_get_qos_ctl(hdr);
872 /* frame has qos control */
873 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
874 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
875 status->rx_flags |= IEEE80211_RX_AMSDU;
876
877 seqno_idx = tid;
878 security_idx = tid;
879 } else {
880 /*
881 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
882 *
883 * Sequence numbers for management frames, QoS data
884 * frames with a broadcast/multicast address in the
885 * Address 1 field, and all non-QoS data frames sent
886 * by QoS STAs are assigned using an additional single
887 * modulo-4096 counter, [...]
888 *
889 * We also use that counter for non-QoS STAs.
890 */
891 seqno_idx = IEEE80211_NUM_TIDS;
892 security_idx = 0;
893 if (ieee80211_is_mgmt(hdr->frame_control))
894 security_idx = IEEE80211_NUM_TIDS;
895 tid = 0;
896 }
897
898 rx->seqno_idx = seqno_idx;
899 rx->security_idx = security_idx;
900 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
901 * For now, set skb->priority to 0 for other cases. */
902 rx->skb->priority = (tid > 7) ? 0 : tid;
903 }
904
905 /**
906 * DOC: Packet alignment
907 *
908 * Drivers always need to pass packets that are aligned to two-byte boundaries
909 * to the stack.
910 *
911 * Additionally, should, if possible, align the payload data in a way that
912 * guarantees that the contained IP header is aligned to a four-byte
913 * boundary. In the case of regular frames, this simply means aligning the
914 * payload to a four-byte boundary (because either the IP header is directly
915 * contained, or IV/RFC1042 headers that have a length divisible by four are
916 * in front of it). If the payload data is not properly aligned and the
917 * architecture doesn't support efficient unaligned operations, mac80211
918 * will align the data.
919 *
920 * With A-MSDU frames, however, the payload data address must yield two modulo
921 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
922 * push the IP header further back to a multiple of four again. Thankfully, the
923 * specs were sane enough this time around to require padding each A-MSDU
924 * subframe to a length that is a multiple of four.
925 *
926 * Padding like Atheros hardware adds which is between the 802.11 header and
927 * the payload is not supported, the driver is required to move the 802.11
928 * header to be directly in front of the payload in that case.
929 */
930 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
931 {
932 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
933 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
934 #endif
935 }
936
937
938 /* rx handlers */
939
940 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
941 {
942 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
943
944 if (is_multicast_ether_addr(hdr->addr1))
945 return 0;
946
947 return ieee80211_is_robust_mgmt_frame(skb);
948 }
949
950
951 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
952 {
953 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
954
955 if (!is_multicast_ether_addr(hdr->addr1))
956 return 0;
957
958 return ieee80211_is_robust_mgmt_frame(skb);
959 }
960
961
962 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
963 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
964 {
965 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
966 struct ieee80211_mmie *mmie;
967 struct ieee80211_mmie_16 *mmie16;
968
969 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
970 return -1;
971
972 if (!ieee80211_is_robust_mgmt_frame(skb))
973 return -1; /* not a robust management frame */
974
975 mmie = (struct ieee80211_mmie *)
976 (skb->data + skb->len - sizeof(*mmie));
977 if (mmie->element_id == WLAN_EID_MMIE &&
978 mmie->length == sizeof(*mmie) - 2)
979 return le16_to_cpu(mmie->key_id);
980
981 mmie16 = (struct ieee80211_mmie_16 *)
982 (skb->data + skb->len - sizeof(*mmie16));
983 if (skb->len >= 24 + sizeof(*mmie16) &&
984 mmie16->element_id == WLAN_EID_MMIE &&
985 mmie16->length == sizeof(*mmie16) - 2)
986 return le16_to_cpu(mmie16->key_id);
987
988 return -1;
989 }
990
991 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
992 struct sk_buff *skb)
993 {
994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
995 __le16 fc;
996 int hdrlen;
997 u8 keyid;
998
999 fc = hdr->frame_control;
1000 hdrlen = ieee80211_hdrlen(fc);
1001
1002 if (skb->len < hdrlen + cs->hdr_len)
1003 return -EINVAL;
1004
1005 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
1006 keyid &= cs->key_idx_mask;
1007 keyid >>= cs->key_idx_shift;
1008
1009 return keyid;
1010 }
1011
1012 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1013 {
1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1015 char *dev_addr = rx->sdata->vif.addr;
1016
1017 if (ieee80211_is_data(hdr->frame_control)) {
1018 if (is_multicast_ether_addr(hdr->addr1)) {
1019 if (ieee80211_has_tods(hdr->frame_control) ||
1020 !ieee80211_has_fromds(hdr->frame_control))
1021 return RX_DROP_MONITOR;
1022 if (ether_addr_equal(hdr->addr3, dev_addr))
1023 return RX_DROP_MONITOR;
1024 } else {
1025 if (!ieee80211_has_a4(hdr->frame_control))
1026 return RX_DROP_MONITOR;
1027 if (ether_addr_equal(hdr->addr4, dev_addr))
1028 return RX_DROP_MONITOR;
1029 }
1030 }
1031
1032 /* If there is not an established peer link and this is not a peer link
1033 * establisment frame, beacon or probe, drop the frame.
1034 */
1035
1036 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1037 struct ieee80211_mgmt *mgmt;
1038
1039 if (!ieee80211_is_mgmt(hdr->frame_control))
1040 return RX_DROP_MONITOR;
1041
1042 if (ieee80211_is_action(hdr->frame_control)) {
1043 u8 category;
1044
1045 /* make sure category field is present */
1046 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1047 return RX_DROP_MONITOR;
1048
1049 mgmt = (struct ieee80211_mgmt *)hdr;
1050 category = mgmt->u.action.category;
1051 if (category != WLAN_CATEGORY_MESH_ACTION &&
1052 category != WLAN_CATEGORY_SELF_PROTECTED)
1053 return RX_DROP_MONITOR;
1054 return RX_CONTINUE;
1055 }
1056
1057 if (ieee80211_is_probe_req(hdr->frame_control) ||
1058 ieee80211_is_probe_resp(hdr->frame_control) ||
1059 ieee80211_is_beacon(hdr->frame_control) ||
1060 ieee80211_is_auth(hdr->frame_control))
1061 return RX_CONTINUE;
1062
1063 return RX_DROP_MONITOR;
1064 }
1065
1066 return RX_CONTINUE;
1067 }
1068
1069 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1070 int index)
1071 {
1072 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1073 struct sk_buff *tail = skb_peek_tail(frames);
1074 struct ieee80211_rx_status *status;
1075
1076 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1077 return true;
1078
1079 if (!tail)
1080 return false;
1081
1082 status = IEEE80211_SKB_RXCB(tail);
1083 if (status->flag & RX_FLAG_AMSDU_MORE)
1084 return false;
1085
1086 return true;
1087 }
1088
1089 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1090 struct tid_ampdu_rx *tid_agg_rx,
1091 int index,
1092 struct sk_buff_head *frames)
1093 {
1094 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1095 struct sk_buff *skb;
1096 struct ieee80211_rx_status *status;
1097
1098 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1099
1100 if (skb_queue_empty(skb_list))
1101 goto no_frame;
1102
1103 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1104 __skb_queue_purge(skb_list);
1105 goto no_frame;
1106 }
1107
1108 /* release frames from the reorder ring buffer */
1109 tid_agg_rx->stored_mpdu_num--;
1110 while ((skb = __skb_dequeue(skb_list))) {
1111 status = IEEE80211_SKB_RXCB(skb);
1112 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1113 __skb_queue_tail(frames, skb);
1114 }
1115
1116 no_frame:
1117 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1118 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1119 }
1120
1121 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1122 struct tid_ampdu_rx *tid_agg_rx,
1123 u16 head_seq_num,
1124 struct sk_buff_head *frames)
1125 {
1126 int index;
1127
1128 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1129
1130 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1131 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1132 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1133 frames);
1134 }
1135 }
1136
1137 /*
1138 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1139 * the skb was added to the buffer longer than this time ago, the earlier
1140 * frames that have not yet been received are assumed to be lost and the skb
1141 * can be released for processing. This may also release other skb's from the
1142 * reorder buffer if there are no additional gaps between the frames.
1143 *
1144 * Callers must hold tid_agg_rx->reorder_lock.
1145 */
1146 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1147
1148 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1149 struct tid_ampdu_rx *tid_agg_rx,
1150 struct sk_buff_head *frames)
1151 {
1152 int index, i, j;
1153
1154 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1155
1156 /* release the buffer until next missing frame */
1157 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1158 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1159 tid_agg_rx->stored_mpdu_num) {
1160 /*
1161 * No buffers ready to be released, but check whether any
1162 * frames in the reorder buffer have timed out.
1163 */
1164 int skipped = 1;
1165 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1166 j = (j + 1) % tid_agg_rx->buf_size) {
1167 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1168 skipped++;
1169 continue;
1170 }
1171 if (skipped &&
1172 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1173 HT_RX_REORDER_BUF_TIMEOUT))
1174 goto set_release_timer;
1175
1176 /* don't leave incomplete A-MSDUs around */
1177 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1178 i = (i + 1) % tid_agg_rx->buf_size)
1179 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1180
1181 ht_dbg_ratelimited(sdata,
1182 "release an RX reorder frame due to timeout on earlier frames\n");
1183 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1184 frames);
1185
1186 /*
1187 * Increment the head seq# also for the skipped slots.
1188 */
1189 tid_agg_rx->head_seq_num =
1190 (tid_agg_rx->head_seq_num +
1191 skipped) & IEEE80211_SN_MASK;
1192 skipped = 0;
1193 }
1194 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1195 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1196 frames);
1197 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1198 }
1199
1200 if (tid_agg_rx->stored_mpdu_num) {
1201 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1202
1203 for (; j != (index - 1) % tid_agg_rx->buf_size;
1204 j = (j + 1) % tid_agg_rx->buf_size) {
1205 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1206 break;
1207 }
1208
1209 set_release_timer:
1210
1211 if (!tid_agg_rx->removed)
1212 mod_timer(&tid_agg_rx->reorder_timer,
1213 tid_agg_rx->reorder_time[j] + 1 +
1214 HT_RX_REORDER_BUF_TIMEOUT);
1215 } else {
1216 del_timer(&tid_agg_rx->reorder_timer);
1217 }
1218 }
1219
1220 /*
1221 * As this function belongs to the RX path it must be under
1222 * rcu_read_lock protection. It returns false if the frame
1223 * can be processed immediately, true if it was consumed.
1224 */
1225 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1226 struct tid_ampdu_rx *tid_agg_rx,
1227 struct sk_buff *skb,
1228 struct sk_buff_head *frames)
1229 {
1230 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1231 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1232 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1233 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1234 u16 head_seq_num, buf_size;
1235 int index;
1236 bool ret = true;
1237
1238 spin_lock(&tid_agg_rx->reorder_lock);
1239
1240 /*
1241 * Offloaded BA sessions have no known starting sequence number so pick
1242 * one from first Rxed frame for this tid after BA was started.
1243 */
1244 if (unlikely(tid_agg_rx->auto_seq)) {
1245 tid_agg_rx->auto_seq = false;
1246 tid_agg_rx->ssn = mpdu_seq_num;
1247 tid_agg_rx->head_seq_num = mpdu_seq_num;
1248 }
1249
1250 buf_size = tid_agg_rx->buf_size;
1251 head_seq_num = tid_agg_rx->head_seq_num;
1252
1253 /*
1254 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1255 * be reordered.
1256 */
1257 if (unlikely(!tid_agg_rx->started)) {
1258 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1259 ret = false;
1260 goto out;
1261 }
1262 tid_agg_rx->started = true;
1263 }
1264
1265 /* frame with out of date sequence number */
1266 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1267 dev_kfree_skb(skb);
1268 goto out;
1269 }
1270
1271 /*
1272 * If frame the sequence number exceeds our buffering window
1273 * size release some previous frames to make room for this one.
1274 */
1275 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1276 head_seq_num = ieee80211_sn_inc(
1277 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1278 /* release stored frames up to new head to stack */
1279 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1280 head_seq_num, frames);
1281 }
1282
1283 /* Now the new frame is always in the range of the reordering buffer */
1284
1285 index = mpdu_seq_num % tid_agg_rx->buf_size;
1286
1287 /* check if we already stored this frame */
1288 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1289 dev_kfree_skb(skb);
1290 goto out;
1291 }
1292
1293 /*
1294 * If the current MPDU is in the right order and nothing else
1295 * is stored we can process it directly, no need to buffer it.
1296 * If it is first but there's something stored, we may be able
1297 * to release frames after this one.
1298 */
1299 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1300 tid_agg_rx->stored_mpdu_num == 0) {
1301 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1302 tid_agg_rx->head_seq_num =
1303 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1304 ret = false;
1305 goto out;
1306 }
1307
1308 /* put the frame in the reordering buffer */
1309 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1310 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1311 tid_agg_rx->reorder_time[index] = jiffies;
1312 tid_agg_rx->stored_mpdu_num++;
1313 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1314 }
1315
1316 out:
1317 spin_unlock(&tid_agg_rx->reorder_lock);
1318 return ret;
1319 }
1320
1321 /*
1322 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1323 * true if the MPDU was buffered, false if it should be processed.
1324 */
1325 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1326 struct sk_buff_head *frames)
1327 {
1328 struct sk_buff *skb = rx->skb;
1329 struct ieee80211_local *local = rx->local;
1330 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1331 struct sta_info *sta = rx->sta;
1332 struct tid_ampdu_rx *tid_agg_rx;
1333 u16 sc;
1334 u8 tid, ack_policy;
1335
1336 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1337 is_multicast_ether_addr(hdr->addr1))
1338 goto dont_reorder;
1339
1340 /*
1341 * filter the QoS data rx stream according to
1342 * STA/TID and check if this STA/TID is on aggregation
1343 */
1344
1345 if (!sta)
1346 goto dont_reorder;
1347
1348 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1349 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1350 tid = ieee80211_get_tid(hdr);
1351
1352 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1353 if (!tid_agg_rx) {
1354 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1355 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1356 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1357 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1358 WLAN_BACK_RECIPIENT,
1359 WLAN_REASON_QSTA_REQUIRE_SETUP);
1360 goto dont_reorder;
1361 }
1362
1363 /* qos null data frames are excluded */
1364 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1365 goto dont_reorder;
1366
1367 /* not part of a BA session */
1368 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1369 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1370 goto dont_reorder;
1371
1372 /* new, potentially un-ordered, ampdu frame - process it */
1373
1374 /* reset session timer */
1375 if (tid_agg_rx->timeout)
1376 tid_agg_rx->last_rx = jiffies;
1377
1378 /* if this mpdu is fragmented - terminate rx aggregation session */
1379 sc = le16_to_cpu(hdr->seq_ctrl);
1380 if (sc & IEEE80211_SCTL_FRAG) {
1381 skb_queue_tail(&rx->sdata->skb_queue, skb);
1382 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1383 return;
1384 }
1385
1386 /*
1387 * No locking needed -- we will only ever process one
1388 * RX packet at a time, and thus own tid_agg_rx. All
1389 * other code manipulating it needs to (and does) make
1390 * sure that we cannot get to it any more before doing
1391 * anything with it.
1392 */
1393 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1394 frames))
1395 return;
1396
1397 dont_reorder:
1398 __skb_queue_tail(frames, skb);
1399 }
1400
1401 static ieee80211_rx_result debug_noinline
1402 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1403 {
1404 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1405 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1406
1407 if (status->flag & RX_FLAG_DUP_VALIDATED)
1408 return RX_CONTINUE;
1409
1410 /*
1411 * Drop duplicate 802.11 retransmissions
1412 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1413 */
1414
1415 if (rx->skb->len < 24)
1416 return RX_CONTINUE;
1417
1418 if (ieee80211_is_ctl(hdr->frame_control) ||
1419 ieee80211_is_nullfunc(hdr->frame_control) ||
1420 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1421 is_multicast_ether_addr(hdr->addr1))
1422 return RX_CONTINUE;
1423
1424 if (!rx->sta)
1425 return RX_CONTINUE;
1426
1427 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1428 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1429 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1430 rx->sta->rx_stats.num_duplicates++;
1431 return RX_DROP_UNUSABLE;
1432 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1433 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1434 }
1435
1436 return RX_CONTINUE;
1437 }
1438
1439 static ieee80211_rx_result debug_noinline
1440 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1441 {
1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1443
1444 /* Drop disallowed frame classes based on STA auth/assoc state;
1445 * IEEE 802.11, Chap 5.5.
1446 *
1447 * mac80211 filters only based on association state, i.e. it drops
1448 * Class 3 frames from not associated stations. hostapd sends
1449 * deauth/disassoc frames when needed. In addition, hostapd is
1450 * responsible for filtering on both auth and assoc states.
1451 */
1452
1453 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1454 return ieee80211_rx_mesh_check(rx);
1455
1456 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1457 ieee80211_is_pspoll(hdr->frame_control)) &&
1458 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1459 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1460 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1461 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1462 /*
1463 * accept port control frames from the AP even when it's not
1464 * yet marked ASSOC to prevent a race where we don't set the
1465 * assoc bit quickly enough before it sends the first frame
1466 */
1467 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1468 ieee80211_is_data_present(hdr->frame_control)) {
1469 unsigned int hdrlen;
1470 __be16 ethertype;
1471
1472 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1473
1474 if (rx->skb->len < hdrlen + 8)
1475 return RX_DROP_MONITOR;
1476
1477 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1478 if (ethertype == rx->sdata->control_port_protocol)
1479 return RX_CONTINUE;
1480 }
1481
1482 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1483 cfg80211_rx_spurious_frame(rx->sdata->dev,
1484 hdr->addr2,
1485 GFP_ATOMIC))
1486 return RX_DROP_UNUSABLE;
1487
1488 return RX_DROP_MONITOR;
1489 }
1490
1491 return RX_CONTINUE;
1492 }
1493
1494
1495 static ieee80211_rx_result debug_noinline
1496 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1497 {
1498 struct ieee80211_local *local;
1499 struct ieee80211_hdr *hdr;
1500 struct sk_buff *skb;
1501
1502 local = rx->local;
1503 skb = rx->skb;
1504 hdr = (struct ieee80211_hdr *) skb->data;
1505
1506 if (!local->pspolling)
1507 return RX_CONTINUE;
1508
1509 if (!ieee80211_has_fromds(hdr->frame_control))
1510 /* this is not from AP */
1511 return RX_CONTINUE;
1512
1513 if (!ieee80211_is_data(hdr->frame_control))
1514 return RX_CONTINUE;
1515
1516 if (!ieee80211_has_moredata(hdr->frame_control)) {
1517 /* AP has no more frames buffered for us */
1518 local->pspolling = false;
1519 return RX_CONTINUE;
1520 }
1521
1522 /* more data bit is set, let's request a new frame from the AP */
1523 ieee80211_send_pspoll(local, rx->sdata);
1524
1525 return RX_CONTINUE;
1526 }
1527
1528 static void sta_ps_start(struct sta_info *sta)
1529 {
1530 struct ieee80211_sub_if_data *sdata = sta->sdata;
1531 struct ieee80211_local *local = sdata->local;
1532 struct ps_data *ps;
1533 int tid;
1534
1535 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1536 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1537 ps = &sdata->bss->ps;
1538 else
1539 return;
1540
1541 atomic_inc(&ps->num_sta_ps);
1542 set_sta_flag(sta, WLAN_STA_PS_STA);
1543 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1544 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1545 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1546 sta->sta.addr, sta->sta.aid);
1547
1548 ieee80211_clear_fast_xmit(sta);
1549
1550 if (!sta->sta.txq[0])
1551 return;
1552
1553 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1554 if (txq_has_queue(sta->sta.txq[tid]))
1555 set_bit(tid, &sta->txq_buffered_tids);
1556 else
1557 clear_bit(tid, &sta->txq_buffered_tids);
1558 }
1559 }
1560
1561 static void sta_ps_end(struct sta_info *sta)
1562 {
1563 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1564 sta->sta.addr, sta->sta.aid);
1565
1566 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1567 /*
1568 * Clear the flag only if the other one is still set
1569 * so that the TX path won't start TX'ing new frames
1570 * directly ... In the case that the driver flag isn't
1571 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1572 */
1573 clear_sta_flag(sta, WLAN_STA_PS_STA);
1574 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1575 sta->sta.addr, sta->sta.aid);
1576 return;
1577 }
1578
1579 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1580 clear_sta_flag(sta, WLAN_STA_PS_STA);
1581 ieee80211_sta_ps_deliver_wakeup(sta);
1582 }
1583
1584 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1585 {
1586 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1587 bool in_ps;
1588
1589 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1590
1591 /* Don't let the same PS state be set twice */
1592 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1593 if ((start && in_ps) || (!start && !in_ps))
1594 return -EINVAL;
1595
1596 if (start)
1597 sta_ps_start(sta);
1598 else
1599 sta_ps_end(sta);
1600
1601 return 0;
1602 }
1603 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1604
1605 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1606 {
1607 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1608
1609 if (test_sta_flag(sta, WLAN_STA_SP))
1610 return;
1611
1612 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1613 ieee80211_sta_ps_deliver_poll_response(sta);
1614 else
1615 set_sta_flag(sta, WLAN_STA_PSPOLL);
1616 }
1617 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1618
1619 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1620 {
1621 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1622 int ac = ieee80211_ac_from_tid(tid);
1623
1624 /*
1625 * If this AC is not trigger-enabled do nothing unless the
1626 * driver is calling us after it already checked.
1627 *
1628 * NB: This could/should check a separate bitmap of trigger-
1629 * enabled queues, but for now we only implement uAPSD w/o
1630 * TSPEC changes to the ACs, so they're always the same.
1631 */
1632 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1633 tid != IEEE80211_NUM_TIDS)
1634 return;
1635
1636 /* if we are in a service period, do nothing */
1637 if (test_sta_flag(sta, WLAN_STA_SP))
1638 return;
1639
1640 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1641 ieee80211_sta_ps_deliver_uapsd(sta);
1642 else
1643 set_sta_flag(sta, WLAN_STA_UAPSD);
1644 }
1645 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1646
1647 static ieee80211_rx_result debug_noinline
1648 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1649 {
1650 struct ieee80211_sub_if_data *sdata = rx->sdata;
1651 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1652 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1653
1654 if (!rx->sta)
1655 return RX_CONTINUE;
1656
1657 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1658 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1659 return RX_CONTINUE;
1660
1661 /*
1662 * The device handles station powersave, so don't do anything about
1663 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1664 * it to mac80211 since they're handled.)
1665 */
1666 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1667 return RX_CONTINUE;
1668
1669 /*
1670 * Don't do anything if the station isn't already asleep. In
1671 * the uAPSD case, the station will probably be marked asleep,
1672 * in the PS-Poll case the station must be confused ...
1673 */
1674 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1675 return RX_CONTINUE;
1676
1677 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1678 ieee80211_sta_pspoll(&rx->sta->sta);
1679
1680 /* Free PS Poll skb here instead of returning RX_DROP that would
1681 * count as an dropped frame. */
1682 dev_kfree_skb(rx->skb);
1683
1684 return RX_QUEUED;
1685 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1686 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1687 ieee80211_has_pm(hdr->frame_control) &&
1688 (ieee80211_is_data_qos(hdr->frame_control) ||
1689 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1690 u8 tid = ieee80211_get_tid(hdr);
1691
1692 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1693 }
1694
1695 return RX_CONTINUE;
1696 }
1697
1698 static ieee80211_rx_result debug_noinline
1699 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1700 {
1701 struct sta_info *sta = rx->sta;
1702 struct sk_buff *skb = rx->skb;
1703 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1705 int i;
1706
1707 if (!sta)
1708 return RX_CONTINUE;
1709
1710 /*
1711 * Update last_rx only for IBSS packets which are for the current
1712 * BSSID and for station already AUTHORIZED to avoid keeping the
1713 * current IBSS network alive in cases where other STAs start
1714 * using different BSSID. This will also give the station another
1715 * chance to restart the authentication/authorization in case
1716 * something went wrong the first time.
1717 */
1718 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1719 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1720 NL80211_IFTYPE_ADHOC);
1721 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1722 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1723 sta->rx_stats.last_rx = jiffies;
1724 if (ieee80211_is_data(hdr->frame_control) &&
1725 !is_multicast_ether_addr(hdr->addr1))
1726 sta->rx_stats.last_rate =
1727 sta_stats_encode_rate(status);
1728 }
1729 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1730 sta->rx_stats.last_rx = jiffies;
1731 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1732 /*
1733 * Mesh beacons will update last_rx when if they are found to
1734 * match the current local configuration when processed.
1735 */
1736 sta->rx_stats.last_rx = jiffies;
1737 if (ieee80211_is_data(hdr->frame_control))
1738 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1739 }
1740
1741 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1742 ieee80211_sta_rx_notify(rx->sdata, hdr);
1743
1744 sta->rx_stats.fragments++;
1745
1746 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1747 sta->rx_stats.bytes += rx->skb->len;
1748 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1749
1750 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1751 sta->rx_stats.last_signal = status->signal;
1752 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1753 }
1754
1755 if (status->chains) {
1756 sta->rx_stats.chains = status->chains;
1757 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1758 int signal = status->chain_signal[i];
1759
1760 if (!(status->chains & BIT(i)))
1761 continue;
1762
1763 sta->rx_stats.chain_signal_last[i] = signal;
1764 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1765 -signal);
1766 }
1767 }
1768
1769 /*
1770 * Change STA power saving mode only at the end of a frame
1771 * exchange sequence, and only for a data or management
1772 * frame as specified in IEEE 802.11-2016 11.2.3.2
1773 */
1774 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1775 !ieee80211_has_morefrags(hdr->frame_control) &&
1776 !is_multicast_ether_addr(hdr->addr1) &&
1777 (ieee80211_is_mgmt(hdr->frame_control) ||
1778 ieee80211_is_data(hdr->frame_control)) &&
1779 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1780 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1781 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1782 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1783 if (!ieee80211_has_pm(hdr->frame_control))
1784 sta_ps_end(sta);
1785 } else {
1786 if (ieee80211_has_pm(hdr->frame_control))
1787 sta_ps_start(sta);
1788 }
1789 }
1790
1791 /* mesh power save support */
1792 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1793 ieee80211_mps_rx_h_sta_process(sta, hdr);
1794
1795 /*
1796 * Drop (qos-)data::nullfunc frames silently, since they
1797 * are used only to control station power saving mode.
1798 */
1799 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1800 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1801 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1802
1803 /*
1804 * If we receive a 4-addr nullfunc frame from a STA
1805 * that was not moved to a 4-addr STA vlan yet send
1806 * the event to userspace and for older hostapd drop
1807 * the frame to the monitor interface.
1808 */
1809 if (ieee80211_has_a4(hdr->frame_control) &&
1810 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1811 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1812 !rx->sdata->u.vlan.sta))) {
1813 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1814 cfg80211_rx_unexpected_4addr_frame(
1815 rx->sdata->dev, sta->sta.addr,
1816 GFP_ATOMIC);
1817 return RX_DROP_MONITOR;
1818 }
1819 /*
1820 * Update counter and free packet here to avoid
1821 * counting this as a dropped packed.
1822 */
1823 sta->rx_stats.packets++;
1824 dev_kfree_skb(rx->skb);
1825 return RX_QUEUED;
1826 }
1827
1828 return RX_CONTINUE;
1829 } /* ieee80211_rx_h_sta_process */
1830
1831 static ieee80211_rx_result debug_noinline
1832 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1833 {
1834 struct sk_buff *skb = rx->skb;
1835 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1836 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1837 int keyidx;
1838 int hdrlen;
1839 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1840 struct ieee80211_key *sta_ptk = NULL;
1841 int mmie_keyidx = -1;
1842 __le16 fc;
1843 const struct ieee80211_cipher_scheme *cs = NULL;
1844
1845 /*
1846 * Key selection 101
1847 *
1848 * There are four types of keys:
1849 * - GTK (group keys)
1850 * - IGTK (group keys for management frames)
1851 * - PTK (pairwise keys)
1852 * - STK (station-to-station pairwise keys)
1853 *
1854 * When selecting a key, we have to distinguish between multicast
1855 * (including broadcast) and unicast frames, the latter can only
1856 * use PTKs and STKs while the former always use GTKs and IGTKs.
1857 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1858 * unicast frames can also use key indices like GTKs. Hence, if we
1859 * don't have a PTK/STK we check the key index for a WEP key.
1860 *
1861 * Note that in a regular BSS, multicast frames are sent by the
1862 * AP only, associated stations unicast the frame to the AP first
1863 * which then multicasts it on their behalf.
1864 *
1865 * There is also a slight problem in IBSS mode: GTKs are negotiated
1866 * with each station, that is something we don't currently handle.
1867 * The spec seems to expect that one negotiates the same key with
1868 * every station but there's no such requirement; VLANs could be
1869 * possible.
1870 */
1871
1872 /* start without a key */
1873 rx->key = NULL;
1874 fc = hdr->frame_control;
1875
1876 if (rx->sta) {
1877 int keyid = rx->sta->ptk_idx;
1878
1879 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1880 cs = rx->sta->cipher_scheme;
1881 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1882 if (unlikely(keyid < 0))
1883 return RX_DROP_UNUSABLE;
1884 }
1885 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1886 }
1887
1888 if (!ieee80211_has_protected(fc))
1889 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1890
1891 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1892 rx->key = sta_ptk;
1893 if ((status->flag & RX_FLAG_DECRYPTED) &&
1894 (status->flag & RX_FLAG_IV_STRIPPED))
1895 return RX_CONTINUE;
1896 /* Skip decryption if the frame is not protected. */
1897 if (!ieee80211_has_protected(fc))
1898 return RX_CONTINUE;
1899 } else if (mmie_keyidx >= 0) {
1900 /* Broadcast/multicast robust management frame / BIP */
1901 if ((status->flag & RX_FLAG_DECRYPTED) &&
1902 (status->flag & RX_FLAG_IV_STRIPPED))
1903 return RX_CONTINUE;
1904
1905 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1906 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1907 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1908 if (rx->sta) {
1909 if (ieee80211_is_group_privacy_action(skb) &&
1910 test_sta_flag(rx->sta, WLAN_STA_MFP))
1911 return RX_DROP_MONITOR;
1912
1913 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1914 }
1915 if (!rx->key)
1916 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1917 } else if (!ieee80211_has_protected(fc)) {
1918 /*
1919 * The frame was not protected, so skip decryption. However, we
1920 * need to set rx->key if there is a key that could have been
1921 * used so that the frame may be dropped if encryption would
1922 * have been expected.
1923 */
1924 struct ieee80211_key *key = NULL;
1925 struct ieee80211_sub_if_data *sdata = rx->sdata;
1926 int i;
1927
1928 if (ieee80211_is_mgmt(fc) &&
1929 is_multicast_ether_addr(hdr->addr1) &&
1930 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1931 rx->key = key;
1932 else {
1933 if (rx->sta) {
1934 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1935 key = rcu_dereference(rx->sta->gtk[i]);
1936 if (key)
1937 break;
1938 }
1939 }
1940 if (!key) {
1941 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1942 key = rcu_dereference(sdata->keys[i]);
1943 if (key)
1944 break;
1945 }
1946 }
1947 if (key)
1948 rx->key = key;
1949 }
1950 return RX_CONTINUE;
1951 } else {
1952 u8 keyid;
1953
1954 /*
1955 * The device doesn't give us the IV so we won't be
1956 * able to look up the key. That's ok though, we
1957 * don't need to decrypt the frame, we just won't
1958 * be able to keep statistics accurate.
1959 * Except for key threshold notifications, should
1960 * we somehow allow the driver to tell us which key
1961 * the hardware used if this flag is set?
1962 */
1963 if ((status->flag & RX_FLAG_DECRYPTED) &&
1964 (status->flag & RX_FLAG_IV_STRIPPED))
1965 return RX_CONTINUE;
1966
1967 hdrlen = ieee80211_hdrlen(fc);
1968
1969 if (cs) {
1970 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1971
1972 if (unlikely(keyidx < 0))
1973 return RX_DROP_UNUSABLE;
1974 } else {
1975 if (rx->skb->len < 8 + hdrlen)
1976 return RX_DROP_UNUSABLE; /* TODO: count this? */
1977 /*
1978 * no need to call ieee80211_wep_get_keyidx,
1979 * it verifies a bunch of things we've done already
1980 */
1981 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1982 keyidx = keyid >> 6;
1983 }
1984
1985 /* check per-station GTK first, if multicast packet */
1986 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1987 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1988
1989 /* if not found, try default key */
1990 if (!rx->key) {
1991 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1992
1993 /*
1994 * RSNA-protected unicast frames should always be
1995 * sent with pairwise or station-to-station keys,
1996 * but for WEP we allow using a key index as well.
1997 */
1998 if (rx->key &&
1999 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2000 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2001 !is_multicast_ether_addr(hdr->addr1))
2002 rx->key = NULL;
2003 }
2004 }
2005
2006 if (rx->key) {
2007 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2008 return RX_DROP_MONITOR;
2009
2010 /* TODO: add threshold stuff again */
2011 } else {
2012 return RX_DROP_MONITOR;
2013 }
2014
2015 switch (rx->key->conf.cipher) {
2016 case WLAN_CIPHER_SUITE_WEP40:
2017 case WLAN_CIPHER_SUITE_WEP104:
2018 result = ieee80211_crypto_wep_decrypt(rx);
2019 break;
2020 case WLAN_CIPHER_SUITE_TKIP:
2021 result = ieee80211_crypto_tkip_decrypt(rx);
2022 break;
2023 case WLAN_CIPHER_SUITE_CCMP:
2024 result = ieee80211_crypto_ccmp_decrypt(
2025 rx, IEEE80211_CCMP_MIC_LEN);
2026 break;
2027 case WLAN_CIPHER_SUITE_CCMP_256:
2028 result = ieee80211_crypto_ccmp_decrypt(
2029 rx, IEEE80211_CCMP_256_MIC_LEN);
2030 break;
2031 case WLAN_CIPHER_SUITE_AES_CMAC:
2032 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2033 break;
2034 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2035 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2036 break;
2037 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2038 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2039 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2040 break;
2041 case WLAN_CIPHER_SUITE_GCMP:
2042 case WLAN_CIPHER_SUITE_GCMP_256:
2043 result = ieee80211_crypto_gcmp_decrypt(rx);
2044 break;
2045 default:
2046 result = ieee80211_crypto_hw_decrypt(rx);
2047 }
2048
2049 /* the hdr variable is invalid after the decrypt handlers */
2050
2051 /* either the frame has been decrypted or will be dropped */
2052 status->flag |= RX_FLAG_DECRYPTED;
2053
2054 return result;
2055 }
2056
2057 static inline struct ieee80211_fragment_entry *
2058 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2059 unsigned int frag, unsigned int seq, int rx_queue,
2060 struct sk_buff **skb)
2061 {
2062 struct ieee80211_fragment_entry *entry;
2063
2064 entry = &sdata->fragments[sdata->fragment_next++];
2065 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2066 sdata->fragment_next = 0;
2067
2068 if (!skb_queue_empty(&entry->skb_list))
2069 __skb_queue_purge(&entry->skb_list);
2070
2071 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2072 *skb = NULL;
2073 entry->first_frag_time = jiffies;
2074 entry->seq = seq;
2075 entry->rx_queue = rx_queue;
2076 entry->last_frag = frag;
2077 entry->check_sequential_pn = false;
2078 entry->extra_len = 0;
2079
2080 return entry;
2081 }
2082
2083 static inline struct ieee80211_fragment_entry *
2084 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2085 unsigned int frag, unsigned int seq,
2086 int rx_queue, struct ieee80211_hdr *hdr)
2087 {
2088 struct ieee80211_fragment_entry *entry;
2089 int i, idx;
2090
2091 idx = sdata->fragment_next;
2092 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2093 struct ieee80211_hdr *f_hdr;
2094 struct sk_buff *f_skb;
2095
2096 idx--;
2097 if (idx < 0)
2098 idx = IEEE80211_FRAGMENT_MAX - 1;
2099
2100 entry = &sdata->fragments[idx];
2101 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2102 entry->rx_queue != rx_queue ||
2103 entry->last_frag + 1 != frag)
2104 continue;
2105
2106 f_skb = __skb_peek(&entry->skb_list);
2107 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2108
2109 /*
2110 * Check ftype and addresses are equal, else check next fragment
2111 */
2112 if (((hdr->frame_control ^ f_hdr->frame_control) &
2113 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2114 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2115 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2116 continue;
2117
2118 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2119 __skb_queue_purge(&entry->skb_list);
2120 continue;
2121 }
2122 return entry;
2123 }
2124
2125 return NULL;
2126 }
2127
2128 static ieee80211_rx_result debug_noinline
2129 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2130 {
2131 struct ieee80211_hdr *hdr;
2132 u16 sc;
2133 __le16 fc;
2134 unsigned int frag, seq;
2135 struct ieee80211_fragment_entry *entry;
2136 struct sk_buff *skb;
2137
2138 hdr = (struct ieee80211_hdr *)rx->skb->data;
2139 fc = hdr->frame_control;
2140
2141 if (ieee80211_is_ctl(fc))
2142 return RX_CONTINUE;
2143
2144 sc = le16_to_cpu(hdr->seq_ctrl);
2145 frag = sc & IEEE80211_SCTL_FRAG;
2146
2147 if (is_multicast_ether_addr(hdr->addr1)) {
2148 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2149 goto out_no_led;
2150 }
2151
2152 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2153 goto out;
2154
2155 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2156
2157 if (skb_linearize(rx->skb))
2158 return RX_DROP_UNUSABLE;
2159
2160 /*
2161 * skb_linearize() might change the skb->data and
2162 * previously cached variables (in this case, hdr) need to
2163 * be refreshed with the new data.
2164 */
2165 hdr = (struct ieee80211_hdr *)rx->skb->data;
2166 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2167
2168 if (frag == 0) {
2169 /* This is the first fragment of a new frame. */
2170 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2171 rx->seqno_idx, &(rx->skb));
2172 if (rx->key &&
2173 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2174 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2175 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2176 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2177 ieee80211_has_protected(fc)) {
2178 int queue = rx->security_idx;
2179
2180 /* Store CCMP/GCMP PN so that we can verify that the
2181 * next fragment has a sequential PN value.
2182 */
2183 entry->check_sequential_pn = true;
2184 memcpy(entry->last_pn,
2185 rx->key->u.ccmp.rx_pn[queue],
2186 IEEE80211_CCMP_PN_LEN);
2187 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2188 u.ccmp.rx_pn) !=
2189 offsetof(struct ieee80211_key,
2190 u.gcmp.rx_pn));
2191 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2192 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2193 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2194 IEEE80211_GCMP_PN_LEN);
2195 }
2196 return RX_QUEUED;
2197 }
2198
2199 /* This is a fragment for a frame that should already be pending in
2200 * fragment cache. Add this fragment to the end of the pending entry.
2201 */
2202 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2203 rx->seqno_idx, hdr);
2204 if (!entry) {
2205 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2206 return RX_DROP_MONITOR;
2207 }
2208
2209 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2210 * MPDU PN values are not incrementing in steps of 1."
2211 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2212 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2213 */
2214 if (entry->check_sequential_pn) {
2215 int i;
2216 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2217 int queue;
2218
2219 if (!rx->key ||
2220 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2221 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2222 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2223 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2224 return RX_DROP_UNUSABLE;
2225 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2226 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2227 pn[i]++;
2228 if (pn[i])
2229 break;
2230 }
2231 queue = rx->security_idx;
2232 rpn = rx->key->u.ccmp.rx_pn[queue];
2233 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2234 return RX_DROP_UNUSABLE;
2235 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2236 }
2237
2238 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2239 __skb_queue_tail(&entry->skb_list, rx->skb);
2240 entry->last_frag = frag;
2241 entry->extra_len += rx->skb->len;
2242 if (ieee80211_has_morefrags(fc)) {
2243 rx->skb = NULL;
2244 return RX_QUEUED;
2245 }
2246
2247 rx->skb = __skb_dequeue(&entry->skb_list);
2248 if (skb_tailroom(rx->skb) < entry->extra_len) {
2249 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2250 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2251 GFP_ATOMIC))) {
2252 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2253 __skb_queue_purge(&entry->skb_list);
2254 return RX_DROP_UNUSABLE;
2255 }
2256 }
2257 while ((skb = __skb_dequeue(&entry->skb_list))) {
2258 skb_put_data(rx->skb, skb->data, skb->len);
2259 dev_kfree_skb(skb);
2260 }
2261
2262 out:
2263 ieee80211_led_rx(rx->local);
2264 out_no_led:
2265 if (rx->sta)
2266 rx->sta->rx_stats.packets++;
2267 return RX_CONTINUE;
2268 }
2269
2270 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2271 {
2272 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2273 return -EACCES;
2274
2275 return 0;
2276 }
2277
2278 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2279 {
2280 struct sk_buff *skb = rx->skb;
2281 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2282
2283 /*
2284 * Pass through unencrypted frames if the hardware has
2285 * decrypted them already.
2286 */
2287 if (status->flag & RX_FLAG_DECRYPTED)
2288 return 0;
2289
2290 /* Drop unencrypted frames if key is set. */
2291 if (unlikely(!ieee80211_has_protected(fc) &&
2292 !ieee80211_is_nullfunc(fc) &&
2293 ieee80211_is_data(fc) && rx->key))
2294 return -EACCES;
2295
2296 return 0;
2297 }
2298
2299 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2300 {
2301 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2303 __le16 fc = hdr->frame_control;
2304
2305 /*
2306 * Pass through unencrypted frames if the hardware has
2307 * decrypted them already.
2308 */
2309 if (status->flag & RX_FLAG_DECRYPTED)
2310 return 0;
2311
2312 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2313 if (unlikely(!ieee80211_has_protected(fc) &&
2314 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2315 rx->key)) {
2316 if (ieee80211_is_deauth(fc) ||
2317 ieee80211_is_disassoc(fc))
2318 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2319 rx->skb->data,
2320 rx->skb->len);
2321 return -EACCES;
2322 }
2323 /* BIP does not use Protected field, so need to check MMIE */
2324 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2325 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2326 if (ieee80211_is_deauth(fc) ||
2327 ieee80211_is_disassoc(fc))
2328 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2329 rx->skb->data,
2330 rx->skb->len);
2331 return -EACCES;
2332 }
2333 /*
2334 * When using MFP, Action frames are not allowed prior to
2335 * having configured keys.
2336 */
2337 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2338 ieee80211_is_robust_mgmt_frame(rx->skb)))
2339 return -EACCES;
2340 }
2341
2342 return 0;
2343 }
2344
2345 static int
2346 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2347 {
2348 struct ieee80211_sub_if_data *sdata = rx->sdata;
2349 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2350 bool check_port_control = false;
2351 struct ethhdr *ehdr;
2352 int ret;
2353
2354 *port_control = false;
2355 if (ieee80211_has_a4(hdr->frame_control) &&
2356 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2357 return -1;
2358
2359 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2360 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2361
2362 if (!sdata->u.mgd.use_4addr)
2363 return -1;
2364 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2365 check_port_control = true;
2366 }
2367
2368 if (is_multicast_ether_addr(hdr->addr1) &&
2369 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2370 return -1;
2371
2372 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2373 if (ret < 0)
2374 return ret;
2375
2376 ehdr = (struct ethhdr *) rx->skb->data;
2377 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2378 *port_control = true;
2379 else if (check_port_control)
2380 return -1;
2381
2382 return 0;
2383 }
2384
2385 /*
2386 * requires that rx->skb is a frame with ethernet header
2387 */
2388 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2389 {
2390 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2391 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2392 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2393
2394 /*
2395 * Allow EAPOL frames to us/the PAE group address regardless
2396 * of whether the frame was encrypted or not.
2397 */
2398 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2399 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2400 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2401 return true;
2402
2403 if (ieee80211_802_1x_port_control(rx) ||
2404 ieee80211_drop_unencrypted(rx, fc))
2405 return false;
2406
2407 return true;
2408 }
2409
2410 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2411 struct ieee80211_rx_data *rx)
2412 {
2413 struct ieee80211_sub_if_data *sdata = rx->sdata;
2414 struct net_device *dev = sdata->dev;
2415
2416 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2417 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2418 sdata->control_port_over_nl80211)) {
2419 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2420 bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2421
2422 cfg80211_rx_control_port(dev, skb, noencrypt);
2423 dev_kfree_skb(skb);
2424 } else {
2425 /* deliver to local stack */
2426 if (rx->napi)
2427 napi_gro_receive(rx->napi, skb);
2428 else
2429 netif_receive_skb(skb);
2430 }
2431 }
2432
2433 /*
2434 * requires that rx->skb is a frame with ethernet header
2435 */
2436 static void
2437 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2438 {
2439 struct ieee80211_sub_if_data *sdata = rx->sdata;
2440 struct net_device *dev = sdata->dev;
2441 struct sk_buff *skb, *xmit_skb;
2442 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2443 struct sta_info *dsta;
2444
2445 skb = rx->skb;
2446 xmit_skb = NULL;
2447
2448 ieee80211_rx_stats(dev, skb->len);
2449
2450 if (rx->sta) {
2451 /* The seqno index has the same property as needed
2452 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2453 * for non-QoS-data frames. Here we know it's a data
2454 * frame, so count MSDUs.
2455 */
2456 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2457 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2458 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2459 }
2460
2461 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2462 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2463 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2464 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2465 if (is_multicast_ether_addr(ehdr->h_dest) &&
2466 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2467 /*
2468 * send multicast frames both to higher layers in
2469 * local net stack and back to the wireless medium
2470 */
2471 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2472 if (!xmit_skb)
2473 net_info_ratelimited("%s: failed to clone multicast frame\n",
2474 dev->name);
2475 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2476 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2477 dsta = sta_info_get(sdata, ehdr->h_dest);
2478 if (dsta) {
2479 /*
2480 * The destination station is associated to
2481 * this AP (in this VLAN), so send the frame
2482 * directly to it and do not pass it to local
2483 * net stack.
2484 */
2485 xmit_skb = skb;
2486 skb = NULL;
2487 }
2488 }
2489 }
2490
2491 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2492 if (skb) {
2493 /* 'align' will only take the values 0 or 2 here since all
2494 * frames are required to be aligned to 2-byte boundaries
2495 * when being passed to mac80211; the code here works just
2496 * as well if that isn't true, but mac80211 assumes it can
2497 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2498 */
2499 int align;
2500
2501 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2502 if (align) {
2503 if (WARN_ON(skb_headroom(skb) < 3)) {
2504 dev_kfree_skb(skb);
2505 skb = NULL;
2506 } else {
2507 u8 *data = skb->data;
2508 size_t len = skb_headlen(skb);
2509 skb->data -= align;
2510 memmove(skb->data, data, len);
2511 skb_set_tail_pointer(skb, len);
2512 }
2513 }
2514 }
2515 #endif
2516
2517 if (skb) {
2518 skb->protocol = eth_type_trans(skb, dev);
2519 memset(skb->cb, 0, sizeof(skb->cb));
2520
2521 ieee80211_deliver_skb_to_local_stack(skb, rx);
2522 }
2523
2524 if (xmit_skb) {
2525 /*
2526 * Send to wireless media and increase priority by 256 to
2527 * keep the received priority instead of reclassifying
2528 * the frame (see cfg80211_classify8021d).
2529 */
2530 xmit_skb->priority += 256;
2531 xmit_skb->protocol = htons(ETH_P_802_3);
2532 skb_reset_network_header(xmit_skb);
2533 skb_reset_mac_header(xmit_skb);
2534 dev_queue_xmit(xmit_skb);
2535 }
2536 }
2537
2538 static ieee80211_rx_result debug_noinline
2539 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2540 {
2541 struct net_device *dev = rx->sdata->dev;
2542 struct sk_buff *skb = rx->skb;
2543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2544 __le16 fc = hdr->frame_control;
2545 struct sk_buff_head frame_list;
2546 struct ethhdr ethhdr;
2547 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2548
2549 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2550 check_da = NULL;
2551 check_sa = NULL;
2552 } else switch (rx->sdata->vif.type) {
2553 case NL80211_IFTYPE_AP:
2554 case NL80211_IFTYPE_AP_VLAN:
2555 check_da = NULL;
2556 break;
2557 case NL80211_IFTYPE_STATION:
2558 if (!rx->sta ||
2559 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2560 check_sa = NULL;
2561 break;
2562 case NL80211_IFTYPE_MESH_POINT:
2563 check_sa = NULL;
2564 break;
2565 default:
2566 break;
2567 }
2568
2569 skb->dev = dev;
2570 __skb_queue_head_init(&frame_list);
2571
2572 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2573 rx->sdata->vif.addr,
2574 rx->sdata->vif.type,
2575 data_offset))
2576 return RX_DROP_UNUSABLE;
2577
2578 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2579 rx->sdata->vif.type,
2580 rx->local->hw.extra_tx_headroom,
2581 check_da, check_sa);
2582
2583 while (!skb_queue_empty(&frame_list)) {
2584 rx->skb = __skb_dequeue(&frame_list);
2585
2586 if (!ieee80211_frame_allowed(rx, fc)) {
2587 dev_kfree_skb(rx->skb);
2588 continue;
2589 }
2590
2591 ieee80211_deliver_skb(rx);
2592 }
2593
2594 return RX_QUEUED;
2595 }
2596
2597 static ieee80211_rx_result debug_noinline
2598 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2599 {
2600 struct sk_buff *skb = rx->skb;
2601 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2602 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2603 __le16 fc = hdr->frame_control;
2604
2605 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2606 return RX_CONTINUE;
2607
2608 if (unlikely(!ieee80211_is_data(fc)))
2609 return RX_CONTINUE;
2610
2611 if (unlikely(!ieee80211_is_data_present(fc)))
2612 return RX_DROP_MONITOR;
2613
2614 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2615 switch (rx->sdata->vif.type) {
2616 case NL80211_IFTYPE_AP_VLAN:
2617 if (!rx->sdata->u.vlan.sta)
2618 return RX_DROP_UNUSABLE;
2619 break;
2620 case NL80211_IFTYPE_STATION:
2621 if (!rx->sdata->u.mgd.use_4addr)
2622 return RX_DROP_UNUSABLE;
2623 break;
2624 default:
2625 return RX_DROP_UNUSABLE;
2626 }
2627 }
2628
2629 if (is_multicast_ether_addr(hdr->addr1))
2630 return RX_DROP_UNUSABLE;
2631
2632 return __ieee80211_rx_h_amsdu(rx, 0);
2633 }
2634
2635 #ifdef CONFIG_MAC80211_MESH
2636 static ieee80211_rx_result
2637 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2638 {
2639 struct ieee80211_hdr *fwd_hdr, *hdr;
2640 struct ieee80211_tx_info *info;
2641 struct ieee80211s_hdr *mesh_hdr;
2642 struct sk_buff *skb = rx->skb, *fwd_skb;
2643 struct ieee80211_local *local = rx->local;
2644 struct ieee80211_sub_if_data *sdata = rx->sdata;
2645 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2646 u16 ac, q, hdrlen;
2647
2648 hdr = (struct ieee80211_hdr *) skb->data;
2649 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2650
2651 /* make sure fixed part of mesh header is there, also checks skb len */
2652 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2653 return RX_DROP_MONITOR;
2654
2655 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2656
2657 /* make sure full mesh header is there, also checks skb len */
2658 if (!pskb_may_pull(rx->skb,
2659 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2660 return RX_DROP_MONITOR;
2661
2662 /* reload pointers */
2663 hdr = (struct ieee80211_hdr *) skb->data;
2664 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2665
2666 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2667 return RX_DROP_MONITOR;
2668
2669 /* frame is in RMC, don't forward */
2670 if (ieee80211_is_data(hdr->frame_control) &&
2671 is_multicast_ether_addr(hdr->addr1) &&
2672 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2673 return RX_DROP_MONITOR;
2674
2675 if (!ieee80211_is_data(hdr->frame_control))
2676 return RX_CONTINUE;
2677
2678 if (!mesh_hdr->ttl)
2679 return RX_DROP_MONITOR;
2680
2681 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2682 struct mesh_path *mppath;
2683 char *proxied_addr;
2684 char *mpp_addr;
2685
2686 if (is_multicast_ether_addr(hdr->addr1)) {
2687 mpp_addr = hdr->addr3;
2688 proxied_addr = mesh_hdr->eaddr1;
2689 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2690 MESH_FLAGS_AE_A5_A6) {
2691 /* has_a4 already checked in ieee80211_rx_mesh_check */
2692 mpp_addr = hdr->addr4;
2693 proxied_addr = mesh_hdr->eaddr2;
2694 } else {
2695 return RX_DROP_MONITOR;
2696 }
2697
2698 rcu_read_lock();
2699 mppath = mpp_path_lookup(sdata, proxied_addr);
2700 if (!mppath) {
2701 mpp_path_add(sdata, proxied_addr, mpp_addr);
2702 } else {
2703 spin_lock_bh(&mppath->state_lock);
2704 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2705 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2706 mppath->exp_time = jiffies;
2707 spin_unlock_bh(&mppath->state_lock);
2708 }
2709 rcu_read_unlock();
2710 }
2711
2712 /* Frame has reached destination. Don't forward */
2713 if (!is_multicast_ether_addr(hdr->addr1) &&
2714 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2715 return RX_CONTINUE;
2716
2717 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2718 q = sdata->vif.hw_queue[ac];
2719 if (ieee80211_queue_stopped(&local->hw, q)) {
2720 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2721 return RX_DROP_MONITOR;
2722 }
2723 skb_set_queue_mapping(skb, q);
2724
2725 if (!--mesh_hdr->ttl) {
2726 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2727 goto out;
2728 }
2729
2730 if (!ifmsh->mshcfg.dot11MeshForwarding)
2731 goto out;
2732
2733 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2734 sdata->encrypt_headroom, 0, GFP_ATOMIC);
2735 if (!fwd_skb)
2736 goto out;
2737
2738 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2739 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2740 info = IEEE80211_SKB_CB(fwd_skb);
2741 memset(info, 0, sizeof(*info));
2742 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2743 info->control.vif = &rx->sdata->vif;
2744 info->control.jiffies = jiffies;
2745 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2746 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2747 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2748 /* update power mode indication when forwarding */
2749 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2750 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2751 /* mesh power mode flags updated in mesh_nexthop_lookup */
2752 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2753 } else {
2754 /* unable to resolve next hop */
2755 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2756 fwd_hdr->addr3, 0,
2757 WLAN_REASON_MESH_PATH_NOFORWARD,
2758 fwd_hdr->addr2);
2759 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2760 kfree_skb(fwd_skb);
2761 return RX_DROP_MONITOR;
2762 }
2763
2764 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2765 ieee80211_add_pending_skb(local, fwd_skb);
2766 out:
2767 if (is_multicast_ether_addr(hdr->addr1))
2768 return RX_CONTINUE;
2769 return RX_DROP_MONITOR;
2770 }
2771 #endif
2772
2773 static ieee80211_rx_result debug_noinline
2774 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2775 {
2776 struct ieee80211_sub_if_data *sdata = rx->sdata;
2777 struct ieee80211_local *local = rx->local;
2778 struct net_device *dev = sdata->dev;
2779 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2780 __le16 fc = hdr->frame_control;
2781 bool port_control;
2782 int err;
2783
2784 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2785 return RX_CONTINUE;
2786
2787 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2788 return RX_DROP_MONITOR;
2789
2790 /*
2791 * Send unexpected-4addr-frame event to hostapd. For older versions,
2792 * also drop the frame to cooked monitor interfaces.
2793 */
2794 if (ieee80211_has_a4(hdr->frame_control) &&
2795 sdata->vif.type == NL80211_IFTYPE_AP) {
2796 if (rx->sta &&
2797 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2798 cfg80211_rx_unexpected_4addr_frame(
2799 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2800 return RX_DROP_MONITOR;
2801 }
2802
2803 err = __ieee80211_data_to_8023(rx, &port_control);
2804 if (unlikely(err))
2805 return RX_DROP_UNUSABLE;
2806
2807 if (!ieee80211_frame_allowed(rx, fc))
2808 return RX_DROP_MONITOR;
2809
2810 /* directly handle TDLS channel switch requests/responses */
2811 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2812 cpu_to_be16(ETH_P_TDLS))) {
2813 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2814
2815 if (pskb_may_pull(rx->skb,
2816 offsetof(struct ieee80211_tdls_data, u)) &&
2817 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2818 tf->category == WLAN_CATEGORY_TDLS &&
2819 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2820 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2821 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2822 schedule_work(&local->tdls_chsw_work);
2823 if (rx->sta)
2824 rx->sta->rx_stats.packets++;
2825
2826 return RX_QUEUED;
2827 }
2828 }
2829
2830 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2831 unlikely(port_control) && sdata->bss) {
2832 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2833 u.ap);
2834 dev = sdata->dev;
2835 rx->sdata = sdata;
2836 }
2837
2838 rx->skb->dev = dev;
2839
2840 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2841 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2842 !is_multicast_ether_addr(
2843 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2844 (!local->scanning &&
2845 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2846 mod_timer(&local->dynamic_ps_timer, jiffies +
2847 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2848
2849 ieee80211_deliver_skb(rx);
2850
2851 return RX_QUEUED;
2852 }
2853
2854 static ieee80211_rx_result debug_noinline
2855 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2856 {
2857 struct sk_buff *skb = rx->skb;
2858 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2859 struct tid_ampdu_rx *tid_agg_rx;
2860 u16 start_seq_num;
2861 u16 tid;
2862
2863 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2864 return RX_CONTINUE;
2865
2866 if (ieee80211_is_back_req(bar->frame_control)) {
2867 struct {
2868 __le16 control, start_seq_num;
2869 } __packed bar_data;
2870 struct ieee80211_event event = {
2871 .type = BAR_RX_EVENT,
2872 };
2873
2874 if (!rx->sta)
2875 return RX_DROP_MONITOR;
2876
2877 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2878 &bar_data, sizeof(bar_data)))
2879 return RX_DROP_MONITOR;
2880
2881 tid = le16_to_cpu(bar_data.control) >> 12;
2882
2883 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2884 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2885 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2886 WLAN_BACK_RECIPIENT,
2887 WLAN_REASON_QSTA_REQUIRE_SETUP);
2888
2889 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2890 if (!tid_agg_rx)
2891 return RX_DROP_MONITOR;
2892
2893 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2894 event.u.ba.tid = tid;
2895 event.u.ba.ssn = start_seq_num;
2896 event.u.ba.sta = &rx->sta->sta;
2897
2898 /* reset session timer */
2899 if (tid_agg_rx->timeout)
2900 mod_timer(&tid_agg_rx->session_timer,
2901 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2902
2903 spin_lock(&tid_agg_rx->reorder_lock);
2904 /* release stored frames up to start of BAR */
2905 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2906 start_seq_num, frames);
2907 spin_unlock(&tid_agg_rx->reorder_lock);
2908
2909 drv_event_callback(rx->local, rx->sdata, &event);
2910
2911 kfree_skb(skb);
2912 return RX_QUEUED;
2913 }
2914
2915 /*
2916 * After this point, we only want management frames,
2917 * so we can drop all remaining control frames to
2918 * cooked monitor interfaces.
2919 */
2920 return RX_DROP_MONITOR;
2921 }
2922
2923 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2924 struct ieee80211_mgmt *mgmt,
2925 size_t len)
2926 {
2927 struct ieee80211_local *local = sdata->local;
2928 struct sk_buff *skb;
2929 struct ieee80211_mgmt *resp;
2930
2931 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2932 /* Not to own unicast address */
2933 return;
2934 }
2935
2936 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2937 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2938 /* Not from the current AP or not associated yet. */
2939 return;
2940 }
2941
2942 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2943 /* Too short SA Query request frame */
2944 return;
2945 }
2946
2947 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2948 if (skb == NULL)
2949 return;
2950
2951 skb_reserve(skb, local->hw.extra_tx_headroom);
2952 resp = skb_put_zero(skb, 24);
2953 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2954 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2955 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2956 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2957 IEEE80211_STYPE_ACTION);
2958 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2959 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2960 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2961 memcpy(resp->u.action.u.sa_query.trans_id,
2962 mgmt->u.action.u.sa_query.trans_id,
2963 WLAN_SA_QUERY_TR_ID_LEN);
2964
2965 ieee80211_tx_skb(sdata, skb);
2966 }
2967
2968 static ieee80211_rx_result debug_noinline
2969 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2970 {
2971 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2972 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2973
2974 /*
2975 * From here on, look only at management frames.
2976 * Data and control frames are already handled,
2977 * and unknown (reserved) frames are useless.
2978 */
2979 if (rx->skb->len < 24)
2980 return RX_DROP_MONITOR;
2981
2982 if (!ieee80211_is_mgmt(mgmt->frame_control))
2983 return RX_DROP_MONITOR;
2984
2985 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2986 ieee80211_is_beacon(mgmt->frame_control) &&
2987 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2988 int sig = 0;
2989
2990 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
2991 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
2992 sig = status->signal;
2993
2994 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2995 rx->skb->data, rx->skb->len,
2996 status->freq, sig);
2997 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2998 }
2999
3000 if (ieee80211_drop_unencrypted_mgmt(rx))
3001 return RX_DROP_UNUSABLE;
3002
3003 return RX_CONTINUE;
3004 }
3005
3006 static ieee80211_rx_result debug_noinline
3007 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3008 {
3009 struct ieee80211_local *local = rx->local;
3010 struct ieee80211_sub_if_data *sdata = rx->sdata;
3011 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3012 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3013 int len = rx->skb->len;
3014
3015 if (!ieee80211_is_action(mgmt->frame_control))
3016 return RX_CONTINUE;
3017
3018 /* drop too small frames */
3019 if (len < IEEE80211_MIN_ACTION_SIZE)
3020 return RX_DROP_UNUSABLE;
3021
3022 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3023 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3024 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3025 return RX_DROP_UNUSABLE;
3026
3027 switch (mgmt->u.action.category) {
3028 case WLAN_CATEGORY_HT:
3029 /* reject HT action frames from stations not supporting HT */
3030 if (!rx->sta->sta.ht_cap.ht_supported)
3031 goto invalid;
3032
3033 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3034 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3035 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3036 sdata->vif.type != NL80211_IFTYPE_AP &&
3037 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3038 break;
3039
3040 /* verify action & smps_control/chanwidth are present */
3041 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3042 goto invalid;
3043
3044 switch (mgmt->u.action.u.ht_smps.action) {
3045 case WLAN_HT_ACTION_SMPS: {
3046 struct ieee80211_supported_band *sband;
3047 enum ieee80211_smps_mode smps_mode;
3048 struct sta_opmode_info sta_opmode = {};
3049
3050 /* convert to HT capability */
3051 switch (mgmt->u.action.u.ht_smps.smps_control) {
3052 case WLAN_HT_SMPS_CONTROL_DISABLED:
3053 smps_mode = IEEE80211_SMPS_OFF;
3054 break;
3055 case WLAN_HT_SMPS_CONTROL_STATIC:
3056 smps_mode = IEEE80211_SMPS_STATIC;
3057 break;
3058 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3059 smps_mode = IEEE80211_SMPS_DYNAMIC;
3060 break;
3061 default:
3062 goto invalid;
3063 }
3064
3065 /* if no change do nothing */
3066 if (rx->sta->sta.smps_mode == smps_mode)
3067 goto handled;
3068 rx->sta->sta.smps_mode = smps_mode;
3069 sta_opmode.smps_mode =
3070 ieee80211_smps_mode_to_smps_mode(smps_mode);
3071 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3072
3073 sband = rx->local->hw.wiphy->bands[status->band];
3074
3075 rate_control_rate_update(local, sband, rx->sta,
3076 IEEE80211_RC_SMPS_CHANGED);
3077 cfg80211_sta_opmode_change_notify(sdata->dev,
3078 rx->sta->addr,
3079 &sta_opmode,
3080 GFP_ATOMIC);
3081 goto handled;
3082 }
3083 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3084 struct ieee80211_supported_band *sband;
3085 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3086 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3087 struct sta_opmode_info sta_opmode = {};
3088
3089 /* If it doesn't support 40 MHz it can't change ... */
3090 if (!(rx->sta->sta.ht_cap.cap &
3091 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3092 goto handled;
3093
3094 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3095 max_bw = IEEE80211_STA_RX_BW_20;
3096 else
3097 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3098
3099 /* set cur_max_bandwidth and recalc sta bw */
3100 rx->sta->cur_max_bandwidth = max_bw;
3101 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3102
3103 if (rx->sta->sta.bandwidth == new_bw)
3104 goto handled;
3105
3106 rx->sta->sta.bandwidth = new_bw;
3107 sband = rx->local->hw.wiphy->bands[status->band];
3108 sta_opmode.bw =
3109 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3110 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3111
3112 rate_control_rate_update(local, sband, rx->sta,
3113 IEEE80211_RC_BW_CHANGED);
3114 cfg80211_sta_opmode_change_notify(sdata->dev,
3115 rx->sta->addr,
3116 &sta_opmode,
3117 GFP_ATOMIC);
3118 goto handled;
3119 }
3120 default:
3121 goto invalid;
3122 }
3123
3124 break;
3125 case WLAN_CATEGORY_PUBLIC:
3126 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3127 goto invalid;
3128 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3129 break;
3130 if (!rx->sta)
3131 break;
3132 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3133 break;
3134 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3135 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3136 break;
3137 if (len < offsetof(struct ieee80211_mgmt,
3138 u.action.u.ext_chan_switch.variable))
3139 goto invalid;
3140 goto queue;
3141 case WLAN_CATEGORY_VHT:
3142 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3143 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3144 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3145 sdata->vif.type != NL80211_IFTYPE_AP &&
3146 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3147 break;
3148
3149 /* verify action code is present */
3150 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3151 goto invalid;
3152
3153 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3154 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3155 /* verify opmode is present */
3156 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3157 goto invalid;
3158 goto queue;
3159 }
3160 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3161 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3162 goto invalid;
3163 goto queue;
3164 }
3165 default:
3166 break;
3167 }
3168 break;
3169 case WLAN_CATEGORY_BACK:
3170 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3171 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3172 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3173 sdata->vif.type != NL80211_IFTYPE_AP &&
3174 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3175 break;
3176
3177 /* verify action_code is present */
3178 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3179 break;
3180
3181 switch (mgmt->u.action.u.addba_req.action_code) {
3182 case WLAN_ACTION_ADDBA_REQ:
3183 if (len < (IEEE80211_MIN_ACTION_SIZE +
3184 sizeof(mgmt->u.action.u.addba_req)))
3185 goto invalid;
3186 break;
3187 case WLAN_ACTION_ADDBA_RESP:
3188 if (len < (IEEE80211_MIN_ACTION_SIZE +
3189 sizeof(mgmt->u.action.u.addba_resp)))
3190 goto invalid;
3191 break;
3192 case WLAN_ACTION_DELBA:
3193 if (len < (IEEE80211_MIN_ACTION_SIZE +
3194 sizeof(mgmt->u.action.u.delba)))
3195 goto invalid;
3196 break;
3197 default:
3198 goto invalid;
3199 }
3200
3201 goto queue;
3202 case WLAN_CATEGORY_SPECTRUM_MGMT:
3203 /* verify action_code is present */
3204 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3205 break;
3206
3207 switch (mgmt->u.action.u.measurement.action_code) {
3208 case WLAN_ACTION_SPCT_MSR_REQ:
3209 if (status->band != NL80211_BAND_5GHZ)
3210 break;
3211
3212 if (len < (IEEE80211_MIN_ACTION_SIZE +
3213 sizeof(mgmt->u.action.u.measurement)))
3214 break;
3215
3216 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3217 break;
3218
3219 ieee80211_process_measurement_req(sdata, mgmt, len);
3220 goto handled;
3221 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3222 u8 *bssid;
3223 if (len < (IEEE80211_MIN_ACTION_SIZE +
3224 sizeof(mgmt->u.action.u.chan_switch)))
3225 break;
3226
3227 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3228 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3229 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3230 break;
3231
3232 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3233 bssid = sdata->u.mgd.bssid;
3234 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3235 bssid = sdata->u.ibss.bssid;
3236 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3237 bssid = mgmt->sa;
3238 else
3239 break;
3240
3241 if (!ether_addr_equal(mgmt->bssid, bssid))
3242 break;
3243
3244 goto queue;
3245 }
3246 }
3247 break;
3248 case WLAN_CATEGORY_SA_QUERY:
3249 if (len < (IEEE80211_MIN_ACTION_SIZE +
3250 sizeof(mgmt->u.action.u.sa_query)))
3251 break;
3252
3253 switch (mgmt->u.action.u.sa_query.action) {
3254 case WLAN_ACTION_SA_QUERY_REQUEST:
3255 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3256 break;
3257 ieee80211_process_sa_query_req(sdata, mgmt, len);
3258 goto handled;
3259 }
3260 break;
3261 case WLAN_CATEGORY_SELF_PROTECTED:
3262 if (len < (IEEE80211_MIN_ACTION_SIZE +
3263 sizeof(mgmt->u.action.u.self_prot.action_code)))
3264 break;
3265
3266 switch (mgmt->u.action.u.self_prot.action_code) {
3267 case WLAN_SP_MESH_PEERING_OPEN:
3268 case WLAN_SP_MESH_PEERING_CLOSE:
3269 case WLAN_SP_MESH_PEERING_CONFIRM:
3270 if (!ieee80211_vif_is_mesh(&sdata->vif))
3271 goto invalid;
3272 if (sdata->u.mesh.user_mpm)
3273 /* userspace handles this frame */
3274 break;
3275 goto queue;
3276 case WLAN_SP_MGK_INFORM:
3277 case WLAN_SP_MGK_ACK:
3278 if (!ieee80211_vif_is_mesh(&sdata->vif))
3279 goto invalid;
3280 break;
3281 }
3282 break;
3283 case WLAN_CATEGORY_MESH_ACTION:
3284 if (len < (IEEE80211_MIN_ACTION_SIZE +
3285 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3286 break;
3287
3288 if (!ieee80211_vif_is_mesh(&sdata->vif))
3289 break;
3290 if (mesh_action_is_path_sel(mgmt) &&
3291 !mesh_path_sel_is_hwmp(sdata))
3292 break;
3293 goto queue;
3294 }
3295
3296 return RX_CONTINUE;
3297
3298 invalid:
3299 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3300 /* will return in the next handlers */
3301 return RX_CONTINUE;
3302
3303 handled:
3304 if (rx->sta)
3305 rx->sta->rx_stats.packets++;
3306 dev_kfree_skb(rx->skb);
3307 return RX_QUEUED;
3308
3309 queue:
3310 skb_queue_tail(&sdata->skb_queue, rx->skb);
3311 ieee80211_queue_work(&local->hw, &sdata->work);
3312 if (rx->sta)
3313 rx->sta->rx_stats.packets++;
3314 return RX_QUEUED;
3315 }
3316
3317 static ieee80211_rx_result debug_noinline
3318 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3319 {
3320 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3321 int sig = 0;
3322
3323 /* skip known-bad action frames and return them in the next handler */
3324 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3325 return RX_CONTINUE;
3326
3327 /*
3328 * Getting here means the kernel doesn't know how to handle
3329 * it, but maybe userspace does ... include returned frames
3330 * so userspace can register for those to know whether ones
3331 * it transmitted were processed or returned.
3332 */
3333
3334 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3335 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3336 sig = status->signal;
3337
3338 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3339 rx->skb->data, rx->skb->len, 0)) {
3340 if (rx->sta)
3341 rx->sta->rx_stats.packets++;
3342 dev_kfree_skb(rx->skb);
3343 return RX_QUEUED;
3344 }
3345
3346 return RX_CONTINUE;
3347 }
3348
3349 static ieee80211_rx_result debug_noinline
3350 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3351 {
3352 struct ieee80211_local *local = rx->local;
3353 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3354 struct sk_buff *nskb;
3355 struct ieee80211_sub_if_data *sdata = rx->sdata;
3356 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3357
3358 if (!ieee80211_is_action(mgmt->frame_control))
3359 return RX_CONTINUE;
3360
3361 /*
3362 * For AP mode, hostapd is responsible for handling any action
3363 * frames that we didn't handle, including returning unknown
3364 * ones. For all other modes we will return them to the sender,
3365 * setting the 0x80 bit in the action category, as required by
3366 * 802.11-2012 9.24.4.
3367 * Newer versions of hostapd shall also use the management frame
3368 * registration mechanisms, but older ones still use cooked
3369 * monitor interfaces so push all frames there.
3370 */
3371 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3372 (sdata->vif.type == NL80211_IFTYPE_AP ||
3373 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3374 return RX_DROP_MONITOR;
3375
3376 if (is_multicast_ether_addr(mgmt->da))
3377 return RX_DROP_MONITOR;
3378
3379 /* do not return rejected action frames */
3380 if (mgmt->u.action.category & 0x80)
3381 return RX_DROP_UNUSABLE;
3382
3383 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3384 GFP_ATOMIC);
3385 if (nskb) {
3386 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3387
3388 nmgmt->u.action.category |= 0x80;
3389 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3390 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3391
3392 memset(nskb->cb, 0, sizeof(nskb->cb));
3393
3394 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3395 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3396
3397 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3398 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3399 IEEE80211_TX_CTL_NO_CCK_RATE;
3400 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3401 info->hw_queue =
3402 local->hw.offchannel_tx_hw_queue;
3403 }
3404
3405 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3406 status->band, 0);
3407 }
3408 dev_kfree_skb(rx->skb);
3409 return RX_QUEUED;
3410 }
3411
3412 static ieee80211_rx_result debug_noinline
3413 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3414 {
3415 struct ieee80211_sub_if_data *sdata = rx->sdata;
3416 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3417 __le16 stype;
3418
3419 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3420
3421 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3422 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3423 sdata->vif.type != NL80211_IFTYPE_OCB &&
3424 sdata->vif.type != NL80211_IFTYPE_STATION)
3425 return RX_DROP_MONITOR;
3426
3427 switch (stype) {
3428 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3429 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3430 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3431 /* process for all: mesh, mlme, ibss */
3432 break;
3433 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3434 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3435 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3436 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3437 if (is_multicast_ether_addr(mgmt->da) &&
3438 !is_broadcast_ether_addr(mgmt->da))
3439 return RX_DROP_MONITOR;
3440
3441 /* process only for station */
3442 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3443 return RX_DROP_MONITOR;
3444 break;
3445 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3446 /* process only for ibss and mesh */
3447 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3448 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3449 return RX_DROP_MONITOR;
3450 break;
3451 default:
3452 return RX_DROP_MONITOR;
3453 }
3454
3455 /* queue up frame and kick off work to process it */
3456 skb_queue_tail(&sdata->skb_queue, rx->skb);
3457 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3458 if (rx->sta)
3459 rx->sta->rx_stats.packets++;
3460
3461 return RX_QUEUED;
3462 }
3463
3464 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3465 struct ieee80211_rate *rate)
3466 {
3467 struct ieee80211_sub_if_data *sdata;
3468 struct ieee80211_local *local = rx->local;
3469 struct sk_buff *skb = rx->skb, *skb2;
3470 struct net_device *prev_dev = NULL;
3471 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3472 int needed_headroom;
3473
3474 /*
3475 * If cooked monitor has been processed already, then
3476 * don't do it again. If not, set the flag.
3477 */
3478 if (rx->flags & IEEE80211_RX_CMNTR)
3479 goto out_free_skb;
3480 rx->flags |= IEEE80211_RX_CMNTR;
3481
3482 /* If there are no cooked monitor interfaces, just free the SKB */
3483 if (!local->cooked_mntrs)
3484 goto out_free_skb;
3485
3486 /* vendor data is long removed here */
3487 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3488 /* room for the radiotap header based on driver features */
3489 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3490
3491 if (skb_headroom(skb) < needed_headroom &&
3492 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3493 goto out_free_skb;
3494
3495 /* prepend radiotap information */
3496 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3497 false);
3498
3499 skb_reset_mac_header(skb);
3500 skb->ip_summed = CHECKSUM_UNNECESSARY;
3501 skb->pkt_type = PACKET_OTHERHOST;
3502 skb->protocol = htons(ETH_P_802_2);
3503
3504 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3505 if (!ieee80211_sdata_running(sdata))
3506 continue;
3507
3508 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3509 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3510 continue;
3511
3512 if (prev_dev) {
3513 skb2 = skb_clone(skb, GFP_ATOMIC);
3514 if (skb2) {
3515 skb2->dev = prev_dev;
3516 netif_receive_skb(skb2);
3517 }
3518 }
3519
3520 prev_dev = sdata->dev;
3521 ieee80211_rx_stats(sdata->dev, skb->len);
3522 }
3523
3524 if (prev_dev) {
3525 skb->dev = prev_dev;
3526 netif_receive_skb(skb);
3527 return;
3528 }
3529
3530 out_free_skb:
3531 dev_kfree_skb(skb);
3532 }
3533
3534 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3535 ieee80211_rx_result res)
3536 {
3537 switch (res) {
3538 case RX_DROP_MONITOR:
3539 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3540 if (rx->sta)
3541 rx->sta->rx_stats.dropped++;
3542 /* fall through */
3543 case RX_CONTINUE: {
3544 struct ieee80211_rate *rate = NULL;
3545 struct ieee80211_supported_band *sband;
3546 struct ieee80211_rx_status *status;
3547
3548 status = IEEE80211_SKB_RXCB((rx->skb));
3549
3550 sband = rx->local->hw.wiphy->bands[status->band];
3551 if (status->encoding == RX_ENC_LEGACY)
3552 rate = &sband->bitrates[status->rate_idx];
3553
3554 ieee80211_rx_cooked_monitor(rx, rate);
3555 break;
3556 }
3557 case RX_DROP_UNUSABLE:
3558 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3559 if (rx->sta)
3560 rx->sta->rx_stats.dropped++;
3561 dev_kfree_skb(rx->skb);
3562 break;
3563 case RX_QUEUED:
3564 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3565 break;
3566 }
3567 }
3568
3569 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3570 struct sk_buff_head *frames)
3571 {
3572 ieee80211_rx_result res = RX_DROP_MONITOR;
3573 struct sk_buff *skb;
3574
3575 #define CALL_RXH(rxh) \
3576 do { \
3577 res = rxh(rx); \
3578 if (res != RX_CONTINUE) \
3579 goto rxh_next; \
3580 } while (0)
3581
3582 /* Lock here to avoid hitting all of the data used in the RX
3583 * path (e.g. key data, station data, ...) concurrently when
3584 * a frame is released from the reorder buffer due to timeout
3585 * from the timer, potentially concurrently with RX from the
3586 * driver.
3587 */
3588 spin_lock_bh(&rx->local->rx_path_lock);
3589
3590 while ((skb = __skb_dequeue(frames))) {
3591 /*
3592 * all the other fields are valid across frames
3593 * that belong to an aMPDU since they are on the
3594 * same TID from the same station
3595 */
3596 rx->skb = skb;
3597
3598 CALL_RXH(ieee80211_rx_h_check_more_data);
3599 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3600 CALL_RXH(ieee80211_rx_h_sta_process);
3601 CALL_RXH(ieee80211_rx_h_decrypt);
3602 CALL_RXH(ieee80211_rx_h_defragment);
3603 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3604 /* must be after MMIC verify so header is counted in MPDU mic */
3605 #ifdef CONFIG_MAC80211_MESH
3606 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3607 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3608 #endif
3609 CALL_RXH(ieee80211_rx_h_amsdu);
3610 CALL_RXH(ieee80211_rx_h_data);
3611
3612 /* special treatment -- needs the queue */
3613 res = ieee80211_rx_h_ctrl(rx, frames);
3614 if (res != RX_CONTINUE)
3615 goto rxh_next;
3616
3617 CALL_RXH(ieee80211_rx_h_mgmt_check);
3618 CALL_RXH(ieee80211_rx_h_action);
3619 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3620 CALL_RXH(ieee80211_rx_h_action_return);
3621 CALL_RXH(ieee80211_rx_h_mgmt);
3622
3623 rxh_next:
3624 ieee80211_rx_handlers_result(rx, res);
3625
3626 #undef CALL_RXH
3627 }
3628
3629 spin_unlock_bh(&rx->local->rx_path_lock);
3630 }
3631
3632 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3633 {
3634 struct sk_buff_head reorder_release;
3635 ieee80211_rx_result res = RX_DROP_MONITOR;
3636
3637 __skb_queue_head_init(&reorder_release);
3638
3639 #define CALL_RXH(rxh) \
3640 do { \
3641 res = rxh(rx); \
3642 if (res != RX_CONTINUE) \
3643 goto rxh_next; \
3644 } while (0)
3645
3646 CALL_RXH(ieee80211_rx_h_check_dup);
3647 CALL_RXH(ieee80211_rx_h_check);
3648
3649 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3650
3651 ieee80211_rx_handlers(rx, &reorder_release);
3652 return;
3653
3654 rxh_next:
3655 ieee80211_rx_handlers_result(rx, res);
3656
3657 #undef CALL_RXH
3658 }
3659
3660 /*
3661 * This function makes calls into the RX path, therefore
3662 * it has to be invoked under RCU read lock.
3663 */
3664 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3665 {
3666 struct sk_buff_head frames;
3667 struct ieee80211_rx_data rx = {
3668 .sta = sta,
3669 .sdata = sta->sdata,
3670 .local = sta->local,
3671 /* This is OK -- must be QoS data frame */
3672 .security_idx = tid,
3673 .seqno_idx = tid,
3674 .napi = NULL, /* must be NULL to not have races */
3675 };
3676 struct tid_ampdu_rx *tid_agg_rx;
3677
3678 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3679 if (!tid_agg_rx)
3680 return;
3681
3682 __skb_queue_head_init(&frames);
3683
3684 spin_lock(&tid_agg_rx->reorder_lock);
3685 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3686 spin_unlock(&tid_agg_rx->reorder_lock);
3687
3688 if (!skb_queue_empty(&frames)) {
3689 struct ieee80211_event event = {
3690 .type = BA_FRAME_TIMEOUT,
3691 .u.ba.tid = tid,
3692 .u.ba.sta = &sta->sta,
3693 };
3694 drv_event_callback(rx.local, rx.sdata, &event);
3695 }
3696
3697 ieee80211_rx_handlers(&rx, &frames);
3698 }
3699
3700 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3701 u16 ssn, u64 filtered,
3702 u16 received_mpdus)
3703 {
3704 struct sta_info *sta;
3705 struct tid_ampdu_rx *tid_agg_rx;
3706 struct sk_buff_head frames;
3707 struct ieee80211_rx_data rx = {
3708 /* This is OK -- must be QoS data frame */
3709 .security_idx = tid,
3710 .seqno_idx = tid,
3711 };
3712 int i, diff;
3713
3714 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3715 return;
3716
3717 __skb_queue_head_init(&frames);
3718
3719 sta = container_of(pubsta, struct sta_info, sta);
3720
3721 rx.sta = sta;
3722 rx.sdata = sta->sdata;
3723 rx.local = sta->local;
3724
3725 rcu_read_lock();
3726 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3727 if (!tid_agg_rx)
3728 goto out;
3729
3730 spin_lock_bh(&tid_agg_rx->reorder_lock);
3731
3732 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3733 int release;
3734
3735 /* release all frames in the reorder buffer */
3736 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3737 IEEE80211_SN_MODULO;
3738 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3739 release, &frames);
3740 /* update ssn to match received ssn */
3741 tid_agg_rx->head_seq_num = ssn;
3742 } else {
3743 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3744 &frames);
3745 }
3746
3747 /* handle the case that received ssn is behind the mac ssn.
3748 * it can be tid_agg_rx->buf_size behind and still be valid */
3749 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3750 if (diff >= tid_agg_rx->buf_size) {
3751 tid_agg_rx->reorder_buf_filtered = 0;
3752 goto release;
3753 }
3754 filtered = filtered >> diff;
3755 ssn += diff;
3756
3757 /* update bitmap */
3758 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3759 int index = (ssn + i) % tid_agg_rx->buf_size;
3760
3761 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3762 if (filtered & BIT_ULL(i))
3763 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3764 }
3765
3766 /* now process also frames that the filter marking released */
3767 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3768
3769 release:
3770 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3771
3772 ieee80211_rx_handlers(&rx, &frames);
3773
3774 out:
3775 rcu_read_unlock();
3776 }
3777 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3778
3779 /* main receive path */
3780
3781 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3782 {
3783 struct ieee80211_sub_if_data *sdata = rx->sdata;
3784 struct sk_buff *skb = rx->skb;
3785 struct ieee80211_hdr *hdr = (void *)skb->data;
3786 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3787 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3788 bool multicast = is_multicast_ether_addr(hdr->addr1);
3789
3790 switch (sdata->vif.type) {
3791 case NL80211_IFTYPE_STATION:
3792 if (!bssid && !sdata->u.mgd.use_4addr)
3793 return false;
3794 if (multicast)
3795 return true;
3796 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3797 case NL80211_IFTYPE_ADHOC:
3798 if (!bssid)
3799 return false;
3800 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3801 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3802 return false;
3803 if (ieee80211_is_beacon(hdr->frame_control))
3804 return true;
3805 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3806 return false;
3807 if (!multicast &&
3808 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3809 return false;
3810 if (!rx->sta) {
3811 int rate_idx;
3812 if (status->encoding != RX_ENC_LEGACY)
3813 rate_idx = 0; /* TODO: HT/VHT rates */
3814 else
3815 rate_idx = status->rate_idx;
3816 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3817 BIT(rate_idx));
3818 }
3819 return true;
3820 case NL80211_IFTYPE_OCB:
3821 if (!bssid)
3822 return false;
3823 if (!ieee80211_is_data_present(hdr->frame_control))
3824 return false;
3825 if (!is_broadcast_ether_addr(bssid))
3826 return false;
3827 if (!multicast &&
3828 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3829 return false;
3830 if (!rx->sta) {
3831 int rate_idx;
3832 if (status->encoding != RX_ENC_LEGACY)
3833 rate_idx = 0; /* TODO: HT rates */
3834 else
3835 rate_idx = status->rate_idx;
3836 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3837 BIT(rate_idx));
3838 }
3839 return true;
3840 case NL80211_IFTYPE_MESH_POINT:
3841 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3842 return false;
3843 if (multicast)
3844 return true;
3845 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3846 case NL80211_IFTYPE_AP_VLAN:
3847 case NL80211_IFTYPE_AP:
3848 if (!bssid)
3849 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3850
3851 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3852 /*
3853 * Accept public action frames even when the
3854 * BSSID doesn't match, this is used for P2P
3855 * and location updates. Note that mac80211
3856 * itself never looks at these frames.
3857 */
3858 if (!multicast &&
3859 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3860 return false;
3861 if (ieee80211_is_public_action(hdr, skb->len))
3862 return true;
3863 return ieee80211_is_beacon(hdr->frame_control);
3864 }
3865
3866 if (!ieee80211_has_tods(hdr->frame_control)) {
3867 /* ignore data frames to TDLS-peers */
3868 if (ieee80211_is_data(hdr->frame_control))
3869 return false;
3870 /* ignore action frames to TDLS-peers */
3871 if (ieee80211_is_action(hdr->frame_control) &&
3872 !is_broadcast_ether_addr(bssid) &&
3873 !ether_addr_equal(bssid, hdr->addr1))
3874 return false;
3875 }
3876
3877 /*
3878 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3879 * the BSSID - we've checked that already but may have accepted
3880 * the wildcard (ff:ff:ff:ff:ff:ff).
3881 *
3882 * It also says:
3883 * The BSSID of the Data frame is determined as follows:
3884 * a) If the STA is contained within an AP or is associated
3885 * with an AP, the BSSID is the address currently in use
3886 * by the STA contained in the AP.
3887 *
3888 * So we should not accept data frames with an address that's
3889 * multicast.
3890 *
3891 * Accepting it also opens a security problem because stations
3892 * could encrypt it with the GTK and inject traffic that way.
3893 */
3894 if (ieee80211_is_data(hdr->frame_control) && multicast)
3895 return false;
3896
3897 return true;
3898 case NL80211_IFTYPE_WDS:
3899 if (bssid || !ieee80211_is_data(hdr->frame_control))
3900 return false;
3901 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3902 case NL80211_IFTYPE_P2P_DEVICE:
3903 return ieee80211_is_public_action(hdr, skb->len) ||
3904 ieee80211_is_probe_req(hdr->frame_control) ||
3905 ieee80211_is_probe_resp(hdr->frame_control) ||
3906 ieee80211_is_beacon(hdr->frame_control);
3907 case NL80211_IFTYPE_NAN:
3908 /* Currently no frames on NAN interface are allowed */
3909 return false;
3910 default:
3911 break;
3912 }
3913
3914 WARN_ON_ONCE(1);
3915 return false;
3916 }
3917
3918 void ieee80211_check_fast_rx(struct sta_info *sta)
3919 {
3920 struct ieee80211_sub_if_data *sdata = sta->sdata;
3921 struct ieee80211_local *local = sdata->local;
3922 struct ieee80211_key *key;
3923 struct ieee80211_fast_rx fastrx = {
3924 .dev = sdata->dev,
3925 .vif_type = sdata->vif.type,
3926 .control_port_protocol = sdata->control_port_protocol,
3927 }, *old, *new = NULL;
3928 bool assign = false;
3929
3930 /* use sparse to check that we don't return without updating */
3931 __acquire(check_fast_rx);
3932
3933 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3934 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3935 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3936 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3937
3938 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3939
3940 /* fast-rx doesn't do reordering */
3941 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3942 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3943 goto clear;
3944
3945 switch (sdata->vif.type) {
3946 case NL80211_IFTYPE_STATION:
3947 if (sta->sta.tdls) {
3948 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3949 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3950 fastrx.expected_ds_bits = 0;
3951 } else {
3952 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3953 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3954 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3955 fastrx.expected_ds_bits =
3956 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3957 }
3958
3959 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3960 fastrx.expected_ds_bits |=
3961 cpu_to_le16(IEEE80211_FCTL_TODS);
3962 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3963 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3964 }
3965
3966 if (!sdata->u.mgd.powersave)
3967 break;
3968
3969 /* software powersave is a huge mess, avoid all of it */
3970 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3971 goto clear;
3972 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3973 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3974 goto clear;
3975 break;
3976 case NL80211_IFTYPE_AP_VLAN:
3977 case NL80211_IFTYPE_AP:
3978 /* parallel-rx requires this, at least with calls to
3979 * ieee80211_sta_ps_transition()
3980 */
3981 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3982 goto clear;
3983 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3984 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3985 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3986
3987 fastrx.internal_forward =
3988 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3989 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3990 !sdata->u.vlan.sta);
3991
3992 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3993 sdata->u.vlan.sta) {
3994 fastrx.expected_ds_bits |=
3995 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3996 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3997 fastrx.internal_forward = 0;
3998 }
3999
4000 break;
4001 default:
4002 goto clear;
4003 }
4004
4005 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4006 goto clear;
4007
4008 rcu_read_lock();
4009 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4010 if (key) {
4011 switch (key->conf.cipher) {
4012 case WLAN_CIPHER_SUITE_TKIP:
4013 /* we don't want to deal with MMIC in fast-rx */
4014 goto clear_rcu;
4015 case WLAN_CIPHER_SUITE_CCMP:
4016 case WLAN_CIPHER_SUITE_CCMP_256:
4017 case WLAN_CIPHER_SUITE_GCMP:
4018 case WLAN_CIPHER_SUITE_GCMP_256:
4019 break;
4020 default:
4021 /* we also don't want to deal with WEP or cipher scheme
4022 * since those require looking up the key idx in the
4023 * frame, rather than assuming the PTK is used
4024 * (we need to revisit this once we implement the real
4025 * PTK index, which is now valid in the spec, but we
4026 * haven't implemented that part yet)
4027 */
4028 goto clear_rcu;
4029 }
4030
4031 fastrx.key = true;
4032 fastrx.icv_len = key->conf.icv_len;
4033 }
4034
4035 assign = true;
4036 clear_rcu:
4037 rcu_read_unlock();
4038 clear:
4039 __release(check_fast_rx);
4040
4041 if (assign)
4042 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4043
4044 spin_lock_bh(&sta->lock);
4045 old = rcu_dereference_protected(sta->fast_rx, true);
4046 rcu_assign_pointer(sta->fast_rx, new);
4047 spin_unlock_bh(&sta->lock);
4048
4049 if (old)
4050 kfree_rcu(old, rcu_head);
4051 }
4052
4053 void ieee80211_clear_fast_rx(struct sta_info *sta)
4054 {
4055 struct ieee80211_fast_rx *old;
4056
4057 spin_lock_bh(&sta->lock);
4058 old = rcu_dereference_protected(sta->fast_rx, true);
4059 RCU_INIT_POINTER(sta->fast_rx, NULL);
4060 spin_unlock_bh(&sta->lock);
4061
4062 if (old)
4063 kfree_rcu(old, rcu_head);
4064 }
4065
4066 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4067 {
4068 struct ieee80211_local *local = sdata->local;
4069 struct sta_info *sta;
4070
4071 lockdep_assert_held(&local->sta_mtx);
4072
4073 list_for_each_entry_rcu(sta, &local->sta_list, list) {
4074 if (sdata != sta->sdata &&
4075 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4076 continue;
4077 ieee80211_check_fast_rx(sta);
4078 }
4079 }
4080
4081 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4082 {
4083 struct ieee80211_local *local = sdata->local;
4084
4085 mutex_lock(&local->sta_mtx);
4086 __ieee80211_check_fast_rx_iface(sdata);
4087 mutex_unlock(&local->sta_mtx);
4088 }
4089
4090 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4091 struct ieee80211_fast_rx *fast_rx)
4092 {
4093 struct sk_buff *skb = rx->skb;
4094 struct ieee80211_hdr *hdr = (void *)skb->data;
4095 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4096 struct sta_info *sta = rx->sta;
4097 int orig_len = skb->len;
4098 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4099 int snap_offs = hdrlen;
4100 struct {
4101 u8 snap[sizeof(rfc1042_header)];
4102 __be16 proto;
4103 } *payload __aligned(2);
4104 struct {
4105 u8 da[ETH_ALEN];
4106 u8 sa[ETH_ALEN];
4107 } addrs __aligned(2);
4108 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4109
4110 if (fast_rx->uses_rss)
4111 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4112
4113 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4114 * to a common data structure; drivers can implement that per queue
4115 * but we don't have that information in mac80211
4116 */
4117 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4118 return false;
4119
4120 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4121
4122 /* If using encryption, we also need to have:
4123 * - PN_VALIDATED: similar, but the implementation is tricky
4124 * - DECRYPTED: necessary for PN_VALIDATED
4125 */
4126 if (fast_rx->key &&
4127 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4128 return false;
4129
4130 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4131 return false;
4132
4133 if (unlikely(ieee80211_is_frag(hdr)))
4134 return false;
4135
4136 /* Since our interface address cannot be multicast, this
4137 * implicitly also rejects multicast frames without the
4138 * explicit check.
4139 *
4140 * We shouldn't get any *data* frames not addressed to us
4141 * (AP mode will accept multicast *management* frames), but
4142 * punting here will make it go through the full checks in
4143 * ieee80211_accept_frame().
4144 */
4145 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4146 return false;
4147
4148 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4149 IEEE80211_FCTL_TODS)) !=
4150 fast_rx->expected_ds_bits)
4151 return false;
4152
4153 /* assign the key to drop unencrypted frames (later)
4154 * and strip the IV/MIC if necessary
4155 */
4156 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4157 /* GCMP header length is the same */
4158 snap_offs += IEEE80211_CCMP_HDR_LEN;
4159 }
4160
4161 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4162 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4163 goto drop;
4164
4165 payload = (void *)(skb->data + snap_offs);
4166
4167 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4168 return false;
4169
4170 /* Don't handle these here since they require special code.
4171 * Accept AARP and IPX even though they should come with a
4172 * bridge-tunnel header - but if we get them this way then
4173 * there's little point in discarding them.
4174 */
4175 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4176 payload->proto == fast_rx->control_port_protocol))
4177 return false;
4178 }
4179
4180 /* after this point, don't punt to the slowpath! */
4181
4182 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4183 pskb_trim(skb, skb->len - fast_rx->icv_len))
4184 goto drop;
4185
4186 if (unlikely(fast_rx->sta_notify)) {
4187 ieee80211_sta_rx_notify(rx->sdata, hdr);
4188 fast_rx->sta_notify = false;
4189 }
4190
4191 /* statistics part of ieee80211_rx_h_sta_process() */
4192 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4193 stats->last_signal = status->signal;
4194 if (!fast_rx->uses_rss)
4195 ewma_signal_add(&sta->rx_stats_avg.signal,
4196 -status->signal);
4197 }
4198
4199 if (status->chains) {
4200 int i;
4201
4202 stats->chains = status->chains;
4203 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4204 int signal = status->chain_signal[i];
4205
4206 if (!(status->chains & BIT(i)))
4207 continue;
4208
4209 stats->chain_signal_last[i] = signal;
4210 if (!fast_rx->uses_rss)
4211 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4212 -signal);
4213 }
4214 }
4215 /* end of statistics */
4216
4217 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4218 goto drop;
4219
4220 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4221 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4222 RX_QUEUED)
4223 goto drop;
4224
4225 return true;
4226 }
4227
4228 stats->last_rx = jiffies;
4229 stats->last_rate = sta_stats_encode_rate(status);
4230
4231 stats->fragments++;
4232 stats->packets++;
4233
4234 /* do the header conversion - first grab the addresses */
4235 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4236 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4237 /* remove the SNAP but leave the ethertype */
4238 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4239 /* push the addresses in front */
4240 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4241
4242 skb->dev = fast_rx->dev;
4243
4244 ieee80211_rx_stats(fast_rx->dev, skb->len);
4245
4246 /* The seqno index has the same property as needed
4247 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4248 * for non-QoS-data frames. Here we know it's a data
4249 * frame, so count MSDUs.
4250 */
4251 u64_stats_update_begin(&stats->syncp);
4252 stats->msdu[rx->seqno_idx]++;
4253 stats->bytes += orig_len;
4254 u64_stats_update_end(&stats->syncp);
4255
4256 if (fast_rx->internal_forward) {
4257 struct sk_buff *xmit_skb = NULL;
4258 if (is_multicast_ether_addr(addrs.da)) {
4259 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4260 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4261 sta_info_get(rx->sdata, addrs.da)) {
4262 xmit_skb = skb;
4263 skb = NULL;
4264 }
4265
4266 if (xmit_skb) {
4267 /*
4268 * Send to wireless media and increase priority by 256
4269 * to keep the received priority instead of
4270 * reclassifying the frame (see cfg80211_classify8021d).
4271 */
4272 xmit_skb->priority += 256;
4273 xmit_skb->protocol = htons(ETH_P_802_3);
4274 skb_reset_network_header(xmit_skb);
4275 skb_reset_mac_header(xmit_skb);
4276 dev_queue_xmit(xmit_skb);
4277 }
4278
4279 if (!skb)
4280 return true;
4281 }
4282
4283 /* deliver to local stack */
4284 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4285 memset(skb->cb, 0, sizeof(skb->cb));
4286 if (rx->napi)
4287 napi_gro_receive(rx->napi, skb);
4288 else
4289 netif_receive_skb(skb);
4290
4291 return true;
4292 drop:
4293 dev_kfree_skb(skb);
4294 stats->dropped++;
4295 return true;
4296 }
4297
4298 /*
4299 * This function returns whether or not the SKB
4300 * was destined for RX processing or not, which,
4301 * if consume is true, is equivalent to whether
4302 * or not the skb was consumed.
4303 */
4304 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4305 struct sk_buff *skb, bool consume)
4306 {
4307 struct ieee80211_local *local = rx->local;
4308 struct ieee80211_sub_if_data *sdata = rx->sdata;
4309
4310 rx->skb = skb;
4311
4312 /* See if we can do fast-rx; if we have to copy we already lost,
4313 * so punt in that case. We should never have to deliver a data
4314 * frame to multiple interfaces anyway.
4315 *
4316 * We skip the ieee80211_accept_frame() call and do the necessary
4317 * checking inside ieee80211_invoke_fast_rx().
4318 */
4319 if (consume && rx->sta) {
4320 struct ieee80211_fast_rx *fast_rx;
4321
4322 fast_rx = rcu_dereference(rx->sta->fast_rx);
4323 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4324 return true;
4325 }
4326
4327 if (!ieee80211_accept_frame(rx))
4328 return false;
4329
4330 if (!consume) {
4331 skb = skb_copy(skb, GFP_ATOMIC);
4332 if (!skb) {
4333 if (net_ratelimit())
4334 wiphy_debug(local->hw.wiphy,
4335 "failed to copy skb for %s\n",
4336 sdata->name);
4337 return true;
4338 }
4339
4340 rx->skb = skb;
4341 }
4342
4343 ieee80211_invoke_rx_handlers(rx);
4344 return true;
4345 }
4346
4347 /*
4348 * This is the actual Rx frames handler. as it belongs to Rx path it must
4349 * be called with rcu_read_lock protection.
4350 */
4351 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4352 struct ieee80211_sta *pubsta,
4353 struct sk_buff *skb,
4354 struct napi_struct *napi)
4355 {
4356 struct ieee80211_local *local = hw_to_local(hw);
4357 struct ieee80211_sub_if_data *sdata;
4358 struct ieee80211_hdr *hdr;
4359 __le16 fc;
4360 struct ieee80211_rx_data rx;
4361 struct ieee80211_sub_if_data *prev;
4362 struct rhlist_head *tmp;
4363 int err = 0;
4364
4365 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4366 memset(&rx, 0, sizeof(rx));
4367 rx.skb = skb;
4368 rx.local = local;
4369 rx.napi = napi;
4370
4371 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4372 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4373
4374 if (ieee80211_is_mgmt(fc)) {
4375 /* drop frame if too short for header */
4376 if (skb->len < ieee80211_hdrlen(fc))
4377 err = -ENOBUFS;
4378 else
4379 err = skb_linearize(skb);
4380 } else {
4381 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4382 }
4383
4384 if (err) {
4385 dev_kfree_skb(skb);
4386 return;
4387 }
4388
4389 hdr = (struct ieee80211_hdr *)skb->data;
4390 ieee80211_parse_qos(&rx);
4391 ieee80211_verify_alignment(&rx);
4392
4393 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4394 ieee80211_is_beacon(hdr->frame_control)))
4395 ieee80211_scan_rx(local, skb);
4396
4397 if (ieee80211_is_data(fc)) {
4398 struct sta_info *sta, *prev_sta;
4399
4400 if (pubsta) {
4401 rx.sta = container_of(pubsta, struct sta_info, sta);
4402 rx.sdata = rx.sta->sdata;
4403 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4404 return;
4405 goto out;
4406 }
4407
4408 prev_sta = NULL;
4409
4410 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4411 if (!prev_sta) {
4412 prev_sta = sta;
4413 continue;
4414 }
4415
4416 rx.sta = prev_sta;
4417 rx.sdata = prev_sta->sdata;
4418 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4419
4420 prev_sta = sta;
4421 }
4422
4423 if (prev_sta) {
4424 rx.sta = prev_sta;
4425 rx.sdata = prev_sta->sdata;
4426
4427 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4428 return;
4429 goto out;
4430 }
4431 }
4432
4433 prev = NULL;
4434
4435 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4436 if (!ieee80211_sdata_running(sdata))
4437 continue;
4438
4439 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4440 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4441 continue;
4442
4443 /*
4444 * frame is destined for this interface, but if it's
4445 * not also for the previous one we handle that after
4446 * the loop to avoid copying the SKB once too much
4447 */
4448
4449 if (!prev) {
4450 prev = sdata;
4451 continue;
4452 }
4453
4454 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4455 rx.sdata = prev;
4456 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4457
4458 prev = sdata;
4459 }
4460
4461 if (prev) {
4462 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4463 rx.sdata = prev;
4464
4465 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4466 return;
4467 }
4468
4469 out:
4470 dev_kfree_skb(skb);
4471 }
4472
4473 /*
4474 * This is the receive path handler. It is called by a low level driver when an
4475 * 802.11 MPDU is received from the hardware.
4476 */
4477 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4478 struct sk_buff *skb, struct napi_struct *napi)
4479 {
4480 struct ieee80211_local *local = hw_to_local(hw);
4481 struct ieee80211_rate *rate = NULL;
4482 struct ieee80211_supported_band *sband;
4483 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4484
4485 WARN_ON_ONCE(softirq_count() == 0);
4486
4487 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4488 goto drop;
4489
4490 sband = local->hw.wiphy->bands[status->band];
4491 if (WARN_ON(!sband))
4492 goto drop;
4493
4494 /*
4495 * If we're suspending, it is possible although not too likely
4496 * that we'd be receiving frames after having already partially
4497 * quiesced the stack. We can't process such frames then since
4498 * that might, for example, cause stations to be added or other
4499 * driver callbacks be invoked.
4500 */
4501 if (unlikely(local->quiescing || local->suspended))
4502 goto drop;
4503
4504 /* We might be during a HW reconfig, prevent Rx for the same reason */
4505 if (unlikely(local->in_reconfig))
4506 goto drop;
4507
4508 /*
4509 * The same happens when we're not even started,
4510 * but that's worth a warning.
4511 */
4512 if (WARN_ON(!local->started))
4513 goto drop;
4514
4515 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4516 /*
4517 * Validate the rate, unless a PLCP error means that
4518 * we probably can't have a valid rate here anyway.
4519 */
4520
4521 switch (status->encoding) {
4522 case RX_ENC_HT:
4523 /*
4524 * rate_idx is MCS index, which can be [0-76]
4525 * as documented on:
4526 *
4527 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4528 *
4529 * Anything else would be some sort of driver or
4530 * hardware error. The driver should catch hardware
4531 * errors.
4532 */
4533 if (WARN(status->rate_idx > 76,
4534 "Rate marked as an HT rate but passed "
4535 "status->rate_idx is not "
4536 "an MCS index [0-76]: %d (0x%02x)\n",
4537 status->rate_idx,
4538 status->rate_idx))
4539 goto drop;
4540 break;
4541 case RX_ENC_VHT:
4542 if (WARN_ONCE(status->rate_idx > 9 ||
4543 !status->nss ||
4544 status->nss > 8,
4545 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4546 status->rate_idx, status->nss))
4547 goto drop;
4548 break;
4549 case RX_ENC_HE:
4550 if (WARN_ONCE(status->rate_idx > 11 ||
4551 !status->nss ||
4552 status->nss > 8,
4553 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4554 status->rate_idx, status->nss))
4555 goto drop;
4556 break;
4557 default:
4558 WARN_ON_ONCE(1);
4559 /* fall through */
4560 case RX_ENC_LEGACY:
4561 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4562 goto drop;
4563 rate = &sband->bitrates[status->rate_idx];
4564 }
4565 }
4566
4567 status->rx_flags = 0;
4568
4569 /*
4570 * key references and virtual interfaces are protected using RCU
4571 * and this requires that we are in a read-side RCU section during
4572 * receive processing
4573 */
4574 rcu_read_lock();
4575
4576 /*
4577 * Frames with failed FCS/PLCP checksum are not returned,
4578 * all other frames are returned without radiotap header
4579 * if it was previously present.
4580 * Also, frames with less than 16 bytes are dropped.
4581 */
4582 skb = ieee80211_rx_monitor(local, skb, rate);
4583 if (!skb) {
4584 rcu_read_unlock();
4585 return;
4586 }
4587
4588 ieee80211_tpt_led_trig_rx(local,
4589 ((struct ieee80211_hdr *)skb->data)->frame_control,
4590 skb->len);
4591
4592 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4593
4594 rcu_read_unlock();
4595
4596 return;
4597 drop:
4598 kfree_skb(skb);
4599 }
4600 EXPORT_SYMBOL(ieee80211_rx_napi);
4601
4602 /* This is a version of the rx handler that can be called from hard irq
4603 * context. Post the skb on the queue and schedule the tasklet */
4604 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4605 {
4606 struct ieee80211_local *local = hw_to_local(hw);
4607
4608 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4609
4610 skb->pkt_type = IEEE80211_RX_MSG;
4611 skb_queue_tail(&local->skb_queue, skb);
4612 tasklet_schedule(&local->tasklet);
4613 }
4614 EXPORT_SYMBOL(ieee80211_rx_irqsafe);