]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/rx.c
net: Convert net_ratelimit uses to net_<level>_ratelimited
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
44 if (likely(skb->len > FCS_LEN))
45 __pskb_trim(skb, skb->len - FCS_LEN);
46 else {
47 /* driver bug */
48 WARN_ON(1);
49 dev_kfree_skb(skb);
50 skb = NULL;
51 }
52 }
53
54 return skb;
55 }
56
57 static inline int should_drop_frame(struct sk_buff *skb,
58 int present_fcs_len)
59 {
60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
62
63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
64 return 1;
65 if (unlikely(skb->len < 16 + present_fcs_len))
66 return 1;
67 if (ieee80211_is_ctl(hdr->frame_control) &&
68 !ieee80211_is_pspoll(hdr->frame_control) &&
69 !ieee80211_is_back_req(hdr->frame_control))
70 return 1;
71 return 0;
72 }
73
74 static int
75 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
76 struct ieee80211_rx_status *status)
77 {
78 int len;
79
80 /* always present fields */
81 len = sizeof(struct ieee80211_radiotap_header) + 9;
82
83 if (status->flag & RX_FLAG_MACTIME_MPDU)
84 len += 8;
85 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
86 len += 1;
87
88 if (len & 1) /* padding for RX_FLAGS if necessary */
89 len++;
90
91 if (status->flag & RX_FLAG_HT) /* HT info */
92 len += 3;
93
94 return len;
95 }
96
97 /*
98 * ieee80211_add_rx_radiotap_header - add radiotap header
99 *
100 * add a radiotap header containing all the fields which the hardware provided.
101 */
102 static void
103 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
104 struct sk_buff *skb,
105 struct ieee80211_rate *rate,
106 int rtap_len, bool has_fcs)
107 {
108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 struct ieee80211_radiotap_header *rthdr;
110 unsigned char *pos;
111 u16 rx_flags = 0;
112
113 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
114 memset(rthdr, 0, rtap_len);
115
116 /* radiotap header, set always present flags */
117 rthdr->it_present =
118 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
119 (1 << IEEE80211_RADIOTAP_CHANNEL) |
120 (1 << IEEE80211_RADIOTAP_ANTENNA) |
121 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
122 rthdr->it_len = cpu_to_le16(rtap_len);
123
124 pos = (unsigned char *)(rthdr+1);
125
126 /* the order of the following fields is important */
127
128 /* IEEE80211_RADIOTAP_TSFT */
129 if (status->flag & RX_FLAG_MACTIME_MPDU) {
130 put_unaligned_le64(status->mactime, pos);
131 rthdr->it_present |=
132 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
133 pos += 8;
134 }
135
136 /* IEEE80211_RADIOTAP_FLAGS */
137 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
138 *pos |= IEEE80211_RADIOTAP_F_FCS;
139 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
140 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
141 if (status->flag & RX_FLAG_SHORTPRE)
142 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
143 pos++;
144
145 /* IEEE80211_RADIOTAP_RATE */
146 if (!rate || status->flag & RX_FLAG_HT) {
147 /*
148 * Without rate information don't add it. If we have,
149 * MCS information is a separate field in radiotap,
150 * added below. The byte here is needed as padding
151 * for the channel though, so initialise it to 0.
152 */
153 *pos = 0;
154 } else {
155 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
156 *pos = rate->bitrate / 5;
157 }
158 pos++;
159
160 /* IEEE80211_RADIOTAP_CHANNEL */
161 put_unaligned_le16(status->freq, pos);
162 pos += 2;
163 if (status->band == IEEE80211_BAND_5GHZ)
164 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
165 pos);
166 else if (status->flag & RX_FLAG_HT)
167 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
168 pos);
169 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
170 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
171 pos);
172 else if (rate)
173 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
174 pos);
175 else
176 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
177 pos += 2;
178
179 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
180 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
181 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
182 *pos = status->signal;
183 rthdr->it_present |=
184 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
185 pos++;
186 }
187
188 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
189
190 /* IEEE80211_RADIOTAP_ANTENNA */
191 *pos = status->antenna;
192 pos++;
193
194 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
195
196 /* IEEE80211_RADIOTAP_RX_FLAGS */
197 /* ensure 2 byte alignment for the 2 byte field as required */
198 if ((pos - (u8 *)rthdr) & 1)
199 pos++;
200 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
201 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
202 put_unaligned_le16(rx_flags, pos);
203 pos += 2;
204
205 if (status->flag & RX_FLAG_HT) {
206 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
207 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
208 IEEE80211_RADIOTAP_MCS_HAVE_GI |
209 IEEE80211_RADIOTAP_MCS_HAVE_BW;
210 *pos = 0;
211 if (status->flag & RX_FLAG_SHORT_GI)
212 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
213 if (status->flag & RX_FLAG_40MHZ)
214 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
215 pos++;
216 *pos++ = status->rate_idx;
217 }
218 }
219
220 /*
221 * This function copies a received frame to all monitor interfaces and
222 * returns a cleaned-up SKB that no longer includes the FCS nor the
223 * radiotap header the driver might have added.
224 */
225 static struct sk_buff *
226 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
227 struct ieee80211_rate *rate)
228 {
229 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
230 struct ieee80211_sub_if_data *sdata;
231 int needed_headroom;
232 struct sk_buff *skb, *skb2;
233 struct net_device *prev_dev = NULL;
234 int present_fcs_len = 0;
235
236 /*
237 * First, we may need to make a copy of the skb because
238 * (1) we need to modify it for radiotap (if not present), and
239 * (2) the other RX handlers will modify the skb we got.
240 *
241 * We don't need to, of course, if we aren't going to return
242 * the SKB because it has a bad FCS/PLCP checksum.
243 */
244
245 /* room for the radiotap header based on driver features */
246 needed_headroom = ieee80211_rx_radiotap_len(local, status);
247
248 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
249 present_fcs_len = FCS_LEN;
250
251 /* make sure hdr->frame_control is on the linear part */
252 if (!pskb_may_pull(origskb, 2)) {
253 dev_kfree_skb(origskb);
254 return NULL;
255 }
256
257 if (!local->monitors) {
258 if (should_drop_frame(origskb, present_fcs_len)) {
259 dev_kfree_skb(origskb);
260 return NULL;
261 }
262
263 return remove_monitor_info(local, origskb);
264 }
265
266 if (should_drop_frame(origskb, present_fcs_len)) {
267 /* only need to expand headroom if necessary */
268 skb = origskb;
269 origskb = NULL;
270
271 /*
272 * This shouldn't trigger often because most devices have an
273 * RX header they pull before we get here, and that should
274 * be big enough for our radiotap information. We should
275 * probably export the length to drivers so that we can have
276 * them allocate enough headroom to start with.
277 */
278 if (skb_headroom(skb) < needed_headroom &&
279 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
280 dev_kfree_skb(skb);
281 return NULL;
282 }
283 } else {
284 /*
285 * Need to make a copy and possibly remove radiotap header
286 * and FCS from the original.
287 */
288 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
289
290 origskb = remove_monitor_info(local, origskb);
291
292 if (!skb)
293 return origskb;
294 }
295
296 /* prepend radiotap information */
297 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
298 true);
299
300 skb_reset_mac_header(skb);
301 skb->ip_summed = CHECKSUM_UNNECESSARY;
302 skb->pkt_type = PACKET_OTHERHOST;
303 skb->protocol = htons(ETH_P_802_2);
304
305 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
306 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
307 continue;
308
309 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
310 continue;
311
312 if (!ieee80211_sdata_running(sdata))
313 continue;
314
315 if (prev_dev) {
316 skb2 = skb_clone(skb, GFP_ATOMIC);
317 if (skb2) {
318 skb2->dev = prev_dev;
319 netif_receive_skb(skb2);
320 }
321 }
322
323 prev_dev = sdata->dev;
324 sdata->dev->stats.rx_packets++;
325 sdata->dev->stats.rx_bytes += skb->len;
326 }
327
328 if (prev_dev) {
329 skb->dev = prev_dev;
330 netif_receive_skb(skb);
331 } else
332 dev_kfree_skb(skb);
333
334 return origskb;
335 }
336
337
338 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
339 {
340 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
341 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
342 int tid, seqno_idx, security_idx;
343
344 /* does the frame have a qos control field? */
345 if (ieee80211_is_data_qos(hdr->frame_control)) {
346 u8 *qc = ieee80211_get_qos_ctl(hdr);
347 /* frame has qos control */
348 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
349 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
350 status->rx_flags |= IEEE80211_RX_AMSDU;
351
352 seqno_idx = tid;
353 security_idx = tid;
354 } else {
355 /*
356 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
357 *
358 * Sequence numbers for management frames, QoS data
359 * frames with a broadcast/multicast address in the
360 * Address 1 field, and all non-QoS data frames sent
361 * by QoS STAs are assigned using an additional single
362 * modulo-4096 counter, [...]
363 *
364 * We also use that counter for non-QoS STAs.
365 */
366 seqno_idx = NUM_RX_DATA_QUEUES;
367 security_idx = 0;
368 if (ieee80211_is_mgmt(hdr->frame_control))
369 security_idx = NUM_RX_DATA_QUEUES;
370 tid = 0;
371 }
372
373 rx->seqno_idx = seqno_idx;
374 rx->security_idx = security_idx;
375 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
376 * For now, set skb->priority to 0 for other cases. */
377 rx->skb->priority = (tid > 7) ? 0 : tid;
378 }
379
380 /**
381 * DOC: Packet alignment
382 *
383 * Drivers always need to pass packets that are aligned to two-byte boundaries
384 * to the stack.
385 *
386 * Additionally, should, if possible, align the payload data in a way that
387 * guarantees that the contained IP header is aligned to a four-byte
388 * boundary. In the case of regular frames, this simply means aligning the
389 * payload to a four-byte boundary (because either the IP header is directly
390 * contained, or IV/RFC1042 headers that have a length divisible by four are
391 * in front of it). If the payload data is not properly aligned and the
392 * architecture doesn't support efficient unaligned operations, mac80211
393 * will align the data.
394 *
395 * With A-MSDU frames, however, the payload data address must yield two modulo
396 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
397 * push the IP header further back to a multiple of four again. Thankfully, the
398 * specs were sane enough this time around to require padding each A-MSDU
399 * subframe to a length that is a multiple of four.
400 *
401 * Padding like Atheros hardware adds which is between the 802.11 header and
402 * the payload is not supported, the driver is required to move the 802.11
403 * header to be directly in front of the payload in that case.
404 */
405 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
406 {
407 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
408 WARN_ONCE((unsigned long)rx->skb->data & 1,
409 "unaligned packet at 0x%p\n", rx->skb->data);
410 #endif
411 }
412
413
414 /* rx handlers */
415
416 static ieee80211_rx_result debug_noinline
417 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
418 {
419 struct ieee80211_local *local = rx->local;
420 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
421 struct sk_buff *skb = rx->skb;
422
423 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
424 !local->sched_scanning))
425 return RX_CONTINUE;
426
427 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
428 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
429 test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning) ||
430 local->sched_scanning)
431 return ieee80211_scan_rx(rx->sdata, skb);
432
433 /* scanning finished during invoking of handlers */
434 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
435 return RX_DROP_UNUSABLE;
436 }
437
438
439 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
440 {
441 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
442
443 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
444 return 0;
445
446 return ieee80211_is_robust_mgmt_frame(hdr);
447 }
448
449
450 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
451 {
452 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
453
454 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
455 return 0;
456
457 return ieee80211_is_robust_mgmt_frame(hdr);
458 }
459
460
461 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
462 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
463 {
464 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
465 struct ieee80211_mmie *mmie;
466
467 if (skb->len < 24 + sizeof(*mmie) ||
468 !is_multicast_ether_addr(hdr->da))
469 return -1;
470
471 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
472 return -1; /* not a robust management frame */
473
474 mmie = (struct ieee80211_mmie *)
475 (skb->data + skb->len - sizeof(*mmie));
476 if (mmie->element_id != WLAN_EID_MMIE ||
477 mmie->length != sizeof(*mmie) - 2)
478 return -1;
479
480 return le16_to_cpu(mmie->key_id);
481 }
482
483
484 static ieee80211_rx_result
485 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
486 {
487 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
488 char *dev_addr = rx->sdata->vif.addr;
489
490 if (ieee80211_is_data(hdr->frame_control)) {
491 if (is_multicast_ether_addr(hdr->addr1)) {
492 if (ieee80211_has_tods(hdr->frame_control) ||
493 !ieee80211_has_fromds(hdr->frame_control))
494 return RX_DROP_MONITOR;
495 if (ether_addr_equal(hdr->addr3, dev_addr))
496 return RX_DROP_MONITOR;
497 } else {
498 if (!ieee80211_has_a4(hdr->frame_control))
499 return RX_DROP_MONITOR;
500 if (ether_addr_equal(hdr->addr4, dev_addr))
501 return RX_DROP_MONITOR;
502 }
503 }
504
505 /* If there is not an established peer link and this is not a peer link
506 * establisment frame, beacon or probe, drop the frame.
507 */
508
509 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
510 struct ieee80211_mgmt *mgmt;
511
512 if (!ieee80211_is_mgmt(hdr->frame_control))
513 return RX_DROP_MONITOR;
514
515 if (ieee80211_is_action(hdr->frame_control)) {
516 u8 category;
517 mgmt = (struct ieee80211_mgmt *)hdr;
518 category = mgmt->u.action.category;
519 if (category != WLAN_CATEGORY_MESH_ACTION &&
520 category != WLAN_CATEGORY_SELF_PROTECTED)
521 return RX_DROP_MONITOR;
522 return RX_CONTINUE;
523 }
524
525 if (ieee80211_is_probe_req(hdr->frame_control) ||
526 ieee80211_is_probe_resp(hdr->frame_control) ||
527 ieee80211_is_beacon(hdr->frame_control) ||
528 ieee80211_is_auth(hdr->frame_control))
529 return RX_CONTINUE;
530
531 return RX_DROP_MONITOR;
532
533 }
534
535 return RX_CONTINUE;
536 }
537
538 #define SEQ_MODULO 0x1000
539 #define SEQ_MASK 0xfff
540
541 static inline int seq_less(u16 sq1, u16 sq2)
542 {
543 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
544 }
545
546 static inline u16 seq_inc(u16 sq)
547 {
548 return (sq + 1) & SEQ_MASK;
549 }
550
551 static inline u16 seq_sub(u16 sq1, u16 sq2)
552 {
553 return (sq1 - sq2) & SEQ_MASK;
554 }
555
556
557 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
558 struct tid_ampdu_rx *tid_agg_rx,
559 int index)
560 {
561 struct ieee80211_local *local = hw_to_local(hw);
562 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
563 struct ieee80211_rx_status *status;
564
565 lockdep_assert_held(&tid_agg_rx->reorder_lock);
566
567 if (!skb)
568 goto no_frame;
569
570 /* release the frame from the reorder ring buffer */
571 tid_agg_rx->stored_mpdu_num--;
572 tid_agg_rx->reorder_buf[index] = NULL;
573 status = IEEE80211_SKB_RXCB(skb);
574 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
575 skb_queue_tail(&local->rx_skb_queue, skb);
576
577 no_frame:
578 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
579 }
580
581 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
582 struct tid_ampdu_rx *tid_agg_rx,
583 u16 head_seq_num)
584 {
585 int index;
586
587 lockdep_assert_held(&tid_agg_rx->reorder_lock);
588
589 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
590 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
591 tid_agg_rx->buf_size;
592 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
593 }
594 }
595
596 /*
597 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
598 * the skb was added to the buffer longer than this time ago, the earlier
599 * frames that have not yet been received are assumed to be lost and the skb
600 * can be released for processing. This may also release other skb's from the
601 * reorder buffer if there are no additional gaps between the frames.
602 *
603 * Callers must hold tid_agg_rx->reorder_lock.
604 */
605 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
606
607 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
608 struct tid_ampdu_rx *tid_agg_rx)
609 {
610 int index, j;
611
612 lockdep_assert_held(&tid_agg_rx->reorder_lock);
613
614 /* release the buffer until next missing frame */
615 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
616 tid_agg_rx->buf_size;
617 if (!tid_agg_rx->reorder_buf[index] &&
618 tid_agg_rx->stored_mpdu_num) {
619 /*
620 * No buffers ready to be released, but check whether any
621 * frames in the reorder buffer have timed out.
622 */
623 int skipped = 1;
624 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
625 j = (j + 1) % tid_agg_rx->buf_size) {
626 if (!tid_agg_rx->reorder_buf[j]) {
627 skipped++;
628 continue;
629 }
630 if (skipped &&
631 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
632 HT_RX_REORDER_BUF_TIMEOUT))
633 goto set_release_timer;
634
635 #ifdef CONFIG_MAC80211_HT_DEBUG
636 if (net_ratelimit())
637 wiphy_debug(hw->wiphy,
638 "release an RX reorder frame due to timeout on earlier frames\n");
639 #endif
640 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
641
642 /*
643 * Increment the head seq# also for the skipped slots.
644 */
645 tid_agg_rx->head_seq_num =
646 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
647 skipped = 0;
648 }
649 } else while (tid_agg_rx->reorder_buf[index]) {
650 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
651 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652 tid_agg_rx->buf_size;
653 }
654
655 if (tid_agg_rx->stored_mpdu_num) {
656 j = index = seq_sub(tid_agg_rx->head_seq_num,
657 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
658
659 for (; j != (index - 1) % tid_agg_rx->buf_size;
660 j = (j + 1) % tid_agg_rx->buf_size) {
661 if (tid_agg_rx->reorder_buf[j])
662 break;
663 }
664
665 set_release_timer:
666
667 mod_timer(&tid_agg_rx->reorder_timer,
668 tid_agg_rx->reorder_time[j] + 1 +
669 HT_RX_REORDER_BUF_TIMEOUT);
670 } else {
671 del_timer(&tid_agg_rx->reorder_timer);
672 }
673 }
674
675 /*
676 * As this function belongs to the RX path it must be under
677 * rcu_read_lock protection. It returns false if the frame
678 * can be processed immediately, true if it was consumed.
679 */
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681 struct tid_ampdu_rx *tid_agg_rx,
682 struct sk_buff *skb)
683 {
684 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685 u16 sc = le16_to_cpu(hdr->seq_ctrl);
686 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
687 u16 head_seq_num, buf_size;
688 int index;
689 bool ret = true;
690
691 spin_lock(&tid_agg_rx->reorder_lock);
692
693 buf_size = tid_agg_rx->buf_size;
694 head_seq_num = tid_agg_rx->head_seq_num;
695
696 /* frame with out of date sequence number */
697 if (seq_less(mpdu_seq_num, head_seq_num)) {
698 dev_kfree_skb(skb);
699 goto out;
700 }
701
702 /*
703 * If frame the sequence number exceeds our buffering window
704 * size release some previous frames to make room for this one.
705 */
706 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
707 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
708 /* release stored frames up to new head to stack */
709 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
710 }
711
712 /* Now the new frame is always in the range of the reordering buffer */
713
714 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
715
716 /* check if we already stored this frame */
717 if (tid_agg_rx->reorder_buf[index]) {
718 dev_kfree_skb(skb);
719 goto out;
720 }
721
722 /*
723 * If the current MPDU is in the right order and nothing else
724 * is stored we can process it directly, no need to buffer it.
725 * If it is first but there's something stored, we may be able
726 * to release frames after this one.
727 */
728 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729 tid_agg_rx->stored_mpdu_num == 0) {
730 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731 ret = false;
732 goto out;
733 }
734
735 /* put the frame in the reordering buffer */
736 tid_agg_rx->reorder_buf[index] = skb;
737 tid_agg_rx->reorder_time[index] = jiffies;
738 tid_agg_rx->stored_mpdu_num++;
739 ieee80211_sta_reorder_release(hw, tid_agg_rx);
740
741 out:
742 spin_unlock(&tid_agg_rx->reorder_lock);
743 return ret;
744 }
745
746 /*
747 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748 * true if the MPDU was buffered, false if it should be processed.
749 */
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
751 {
752 struct sk_buff *skb = rx->skb;
753 struct ieee80211_local *local = rx->local;
754 struct ieee80211_hw *hw = &local->hw;
755 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
756 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
757 struct sta_info *sta = rx->sta;
758 struct tid_ampdu_rx *tid_agg_rx;
759 u16 sc;
760 u8 tid, ack_policy;
761
762 if (!ieee80211_is_data_qos(hdr->frame_control))
763 goto dont_reorder;
764
765 /*
766 * filter the QoS data rx stream according to
767 * STA/TID and check if this STA/TID is on aggregation
768 */
769
770 if (!sta)
771 goto dont_reorder;
772
773 ack_policy = *ieee80211_get_qos_ctl(hdr) &
774 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
775 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
776
777 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
778 if (!tid_agg_rx)
779 goto dont_reorder;
780
781 /* qos null data frames are excluded */
782 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
783 goto dont_reorder;
784
785 /* not part of a BA session */
786 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
787 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
788 goto dont_reorder;
789
790 /* not actually part of this BA session */
791 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
792 goto dont_reorder;
793
794 /* new, potentially un-ordered, ampdu frame - process it */
795
796 /* reset session timer */
797 if (tid_agg_rx->timeout)
798 tid_agg_rx->last_rx = jiffies;
799
800 /* if this mpdu is fragmented - terminate rx aggregation session */
801 sc = le16_to_cpu(hdr->seq_ctrl);
802 if (sc & IEEE80211_SCTL_FRAG) {
803 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
804 skb_queue_tail(&rx->sdata->skb_queue, skb);
805 ieee80211_queue_work(&local->hw, &rx->sdata->work);
806 return;
807 }
808
809 /*
810 * No locking needed -- we will only ever process one
811 * RX packet at a time, and thus own tid_agg_rx. All
812 * other code manipulating it needs to (and does) make
813 * sure that we cannot get to it any more before doing
814 * anything with it.
815 */
816 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
817 return;
818
819 dont_reorder:
820 skb_queue_tail(&local->rx_skb_queue, skb);
821 }
822
823 static ieee80211_rx_result debug_noinline
824 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
825 {
826 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
827 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
828
829 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
830 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
831 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
832 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
833 hdr->seq_ctrl)) {
834 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
835 rx->local->dot11FrameDuplicateCount++;
836 rx->sta->num_duplicates++;
837 }
838 return RX_DROP_UNUSABLE;
839 } else
840 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
841 }
842
843 if (unlikely(rx->skb->len < 16)) {
844 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
845 return RX_DROP_MONITOR;
846 }
847
848 /* Drop disallowed frame classes based on STA auth/assoc state;
849 * IEEE 802.11, Chap 5.5.
850 *
851 * mac80211 filters only based on association state, i.e. it drops
852 * Class 3 frames from not associated stations. hostapd sends
853 * deauth/disassoc frames when needed. In addition, hostapd is
854 * responsible for filtering on both auth and assoc states.
855 */
856
857 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
858 return ieee80211_rx_mesh_check(rx);
859
860 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
861 ieee80211_is_pspoll(hdr->frame_control)) &&
862 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
863 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
864 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
865 /*
866 * accept port control frames from the AP even when it's not
867 * yet marked ASSOC to prevent a race where we don't set the
868 * assoc bit quickly enough before it sends the first frame
869 */
870 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
871 ieee80211_is_data_present(hdr->frame_control)) {
872 u16 ethertype;
873 u8 *payload;
874
875 payload = rx->skb->data +
876 ieee80211_hdrlen(hdr->frame_control);
877 ethertype = (payload[6] << 8) | payload[7];
878 if (cpu_to_be16(ethertype) ==
879 rx->sdata->control_port_protocol)
880 return RX_CONTINUE;
881 }
882
883 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
884 cfg80211_rx_spurious_frame(rx->sdata->dev,
885 hdr->addr2,
886 GFP_ATOMIC))
887 return RX_DROP_UNUSABLE;
888
889 return RX_DROP_MONITOR;
890 }
891
892 return RX_CONTINUE;
893 }
894
895
896 static ieee80211_rx_result debug_noinline
897 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
898 {
899 struct sk_buff *skb = rx->skb;
900 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
901 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
902 int keyidx;
903 int hdrlen;
904 ieee80211_rx_result result = RX_DROP_UNUSABLE;
905 struct ieee80211_key *sta_ptk = NULL;
906 int mmie_keyidx = -1;
907 __le16 fc;
908
909 /*
910 * Key selection 101
911 *
912 * There are four types of keys:
913 * - GTK (group keys)
914 * - IGTK (group keys for management frames)
915 * - PTK (pairwise keys)
916 * - STK (station-to-station pairwise keys)
917 *
918 * When selecting a key, we have to distinguish between multicast
919 * (including broadcast) and unicast frames, the latter can only
920 * use PTKs and STKs while the former always use GTKs and IGTKs.
921 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
922 * unicast frames can also use key indices like GTKs. Hence, if we
923 * don't have a PTK/STK we check the key index for a WEP key.
924 *
925 * Note that in a regular BSS, multicast frames are sent by the
926 * AP only, associated stations unicast the frame to the AP first
927 * which then multicasts it on their behalf.
928 *
929 * There is also a slight problem in IBSS mode: GTKs are negotiated
930 * with each station, that is something we don't currently handle.
931 * The spec seems to expect that one negotiates the same key with
932 * every station but there's no such requirement; VLANs could be
933 * possible.
934 */
935
936 /*
937 * No point in finding a key and decrypting if the frame is neither
938 * addressed to us nor a multicast frame.
939 */
940 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
941 return RX_CONTINUE;
942
943 /* start without a key */
944 rx->key = NULL;
945
946 if (rx->sta)
947 sta_ptk = rcu_dereference(rx->sta->ptk);
948
949 fc = hdr->frame_control;
950
951 if (!ieee80211_has_protected(fc))
952 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
953
954 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
955 rx->key = sta_ptk;
956 if ((status->flag & RX_FLAG_DECRYPTED) &&
957 (status->flag & RX_FLAG_IV_STRIPPED))
958 return RX_CONTINUE;
959 /* Skip decryption if the frame is not protected. */
960 if (!ieee80211_has_protected(fc))
961 return RX_CONTINUE;
962 } else if (mmie_keyidx >= 0) {
963 /* Broadcast/multicast robust management frame / BIP */
964 if ((status->flag & RX_FLAG_DECRYPTED) &&
965 (status->flag & RX_FLAG_IV_STRIPPED))
966 return RX_CONTINUE;
967
968 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
969 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
970 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
971 if (rx->sta)
972 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
973 if (!rx->key)
974 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
975 } else if (!ieee80211_has_protected(fc)) {
976 /*
977 * The frame was not protected, so skip decryption. However, we
978 * need to set rx->key if there is a key that could have been
979 * used so that the frame may be dropped if encryption would
980 * have been expected.
981 */
982 struct ieee80211_key *key = NULL;
983 struct ieee80211_sub_if_data *sdata = rx->sdata;
984 int i;
985
986 if (ieee80211_is_mgmt(fc) &&
987 is_multicast_ether_addr(hdr->addr1) &&
988 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
989 rx->key = key;
990 else {
991 if (rx->sta) {
992 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
993 key = rcu_dereference(rx->sta->gtk[i]);
994 if (key)
995 break;
996 }
997 }
998 if (!key) {
999 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1000 key = rcu_dereference(sdata->keys[i]);
1001 if (key)
1002 break;
1003 }
1004 }
1005 if (key)
1006 rx->key = key;
1007 }
1008 return RX_CONTINUE;
1009 } else {
1010 u8 keyid;
1011 /*
1012 * The device doesn't give us the IV so we won't be
1013 * able to look up the key. That's ok though, we
1014 * don't need to decrypt the frame, we just won't
1015 * be able to keep statistics accurate.
1016 * Except for key threshold notifications, should
1017 * we somehow allow the driver to tell us which key
1018 * the hardware used if this flag is set?
1019 */
1020 if ((status->flag & RX_FLAG_DECRYPTED) &&
1021 (status->flag & RX_FLAG_IV_STRIPPED))
1022 return RX_CONTINUE;
1023
1024 hdrlen = ieee80211_hdrlen(fc);
1025
1026 if (rx->skb->len < 8 + hdrlen)
1027 return RX_DROP_UNUSABLE; /* TODO: count this? */
1028
1029 /*
1030 * no need to call ieee80211_wep_get_keyidx,
1031 * it verifies a bunch of things we've done already
1032 */
1033 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1034 keyidx = keyid >> 6;
1035
1036 /* check per-station GTK first, if multicast packet */
1037 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1038 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1039
1040 /* if not found, try default key */
1041 if (!rx->key) {
1042 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1043
1044 /*
1045 * RSNA-protected unicast frames should always be
1046 * sent with pairwise or station-to-station keys,
1047 * but for WEP we allow using a key index as well.
1048 */
1049 if (rx->key &&
1050 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1051 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1052 !is_multicast_ether_addr(hdr->addr1))
1053 rx->key = NULL;
1054 }
1055 }
1056
1057 if (rx->key) {
1058 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1059 return RX_DROP_MONITOR;
1060
1061 rx->key->tx_rx_count++;
1062 /* TODO: add threshold stuff again */
1063 } else {
1064 return RX_DROP_MONITOR;
1065 }
1066
1067 switch (rx->key->conf.cipher) {
1068 case WLAN_CIPHER_SUITE_WEP40:
1069 case WLAN_CIPHER_SUITE_WEP104:
1070 result = ieee80211_crypto_wep_decrypt(rx);
1071 break;
1072 case WLAN_CIPHER_SUITE_TKIP:
1073 result = ieee80211_crypto_tkip_decrypt(rx);
1074 break;
1075 case WLAN_CIPHER_SUITE_CCMP:
1076 result = ieee80211_crypto_ccmp_decrypt(rx);
1077 break;
1078 case WLAN_CIPHER_SUITE_AES_CMAC:
1079 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1080 break;
1081 default:
1082 /*
1083 * We can reach here only with HW-only algorithms
1084 * but why didn't it decrypt the frame?!
1085 */
1086 return RX_DROP_UNUSABLE;
1087 }
1088
1089 /* the hdr variable is invalid after the decrypt handlers */
1090
1091 /* either the frame has been decrypted or will be dropped */
1092 status->flag |= RX_FLAG_DECRYPTED;
1093
1094 return result;
1095 }
1096
1097 static ieee80211_rx_result debug_noinline
1098 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1099 {
1100 struct ieee80211_local *local;
1101 struct ieee80211_hdr *hdr;
1102 struct sk_buff *skb;
1103
1104 local = rx->local;
1105 skb = rx->skb;
1106 hdr = (struct ieee80211_hdr *) skb->data;
1107
1108 if (!local->pspolling)
1109 return RX_CONTINUE;
1110
1111 if (!ieee80211_has_fromds(hdr->frame_control))
1112 /* this is not from AP */
1113 return RX_CONTINUE;
1114
1115 if (!ieee80211_is_data(hdr->frame_control))
1116 return RX_CONTINUE;
1117
1118 if (!ieee80211_has_moredata(hdr->frame_control)) {
1119 /* AP has no more frames buffered for us */
1120 local->pspolling = false;
1121 return RX_CONTINUE;
1122 }
1123
1124 /* more data bit is set, let's request a new frame from the AP */
1125 ieee80211_send_pspoll(local, rx->sdata);
1126
1127 return RX_CONTINUE;
1128 }
1129
1130 static void ap_sta_ps_start(struct sta_info *sta)
1131 {
1132 struct ieee80211_sub_if_data *sdata = sta->sdata;
1133 struct ieee80211_local *local = sdata->local;
1134
1135 atomic_inc(&sdata->bss->num_sta_ps);
1136 set_sta_flag(sta, WLAN_STA_PS_STA);
1137 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1138 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1139 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1140 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1141 sdata->name, sta->sta.addr, sta->sta.aid);
1142 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1143 }
1144
1145 static void ap_sta_ps_end(struct sta_info *sta)
1146 {
1147 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1148 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1149 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1150 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1151
1152 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1153 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1154 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1155 sta->sdata->name, sta->sta.addr, sta->sta.aid);
1156 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1157 return;
1158 }
1159
1160 ieee80211_sta_ps_deliver_wakeup(sta);
1161 }
1162
1163 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1164 {
1165 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1166 bool in_ps;
1167
1168 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1169
1170 /* Don't let the same PS state be set twice */
1171 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1172 if ((start && in_ps) || (!start && !in_ps))
1173 return -EINVAL;
1174
1175 if (start)
1176 ap_sta_ps_start(sta_inf);
1177 else
1178 ap_sta_ps_end(sta_inf);
1179
1180 return 0;
1181 }
1182 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1183
1184 static ieee80211_rx_result debug_noinline
1185 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1186 {
1187 struct ieee80211_sub_if_data *sdata = rx->sdata;
1188 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1189 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1190 int tid, ac;
1191
1192 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1193 return RX_CONTINUE;
1194
1195 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1196 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1197 return RX_CONTINUE;
1198
1199 /*
1200 * The device handles station powersave, so don't do anything about
1201 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1202 * it to mac80211 since they're handled.)
1203 */
1204 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1205 return RX_CONTINUE;
1206
1207 /*
1208 * Don't do anything if the station isn't already asleep. In
1209 * the uAPSD case, the station will probably be marked asleep,
1210 * in the PS-Poll case the station must be confused ...
1211 */
1212 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1213 return RX_CONTINUE;
1214
1215 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1216 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1217 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1218 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1219 else
1220 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1221 }
1222
1223 /* Free PS Poll skb here instead of returning RX_DROP that would
1224 * count as an dropped frame. */
1225 dev_kfree_skb(rx->skb);
1226
1227 return RX_QUEUED;
1228 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1229 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1230 ieee80211_has_pm(hdr->frame_control) &&
1231 (ieee80211_is_data_qos(hdr->frame_control) ||
1232 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1233 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1234 ac = ieee802_1d_to_ac[tid & 7];
1235
1236 /*
1237 * If this AC is not trigger-enabled do nothing.
1238 *
1239 * NB: This could/should check a separate bitmap of trigger-
1240 * enabled queues, but for now we only implement uAPSD w/o
1241 * TSPEC changes to the ACs, so they're always the same.
1242 */
1243 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1244 return RX_CONTINUE;
1245
1246 /* if we are in a service period, do nothing */
1247 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1248 return RX_CONTINUE;
1249
1250 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1251 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1252 else
1253 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1254 }
1255
1256 return RX_CONTINUE;
1257 }
1258
1259 static ieee80211_rx_result debug_noinline
1260 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1261 {
1262 struct sta_info *sta = rx->sta;
1263 struct sk_buff *skb = rx->skb;
1264 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1265 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1266
1267 if (!sta)
1268 return RX_CONTINUE;
1269
1270 /*
1271 * Update last_rx only for IBSS packets which are for the current
1272 * BSSID to avoid keeping the current IBSS network alive in cases
1273 * where other STAs start using different BSSID.
1274 */
1275 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1276 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1277 NL80211_IFTYPE_ADHOC);
1278 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid)) {
1279 sta->last_rx = jiffies;
1280 if (ieee80211_is_data(hdr->frame_control)) {
1281 sta->last_rx_rate_idx = status->rate_idx;
1282 sta->last_rx_rate_flag = status->flag;
1283 }
1284 }
1285 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1286 /*
1287 * Mesh beacons will update last_rx when if they are found to
1288 * match the current local configuration when processed.
1289 */
1290 sta->last_rx = jiffies;
1291 if (ieee80211_is_data(hdr->frame_control)) {
1292 sta->last_rx_rate_idx = status->rate_idx;
1293 sta->last_rx_rate_flag = status->flag;
1294 }
1295 }
1296
1297 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1298 return RX_CONTINUE;
1299
1300 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1301 ieee80211_sta_rx_notify(rx->sdata, hdr);
1302
1303 sta->rx_fragments++;
1304 sta->rx_bytes += rx->skb->len;
1305 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1306 sta->last_signal = status->signal;
1307 ewma_add(&sta->avg_signal, -status->signal);
1308 }
1309
1310 /*
1311 * Change STA power saving mode only at the end of a frame
1312 * exchange sequence.
1313 */
1314 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1315 !ieee80211_has_morefrags(hdr->frame_control) &&
1316 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1317 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1318 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1319 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1320 /*
1321 * Ignore doze->wake transitions that are
1322 * indicated by non-data frames, the standard
1323 * is unclear here, but for example going to
1324 * PS mode and then scanning would cause a
1325 * doze->wake transition for the probe request,
1326 * and that is clearly undesirable.
1327 */
1328 if (ieee80211_is_data(hdr->frame_control) &&
1329 !ieee80211_has_pm(hdr->frame_control))
1330 ap_sta_ps_end(sta);
1331 } else {
1332 if (ieee80211_has_pm(hdr->frame_control))
1333 ap_sta_ps_start(sta);
1334 }
1335 }
1336
1337 /*
1338 * Drop (qos-)data::nullfunc frames silently, since they
1339 * are used only to control station power saving mode.
1340 */
1341 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1342 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1343 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1344
1345 /*
1346 * If we receive a 4-addr nullfunc frame from a STA
1347 * that was not moved to a 4-addr STA vlan yet send
1348 * the event to userspace and for older hostapd drop
1349 * the frame to the monitor interface.
1350 */
1351 if (ieee80211_has_a4(hdr->frame_control) &&
1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1353 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1354 !rx->sdata->u.vlan.sta))) {
1355 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1356 cfg80211_rx_unexpected_4addr_frame(
1357 rx->sdata->dev, sta->sta.addr,
1358 GFP_ATOMIC);
1359 return RX_DROP_MONITOR;
1360 }
1361 /*
1362 * Update counter and free packet here to avoid
1363 * counting this as a dropped packed.
1364 */
1365 sta->rx_packets++;
1366 dev_kfree_skb(rx->skb);
1367 return RX_QUEUED;
1368 }
1369
1370 return RX_CONTINUE;
1371 } /* ieee80211_rx_h_sta_process */
1372
1373 static inline struct ieee80211_fragment_entry *
1374 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1375 unsigned int frag, unsigned int seq, int rx_queue,
1376 struct sk_buff **skb)
1377 {
1378 struct ieee80211_fragment_entry *entry;
1379 int idx;
1380
1381 idx = sdata->fragment_next;
1382 entry = &sdata->fragments[sdata->fragment_next++];
1383 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1384 sdata->fragment_next = 0;
1385
1386 if (!skb_queue_empty(&entry->skb_list)) {
1387 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1388 struct ieee80211_hdr *hdr =
1389 (struct ieee80211_hdr *) entry->skb_list.next->data;
1390 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1391 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1392 "addr1=%pM addr2=%pM\n",
1393 sdata->name, idx,
1394 jiffies - entry->first_frag_time, entry->seq,
1395 entry->last_frag, hdr->addr1, hdr->addr2);
1396 #endif
1397 __skb_queue_purge(&entry->skb_list);
1398 }
1399
1400 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1401 *skb = NULL;
1402 entry->first_frag_time = jiffies;
1403 entry->seq = seq;
1404 entry->rx_queue = rx_queue;
1405 entry->last_frag = frag;
1406 entry->ccmp = 0;
1407 entry->extra_len = 0;
1408
1409 return entry;
1410 }
1411
1412 static inline struct ieee80211_fragment_entry *
1413 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1414 unsigned int frag, unsigned int seq,
1415 int rx_queue, struct ieee80211_hdr *hdr)
1416 {
1417 struct ieee80211_fragment_entry *entry;
1418 int i, idx;
1419
1420 idx = sdata->fragment_next;
1421 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1422 struct ieee80211_hdr *f_hdr;
1423
1424 idx--;
1425 if (idx < 0)
1426 idx = IEEE80211_FRAGMENT_MAX - 1;
1427
1428 entry = &sdata->fragments[idx];
1429 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1430 entry->rx_queue != rx_queue ||
1431 entry->last_frag + 1 != frag)
1432 continue;
1433
1434 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1435
1436 /*
1437 * Check ftype and addresses are equal, else check next fragment
1438 */
1439 if (((hdr->frame_control ^ f_hdr->frame_control) &
1440 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1441 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1442 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1443 continue;
1444
1445 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1446 __skb_queue_purge(&entry->skb_list);
1447 continue;
1448 }
1449 return entry;
1450 }
1451
1452 return NULL;
1453 }
1454
1455 static ieee80211_rx_result debug_noinline
1456 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1457 {
1458 struct ieee80211_hdr *hdr;
1459 u16 sc;
1460 __le16 fc;
1461 unsigned int frag, seq;
1462 struct ieee80211_fragment_entry *entry;
1463 struct sk_buff *skb;
1464 struct ieee80211_rx_status *status;
1465
1466 hdr = (struct ieee80211_hdr *)rx->skb->data;
1467 fc = hdr->frame_control;
1468 sc = le16_to_cpu(hdr->seq_ctrl);
1469 frag = sc & IEEE80211_SCTL_FRAG;
1470
1471 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1472 (rx->skb)->len < 24 ||
1473 is_multicast_ether_addr(hdr->addr1))) {
1474 /* not fragmented */
1475 goto out;
1476 }
1477 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1478
1479 if (skb_linearize(rx->skb))
1480 return RX_DROP_UNUSABLE;
1481
1482 /*
1483 * skb_linearize() might change the skb->data and
1484 * previously cached variables (in this case, hdr) need to
1485 * be refreshed with the new data.
1486 */
1487 hdr = (struct ieee80211_hdr *)rx->skb->data;
1488 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1489
1490 if (frag == 0) {
1491 /* This is the first fragment of a new frame. */
1492 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1493 rx->seqno_idx, &(rx->skb));
1494 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1495 ieee80211_has_protected(fc)) {
1496 int queue = rx->security_idx;
1497 /* Store CCMP PN so that we can verify that the next
1498 * fragment has a sequential PN value. */
1499 entry->ccmp = 1;
1500 memcpy(entry->last_pn,
1501 rx->key->u.ccmp.rx_pn[queue],
1502 CCMP_PN_LEN);
1503 }
1504 return RX_QUEUED;
1505 }
1506
1507 /* This is a fragment for a frame that should already be pending in
1508 * fragment cache. Add this fragment to the end of the pending entry.
1509 */
1510 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1511 rx->seqno_idx, hdr);
1512 if (!entry) {
1513 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1514 return RX_DROP_MONITOR;
1515 }
1516
1517 /* Verify that MPDUs within one MSDU have sequential PN values.
1518 * (IEEE 802.11i, 8.3.3.4.5) */
1519 if (entry->ccmp) {
1520 int i;
1521 u8 pn[CCMP_PN_LEN], *rpn;
1522 int queue;
1523 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1524 return RX_DROP_UNUSABLE;
1525 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1526 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1527 pn[i]++;
1528 if (pn[i])
1529 break;
1530 }
1531 queue = rx->security_idx;
1532 rpn = rx->key->u.ccmp.rx_pn[queue];
1533 if (memcmp(pn, rpn, CCMP_PN_LEN))
1534 return RX_DROP_UNUSABLE;
1535 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1536 }
1537
1538 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1539 __skb_queue_tail(&entry->skb_list, rx->skb);
1540 entry->last_frag = frag;
1541 entry->extra_len += rx->skb->len;
1542 if (ieee80211_has_morefrags(fc)) {
1543 rx->skb = NULL;
1544 return RX_QUEUED;
1545 }
1546
1547 rx->skb = __skb_dequeue(&entry->skb_list);
1548 if (skb_tailroom(rx->skb) < entry->extra_len) {
1549 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1550 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1551 GFP_ATOMIC))) {
1552 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1553 __skb_queue_purge(&entry->skb_list);
1554 return RX_DROP_UNUSABLE;
1555 }
1556 }
1557 while ((skb = __skb_dequeue(&entry->skb_list))) {
1558 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1559 dev_kfree_skb(skb);
1560 }
1561
1562 /* Complete frame has been reassembled - process it now */
1563 status = IEEE80211_SKB_RXCB(rx->skb);
1564 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1565
1566 out:
1567 if (rx->sta)
1568 rx->sta->rx_packets++;
1569 if (is_multicast_ether_addr(hdr->addr1))
1570 rx->local->dot11MulticastReceivedFrameCount++;
1571 else
1572 ieee80211_led_rx(rx->local);
1573 return RX_CONTINUE;
1574 }
1575
1576 static int
1577 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1578 {
1579 if (unlikely(!rx->sta ||
1580 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1581 return -EACCES;
1582
1583 return 0;
1584 }
1585
1586 static int
1587 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1588 {
1589 struct sk_buff *skb = rx->skb;
1590 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1591
1592 /*
1593 * Pass through unencrypted frames if the hardware has
1594 * decrypted them already.
1595 */
1596 if (status->flag & RX_FLAG_DECRYPTED)
1597 return 0;
1598
1599 /* Drop unencrypted frames if key is set. */
1600 if (unlikely(!ieee80211_has_protected(fc) &&
1601 !ieee80211_is_nullfunc(fc) &&
1602 ieee80211_is_data(fc) &&
1603 (rx->key || rx->sdata->drop_unencrypted)))
1604 return -EACCES;
1605
1606 return 0;
1607 }
1608
1609 static int
1610 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1611 {
1612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1613 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1614 __le16 fc = hdr->frame_control;
1615
1616 /*
1617 * Pass through unencrypted frames if the hardware has
1618 * decrypted them already.
1619 */
1620 if (status->flag & RX_FLAG_DECRYPTED)
1621 return 0;
1622
1623 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1624 if (unlikely(!ieee80211_has_protected(fc) &&
1625 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1626 rx->key)) {
1627 if (ieee80211_is_deauth(fc))
1628 cfg80211_send_unprot_deauth(rx->sdata->dev,
1629 rx->skb->data,
1630 rx->skb->len);
1631 else if (ieee80211_is_disassoc(fc))
1632 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1633 rx->skb->data,
1634 rx->skb->len);
1635 return -EACCES;
1636 }
1637 /* BIP does not use Protected field, so need to check MMIE */
1638 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1639 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1640 if (ieee80211_is_deauth(fc))
1641 cfg80211_send_unprot_deauth(rx->sdata->dev,
1642 rx->skb->data,
1643 rx->skb->len);
1644 else if (ieee80211_is_disassoc(fc))
1645 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1646 rx->skb->data,
1647 rx->skb->len);
1648 return -EACCES;
1649 }
1650 /*
1651 * When using MFP, Action frames are not allowed prior to
1652 * having configured keys.
1653 */
1654 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1655 ieee80211_is_robust_mgmt_frame(
1656 (struct ieee80211_hdr *) rx->skb->data)))
1657 return -EACCES;
1658 }
1659
1660 return 0;
1661 }
1662
1663 static int
1664 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1665 {
1666 struct ieee80211_sub_if_data *sdata = rx->sdata;
1667 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1668 bool check_port_control = false;
1669 struct ethhdr *ehdr;
1670 int ret;
1671
1672 *port_control = false;
1673 if (ieee80211_has_a4(hdr->frame_control) &&
1674 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1675 return -1;
1676
1677 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1678 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1679
1680 if (!sdata->u.mgd.use_4addr)
1681 return -1;
1682 else
1683 check_port_control = true;
1684 }
1685
1686 if (is_multicast_ether_addr(hdr->addr1) &&
1687 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1688 return -1;
1689
1690 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1691 if (ret < 0)
1692 return ret;
1693
1694 ehdr = (struct ethhdr *) rx->skb->data;
1695 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1696 *port_control = true;
1697 else if (check_port_control)
1698 return -1;
1699
1700 return 0;
1701 }
1702
1703 /*
1704 * requires that rx->skb is a frame with ethernet header
1705 */
1706 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1707 {
1708 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1709 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1710 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1711
1712 /*
1713 * Allow EAPOL frames to us/the PAE group address regardless
1714 * of whether the frame was encrypted or not.
1715 */
1716 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1717 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1718 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1719 return true;
1720
1721 if (ieee80211_802_1x_port_control(rx) ||
1722 ieee80211_drop_unencrypted(rx, fc))
1723 return false;
1724
1725 return true;
1726 }
1727
1728 /*
1729 * requires that rx->skb is a frame with ethernet header
1730 */
1731 static void
1732 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1733 {
1734 struct ieee80211_sub_if_data *sdata = rx->sdata;
1735 struct net_device *dev = sdata->dev;
1736 struct sk_buff *skb, *xmit_skb;
1737 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1738 struct sta_info *dsta;
1739 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1740
1741 skb = rx->skb;
1742 xmit_skb = NULL;
1743
1744 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1745 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1746 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1747 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1748 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1749 if (is_multicast_ether_addr(ehdr->h_dest)) {
1750 /*
1751 * send multicast frames both to higher layers in
1752 * local net stack and back to the wireless medium
1753 */
1754 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1755 if (!xmit_skb)
1756 net_dbg_ratelimited("%s: failed to clone multicast frame\n",
1757 dev->name);
1758 } else {
1759 dsta = sta_info_get(sdata, skb->data);
1760 if (dsta) {
1761 /*
1762 * The destination station is associated to
1763 * this AP (in this VLAN), so send the frame
1764 * directly to it and do not pass it to local
1765 * net stack.
1766 */
1767 xmit_skb = skb;
1768 skb = NULL;
1769 }
1770 }
1771 }
1772
1773 if (skb) {
1774 int align __maybe_unused;
1775
1776 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1777 /*
1778 * 'align' will only take the values 0 or 2 here
1779 * since all frames are required to be aligned
1780 * to 2-byte boundaries when being passed to
1781 * mac80211. That also explains the __skb_push()
1782 * below.
1783 */
1784 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1785 if (align) {
1786 if (WARN_ON(skb_headroom(skb) < 3)) {
1787 dev_kfree_skb(skb);
1788 skb = NULL;
1789 } else {
1790 u8 *data = skb->data;
1791 size_t len = skb_headlen(skb);
1792 skb->data -= align;
1793 memmove(skb->data, data, len);
1794 skb_set_tail_pointer(skb, len);
1795 }
1796 }
1797 #endif
1798
1799 if (skb) {
1800 /* deliver to local stack */
1801 skb->protocol = eth_type_trans(skb, dev);
1802 memset(skb->cb, 0, sizeof(skb->cb));
1803 netif_receive_skb(skb);
1804 }
1805 }
1806
1807 if (xmit_skb) {
1808 /*
1809 * Send to wireless media and increase priority by 256 to
1810 * keep the received priority instead of reclassifying
1811 * the frame (see cfg80211_classify8021d).
1812 */
1813 xmit_skb->priority += 256;
1814 xmit_skb->protocol = htons(ETH_P_802_3);
1815 skb_reset_network_header(xmit_skb);
1816 skb_reset_mac_header(xmit_skb);
1817 dev_queue_xmit(xmit_skb);
1818 }
1819 }
1820
1821 static ieee80211_rx_result debug_noinline
1822 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1823 {
1824 struct net_device *dev = rx->sdata->dev;
1825 struct sk_buff *skb = rx->skb;
1826 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1827 __le16 fc = hdr->frame_control;
1828 struct sk_buff_head frame_list;
1829 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1830
1831 if (unlikely(!ieee80211_is_data(fc)))
1832 return RX_CONTINUE;
1833
1834 if (unlikely(!ieee80211_is_data_present(fc)))
1835 return RX_DROP_MONITOR;
1836
1837 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1838 return RX_CONTINUE;
1839
1840 if (ieee80211_has_a4(hdr->frame_control) &&
1841 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1842 !rx->sdata->u.vlan.sta)
1843 return RX_DROP_UNUSABLE;
1844
1845 if (is_multicast_ether_addr(hdr->addr1) &&
1846 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1847 rx->sdata->u.vlan.sta) ||
1848 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1849 rx->sdata->u.mgd.use_4addr)))
1850 return RX_DROP_UNUSABLE;
1851
1852 skb->dev = dev;
1853 __skb_queue_head_init(&frame_list);
1854
1855 if (skb_linearize(skb))
1856 return RX_DROP_UNUSABLE;
1857
1858 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1859 rx->sdata->vif.type,
1860 rx->local->hw.extra_tx_headroom, true);
1861
1862 while (!skb_queue_empty(&frame_list)) {
1863 rx->skb = __skb_dequeue(&frame_list);
1864
1865 if (!ieee80211_frame_allowed(rx, fc)) {
1866 dev_kfree_skb(rx->skb);
1867 continue;
1868 }
1869 dev->stats.rx_packets++;
1870 dev->stats.rx_bytes += rx->skb->len;
1871
1872 ieee80211_deliver_skb(rx);
1873 }
1874
1875 return RX_QUEUED;
1876 }
1877
1878 #ifdef CONFIG_MAC80211_MESH
1879 static ieee80211_rx_result
1880 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1881 {
1882 struct ieee80211_hdr *fwd_hdr, *hdr;
1883 struct ieee80211_tx_info *info;
1884 struct ieee80211s_hdr *mesh_hdr;
1885 struct sk_buff *skb = rx->skb, *fwd_skb;
1886 struct ieee80211_local *local = rx->local;
1887 struct ieee80211_sub_if_data *sdata = rx->sdata;
1888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1889 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
1890 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
1891 u16 q, hdrlen;
1892
1893 hdr = (struct ieee80211_hdr *) skb->data;
1894 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1895 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1896
1897 /* frame is in RMC, don't forward */
1898 if (ieee80211_is_data(hdr->frame_control) &&
1899 is_multicast_ether_addr(hdr->addr1) &&
1900 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1901 return RX_DROP_MONITOR;
1902
1903 if (!ieee80211_is_data(hdr->frame_control))
1904 return RX_CONTINUE;
1905
1906 if (!mesh_hdr->ttl)
1907 return RX_DROP_MONITOR;
1908
1909 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1910 struct mesh_path *mppath;
1911 char *proxied_addr;
1912 char *mpp_addr;
1913
1914 if (is_multicast_ether_addr(hdr->addr1)) {
1915 mpp_addr = hdr->addr3;
1916 proxied_addr = mesh_hdr->eaddr1;
1917 } else {
1918 mpp_addr = hdr->addr4;
1919 proxied_addr = mesh_hdr->eaddr2;
1920 }
1921
1922 rcu_read_lock();
1923 mppath = mpp_path_lookup(proxied_addr, sdata);
1924 if (!mppath) {
1925 mpp_path_add(proxied_addr, mpp_addr, sdata);
1926 } else {
1927 spin_lock_bh(&mppath->state_lock);
1928 if (!ether_addr_equal(mppath->mpp, mpp_addr))
1929 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1930 spin_unlock_bh(&mppath->state_lock);
1931 }
1932 rcu_read_unlock();
1933 }
1934
1935 /* Frame has reached destination. Don't forward */
1936 if (!is_multicast_ether_addr(hdr->addr1) &&
1937 ether_addr_equal(sdata->vif.addr, hdr->addr3))
1938 return RX_CONTINUE;
1939
1940 q = ieee80211_select_queue_80211(local, skb, hdr);
1941 if (ieee80211_queue_stopped(&local->hw, q)) {
1942 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
1943 return RX_DROP_MONITOR;
1944 }
1945 skb_set_queue_mapping(skb, q);
1946
1947 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1948 goto out;
1949
1950 if (!--mesh_hdr->ttl) {
1951 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
1952 return RX_DROP_MONITOR;
1953 }
1954
1955 if (!ifmsh->mshcfg.dot11MeshForwarding)
1956 goto out;
1957
1958 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1959 if (!fwd_skb) {
1960 net_dbg_ratelimited("%s: failed to clone mesh frame\n",
1961 sdata->name);
1962 goto out;
1963 }
1964
1965 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1966 info = IEEE80211_SKB_CB(fwd_skb);
1967 memset(info, 0, sizeof(*info));
1968 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1969 info->control.vif = &rx->sdata->vif;
1970 info->control.jiffies = jiffies;
1971 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1972 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
1973 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1974 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) {
1975 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
1976 } else {
1977 /* unable to resolve next hop */
1978 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3,
1979 0, reason, fwd_hdr->addr2, sdata);
1980 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
1981 kfree_skb(fwd_skb);
1982 return RX_DROP_MONITOR;
1983 }
1984
1985 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
1986 ieee80211_add_pending_skb(local, fwd_skb);
1987 out:
1988 if (is_multicast_ether_addr(hdr->addr1) ||
1989 sdata->dev->flags & IFF_PROMISC)
1990 return RX_CONTINUE;
1991 else
1992 return RX_DROP_MONITOR;
1993 }
1994 #endif
1995
1996 static ieee80211_rx_result debug_noinline
1997 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1998 {
1999 struct ieee80211_sub_if_data *sdata = rx->sdata;
2000 struct ieee80211_local *local = rx->local;
2001 struct net_device *dev = sdata->dev;
2002 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2003 __le16 fc = hdr->frame_control;
2004 bool port_control;
2005 int err;
2006
2007 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2008 return RX_CONTINUE;
2009
2010 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2011 return RX_DROP_MONITOR;
2012
2013 /*
2014 * Send unexpected-4addr-frame event to hostapd. For older versions,
2015 * also drop the frame to cooked monitor interfaces.
2016 */
2017 if (ieee80211_has_a4(hdr->frame_control) &&
2018 sdata->vif.type == NL80211_IFTYPE_AP) {
2019 if (rx->sta &&
2020 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2021 cfg80211_rx_unexpected_4addr_frame(
2022 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2023 return RX_DROP_MONITOR;
2024 }
2025
2026 err = __ieee80211_data_to_8023(rx, &port_control);
2027 if (unlikely(err))
2028 return RX_DROP_UNUSABLE;
2029
2030 if (!ieee80211_frame_allowed(rx, fc))
2031 return RX_DROP_MONITOR;
2032
2033 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2034 unlikely(port_control) && sdata->bss) {
2035 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2036 u.ap);
2037 dev = sdata->dev;
2038 rx->sdata = sdata;
2039 }
2040
2041 rx->skb->dev = dev;
2042
2043 dev->stats.rx_packets++;
2044 dev->stats.rx_bytes += rx->skb->len;
2045
2046 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2047 !is_multicast_ether_addr(
2048 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2049 (!local->scanning &&
2050 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2051 mod_timer(&local->dynamic_ps_timer, jiffies +
2052 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2053 }
2054
2055 ieee80211_deliver_skb(rx);
2056
2057 return RX_QUEUED;
2058 }
2059
2060 static ieee80211_rx_result debug_noinline
2061 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2062 {
2063 struct ieee80211_local *local = rx->local;
2064 struct ieee80211_hw *hw = &local->hw;
2065 struct sk_buff *skb = rx->skb;
2066 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2067 struct tid_ampdu_rx *tid_agg_rx;
2068 u16 start_seq_num;
2069 u16 tid;
2070
2071 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2072 return RX_CONTINUE;
2073
2074 if (ieee80211_is_back_req(bar->frame_control)) {
2075 struct {
2076 __le16 control, start_seq_num;
2077 } __packed bar_data;
2078
2079 if (!rx->sta)
2080 return RX_DROP_MONITOR;
2081
2082 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2083 &bar_data, sizeof(bar_data)))
2084 return RX_DROP_MONITOR;
2085
2086 tid = le16_to_cpu(bar_data.control) >> 12;
2087
2088 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2089 if (!tid_agg_rx)
2090 return RX_DROP_MONITOR;
2091
2092 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2093
2094 /* reset session timer */
2095 if (tid_agg_rx->timeout)
2096 mod_timer(&tid_agg_rx->session_timer,
2097 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2098
2099 spin_lock(&tid_agg_rx->reorder_lock);
2100 /* release stored frames up to start of BAR */
2101 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2102 spin_unlock(&tid_agg_rx->reorder_lock);
2103
2104 kfree_skb(skb);
2105 return RX_QUEUED;
2106 }
2107
2108 /*
2109 * After this point, we only want management frames,
2110 * so we can drop all remaining control frames to
2111 * cooked monitor interfaces.
2112 */
2113 return RX_DROP_MONITOR;
2114 }
2115
2116 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2117 struct ieee80211_mgmt *mgmt,
2118 size_t len)
2119 {
2120 struct ieee80211_local *local = sdata->local;
2121 struct sk_buff *skb;
2122 struct ieee80211_mgmt *resp;
2123
2124 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2125 /* Not to own unicast address */
2126 return;
2127 }
2128
2129 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2130 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2131 /* Not from the current AP or not associated yet. */
2132 return;
2133 }
2134
2135 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2136 /* Too short SA Query request frame */
2137 return;
2138 }
2139
2140 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2141 if (skb == NULL)
2142 return;
2143
2144 skb_reserve(skb, local->hw.extra_tx_headroom);
2145 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2146 memset(resp, 0, 24);
2147 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2148 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2149 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2150 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2151 IEEE80211_STYPE_ACTION);
2152 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2153 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2154 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2155 memcpy(resp->u.action.u.sa_query.trans_id,
2156 mgmt->u.action.u.sa_query.trans_id,
2157 WLAN_SA_QUERY_TR_ID_LEN);
2158
2159 ieee80211_tx_skb(sdata, skb);
2160 }
2161
2162 static ieee80211_rx_result debug_noinline
2163 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2164 {
2165 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2166 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2167
2168 /*
2169 * From here on, look only at management frames.
2170 * Data and control frames are already handled,
2171 * and unknown (reserved) frames are useless.
2172 */
2173 if (rx->skb->len < 24)
2174 return RX_DROP_MONITOR;
2175
2176 if (!ieee80211_is_mgmt(mgmt->frame_control))
2177 return RX_DROP_MONITOR;
2178
2179 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2180 ieee80211_is_beacon(mgmt->frame_control) &&
2181 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2182 int sig = 0;
2183
2184 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2185 sig = status->signal;
2186
2187 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2188 rx->skb->data, rx->skb->len,
2189 status->freq, sig, GFP_ATOMIC);
2190 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2191 }
2192
2193 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2194 return RX_DROP_MONITOR;
2195
2196 if (ieee80211_drop_unencrypted_mgmt(rx))
2197 return RX_DROP_UNUSABLE;
2198
2199 return RX_CONTINUE;
2200 }
2201
2202 static ieee80211_rx_result debug_noinline
2203 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2204 {
2205 struct ieee80211_local *local = rx->local;
2206 struct ieee80211_sub_if_data *sdata = rx->sdata;
2207 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2208 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2209 int len = rx->skb->len;
2210
2211 if (!ieee80211_is_action(mgmt->frame_control))
2212 return RX_CONTINUE;
2213
2214 /* drop too small frames */
2215 if (len < IEEE80211_MIN_ACTION_SIZE)
2216 return RX_DROP_UNUSABLE;
2217
2218 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2219 return RX_DROP_UNUSABLE;
2220
2221 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2222 return RX_DROP_UNUSABLE;
2223
2224 switch (mgmt->u.action.category) {
2225 case WLAN_CATEGORY_HT:
2226 /* reject HT action frames from stations not supporting HT */
2227 if (!rx->sta->sta.ht_cap.ht_supported)
2228 goto invalid;
2229
2230 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2231 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2232 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2233 sdata->vif.type != NL80211_IFTYPE_AP &&
2234 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2235 break;
2236
2237 /* verify action & smps_control are present */
2238 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2239 goto invalid;
2240
2241 switch (mgmt->u.action.u.ht_smps.action) {
2242 case WLAN_HT_ACTION_SMPS: {
2243 struct ieee80211_supported_band *sband;
2244 u8 smps;
2245
2246 /* convert to HT capability */
2247 switch (mgmt->u.action.u.ht_smps.smps_control) {
2248 case WLAN_HT_SMPS_CONTROL_DISABLED:
2249 smps = WLAN_HT_CAP_SM_PS_DISABLED;
2250 break;
2251 case WLAN_HT_SMPS_CONTROL_STATIC:
2252 smps = WLAN_HT_CAP_SM_PS_STATIC;
2253 break;
2254 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2255 smps = WLAN_HT_CAP_SM_PS_DYNAMIC;
2256 break;
2257 default:
2258 goto invalid;
2259 }
2260 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
2261
2262 /* if no change do nothing */
2263 if ((rx->sta->sta.ht_cap.cap &
2264 IEEE80211_HT_CAP_SM_PS) == smps)
2265 goto handled;
2266
2267 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS;
2268 rx->sta->sta.ht_cap.cap |= smps;
2269
2270 sband = rx->local->hw.wiphy->bands[status->band];
2271
2272 rate_control_rate_update(local, sband, rx->sta,
2273 IEEE80211_RC_SMPS_CHANGED);
2274 goto handled;
2275 }
2276 default:
2277 goto invalid;
2278 }
2279
2280 break;
2281 case WLAN_CATEGORY_BACK:
2282 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2283 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2284 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2285 sdata->vif.type != NL80211_IFTYPE_AP &&
2286 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2287 break;
2288
2289 /* verify action_code is present */
2290 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2291 break;
2292
2293 switch (mgmt->u.action.u.addba_req.action_code) {
2294 case WLAN_ACTION_ADDBA_REQ:
2295 if (len < (IEEE80211_MIN_ACTION_SIZE +
2296 sizeof(mgmt->u.action.u.addba_req)))
2297 goto invalid;
2298 break;
2299 case WLAN_ACTION_ADDBA_RESP:
2300 if (len < (IEEE80211_MIN_ACTION_SIZE +
2301 sizeof(mgmt->u.action.u.addba_resp)))
2302 goto invalid;
2303 break;
2304 case WLAN_ACTION_DELBA:
2305 if (len < (IEEE80211_MIN_ACTION_SIZE +
2306 sizeof(mgmt->u.action.u.delba)))
2307 goto invalid;
2308 break;
2309 default:
2310 goto invalid;
2311 }
2312
2313 goto queue;
2314 case WLAN_CATEGORY_SPECTRUM_MGMT:
2315 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2316 break;
2317
2318 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2319 break;
2320
2321 /* verify action_code is present */
2322 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2323 break;
2324
2325 switch (mgmt->u.action.u.measurement.action_code) {
2326 case WLAN_ACTION_SPCT_MSR_REQ:
2327 if (len < (IEEE80211_MIN_ACTION_SIZE +
2328 sizeof(mgmt->u.action.u.measurement)))
2329 break;
2330 ieee80211_process_measurement_req(sdata, mgmt, len);
2331 goto handled;
2332 case WLAN_ACTION_SPCT_CHL_SWITCH:
2333 if (len < (IEEE80211_MIN_ACTION_SIZE +
2334 sizeof(mgmt->u.action.u.chan_switch)))
2335 break;
2336
2337 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2338 break;
2339
2340 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2341 break;
2342
2343 goto queue;
2344 }
2345 break;
2346 case WLAN_CATEGORY_SA_QUERY:
2347 if (len < (IEEE80211_MIN_ACTION_SIZE +
2348 sizeof(mgmt->u.action.u.sa_query)))
2349 break;
2350
2351 switch (mgmt->u.action.u.sa_query.action) {
2352 case WLAN_ACTION_SA_QUERY_REQUEST:
2353 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2354 break;
2355 ieee80211_process_sa_query_req(sdata, mgmt, len);
2356 goto handled;
2357 }
2358 break;
2359 case WLAN_CATEGORY_SELF_PROTECTED:
2360 switch (mgmt->u.action.u.self_prot.action_code) {
2361 case WLAN_SP_MESH_PEERING_OPEN:
2362 case WLAN_SP_MESH_PEERING_CLOSE:
2363 case WLAN_SP_MESH_PEERING_CONFIRM:
2364 if (!ieee80211_vif_is_mesh(&sdata->vif))
2365 goto invalid;
2366 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2367 /* userspace handles this frame */
2368 break;
2369 goto queue;
2370 case WLAN_SP_MGK_INFORM:
2371 case WLAN_SP_MGK_ACK:
2372 if (!ieee80211_vif_is_mesh(&sdata->vif))
2373 goto invalid;
2374 break;
2375 }
2376 break;
2377 case WLAN_CATEGORY_MESH_ACTION:
2378 if (!ieee80211_vif_is_mesh(&sdata->vif))
2379 break;
2380 if (mesh_action_is_path_sel(mgmt) &&
2381 (!mesh_path_sel_is_hwmp(sdata)))
2382 break;
2383 goto queue;
2384 }
2385
2386 return RX_CONTINUE;
2387
2388 invalid:
2389 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2390 /* will return in the next handlers */
2391 return RX_CONTINUE;
2392
2393 handled:
2394 if (rx->sta)
2395 rx->sta->rx_packets++;
2396 dev_kfree_skb(rx->skb);
2397 return RX_QUEUED;
2398
2399 queue:
2400 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2401 skb_queue_tail(&sdata->skb_queue, rx->skb);
2402 ieee80211_queue_work(&local->hw, &sdata->work);
2403 if (rx->sta)
2404 rx->sta->rx_packets++;
2405 return RX_QUEUED;
2406 }
2407
2408 static ieee80211_rx_result debug_noinline
2409 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2410 {
2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2412 int sig = 0;
2413
2414 /* skip known-bad action frames and return them in the next handler */
2415 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2416 return RX_CONTINUE;
2417
2418 /*
2419 * Getting here means the kernel doesn't know how to handle
2420 * it, but maybe userspace does ... include returned frames
2421 * so userspace can register for those to know whether ones
2422 * it transmitted were processed or returned.
2423 */
2424
2425 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2426 sig = status->signal;
2427
2428 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, sig,
2429 rx->skb->data, rx->skb->len,
2430 GFP_ATOMIC)) {
2431 if (rx->sta)
2432 rx->sta->rx_packets++;
2433 dev_kfree_skb(rx->skb);
2434 return RX_QUEUED;
2435 }
2436
2437
2438 return RX_CONTINUE;
2439 }
2440
2441 static ieee80211_rx_result debug_noinline
2442 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2443 {
2444 struct ieee80211_local *local = rx->local;
2445 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2446 struct sk_buff *nskb;
2447 struct ieee80211_sub_if_data *sdata = rx->sdata;
2448 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2449
2450 if (!ieee80211_is_action(mgmt->frame_control))
2451 return RX_CONTINUE;
2452
2453 /*
2454 * For AP mode, hostapd is responsible for handling any action
2455 * frames that we didn't handle, including returning unknown
2456 * ones. For all other modes we will return them to the sender,
2457 * setting the 0x80 bit in the action category, as required by
2458 * 802.11-2007 7.3.1.11.
2459 * Newer versions of hostapd shall also use the management frame
2460 * registration mechanisms, but older ones still use cooked
2461 * monitor interfaces so push all frames there.
2462 */
2463 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2464 (sdata->vif.type == NL80211_IFTYPE_AP ||
2465 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2466 return RX_DROP_MONITOR;
2467
2468 /* do not return rejected action frames */
2469 if (mgmt->u.action.category & 0x80)
2470 return RX_DROP_UNUSABLE;
2471
2472 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2473 GFP_ATOMIC);
2474 if (nskb) {
2475 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2476
2477 nmgmt->u.action.category |= 0x80;
2478 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2479 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2480
2481 memset(nskb->cb, 0, sizeof(nskb->cb));
2482
2483 ieee80211_tx_skb(rx->sdata, nskb);
2484 }
2485 dev_kfree_skb(rx->skb);
2486 return RX_QUEUED;
2487 }
2488
2489 static ieee80211_rx_result debug_noinline
2490 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2491 {
2492 struct ieee80211_sub_if_data *sdata = rx->sdata;
2493 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2494 __le16 stype;
2495
2496 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2497
2498 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2499 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2500 sdata->vif.type != NL80211_IFTYPE_STATION)
2501 return RX_DROP_MONITOR;
2502
2503 switch (stype) {
2504 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2505 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2506 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2507 /* process for all: mesh, mlme, ibss */
2508 break;
2509 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2510 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2511 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2512 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2513 if (is_multicast_ether_addr(mgmt->da) &&
2514 !is_broadcast_ether_addr(mgmt->da))
2515 return RX_DROP_MONITOR;
2516
2517 /* process only for station */
2518 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2519 return RX_DROP_MONITOR;
2520 break;
2521 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2522 /* process only for ibss */
2523 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2524 return RX_DROP_MONITOR;
2525 break;
2526 default:
2527 return RX_DROP_MONITOR;
2528 }
2529
2530 /* queue up frame and kick off work to process it */
2531 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2532 skb_queue_tail(&sdata->skb_queue, rx->skb);
2533 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2534 if (rx->sta)
2535 rx->sta->rx_packets++;
2536
2537 return RX_QUEUED;
2538 }
2539
2540 /* TODO: use IEEE80211_RX_FRAGMENTED */
2541 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2542 struct ieee80211_rate *rate)
2543 {
2544 struct ieee80211_sub_if_data *sdata;
2545 struct ieee80211_local *local = rx->local;
2546 struct sk_buff *skb = rx->skb, *skb2;
2547 struct net_device *prev_dev = NULL;
2548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2549 int needed_headroom;
2550
2551 /*
2552 * If cooked monitor has been processed already, then
2553 * don't do it again. If not, set the flag.
2554 */
2555 if (rx->flags & IEEE80211_RX_CMNTR)
2556 goto out_free_skb;
2557 rx->flags |= IEEE80211_RX_CMNTR;
2558
2559 /* If there are no cooked monitor interfaces, just free the SKB */
2560 if (!local->cooked_mntrs)
2561 goto out_free_skb;
2562
2563 /* room for the radiotap header based on driver features */
2564 needed_headroom = ieee80211_rx_radiotap_len(local, status);
2565
2566 if (skb_headroom(skb) < needed_headroom &&
2567 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2568 goto out_free_skb;
2569
2570 /* prepend radiotap information */
2571 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2572 false);
2573
2574 skb_set_mac_header(skb, 0);
2575 skb->ip_summed = CHECKSUM_UNNECESSARY;
2576 skb->pkt_type = PACKET_OTHERHOST;
2577 skb->protocol = htons(ETH_P_802_2);
2578
2579 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2580 if (!ieee80211_sdata_running(sdata))
2581 continue;
2582
2583 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2584 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2585 continue;
2586
2587 if (prev_dev) {
2588 skb2 = skb_clone(skb, GFP_ATOMIC);
2589 if (skb2) {
2590 skb2->dev = prev_dev;
2591 netif_receive_skb(skb2);
2592 }
2593 }
2594
2595 prev_dev = sdata->dev;
2596 sdata->dev->stats.rx_packets++;
2597 sdata->dev->stats.rx_bytes += skb->len;
2598 }
2599
2600 if (prev_dev) {
2601 skb->dev = prev_dev;
2602 netif_receive_skb(skb);
2603 return;
2604 }
2605
2606 out_free_skb:
2607 dev_kfree_skb(skb);
2608 }
2609
2610 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2611 ieee80211_rx_result res)
2612 {
2613 switch (res) {
2614 case RX_DROP_MONITOR:
2615 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2616 if (rx->sta)
2617 rx->sta->rx_dropped++;
2618 /* fall through */
2619 case RX_CONTINUE: {
2620 struct ieee80211_rate *rate = NULL;
2621 struct ieee80211_supported_band *sband;
2622 struct ieee80211_rx_status *status;
2623
2624 status = IEEE80211_SKB_RXCB((rx->skb));
2625
2626 sband = rx->local->hw.wiphy->bands[status->band];
2627 if (!(status->flag & RX_FLAG_HT))
2628 rate = &sband->bitrates[status->rate_idx];
2629
2630 ieee80211_rx_cooked_monitor(rx, rate);
2631 break;
2632 }
2633 case RX_DROP_UNUSABLE:
2634 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2635 if (rx->sta)
2636 rx->sta->rx_dropped++;
2637 dev_kfree_skb(rx->skb);
2638 break;
2639 case RX_QUEUED:
2640 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2641 break;
2642 }
2643 }
2644
2645 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2646 {
2647 ieee80211_rx_result res = RX_DROP_MONITOR;
2648 struct sk_buff *skb;
2649
2650 #define CALL_RXH(rxh) \
2651 do { \
2652 res = rxh(rx); \
2653 if (res != RX_CONTINUE) \
2654 goto rxh_next; \
2655 } while (0);
2656
2657 spin_lock(&rx->local->rx_skb_queue.lock);
2658 if (rx->local->running_rx_handler)
2659 goto unlock;
2660
2661 rx->local->running_rx_handler = true;
2662
2663 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2664 spin_unlock(&rx->local->rx_skb_queue.lock);
2665
2666 /*
2667 * all the other fields are valid across frames
2668 * that belong to an aMPDU since they are on the
2669 * same TID from the same station
2670 */
2671 rx->skb = skb;
2672
2673 CALL_RXH(ieee80211_rx_h_decrypt)
2674 CALL_RXH(ieee80211_rx_h_check_more_data)
2675 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2676 CALL_RXH(ieee80211_rx_h_sta_process)
2677 CALL_RXH(ieee80211_rx_h_defragment)
2678 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2679 /* must be after MMIC verify so header is counted in MPDU mic */
2680 #ifdef CONFIG_MAC80211_MESH
2681 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2682 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2683 #endif
2684 CALL_RXH(ieee80211_rx_h_amsdu)
2685 CALL_RXH(ieee80211_rx_h_data)
2686 CALL_RXH(ieee80211_rx_h_ctrl);
2687 CALL_RXH(ieee80211_rx_h_mgmt_check)
2688 CALL_RXH(ieee80211_rx_h_action)
2689 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2690 CALL_RXH(ieee80211_rx_h_action_return)
2691 CALL_RXH(ieee80211_rx_h_mgmt)
2692
2693 rxh_next:
2694 ieee80211_rx_handlers_result(rx, res);
2695 spin_lock(&rx->local->rx_skb_queue.lock);
2696 #undef CALL_RXH
2697 }
2698
2699 rx->local->running_rx_handler = false;
2700
2701 unlock:
2702 spin_unlock(&rx->local->rx_skb_queue.lock);
2703 }
2704
2705 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2706 {
2707 ieee80211_rx_result res = RX_DROP_MONITOR;
2708
2709 #define CALL_RXH(rxh) \
2710 do { \
2711 res = rxh(rx); \
2712 if (res != RX_CONTINUE) \
2713 goto rxh_next; \
2714 } while (0);
2715
2716 CALL_RXH(ieee80211_rx_h_passive_scan)
2717 CALL_RXH(ieee80211_rx_h_check)
2718
2719 ieee80211_rx_reorder_ampdu(rx);
2720
2721 ieee80211_rx_handlers(rx);
2722 return;
2723
2724 rxh_next:
2725 ieee80211_rx_handlers_result(rx, res);
2726
2727 #undef CALL_RXH
2728 }
2729
2730 /*
2731 * This function makes calls into the RX path, therefore
2732 * it has to be invoked under RCU read lock.
2733 */
2734 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2735 {
2736 struct ieee80211_rx_data rx = {
2737 .sta = sta,
2738 .sdata = sta->sdata,
2739 .local = sta->local,
2740 /* This is OK -- must be QoS data frame */
2741 .security_idx = tid,
2742 .seqno_idx = tid,
2743 .flags = 0,
2744 };
2745 struct tid_ampdu_rx *tid_agg_rx;
2746
2747 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2748 if (!tid_agg_rx)
2749 return;
2750
2751 spin_lock(&tid_agg_rx->reorder_lock);
2752 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2753 spin_unlock(&tid_agg_rx->reorder_lock);
2754
2755 ieee80211_rx_handlers(&rx);
2756 }
2757
2758 /* main receive path */
2759
2760 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2761 struct ieee80211_hdr *hdr)
2762 {
2763 struct ieee80211_sub_if_data *sdata = rx->sdata;
2764 struct sk_buff *skb = rx->skb;
2765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2766 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2767 int multicast = is_multicast_ether_addr(hdr->addr1);
2768
2769 switch (sdata->vif.type) {
2770 case NL80211_IFTYPE_STATION:
2771 if (!bssid && !sdata->u.mgd.use_4addr)
2772 return 0;
2773 if (!multicast &&
2774 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2775 if (!(sdata->dev->flags & IFF_PROMISC) ||
2776 sdata->u.mgd.use_4addr)
2777 return 0;
2778 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2779 }
2780 break;
2781 case NL80211_IFTYPE_ADHOC:
2782 if (!bssid)
2783 return 0;
2784 if (ieee80211_is_beacon(hdr->frame_control)) {
2785 return 1;
2786 }
2787 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2788 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2789 return 0;
2790 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2791 } else if (!multicast &&
2792 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2793 if (!(sdata->dev->flags & IFF_PROMISC))
2794 return 0;
2795 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2796 } else if (!rx->sta) {
2797 int rate_idx;
2798 if (status->flag & RX_FLAG_HT)
2799 rate_idx = 0; /* TODO: HT rates */
2800 else
2801 rate_idx = status->rate_idx;
2802 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2803 BIT(rate_idx));
2804 }
2805 break;
2806 case NL80211_IFTYPE_MESH_POINT:
2807 if (!multicast &&
2808 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2809 if (!(sdata->dev->flags & IFF_PROMISC))
2810 return 0;
2811
2812 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2813 }
2814 break;
2815 case NL80211_IFTYPE_AP_VLAN:
2816 case NL80211_IFTYPE_AP:
2817 if (!bssid) {
2818 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
2819 return 0;
2820 } else if (!ieee80211_bssid_match(bssid,
2821 sdata->vif.addr)) {
2822 /*
2823 * Accept public action frames even when the
2824 * BSSID doesn't match, this is used for P2P
2825 * and location updates. Note that mac80211
2826 * itself never looks at these frames.
2827 */
2828 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2829 ieee80211_is_public_action(hdr, skb->len))
2830 return 1;
2831 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2832 !ieee80211_is_beacon(hdr->frame_control))
2833 return 0;
2834 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2835 }
2836 break;
2837 case NL80211_IFTYPE_WDS:
2838 if (bssid || !ieee80211_is_data(hdr->frame_control))
2839 return 0;
2840 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
2841 return 0;
2842 break;
2843 default:
2844 /* should never get here */
2845 WARN_ON(1);
2846 break;
2847 }
2848
2849 return 1;
2850 }
2851
2852 /*
2853 * This function returns whether or not the SKB
2854 * was destined for RX processing or not, which,
2855 * if consume is true, is equivalent to whether
2856 * or not the skb was consumed.
2857 */
2858 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2859 struct sk_buff *skb, bool consume)
2860 {
2861 struct ieee80211_local *local = rx->local;
2862 struct ieee80211_sub_if_data *sdata = rx->sdata;
2863 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2864 struct ieee80211_hdr *hdr = (void *)skb->data;
2865 int prepares;
2866
2867 rx->skb = skb;
2868 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2869 prepares = prepare_for_handlers(rx, hdr);
2870
2871 if (!prepares)
2872 return false;
2873
2874 if (!consume) {
2875 skb = skb_copy(skb, GFP_ATOMIC);
2876 if (!skb) {
2877 if (net_ratelimit())
2878 wiphy_debug(local->hw.wiphy,
2879 "failed to copy skb for %s\n",
2880 sdata->name);
2881 return true;
2882 }
2883
2884 rx->skb = skb;
2885 }
2886
2887 ieee80211_invoke_rx_handlers(rx);
2888 return true;
2889 }
2890
2891 /*
2892 * This is the actual Rx frames handler. as it blongs to Rx path it must
2893 * be called with rcu_read_lock protection.
2894 */
2895 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2896 struct sk_buff *skb)
2897 {
2898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2899 struct ieee80211_local *local = hw_to_local(hw);
2900 struct ieee80211_sub_if_data *sdata;
2901 struct ieee80211_hdr *hdr;
2902 __le16 fc;
2903 struct ieee80211_rx_data rx;
2904 struct ieee80211_sub_if_data *prev;
2905 struct sta_info *sta, *tmp, *prev_sta;
2906 int err = 0;
2907
2908 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2909 memset(&rx, 0, sizeof(rx));
2910 rx.skb = skb;
2911 rx.local = local;
2912
2913 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2914 local->dot11ReceivedFragmentCount++;
2915
2916 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2917 test_bit(SCAN_ONCHANNEL_SCANNING, &local->scanning) ||
2918 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2919 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2920
2921 if (ieee80211_is_mgmt(fc))
2922 err = skb_linearize(skb);
2923 else
2924 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2925
2926 if (err) {
2927 dev_kfree_skb(skb);
2928 return;
2929 }
2930
2931 hdr = (struct ieee80211_hdr *)skb->data;
2932 ieee80211_parse_qos(&rx);
2933 ieee80211_verify_alignment(&rx);
2934
2935 if (ieee80211_is_data(fc)) {
2936 prev_sta = NULL;
2937
2938 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2939 if (!prev_sta) {
2940 prev_sta = sta;
2941 continue;
2942 }
2943
2944 rx.sta = prev_sta;
2945 rx.sdata = prev_sta->sdata;
2946 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2947
2948 prev_sta = sta;
2949 }
2950
2951 if (prev_sta) {
2952 rx.sta = prev_sta;
2953 rx.sdata = prev_sta->sdata;
2954
2955 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2956 return;
2957 goto out;
2958 }
2959 }
2960
2961 prev = NULL;
2962
2963 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2964 if (!ieee80211_sdata_running(sdata))
2965 continue;
2966
2967 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2968 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2969 continue;
2970
2971 /*
2972 * frame is destined for this interface, but if it's
2973 * not also for the previous one we handle that after
2974 * the loop to avoid copying the SKB once too much
2975 */
2976
2977 if (!prev) {
2978 prev = sdata;
2979 continue;
2980 }
2981
2982 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2983 rx.sdata = prev;
2984 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2985
2986 prev = sdata;
2987 }
2988
2989 if (prev) {
2990 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2991 rx.sdata = prev;
2992
2993 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2994 return;
2995 }
2996
2997 out:
2998 dev_kfree_skb(skb);
2999 }
3000
3001 /*
3002 * This is the receive path handler. It is called by a low level driver when an
3003 * 802.11 MPDU is received from the hardware.
3004 */
3005 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3006 {
3007 struct ieee80211_local *local = hw_to_local(hw);
3008 struct ieee80211_rate *rate = NULL;
3009 struct ieee80211_supported_band *sband;
3010 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3011
3012 WARN_ON_ONCE(softirq_count() == 0);
3013
3014 if (WARN_ON(status->band < 0 ||
3015 status->band >= IEEE80211_NUM_BANDS))
3016 goto drop;
3017
3018 sband = local->hw.wiphy->bands[status->band];
3019 if (WARN_ON(!sband))
3020 goto drop;
3021
3022 /*
3023 * If we're suspending, it is possible although not too likely
3024 * that we'd be receiving frames after having already partially
3025 * quiesced the stack. We can't process such frames then since
3026 * that might, for example, cause stations to be added or other
3027 * driver callbacks be invoked.
3028 */
3029 if (unlikely(local->quiescing || local->suspended))
3030 goto drop;
3031
3032 /*
3033 * The same happens when we're not even started,
3034 * but that's worth a warning.
3035 */
3036 if (WARN_ON(!local->started))
3037 goto drop;
3038
3039 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3040 /*
3041 * Validate the rate, unless a PLCP error means that
3042 * we probably can't have a valid rate here anyway.
3043 */
3044
3045 if (status->flag & RX_FLAG_HT) {
3046 /*
3047 * rate_idx is MCS index, which can be [0-76]
3048 * as documented on:
3049 *
3050 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3051 *
3052 * Anything else would be some sort of driver or
3053 * hardware error. The driver should catch hardware
3054 * errors.
3055 */
3056 if (WARN((status->rate_idx < 0 ||
3057 status->rate_idx > 76),
3058 "Rate marked as an HT rate but passed "
3059 "status->rate_idx is not "
3060 "an MCS index [0-76]: %d (0x%02x)\n",
3061 status->rate_idx,
3062 status->rate_idx))
3063 goto drop;
3064 } else {
3065 if (WARN_ON(status->rate_idx < 0 ||
3066 status->rate_idx >= sband->n_bitrates))
3067 goto drop;
3068 rate = &sband->bitrates[status->rate_idx];
3069 }
3070 }
3071
3072 status->rx_flags = 0;
3073
3074 /*
3075 * key references and virtual interfaces are protected using RCU
3076 * and this requires that we are in a read-side RCU section during
3077 * receive processing
3078 */
3079 rcu_read_lock();
3080
3081 /*
3082 * Frames with failed FCS/PLCP checksum are not returned,
3083 * all other frames are returned without radiotap header
3084 * if it was previously present.
3085 * Also, frames with less than 16 bytes are dropped.
3086 */
3087 skb = ieee80211_rx_monitor(local, skb, rate);
3088 if (!skb) {
3089 rcu_read_unlock();
3090 return;
3091 }
3092
3093 ieee80211_tpt_led_trig_rx(local,
3094 ((struct ieee80211_hdr *)skb->data)->frame_control,
3095 skb->len);
3096 __ieee80211_rx_handle_packet(hw, skb);
3097
3098 rcu_read_unlock();
3099
3100 return;
3101 drop:
3102 kfree_skb(skb);
3103 }
3104 EXPORT_SYMBOL(ieee80211_rx);
3105
3106 /* This is a version of the rx handler that can be called from hard irq
3107 * context. Post the skb on the queue and schedule the tasklet */
3108 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3109 {
3110 struct ieee80211_local *local = hw_to_local(hw);
3111
3112 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3113
3114 skb->pkt_type = IEEE80211_RX_MSG;
3115 skb_queue_tail(&local->skb_queue, skb);
3116 tasklet_schedule(&local->tasklet);
3117 }
3118 EXPORT_SYMBOL(ieee80211_rx_irqsafe);