]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/rx.c
mac80211: delay skb linearising in rx decryption
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "led.h"
24 #include "mesh.h"
25 #include "wep.h"
26 #include "wpa.h"
27 #include "tkip.h"
28 #include "wme.h"
29
30 /*
31 * monitor mode reception
32 *
33 * This function cleans up the SKB, i.e. it removes all the stuff
34 * only useful for monitoring.
35 */
36 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
37 struct sk_buff *skb)
38 {
39 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
40 if (likely(skb->len > FCS_LEN))
41 __pskb_trim(skb, skb->len - FCS_LEN);
42 else {
43 /* driver bug */
44 WARN_ON(1);
45 dev_kfree_skb(skb);
46 skb = NULL;
47 }
48 }
49
50 return skb;
51 }
52
53 static inline int should_drop_frame(struct sk_buff *skb,
54 int present_fcs_len)
55 {
56 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
57 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
58
59 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
60 return 1;
61 if (unlikely(skb->len < 16 + present_fcs_len))
62 return 1;
63 if (ieee80211_is_ctl(hdr->frame_control) &&
64 !ieee80211_is_pspoll(hdr->frame_control) &&
65 !ieee80211_is_back_req(hdr->frame_control))
66 return 1;
67 return 0;
68 }
69
70 static int
71 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
72 struct ieee80211_rx_status *status)
73 {
74 int len;
75
76 /* always present fields */
77 len = sizeof(struct ieee80211_radiotap_header) + 9;
78
79 if (status->flag & RX_FLAG_TSFT)
80 len += 8;
81 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
82 len += 1;
83 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
84 len += 1;
85
86 if (len & 1) /* padding for RX_FLAGS if necessary */
87 len++;
88
89 return len;
90 }
91
92 /*
93 * ieee80211_add_rx_radiotap_header - add radiotap header
94 *
95 * add a radiotap header containing all the fields which the hardware provided.
96 */
97 static void
98 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 struct ieee80211_rate *rate,
101 int rtap_len)
102 {
103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
104 struct ieee80211_radiotap_header *rthdr;
105 unsigned char *pos;
106 u16 rx_flags = 0;
107
108 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
109 memset(rthdr, 0, rtap_len);
110
111 /* radiotap header, set always present flags */
112 rthdr->it_present =
113 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
114 (1 << IEEE80211_RADIOTAP_CHANNEL) |
115 (1 << IEEE80211_RADIOTAP_ANTENNA) |
116 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
117 rthdr->it_len = cpu_to_le16(rtap_len);
118
119 pos = (unsigned char *)(rthdr+1);
120
121 /* the order of the following fields is important */
122
123 /* IEEE80211_RADIOTAP_TSFT */
124 if (status->flag & RX_FLAG_TSFT) {
125 put_unaligned_le64(status->mactime, pos);
126 rthdr->it_present |=
127 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
128 pos += 8;
129 }
130
131 /* IEEE80211_RADIOTAP_FLAGS */
132 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
133 *pos |= IEEE80211_RADIOTAP_F_FCS;
134 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
135 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
136 if (status->flag & RX_FLAG_SHORTPRE)
137 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
138 pos++;
139
140 /* IEEE80211_RADIOTAP_RATE */
141 if (status->flag & RX_FLAG_HT) {
142 /*
143 * TODO: add following information into radiotap header once
144 * suitable fields are defined for it:
145 * - MCS index (status->rate_idx)
146 * - HT40 (status->flag & RX_FLAG_40MHZ)
147 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
182
183 /* IEEE80211_RADIOTAP_ANTENNA */
184 *pos = status->antenna;
185 pos++;
186
187 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
188
189 /* IEEE80211_RADIOTAP_RX_FLAGS */
190 /* ensure 2 byte alignment for the 2 byte field as required */
191 if ((pos - (u8 *)rthdr) & 1)
192 pos++;
193 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
194 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
195 put_unaligned_le16(rx_flags, pos);
196 pos += 2;
197 }
198
199 /*
200 * This function copies a received frame to all monitor interfaces and
201 * returns a cleaned-up SKB that no longer includes the FCS nor the
202 * radiotap header the driver might have added.
203 */
204 static struct sk_buff *
205 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
206 struct ieee80211_rate *rate)
207 {
208 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
209 struct ieee80211_sub_if_data *sdata;
210 int needed_headroom = 0;
211 struct sk_buff *skb, *skb2;
212 struct net_device *prev_dev = NULL;
213 int present_fcs_len = 0;
214
215 /*
216 * First, we may need to make a copy of the skb because
217 * (1) we need to modify it for radiotap (if not present), and
218 * (2) the other RX handlers will modify the skb we got.
219 *
220 * We don't need to, of course, if we aren't going to return
221 * the SKB because it has a bad FCS/PLCP checksum.
222 */
223
224 /* room for the radiotap header based on driver features */
225 needed_headroom = ieee80211_rx_radiotap_len(local, status);
226
227 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
228 present_fcs_len = FCS_LEN;
229
230 /* make sure hdr->frame_control is on the linear part */
231 if (!pskb_may_pull(origskb, 2)) {
232 dev_kfree_skb(origskb);
233 return NULL;
234 }
235
236 if (!local->monitors) {
237 if (should_drop_frame(origskb, present_fcs_len)) {
238 dev_kfree_skb(origskb);
239 return NULL;
240 }
241
242 return remove_monitor_info(local, origskb);
243 }
244
245 if (should_drop_frame(origskb, present_fcs_len)) {
246 /* only need to expand headroom if necessary */
247 skb = origskb;
248 origskb = NULL;
249
250 /*
251 * This shouldn't trigger often because most devices have an
252 * RX header they pull before we get here, and that should
253 * be big enough for our radiotap information. We should
254 * probably export the length to drivers so that we can have
255 * them allocate enough headroom to start with.
256 */
257 if (skb_headroom(skb) < needed_headroom &&
258 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
259 dev_kfree_skb(skb);
260 return NULL;
261 }
262 } else {
263 /*
264 * Need to make a copy and possibly remove radiotap header
265 * and FCS from the original.
266 */
267 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
268
269 origskb = remove_monitor_info(local, origskb);
270
271 if (!skb)
272 return origskb;
273 }
274
275 /* prepend radiotap information */
276 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
277
278 skb_reset_mac_header(skb);
279 skb->ip_summed = CHECKSUM_UNNECESSARY;
280 skb->pkt_type = PACKET_OTHERHOST;
281 skb->protocol = htons(ETH_P_802_2);
282
283 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
284 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
285 continue;
286
287 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
288 continue;
289
290 if (!ieee80211_sdata_running(sdata))
291 continue;
292
293 if (prev_dev) {
294 skb2 = skb_clone(skb, GFP_ATOMIC);
295 if (skb2) {
296 skb2->dev = prev_dev;
297 netif_rx(skb2);
298 }
299 }
300
301 prev_dev = sdata->dev;
302 sdata->dev->stats.rx_packets++;
303 sdata->dev->stats.rx_bytes += skb->len;
304 }
305
306 if (prev_dev) {
307 skb->dev = prev_dev;
308 netif_rx(skb);
309 } else
310 dev_kfree_skb(skb);
311
312 return origskb;
313 }
314
315
316 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
317 {
318 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
319 int tid;
320
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr->frame_control)) {
323 u8 *qc = ieee80211_get_qos_ctl(hdr);
324 /* frame has qos control */
325 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 rx->flags |= IEEE80211_RX_AMSDU;
328 else
329 rx->flags &= ~IEEE80211_RX_AMSDU;
330 } else {
331 /*
332 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
333 *
334 * Sequence numbers for management frames, QoS data
335 * frames with a broadcast/multicast address in the
336 * Address 1 field, and all non-QoS data frames sent
337 * by QoS STAs are assigned using an additional single
338 * modulo-4096 counter, [...]
339 *
340 * We also use that counter for non-QoS STAs.
341 */
342 tid = NUM_RX_DATA_QUEUES - 1;
343 }
344
345 rx->queue = tid;
346 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
347 * For now, set skb->priority to 0 for other cases. */
348 rx->skb->priority = (tid > 7) ? 0 : tid;
349 }
350
351 /**
352 * DOC: Packet alignment
353 *
354 * Drivers always need to pass packets that are aligned to two-byte boundaries
355 * to the stack.
356 *
357 * Additionally, should, if possible, align the payload data in a way that
358 * guarantees that the contained IP header is aligned to a four-byte
359 * boundary. In the case of regular frames, this simply means aligning the
360 * payload to a four-byte boundary (because either the IP header is directly
361 * contained, or IV/RFC1042 headers that have a length divisible by four are
362 * in front of it). If the payload data is not properly aligned and the
363 * architecture doesn't support efficient unaligned operations, mac80211
364 * will align the data.
365 *
366 * With A-MSDU frames, however, the payload data address must yield two modulo
367 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
368 * push the IP header further back to a multiple of four again. Thankfully, the
369 * specs were sane enough this time around to require padding each A-MSDU
370 * subframe to a length that is a multiple of four.
371 *
372 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
373 * the payload is not supported, the driver is required to move the 802.11
374 * header to be directly in front of the payload in that case.
375 */
376 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
377 {
378 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
379 WARN_ONCE((unsigned long)rx->skb->data & 1,
380 "unaligned packet at 0x%p\n", rx->skb->data);
381 #endif
382 }
383
384
385 /* rx handlers */
386
387 static ieee80211_rx_result debug_noinline
388 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
389 {
390 struct ieee80211_local *local = rx->local;
391 struct sk_buff *skb = rx->skb;
392
393 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
394 return ieee80211_scan_rx(rx->sdata, skb);
395
396 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
397 (rx->flags & IEEE80211_RX_IN_SCAN))) {
398 /* drop all the other packets during a software scan anyway */
399 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
400 dev_kfree_skb(skb);
401 return RX_QUEUED;
402 }
403
404 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 return RX_DROP_UNUSABLE;
408 }
409
410 return RX_CONTINUE;
411 }
412
413
414 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
415 {
416 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
417
418 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
419 return 0;
420
421 return ieee80211_is_robust_mgmt_frame(hdr);
422 }
423
424
425 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
426 {
427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428
429 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
430 return 0;
431
432 return ieee80211_is_robust_mgmt_frame(hdr);
433 }
434
435
436 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
437 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
438 {
439 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
440 struct ieee80211_mmie *mmie;
441
442 if (skb->len < 24 + sizeof(*mmie) ||
443 !is_multicast_ether_addr(hdr->da))
444 return -1;
445
446 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
447 return -1; /* not a robust management frame */
448
449 mmie = (struct ieee80211_mmie *)
450 (skb->data + skb->len - sizeof(*mmie));
451 if (mmie->element_id != WLAN_EID_MMIE ||
452 mmie->length != sizeof(*mmie) - 2)
453 return -1;
454
455 return le16_to_cpu(mmie->key_id);
456 }
457
458
459 static ieee80211_rx_result
460 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
461 {
462 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
463 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
464 char *dev_addr = rx->sdata->vif.addr;
465
466 if (ieee80211_is_data(hdr->frame_control)) {
467 if (is_multicast_ether_addr(hdr->addr1)) {
468 if (ieee80211_has_tods(hdr->frame_control) ||
469 !ieee80211_has_fromds(hdr->frame_control))
470 return RX_DROP_MONITOR;
471 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
472 return RX_DROP_MONITOR;
473 } else {
474 if (!ieee80211_has_a4(hdr->frame_control))
475 return RX_DROP_MONITOR;
476 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
477 return RX_DROP_MONITOR;
478 }
479 }
480
481 /* If there is not an established peer link and this is not a peer link
482 * establisment frame, beacon or probe, drop the frame.
483 */
484
485 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
486 struct ieee80211_mgmt *mgmt;
487
488 if (!ieee80211_is_mgmt(hdr->frame_control))
489 return RX_DROP_MONITOR;
490
491 if (ieee80211_is_action(hdr->frame_control)) {
492 mgmt = (struct ieee80211_mgmt *)hdr;
493 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
494 return RX_DROP_MONITOR;
495 return RX_CONTINUE;
496 }
497
498 if (ieee80211_is_probe_req(hdr->frame_control) ||
499 ieee80211_is_probe_resp(hdr->frame_control) ||
500 ieee80211_is_beacon(hdr->frame_control))
501 return RX_CONTINUE;
502
503 return RX_DROP_MONITOR;
504
505 }
506
507 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
508
509 if (ieee80211_is_data(hdr->frame_control) &&
510 is_multicast_ether_addr(hdr->addr1) &&
511 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
512 return RX_DROP_MONITOR;
513 #undef msh_h_get
514
515 return RX_CONTINUE;
516 }
517
518 #define SEQ_MODULO 0x1000
519 #define SEQ_MASK 0xfff
520
521 static inline int seq_less(u16 sq1, u16 sq2)
522 {
523 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
524 }
525
526 static inline u16 seq_inc(u16 sq)
527 {
528 return (sq + 1) & SEQ_MASK;
529 }
530
531 static inline u16 seq_sub(u16 sq1, u16 sq2)
532 {
533 return (sq1 - sq2) & SEQ_MASK;
534 }
535
536
537 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
538 struct tid_ampdu_rx *tid_agg_rx,
539 int index,
540 struct sk_buff_head *frames)
541 {
542 struct ieee80211_supported_band *sband;
543 struct ieee80211_rate *rate = NULL;
544 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
545 struct ieee80211_rx_status *status;
546
547 if (!skb)
548 goto no_frame;
549
550 status = IEEE80211_SKB_RXCB(skb);
551
552 /* release the reordered frames to stack */
553 sband = hw->wiphy->bands[status->band];
554 if (!(status->flag & RX_FLAG_HT))
555 rate = &sband->bitrates[status->rate_idx];
556 tid_agg_rx->stored_mpdu_num--;
557 tid_agg_rx->reorder_buf[index] = NULL;
558 __skb_queue_tail(frames, skb);
559
560 no_frame:
561 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
562 }
563
564 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
565 struct tid_ampdu_rx *tid_agg_rx,
566 u16 head_seq_num,
567 struct sk_buff_head *frames)
568 {
569 int index;
570
571 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
572 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
573 tid_agg_rx->buf_size;
574 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
575 }
576 }
577
578 /*
579 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
580 * the skb was added to the buffer longer than this time ago, the earlier
581 * frames that have not yet been received are assumed to be lost and the skb
582 * can be released for processing. This may also release other skb's from the
583 * reorder buffer if there are no additional gaps between the frames.
584 */
585 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
586
587 /*
588 * As this function belongs to the RX path it must be under
589 * rcu_read_lock protection. It returns false if the frame
590 * can be processed immediately, true if it was consumed.
591 */
592 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
593 struct tid_ampdu_rx *tid_agg_rx,
594 struct sk_buff *skb,
595 struct sk_buff_head *frames)
596 {
597 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
598 u16 sc = le16_to_cpu(hdr->seq_ctrl);
599 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
600 u16 head_seq_num, buf_size;
601 int index;
602
603 buf_size = tid_agg_rx->buf_size;
604 head_seq_num = tid_agg_rx->head_seq_num;
605
606 /* frame with out of date sequence number */
607 if (seq_less(mpdu_seq_num, head_seq_num)) {
608 dev_kfree_skb(skb);
609 return true;
610 }
611
612 /*
613 * If frame the sequence number exceeds our buffering window
614 * size release some previous frames to make room for this one.
615 */
616 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
617 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
618 /* release stored frames up to new head to stack */
619 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
620 frames);
621 }
622
623 /* Now the new frame is always in the range of the reordering buffer */
624
625 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
626
627 /* check if we already stored this frame */
628 if (tid_agg_rx->reorder_buf[index]) {
629 dev_kfree_skb(skb);
630 return true;
631 }
632
633 /*
634 * If the current MPDU is in the right order and nothing else
635 * is stored we can process it directly, no need to buffer it.
636 */
637 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
638 tid_agg_rx->stored_mpdu_num == 0) {
639 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
640 return false;
641 }
642
643 /* put the frame in the reordering buffer */
644 tid_agg_rx->reorder_buf[index] = skb;
645 tid_agg_rx->reorder_time[index] = jiffies;
646 tid_agg_rx->stored_mpdu_num++;
647 /* release the buffer until next missing frame */
648 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
649 tid_agg_rx->buf_size;
650 if (!tid_agg_rx->reorder_buf[index] &&
651 tid_agg_rx->stored_mpdu_num > 1) {
652 /*
653 * No buffers ready to be released, but check whether any
654 * frames in the reorder buffer have timed out.
655 */
656 int j;
657 int skipped = 1;
658 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
659 j = (j + 1) % tid_agg_rx->buf_size) {
660 if (!tid_agg_rx->reorder_buf[j]) {
661 skipped++;
662 continue;
663 }
664 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
665 HT_RX_REORDER_BUF_TIMEOUT))
666 break;
667
668 #ifdef CONFIG_MAC80211_HT_DEBUG
669 if (net_ratelimit())
670 printk(KERN_DEBUG "%s: release an RX reorder "
671 "frame due to timeout on earlier "
672 "frames\n",
673 wiphy_name(hw->wiphy));
674 #endif
675 ieee80211_release_reorder_frame(hw, tid_agg_rx,
676 j, frames);
677
678 /*
679 * Increment the head seq# also for the skipped slots.
680 */
681 tid_agg_rx->head_seq_num =
682 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
683 skipped = 0;
684 }
685 } else while (tid_agg_rx->reorder_buf[index]) {
686 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
687 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
688 tid_agg_rx->buf_size;
689 }
690
691 return true;
692 }
693
694 /*
695 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
696 * true if the MPDU was buffered, false if it should be processed.
697 */
698 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
699 struct sk_buff_head *frames)
700 {
701 struct sk_buff *skb = rx->skb;
702 struct ieee80211_local *local = rx->local;
703 struct ieee80211_hw *hw = &local->hw;
704 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
705 struct sta_info *sta = rx->sta;
706 struct tid_ampdu_rx *tid_agg_rx;
707 u16 sc;
708 int tid;
709
710 if (!ieee80211_is_data_qos(hdr->frame_control))
711 goto dont_reorder;
712
713 /*
714 * filter the QoS data rx stream according to
715 * STA/TID and check if this STA/TID is on aggregation
716 */
717
718 if (!sta)
719 goto dont_reorder;
720
721 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
722
723 spin_lock(&sta->lock);
724
725 if (!sta->ampdu_mlme.tid_active_rx[tid])
726 goto dont_reorder_unlock;
727
728 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
729
730 /* qos null data frames are excluded */
731 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
732 goto dont_reorder_unlock;
733
734 /* new, potentially un-ordered, ampdu frame - process it */
735
736 /* reset session timer */
737 if (tid_agg_rx->timeout)
738 mod_timer(&tid_agg_rx->session_timer,
739 TU_TO_EXP_TIME(tid_agg_rx->timeout));
740
741 /* if this mpdu is fragmented - terminate rx aggregation session */
742 sc = le16_to_cpu(hdr->seq_ctrl);
743 if (sc & IEEE80211_SCTL_FRAG) {
744 spin_unlock(&sta->lock);
745 __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
746 WLAN_REASON_QSTA_REQUIRE_SETUP);
747 dev_kfree_skb(skb);
748 return;
749 }
750
751 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames)) {
752 spin_unlock(&sta->lock);
753 return;
754 }
755
756 dont_reorder_unlock:
757 spin_unlock(&sta->lock);
758 dont_reorder:
759 __skb_queue_tail(frames, skb);
760 }
761
762 static ieee80211_rx_result debug_noinline
763 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
764 {
765 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
766
767 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
768 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
769 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
770 rx->sta->last_seq_ctrl[rx->queue] ==
771 hdr->seq_ctrl)) {
772 if (rx->flags & IEEE80211_RX_RA_MATCH) {
773 rx->local->dot11FrameDuplicateCount++;
774 rx->sta->num_duplicates++;
775 }
776 return RX_DROP_MONITOR;
777 } else
778 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
779 }
780
781 if (unlikely(rx->skb->len < 16)) {
782 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
783 return RX_DROP_MONITOR;
784 }
785
786 /* Drop disallowed frame classes based on STA auth/assoc state;
787 * IEEE 802.11, Chap 5.5.
788 *
789 * mac80211 filters only based on association state, i.e. it drops
790 * Class 3 frames from not associated stations. hostapd sends
791 * deauth/disassoc frames when needed. In addition, hostapd is
792 * responsible for filtering on both auth and assoc states.
793 */
794
795 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
796 return ieee80211_rx_mesh_check(rx);
797
798 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
799 ieee80211_is_pspoll(hdr->frame_control)) &&
800 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
801 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
802 if ((!ieee80211_has_fromds(hdr->frame_control) &&
803 !ieee80211_has_tods(hdr->frame_control) &&
804 ieee80211_is_data(hdr->frame_control)) ||
805 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
806 /* Drop IBSS frames and frames for other hosts
807 * silently. */
808 return RX_DROP_MONITOR;
809 }
810
811 return RX_DROP_MONITOR;
812 }
813
814 return RX_CONTINUE;
815 }
816
817
818 static ieee80211_rx_result debug_noinline
819 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
820 {
821 struct sk_buff *skb = rx->skb;
822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
823 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
824 int keyidx;
825 int hdrlen;
826 ieee80211_rx_result result = RX_DROP_UNUSABLE;
827 struct ieee80211_key *stakey = NULL;
828 int mmie_keyidx = -1;
829
830 /*
831 * Key selection 101
832 *
833 * There are four types of keys:
834 * - GTK (group keys)
835 * - IGTK (group keys for management frames)
836 * - PTK (pairwise keys)
837 * - STK (station-to-station pairwise keys)
838 *
839 * When selecting a key, we have to distinguish between multicast
840 * (including broadcast) and unicast frames, the latter can only
841 * use PTKs and STKs while the former always use GTKs and IGTKs.
842 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
843 * unicast frames can also use key indices like GTKs. Hence, if we
844 * don't have a PTK/STK we check the key index for a WEP key.
845 *
846 * Note that in a regular BSS, multicast frames are sent by the
847 * AP only, associated stations unicast the frame to the AP first
848 * which then multicasts it on their behalf.
849 *
850 * There is also a slight problem in IBSS mode: GTKs are negotiated
851 * with each station, that is something we don't currently handle.
852 * The spec seems to expect that one negotiates the same key with
853 * every station but there's no such requirement; VLANs could be
854 * possible.
855 */
856
857 /*
858 * No point in finding a key and decrypting if the frame is neither
859 * addressed to us nor a multicast frame.
860 */
861 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
862 return RX_CONTINUE;
863
864 /* start without a key */
865 rx->key = NULL;
866
867 if (rx->sta)
868 stakey = rcu_dereference(rx->sta->key);
869
870 if (!ieee80211_has_protected(hdr->frame_control))
871 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
872
873 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
874 rx->key = stakey;
875 /* Skip decryption if the frame is not protected. */
876 if (!ieee80211_has_protected(hdr->frame_control))
877 return RX_CONTINUE;
878 } else if (mmie_keyidx >= 0) {
879 /* Broadcast/multicast robust management frame / BIP */
880 if ((status->flag & RX_FLAG_DECRYPTED) &&
881 (status->flag & RX_FLAG_IV_STRIPPED))
882 return RX_CONTINUE;
883
884 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
885 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
886 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
887 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
888 } else if (!ieee80211_has_protected(hdr->frame_control)) {
889 /*
890 * The frame was not protected, so skip decryption. However, we
891 * need to set rx->key if there is a key that could have been
892 * used so that the frame may be dropped if encryption would
893 * have been expected.
894 */
895 struct ieee80211_key *key = NULL;
896 if (ieee80211_is_mgmt(hdr->frame_control) &&
897 is_multicast_ether_addr(hdr->addr1) &&
898 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
899 rx->key = key;
900 else if ((key = rcu_dereference(rx->sdata->default_key)))
901 rx->key = key;
902 return RX_CONTINUE;
903 } else {
904 u8 keyid;
905 /*
906 * The device doesn't give us the IV so we won't be
907 * able to look up the key. That's ok though, we
908 * don't need to decrypt the frame, we just won't
909 * be able to keep statistics accurate.
910 * Except for key threshold notifications, should
911 * we somehow allow the driver to tell us which key
912 * the hardware used if this flag is set?
913 */
914 if ((status->flag & RX_FLAG_DECRYPTED) &&
915 (status->flag & RX_FLAG_IV_STRIPPED))
916 return RX_CONTINUE;
917
918 hdrlen = ieee80211_hdrlen(hdr->frame_control);
919
920 if (rx->skb->len < 8 + hdrlen)
921 return RX_DROP_UNUSABLE; /* TODO: count this? */
922
923 /*
924 * no need to call ieee80211_wep_get_keyidx,
925 * it verifies a bunch of things we've done already
926 */
927 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
928 keyidx = keyid >> 6;
929
930 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
931
932 /*
933 * RSNA-protected unicast frames should always be sent with
934 * pairwise or station-to-station keys, but for WEP we allow
935 * using a key index as well.
936 */
937 if (rx->key && rx->key->conf.alg != ALG_WEP &&
938 !is_multicast_ether_addr(hdr->addr1))
939 rx->key = NULL;
940 }
941
942 if (rx->key) {
943 rx->key->tx_rx_count++;
944 /* TODO: add threshold stuff again */
945 } else {
946 return RX_DROP_MONITOR;
947 }
948
949 if (skb_linearize(rx->skb))
950 return RX_DROP_UNUSABLE;
951
952 hdr = (struct ieee80211_hdr *)rx->skb->data;
953
954 /* Check for weak IVs if possible */
955 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
956 ieee80211_is_data(hdr->frame_control) &&
957 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
958 !(status->flag & RX_FLAG_DECRYPTED)) &&
959 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
960 rx->sta->wep_weak_iv_count++;
961
962 switch (rx->key->conf.alg) {
963 case ALG_WEP:
964 result = ieee80211_crypto_wep_decrypt(rx);
965 break;
966 case ALG_TKIP:
967 result = ieee80211_crypto_tkip_decrypt(rx);
968 break;
969 case ALG_CCMP:
970 result = ieee80211_crypto_ccmp_decrypt(rx);
971 break;
972 case ALG_AES_CMAC:
973 result = ieee80211_crypto_aes_cmac_decrypt(rx);
974 break;
975 }
976
977 /* either the frame has been decrypted or will be dropped */
978 status->flag |= RX_FLAG_DECRYPTED;
979
980 return result;
981 }
982
983 static ieee80211_rx_result debug_noinline
984 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
985 {
986 struct ieee80211_local *local;
987 struct ieee80211_hdr *hdr;
988 struct sk_buff *skb;
989
990 local = rx->local;
991 skb = rx->skb;
992 hdr = (struct ieee80211_hdr *) skb->data;
993
994 if (!local->pspolling)
995 return RX_CONTINUE;
996
997 if (!ieee80211_has_fromds(hdr->frame_control))
998 /* this is not from AP */
999 return RX_CONTINUE;
1000
1001 if (!ieee80211_is_data(hdr->frame_control))
1002 return RX_CONTINUE;
1003
1004 if (!ieee80211_has_moredata(hdr->frame_control)) {
1005 /* AP has no more frames buffered for us */
1006 local->pspolling = false;
1007 return RX_CONTINUE;
1008 }
1009
1010 /* more data bit is set, let's request a new frame from the AP */
1011 ieee80211_send_pspoll(local, rx->sdata);
1012
1013 return RX_CONTINUE;
1014 }
1015
1016 static void ap_sta_ps_start(struct sta_info *sta)
1017 {
1018 struct ieee80211_sub_if_data *sdata = sta->sdata;
1019 struct ieee80211_local *local = sdata->local;
1020
1021 atomic_inc(&sdata->bss->num_sta_ps);
1022 set_sta_flags(sta, WLAN_STA_PS_STA);
1023 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1024 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1025 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1026 sdata->name, sta->sta.addr, sta->sta.aid);
1027 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1028 }
1029
1030 static void ap_sta_ps_end(struct sta_info *sta)
1031 {
1032 struct ieee80211_sub_if_data *sdata = sta->sdata;
1033
1034 atomic_dec(&sdata->bss->num_sta_ps);
1035
1036 clear_sta_flags(sta, WLAN_STA_PS_STA);
1037
1038 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1039 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1040 sdata->name, sta->sta.addr, sta->sta.aid);
1041 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1042
1043 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1044 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1045 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1046 sdata->name, sta->sta.addr, sta->sta.aid);
1047 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1048 return;
1049 }
1050
1051 ieee80211_sta_ps_deliver_wakeup(sta);
1052 }
1053
1054 static ieee80211_rx_result debug_noinline
1055 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1056 {
1057 struct sta_info *sta = rx->sta;
1058 struct sk_buff *skb = rx->skb;
1059 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1060 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1061
1062 if (!sta)
1063 return RX_CONTINUE;
1064
1065 /*
1066 * Update last_rx only for IBSS packets which are for the current
1067 * BSSID to avoid keeping the current IBSS network alive in cases
1068 * where other STAs start using different BSSID.
1069 */
1070 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1071 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1072 NL80211_IFTYPE_ADHOC);
1073 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1074 sta->last_rx = jiffies;
1075 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1076 /*
1077 * Mesh beacons will update last_rx when if they are found to
1078 * match the current local configuration when processed.
1079 */
1080 sta->last_rx = jiffies;
1081 }
1082
1083 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1084 return RX_CONTINUE;
1085
1086 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1087 ieee80211_sta_rx_notify(rx->sdata, hdr);
1088
1089 sta->rx_fragments++;
1090 sta->rx_bytes += rx->skb->len;
1091 sta->last_signal = status->signal;
1092
1093 /*
1094 * Change STA power saving mode only at the end of a frame
1095 * exchange sequence.
1096 */
1097 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1098 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1099 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1100 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1101 /*
1102 * Ignore doze->wake transitions that are
1103 * indicated by non-data frames, the standard
1104 * is unclear here, but for example going to
1105 * PS mode and then scanning would cause a
1106 * doze->wake transition for the probe request,
1107 * and that is clearly undesirable.
1108 */
1109 if (ieee80211_is_data(hdr->frame_control) &&
1110 !ieee80211_has_pm(hdr->frame_control))
1111 ap_sta_ps_end(sta);
1112 } else {
1113 if (ieee80211_has_pm(hdr->frame_control))
1114 ap_sta_ps_start(sta);
1115 }
1116 }
1117
1118 /*
1119 * Drop (qos-)data::nullfunc frames silently, since they
1120 * are used only to control station power saving mode.
1121 */
1122 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1123 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1124 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1125
1126 /*
1127 * If we receive a 4-addr nullfunc frame from a STA
1128 * that was not moved to a 4-addr STA vlan yet, drop
1129 * the frame to the monitor interface, to make sure
1130 * that hostapd sees it
1131 */
1132 if (ieee80211_has_a4(hdr->frame_control) &&
1133 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1134 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1135 !rx->sdata->u.vlan.sta)))
1136 return RX_DROP_MONITOR;
1137 /*
1138 * Update counter and free packet here to avoid
1139 * counting this as a dropped packed.
1140 */
1141 sta->rx_packets++;
1142 dev_kfree_skb(rx->skb);
1143 return RX_QUEUED;
1144 }
1145
1146 return RX_CONTINUE;
1147 } /* ieee80211_rx_h_sta_process */
1148
1149 static inline struct ieee80211_fragment_entry *
1150 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1151 unsigned int frag, unsigned int seq, int rx_queue,
1152 struct sk_buff **skb)
1153 {
1154 struct ieee80211_fragment_entry *entry;
1155 int idx;
1156
1157 idx = sdata->fragment_next;
1158 entry = &sdata->fragments[sdata->fragment_next++];
1159 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1160 sdata->fragment_next = 0;
1161
1162 if (!skb_queue_empty(&entry->skb_list)) {
1163 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1164 struct ieee80211_hdr *hdr =
1165 (struct ieee80211_hdr *) entry->skb_list.next->data;
1166 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1167 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1168 "addr1=%pM addr2=%pM\n",
1169 sdata->name, idx,
1170 jiffies - entry->first_frag_time, entry->seq,
1171 entry->last_frag, hdr->addr1, hdr->addr2);
1172 #endif
1173 __skb_queue_purge(&entry->skb_list);
1174 }
1175
1176 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1177 *skb = NULL;
1178 entry->first_frag_time = jiffies;
1179 entry->seq = seq;
1180 entry->rx_queue = rx_queue;
1181 entry->last_frag = frag;
1182 entry->ccmp = 0;
1183 entry->extra_len = 0;
1184
1185 return entry;
1186 }
1187
1188 static inline struct ieee80211_fragment_entry *
1189 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1190 unsigned int frag, unsigned int seq,
1191 int rx_queue, struct ieee80211_hdr *hdr)
1192 {
1193 struct ieee80211_fragment_entry *entry;
1194 int i, idx;
1195
1196 idx = sdata->fragment_next;
1197 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1198 struct ieee80211_hdr *f_hdr;
1199
1200 idx--;
1201 if (idx < 0)
1202 idx = IEEE80211_FRAGMENT_MAX - 1;
1203
1204 entry = &sdata->fragments[idx];
1205 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1206 entry->rx_queue != rx_queue ||
1207 entry->last_frag + 1 != frag)
1208 continue;
1209
1210 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1211
1212 /*
1213 * Check ftype and addresses are equal, else check next fragment
1214 */
1215 if (((hdr->frame_control ^ f_hdr->frame_control) &
1216 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1217 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1218 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1219 continue;
1220
1221 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1222 __skb_queue_purge(&entry->skb_list);
1223 continue;
1224 }
1225 return entry;
1226 }
1227
1228 return NULL;
1229 }
1230
1231 static ieee80211_rx_result debug_noinline
1232 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1233 {
1234 struct ieee80211_hdr *hdr;
1235 u16 sc;
1236 __le16 fc;
1237 unsigned int frag, seq;
1238 struct ieee80211_fragment_entry *entry;
1239 struct sk_buff *skb;
1240
1241 hdr = (struct ieee80211_hdr *)rx->skb->data;
1242 fc = hdr->frame_control;
1243 sc = le16_to_cpu(hdr->seq_ctrl);
1244 frag = sc & IEEE80211_SCTL_FRAG;
1245
1246 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1247 (rx->skb)->len < 24 ||
1248 is_multicast_ether_addr(hdr->addr1))) {
1249 /* not fragmented */
1250 goto out;
1251 }
1252 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1253
1254 if (skb_linearize(rx->skb))
1255 return RX_DROP_UNUSABLE;
1256
1257 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1258
1259 if (frag == 0) {
1260 /* This is the first fragment of a new frame. */
1261 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1262 rx->queue, &(rx->skb));
1263 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1264 ieee80211_has_protected(fc)) {
1265 /* Store CCMP PN so that we can verify that the next
1266 * fragment has a sequential PN value. */
1267 entry->ccmp = 1;
1268 memcpy(entry->last_pn,
1269 rx->key->u.ccmp.rx_pn[rx->queue],
1270 CCMP_PN_LEN);
1271 }
1272 return RX_QUEUED;
1273 }
1274
1275 /* This is a fragment for a frame that should already be pending in
1276 * fragment cache. Add this fragment to the end of the pending entry.
1277 */
1278 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1279 if (!entry) {
1280 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1281 return RX_DROP_MONITOR;
1282 }
1283
1284 /* Verify that MPDUs within one MSDU have sequential PN values.
1285 * (IEEE 802.11i, 8.3.3.4.5) */
1286 if (entry->ccmp) {
1287 int i;
1288 u8 pn[CCMP_PN_LEN], *rpn;
1289 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1290 return RX_DROP_UNUSABLE;
1291 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1292 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1293 pn[i]++;
1294 if (pn[i])
1295 break;
1296 }
1297 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1298 if (memcmp(pn, rpn, CCMP_PN_LEN))
1299 return RX_DROP_UNUSABLE;
1300 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1301 }
1302
1303 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1304 __skb_queue_tail(&entry->skb_list, rx->skb);
1305 entry->last_frag = frag;
1306 entry->extra_len += rx->skb->len;
1307 if (ieee80211_has_morefrags(fc)) {
1308 rx->skb = NULL;
1309 return RX_QUEUED;
1310 }
1311
1312 rx->skb = __skb_dequeue(&entry->skb_list);
1313 if (skb_tailroom(rx->skb) < entry->extra_len) {
1314 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1315 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1316 GFP_ATOMIC))) {
1317 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1318 __skb_queue_purge(&entry->skb_list);
1319 return RX_DROP_UNUSABLE;
1320 }
1321 }
1322 while ((skb = __skb_dequeue(&entry->skb_list))) {
1323 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1324 dev_kfree_skb(skb);
1325 }
1326
1327 /* Complete frame has been reassembled - process it now */
1328 rx->flags |= IEEE80211_RX_FRAGMENTED;
1329
1330 out:
1331 if (rx->sta)
1332 rx->sta->rx_packets++;
1333 if (is_multicast_ether_addr(hdr->addr1))
1334 rx->local->dot11MulticastReceivedFrameCount++;
1335 else
1336 ieee80211_led_rx(rx->local);
1337 return RX_CONTINUE;
1338 }
1339
1340 static ieee80211_rx_result debug_noinline
1341 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1342 {
1343 struct ieee80211_sub_if_data *sdata = rx->sdata;
1344 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1345
1346 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1347 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1348 return RX_CONTINUE;
1349
1350 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1351 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1352 return RX_DROP_UNUSABLE;
1353
1354 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1355 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1356 else
1357 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1358
1359 /* Free PS Poll skb here instead of returning RX_DROP that would
1360 * count as an dropped frame. */
1361 dev_kfree_skb(rx->skb);
1362
1363 return RX_QUEUED;
1364 }
1365
1366 static ieee80211_rx_result debug_noinline
1367 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1368 {
1369 u8 *data = rx->skb->data;
1370 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1371
1372 if (!ieee80211_is_data_qos(hdr->frame_control))
1373 return RX_CONTINUE;
1374
1375 /* remove the qos control field, update frame type and meta-data */
1376 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1377 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1378 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1379 /* change frame type to non QOS */
1380 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1381
1382 return RX_CONTINUE;
1383 }
1384
1385 static int
1386 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1387 {
1388 if (unlikely(!rx->sta ||
1389 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1390 return -EACCES;
1391
1392 return 0;
1393 }
1394
1395 static int
1396 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1397 {
1398 struct sk_buff *skb = rx->skb;
1399 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1400
1401 /*
1402 * Pass through unencrypted frames if the hardware has
1403 * decrypted them already.
1404 */
1405 if (status->flag & RX_FLAG_DECRYPTED)
1406 return 0;
1407
1408 /* Drop unencrypted frames if key is set. */
1409 if (unlikely(!ieee80211_has_protected(fc) &&
1410 !ieee80211_is_nullfunc(fc) &&
1411 ieee80211_is_data(fc) &&
1412 (rx->key || rx->sdata->drop_unencrypted)))
1413 return -EACCES;
1414
1415 return 0;
1416 }
1417
1418 static int
1419 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1420 {
1421 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1422 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1423 __le16 fc = hdr->frame_control;
1424
1425 /*
1426 * Pass through unencrypted frames if the hardware has
1427 * decrypted them already.
1428 */
1429 if (status->flag & RX_FLAG_DECRYPTED)
1430 return 0;
1431
1432 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1433 if (unlikely(!ieee80211_has_protected(fc) &&
1434 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1435 rx->key))
1436 return -EACCES;
1437 /* BIP does not use Protected field, so need to check MMIE */
1438 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1439 ieee80211_get_mmie_keyidx(rx->skb) < 0))
1440 return -EACCES;
1441 /*
1442 * When using MFP, Action frames are not allowed prior to
1443 * having configured keys.
1444 */
1445 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1446 ieee80211_is_robust_mgmt_frame(
1447 (struct ieee80211_hdr *) rx->skb->data)))
1448 return -EACCES;
1449 }
1450
1451 return 0;
1452 }
1453
1454 static int
1455 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1456 {
1457 struct ieee80211_sub_if_data *sdata = rx->sdata;
1458 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1459
1460 if (ieee80211_has_a4(hdr->frame_control) &&
1461 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1462 return -1;
1463
1464 if (is_multicast_ether_addr(hdr->addr1) &&
1465 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1466 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1467 return -1;
1468
1469 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1470 }
1471
1472 /*
1473 * requires that rx->skb is a frame with ethernet header
1474 */
1475 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1476 {
1477 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1478 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1479 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1480
1481 /*
1482 * Allow EAPOL frames to us/the PAE group address regardless
1483 * of whether the frame was encrypted or not.
1484 */
1485 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1486 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1487 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1488 return true;
1489
1490 if (ieee80211_802_1x_port_control(rx) ||
1491 ieee80211_drop_unencrypted(rx, fc))
1492 return false;
1493
1494 return true;
1495 }
1496
1497 /*
1498 * requires that rx->skb is a frame with ethernet header
1499 */
1500 static void
1501 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1502 {
1503 struct ieee80211_sub_if_data *sdata = rx->sdata;
1504 struct net_device *dev = sdata->dev;
1505 struct sk_buff *skb, *xmit_skb;
1506 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1507 struct sta_info *dsta;
1508
1509 skb = rx->skb;
1510 xmit_skb = NULL;
1511
1512 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1513 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1514 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1515 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1516 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1517 if (is_multicast_ether_addr(ehdr->h_dest)) {
1518 /*
1519 * send multicast frames both to higher layers in
1520 * local net stack and back to the wireless medium
1521 */
1522 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1523 if (!xmit_skb && net_ratelimit())
1524 printk(KERN_DEBUG "%s: failed to clone "
1525 "multicast frame\n", dev->name);
1526 } else {
1527 dsta = sta_info_get(sdata, skb->data);
1528 if (dsta) {
1529 /*
1530 * The destination station is associated to
1531 * this AP (in this VLAN), so send the frame
1532 * directly to it and do not pass it to local
1533 * net stack.
1534 */
1535 xmit_skb = skb;
1536 skb = NULL;
1537 }
1538 }
1539 }
1540
1541 if (skb) {
1542 int align __maybe_unused;
1543
1544 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1545 /*
1546 * 'align' will only take the values 0 or 2 here
1547 * since all frames are required to be aligned
1548 * to 2-byte boundaries when being passed to
1549 * mac80211. That also explains the __skb_push()
1550 * below.
1551 */
1552 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1553 if (align) {
1554 if (WARN_ON(skb_headroom(skb) < 3)) {
1555 dev_kfree_skb(skb);
1556 skb = NULL;
1557 } else {
1558 u8 *data = skb->data;
1559 size_t len = skb_headlen(skb);
1560 skb->data -= align;
1561 memmove(skb->data, data, len);
1562 skb_set_tail_pointer(skb, len);
1563 }
1564 }
1565 #endif
1566
1567 if (skb) {
1568 /* deliver to local stack */
1569 skb->protocol = eth_type_trans(skb, dev);
1570 memset(skb->cb, 0, sizeof(skb->cb));
1571 netif_rx(skb);
1572 }
1573 }
1574
1575 if (xmit_skb) {
1576 /* send to wireless media */
1577 xmit_skb->protocol = htons(ETH_P_802_3);
1578 skb_reset_network_header(xmit_skb);
1579 skb_reset_mac_header(xmit_skb);
1580 dev_queue_xmit(xmit_skb);
1581 }
1582 }
1583
1584 static ieee80211_rx_result debug_noinline
1585 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1586 {
1587 struct net_device *dev = rx->sdata->dev;
1588 struct sk_buff *skb = rx->skb;
1589 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1590 __le16 fc = hdr->frame_control;
1591 struct sk_buff_head frame_list;
1592
1593 if (unlikely(!ieee80211_is_data(fc)))
1594 return RX_CONTINUE;
1595
1596 if (unlikely(!ieee80211_is_data_present(fc)))
1597 return RX_DROP_MONITOR;
1598
1599 if (!(rx->flags & IEEE80211_RX_AMSDU))
1600 return RX_CONTINUE;
1601
1602 if (ieee80211_has_a4(hdr->frame_control) &&
1603 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1604 !rx->sdata->u.vlan.sta)
1605 return RX_DROP_UNUSABLE;
1606
1607 if (is_multicast_ether_addr(hdr->addr1) &&
1608 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1609 rx->sdata->u.vlan.sta) ||
1610 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1611 rx->sdata->u.mgd.use_4addr)))
1612 return RX_DROP_UNUSABLE;
1613
1614 skb->dev = dev;
1615 __skb_queue_head_init(&frame_list);
1616
1617 if (skb_linearize(skb))
1618 return RX_DROP_UNUSABLE;
1619
1620 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1621 rx->sdata->vif.type,
1622 rx->local->hw.extra_tx_headroom);
1623
1624 while (!skb_queue_empty(&frame_list)) {
1625 rx->skb = __skb_dequeue(&frame_list);
1626
1627 if (!ieee80211_frame_allowed(rx, fc)) {
1628 dev_kfree_skb(rx->skb);
1629 continue;
1630 }
1631 dev->stats.rx_packets++;
1632 dev->stats.rx_bytes += rx->skb->len;
1633
1634 ieee80211_deliver_skb(rx);
1635 }
1636
1637 return RX_QUEUED;
1638 }
1639
1640 #ifdef CONFIG_MAC80211_MESH
1641 static ieee80211_rx_result
1642 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1643 {
1644 struct ieee80211_hdr *hdr;
1645 struct ieee80211s_hdr *mesh_hdr;
1646 unsigned int hdrlen;
1647 struct sk_buff *skb = rx->skb, *fwd_skb;
1648 struct ieee80211_local *local = rx->local;
1649 struct ieee80211_sub_if_data *sdata = rx->sdata;
1650
1651 hdr = (struct ieee80211_hdr *) skb->data;
1652 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1653 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1654
1655 if (!ieee80211_is_data(hdr->frame_control))
1656 return RX_CONTINUE;
1657
1658 if (!mesh_hdr->ttl)
1659 /* illegal frame */
1660 return RX_DROP_MONITOR;
1661
1662 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1663 struct mesh_path *mppath;
1664 char *proxied_addr;
1665 char *mpp_addr;
1666
1667 if (is_multicast_ether_addr(hdr->addr1)) {
1668 mpp_addr = hdr->addr3;
1669 proxied_addr = mesh_hdr->eaddr1;
1670 } else {
1671 mpp_addr = hdr->addr4;
1672 proxied_addr = mesh_hdr->eaddr2;
1673 }
1674
1675 rcu_read_lock();
1676 mppath = mpp_path_lookup(proxied_addr, sdata);
1677 if (!mppath) {
1678 mpp_path_add(proxied_addr, mpp_addr, sdata);
1679 } else {
1680 spin_lock_bh(&mppath->state_lock);
1681 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1682 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1683 spin_unlock_bh(&mppath->state_lock);
1684 }
1685 rcu_read_unlock();
1686 }
1687
1688 /* Frame has reached destination. Don't forward */
1689 if (!is_multicast_ether_addr(hdr->addr1) &&
1690 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1691 return RX_CONTINUE;
1692
1693 mesh_hdr->ttl--;
1694
1695 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1696 if (!mesh_hdr->ttl)
1697 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1698 dropped_frames_ttl);
1699 else {
1700 struct ieee80211_hdr *fwd_hdr;
1701 struct ieee80211_tx_info *info;
1702
1703 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1704
1705 if (!fwd_skb && net_ratelimit())
1706 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1707 sdata->name);
1708
1709 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1710 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1711 info = IEEE80211_SKB_CB(fwd_skb);
1712 memset(info, 0, sizeof(*info));
1713 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1714 info->control.vif = &rx->sdata->vif;
1715 skb_set_queue_mapping(skb,
1716 ieee80211_select_queue(rx->sdata, fwd_skb));
1717 ieee80211_set_qos_hdr(local, skb);
1718 if (is_multicast_ether_addr(fwd_hdr->addr1))
1719 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1720 fwded_mcast);
1721 else {
1722 int err;
1723 /*
1724 * Save TA to addr1 to send TA a path error if a
1725 * suitable next hop is not found
1726 */
1727 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1728 ETH_ALEN);
1729 err = mesh_nexthop_lookup(fwd_skb, sdata);
1730 /* Failed to immediately resolve next hop:
1731 * fwded frame was dropped or will be added
1732 * later to the pending skb queue. */
1733 if (err)
1734 return RX_DROP_MONITOR;
1735
1736 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1737 fwded_unicast);
1738 }
1739 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1740 fwded_frames);
1741 ieee80211_add_pending_skb(local, fwd_skb);
1742 }
1743 }
1744
1745 if (is_multicast_ether_addr(hdr->addr1) ||
1746 sdata->dev->flags & IFF_PROMISC)
1747 return RX_CONTINUE;
1748 else
1749 return RX_DROP_MONITOR;
1750 }
1751 #endif
1752
1753 static ieee80211_rx_result debug_noinline
1754 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1755 {
1756 struct ieee80211_sub_if_data *sdata = rx->sdata;
1757 struct ieee80211_local *local = rx->local;
1758 struct net_device *dev = sdata->dev;
1759 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1760 __le16 fc = hdr->frame_control;
1761 int err;
1762
1763 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1764 return RX_CONTINUE;
1765
1766 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1767 return RX_DROP_MONITOR;
1768
1769 /*
1770 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1771 * that a 4-addr station can be detected and moved into a separate VLAN
1772 */
1773 if (ieee80211_has_a4(hdr->frame_control) &&
1774 sdata->vif.type == NL80211_IFTYPE_AP)
1775 return RX_DROP_MONITOR;
1776
1777 err = __ieee80211_data_to_8023(rx);
1778 if (unlikely(err))
1779 return RX_DROP_UNUSABLE;
1780
1781 if (!ieee80211_frame_allowed(rx, fc))
1782 return RX_DROP_MONITOR;
1783
1784 rx->skb->dev = dev;
1785
1786 dev->stats.rx_packets++;
1787 dev->stats.rx_bytes += rx->skb->len;
1788
1789 if (ieee80211_is_data(hdr->frame_control) &&
1790 !is_multicast_ether_addr(hdr->addr1) &&
1791 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1792 mod_timer(&local->dynamic_ps_timer, jiffies +
1793 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1794 }
1795
1796 ieee80211_deliver_skb(rx);
1797
1798 return RX_QUEUED;
1799 }
1800
1801 static ieee80211_rx_result debug_noinline
1802 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1803 {
1804 struct ieee80211_local *local = rx->local;
1805 struct ieee80211_hw *hw = &local->hw;
1806 struct sk_buff *skb = rx->skb;
1807 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1808 struct tid_ampdu_rx *tid_agg_rx;
1809 u16 start_seq_num;
1810 u16 tid;
1811
1812 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1813 return RX_CONTINUE;
1814
1815 if (ieee80211_is_back_req(bar->frame_control)) {
1816 if (!rx->sta)
1817 return RX_DROP_MONITOR;
1818 spin_lock(&rx->sta->lock);
1819 tid = le16_to_cpu(bar->control) >> 12;
1820 if (!rx->sta->ampdu_mlme.tid_active_rx[tid]) {
1821 spin_unlock(&rx->sta->lock);
1822 return RX_DROP_MONITOR;
1823 }
1824 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1825
1826 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1827
1828 /* reset session timer */
1829 if (tid_agg_rx->timeout)
1830 mod_timer(&tid_agg_rx->session_timer,
1831 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1832
1833 /* release stored frames up to start of BAR */
1834 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1835 frames);
1836 kfree_skb(skb);
1837 spin_unlock(&rx->sta->lock);
1838 return RX_QUEUED;
1839 }
1840
1841 return RX_CONTINUE;
1842 }
1843
1844 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1845 struct ieee80211_mgmt *mgmt,
1846 size_t len)
1847 {
1848 struct ieee80211_local *local = sdata->local;
1849 struct sk_buff *skb;
1850 struct ieee80211_mgmt *resp;
1851
1852 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1853 /* Not to own unicast address */
1854 return;
1855 }
1856
1857 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1858 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1859 /* Not from the current AP or not associated yet. */
1860 return;
1861 }
1862
1863 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1864 /* Too short SA Query request frame */
1865 return;
1866 }
1867
1868 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1869 if (skb == NULL)
1870 return;
1871
1872 skb_reserve(skb, local->hw.extra_tx_headroom);
1873 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1874 memset(resp, 0, 24);
1875 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1876 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1877 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1878 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1879 IEEE80211_STYPE_ACTION);
1880 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1881 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1882 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1883 memcpy(resp->u.action.u.sa_query.trans_id,
1884 mgmt->u.action.u.sa_query.trans_id,
1885 WLAN_SA_QUERY_TR_ID_LEN);
1886
1887 ieee80211_tx_skb(sdata, skb);
1888 }
1889
1890 static ieee80211_rx_result debug_noinline
1891 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1892 {
1893 struct ieee80211_local *local = rx->local;
1894 struct ieee80211_sub_if_data *sdata = rx->sdata;
1895 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1896 struct sk_buff *nskb;
1897 struct ieee80211_rx_status *status;
1898 int len = rx->skb->len;
1899
1900 if (!ieee80211_is_action(mgmt->frame_control))
1901 return RX_CONTINUE;
1902
1903 /* drop too small frames */
1904 if (len < IEEE80211_MIN_ACTION_SIZE)
1905 return RX_DROP_UNUSABLE;
1906
1907 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1908 return RX_DROP_UNUSABLE;
1909
1910 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1911 return RX_DROP_UNUSABLE;
1912
1913 if (ieee80211_drop_unencrypted_mgmt(rx))
1914 return RX_DROP_UNUSABLE;
1915
1916 switch (mgmt->u.action.category) {
1917 case WLAN_CATEGORY_BACK:
1918 /*
1919 * The aggregation code is not prepared to handle
1920 * anything but STA/AP due to the BSSID handling;
1921 * IBSS could work in the code but isn't supported
1922 * by drivers or the standard.
1923 */
1924 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1925 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1926 sdata->vif.type != NL80211_IFTYPE_AP)
1927 break;
1928
1929 /* verify action_code is present */
1930 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1931 break;
1932
1933 switch (mgmt->u.action.u.addba_req.action_code) {
1934 case WLAN_ACTION_ADDBA_REQ:
1935 if (len < (IEEE80211_MIN_ACTION_SIZE +
1936 sizeof(mgmt->u.action.u.addba_req)))
1937 return RX_DROP_MONITOR;
1938 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1939 goto handled;
1940 case WLAN_ACTION_ADDBA_RESP:
1941 if (len < (IEEE80211_MIN_ACTION_SIZE +
1942 sizeof(mgmt->u.action.u.addba_resp)))
1943 break;
1944 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1945 goto handled;
1946 case WLAN_ACTION_DELBA:
1947 if (len < (IEEE80211_MIN_ACTION_SIZE +
1948 sizeof(mgmt->u.action.u.delba)))
1949 break;
1950 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1951 goto handled;
1952 }
1953 break;
1954 case WLAN_CATEGORY_SPECTRUM_MGMT:
1955 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1956 break;
1957
1958 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1959 break;
1960
1961 /* verify action_code is present */
1962 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1963 break;
1964
1965 switch (mgmt->u.action.u.measurement.action_code) {
1966 case WLAN_ACTION_SPCT_MSR_REQ:
1967 if (len < (IEEE80211_MIN_ACTION_SIZE +
1968 sizeof(mgmt->u.action.u.measurement)))
1969 break;
1970 ieee80211_process_measurement_req(sdata, mgmt, len);
1971 goto handled;
1972 case WLAN_ACTION_SPCT_CHL_SWITCH:
1973 if (len < (IEEE80211_MIN_ACTION_SIZE +
1974 sizeof(mgmt->u.action.u.chan_switch)))
1975 break;
1976
1977 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1978 break;
1979
1980 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
1981 break;
1982
1983 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1984 }
1985 break;
1986 case WLAN_CATEGORY_SA_QUERY:
1987 if (len < (IEEE80211_MIN_ACTION_SIZE +
1988 sizeof(mgmt->u.action.u.sa_query)))
1989 break;
1990
1991 switch (mgmt->u.action.u.sa_query.action) {
1992 case WLAN_ACTION_SA_QUERY_REQUEST:
1993 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1994 break;
1995 ieee80211_process_sa_query_req(sdata, mgmt, len);
1996 goto handled;
1997 }
1998 break;
1999 case WLAN_CATEGORY_MESH_PLINK:
2000 case WLAN_CATEGORY_MESH_PATH_SEL:
2001 if (ieee80211_vif_is_mesh(&sdata->vif))
2002 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2003 break;
2004 }
2005
2006 /*
2007 * For AP mode, hostapd is responsible for handling any action
2008 * frames that we didn't handle, including returning unknown
2009 * ones. For all other modes we will return them to the sender,
2010 * setting the 0x80 bit in the action category, as required by
2011 * 802.11-2007 7.3.1.11.
2012 */
2013 if (sdata->vif.type == NL80211_IFTYPE_AP ||
2014 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2015 return RX_DROP_MONITOR;
2016
2017 /*
2018 * Getting here means the kernel doesn't know how to handle
2019 * it, but maybe userspace does ... include returned frames
2020 * so userspace can register for those to know whether ones
2021 * it transmitted were processed or returned.
2022 */
2023 status = IEEE80211_SKB_RXCB(rx->skb);
2024
2025 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2026 cfg80211_rx_action(rx->sdata->dev, status->freq,
2027 rx->skb->data, rx->skb->len,
2028 GFP_ATOMIC))
2029 goto handled;
2030
2031 /* do not return rejected action frames */
2032 if (mgmt->u.action.category & 0x80)
2033 return RX_DROP_UNUSABLE;
2034
2035 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2036 GFP_ATOMIC);
2037 if (nskb) {
2038 struct ieee80211_mgmt *mgmt = (void *)nskb->data;
2039
2040 mgmt->u.action.category |= 0x80;
2041 memcpy(mgmt->da, mgmt->sa, ETH_ALEN);
2042 memcpy(mgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2043
2044 memset(nskb->cb, 0, sizeof(nskb->cb));
2045
2046 ieee80211_tx_skb(rx->sdata, nskb);
2047 }
2048
2049 handled:
2050 if (rx->sta)
2051 rx->sta->rx_packets++;
2052 dev_kfree_skb(rx->skb);
2053 return RX_QUEUED;
2054 }
2055
2056 static ieee80211_rx_result debug_noinline
2057 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2058 {
2059 struct ieee80211_sub_if_data *sdata = rx->sdata;
2060 ieee80211_rx_result rxs;
2061
2062 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
2063 return RX_DROP_MONITOR;
2064
2065 if (ieee80211_drop_unencrypted_mgmt(rx))
2066 return RX_DROP_UNUSABLE;
2067
2068 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2069 if (rxs != RX_CONTINUE)
2070 return rxs;
2071
2072 if (ieee80211_vif_is_mesh(&sdata->vif))
2073 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2074
2075 if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2076 return ieee80211_ibss_rx_mgmt(sdata, rx->skb);
2077
2078 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2079 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
2080
2081 return RX_DROP_MONITOR;
2082 }
2083
2084 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2085 struct ieee80211_rx_data *rx)
2086 {
2087 int keyidx;
2088 unsigned int hdrlen;
2089
2090 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2091 if (rx->skb->len >= hdrlen + 4)
2092 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2093 else
2094 keyidx = -1;
2095
2096 if (!rx->sta) {
2097 /*
2098 * Some hardware seem to generate incorrect Michael MIC
2099 * reports; ignore them to avoid triggering countermeasures.
2100 */
2101 return;
2102 }
2103
2104 if (!ieee80211_has_protected(hdr->frame_control))
2105 return;
2106
2107 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2108 /*
2109 * APs with pairwise keys should never receive Michael MIC
2110 * errors for non-zero keyidx because these are reserved for
2111 * group keys and only the AP is sending real multicast
2112 * frames in the BSS.
2113 */
2114 return;
2115 }
2116
2117 if (!ieee80211_is_data(hdr->frame_control) &&
2118 !ieee80211_is_auth(hdr->frame_control))
2119 return;
2120
2121 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2122 GFP_ATOMIC);
2123 }
2124
2125 /* TODO: use IEEE80211_RX_FRAGMENTED */
2126 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2127 struct ieee80211_rate *rate)
2128 {
2129 struct ieee80211_sub_if_data *sdata;
2130 struct ieee80211_local *local = rx->local;
2131 struct ieee80211_rtap_hdr {
2132 struct ieee80211_radiotap_header hdr;
2133 u8 flags;
2134 u8 rate_or_pad;
2135 __le16 chan_freq;
2136 __le16 chan_flags;
2137 } __attribute__ ((packed)) *rthdr;
2138 struct sk_buff *skb = rx->skb, *skb2;
2139 struct net_device *prev_dev = NULL;
2140 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2141
2142 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2143 goto out_free_skb;
2144
2145 if (skb_headroom(skb) < sizeof(*rthdr) &&
2146 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2147 goto out_free_skb;
2148
2149 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2150 memset(rthdr, 0, sizeof(*rthdr));
2151 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2152 rthdr->hdr.it_present =
2153 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2154 (1 << IEEE80211_RADIOTAP_CHANNEL));
2155
2156 if (rate) {
2157 rthdr->rate_or_pad = rate->bitrate / 5;
2158 rthdr->hdr.it_present |=
2159 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2160 }
2161 rthdr->chan_freq = cpu_to_le16(status->freq);
2162
2163 if (status->band == IEEE80211_BAND_5GHZ)
2164 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2165 IEEE80211_CHAN_5GHZ);
2166 else
2167 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2168 IEEE80211_CHAN_2GHZ);
2169
2170 skb_set_mac_header(skb, 0);
2171 skb->ip_summed = CHECKSUM_UNNECESSARY;
2172 skb->pkt_type = PACKET_OTHERHOST;
2173 skb->protocol = htons(ETH_P_802_2);
2174
2175 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2176 if (!ieee80211_sdata_running(sdata))
2177 continue;
2178
2179 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2180 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2181 continue;
2182
2183 if (prev_dev) {
2184 skb2 = skb_clone(skb, GFP_ATOMIC);
2185 if (skb2) {
2186 skb2->dev = prev_dev;
2187 netif_rx(skb2);
2188 }
2189 }
2190
2191 prev_dev = sdata->dev;
2192 sdata->dev->stats.rx_packets++;
2193 sdata->dev->stats.rx_bytes += skb->len;
2194 }
2195
2196 if (prev_dev) {
2197 skb->dev = prev_dev;
2198 netif_rx(skb);
2199 skb = NULL;
2200 } else
2201 goto out_free_skb;
2202
2203 status->flag |= RX_FLAG_INTERNAL_CMTR;
2204 return;
2205
2206 out_free_skb:
2207 dev_kfree_skb(skb);
2208 }
2209
2210
2211 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2212 struct ieee80211_rx_data *rx,
2213 struct sk_buff *skb,
2214 struct ieee80211_rate *rate)
2215 {
2216 struct sk_buff_head reorder_release;
2217 ieee80211_rx_result res = RX_DROP_MONITOR;
2218
2219 __skb_queue_head_init(&reorder_release);
2220
2221 rx->skb = skb;
2222 rx->sdata = sdata;
2223
2224 #define CALL_RXH(rxh) \
2225 do { \
2226 res = rxh(rx); \
2227 if (res != RX_CONTINUE) \
2228 goto rxh_next; \
2229 } while (0);
2230
2231 /*
2232 * NB: the rxh_next label works even if we jump
2233 * to it from here because then the list will
2234 * be empty, which is a trivial check
2235 */
2236 CALL_RXH(ieee80211_rx_h_passive_scan)
2237 CALL_RXH(ieee80211_rx_h_check)
2238
2239 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2240
2241 while ((skb = __skb_dequeue(&reorder_release))) {
2242 /*
2243 * all the other fields are valid across frames
2244 * that belong to an aMPDU since they are on the
2245 * same TID from the same station
2246 */
2247 rx->skb = skb;
2248
2249 CALL_RXH(ieee80211_rx_h_decrypt)
2250 CALL_RXH(ieee80211_rx_h_check_more_data)
2251 CALL_RXH(ieee80211_rx_h_sta_process)
2252 CALL_RXH(ieee80211_rx_h_defragment)
2253 CALL_RXH(ieee80211_rx_h_ps_poll)
2254 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2255 /* must be after MMIC verify so header is counted in MPDU mic */
2256 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2257 CALL_RXH(ieee80211_rx_h_amsdu)
2258 #ifdef CONFIG_MAC80211_MESH
2259 if (ieee80211_vif_is_mesh(&sdata->vif))
2260 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2261 #endif
2262 CALL_RXH(ieee80211_rx_h_data)
2263
2264 /* special treatment -- needs the queue */
2265 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2266 if (res != RX_CONTINUE)
2267 goto rxh_next;
2268
2269 CALL_RXH(ieee80211_rx_h_action)
2270 CALL_RXH(ieee80211_rx_h_mgmt)
2271
2272 #undef CALL_RXH
2273
2274 rxh_next:
2275 switch (res) {
2276 case RX_DROP_MONITOR:
2277 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2278 if (rx->sta)
2279 rx->sta->rx_dropped++;
2280 /* fall through */
2281 case RX_CONTINUE:
2282 ieee80211_rx_cooked_monitor(rx, rate);
2283 break;
2284 case RX_DROP_UNUSABLE:
2285 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2286 if (rx->sta)
2287 rx->sta->rx_dropped++;
2288 dev_kfree_skb(rx->skb);
2289 break;
2290 case RX_QUEUED:
2291 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2292 break;
2293 }
2294 }
2295 }
2296
2297 /* main receive path */
2298
2299 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2300 struct ieee80211_rx_data *rx,
2301 struct ieee80211_hdr *hdr)
2302 {
2303 struct sk_buff *skb = rx->skb;
2304 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2305 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2306 int multicast = is_multicast_ether_addr(hdr->addr1);
2307
2308 switch (sdata->vif.type) {
2309 case NL80211_IFTYPE_STATION:
2310 if (!bssid && !sdata->u.mgd.use_4addr)
2311 return 0;
2312 if (!multicast &&
2313 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2314 if (!(sdata->dev->flags & IFF_PROMISC))
2315 return 0;
2316 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2317 }
2318 break;
2319 case NL80211_IFTYPE_ADHOC:
2320 if (!bssid)
2321 return 0;
2322 if (ieee80211_is_beacon(hdr->frame_control)) {
2323 return 1;
2324 }
2325 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2326 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2327 return 0;
2328 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2329 } else if (!multicast &&
2330 compare_ether_addr(sdata->vif.addr,
2331 hdr->addr1) != 0) {
2332 if (!(sdata->dev->flags & IFF_PROMISC))
2333 return 0;
2334 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2335 } else if (!rx->sta) {
2336 int rate_idx;
2337 if (status->flag & RX_FLAG_HT)
2338 rate_idx = 0; /* TODO: HT rates */
2339 else
2340 rate_idx = status->rate_idx;
2341 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2342 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2343 }
2344 break;
2345 case NL80211_IFTYPE_MESH_POINT:
2346 if (!multicast &&
2347 compare_ether_addr(sdata->vif.addr,
2348 hdr->addr1) != 0) {
2349 if (!(sdata->dev->flags & IFF_PROMISC))
2350 return 0;
2351
2352 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2353 }
2354 break;
2355 case NL80211_IFTYPE_AP_VLAN:
2356 case NL80211_IFTYPE_AP:
2357 if (!bssid) {
2358 if (compare_ether_addr(sdata->vif.addr,
2359 hdr->addr1))
2360 return 0;
2361 } else if (!ieee80211_bssid_match(bssid,
2362 sdata->vif.addr)) {
2363 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2364 return 0;
2365 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2366 }
2367 break;
2368 case NL80211_IFTYPE_WDS:
2369 if (bssid || !ieee80211_is_data(hdr->frame_control))
2370 return 0;
2371 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2372 return 0;
2373 break;
2374 case NL80211_IFTYPE_MONITOR:
2375 case NL80211_IFTYPE_UNSPECIFIED:
2376 case __NL80211_IFTYPE_AFTER_LAST:
2377 /* should never get here */
2378 WARN_ON(1);
2379 break;
2380 }
2381
2382 return 1;
2383 }
2384
2385 /*
2386 * This is the actual Rx frames handler. as it blongs to Rx path it must
2387 * be called with rcu_read_lock protection.
2388 */
2389 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2390 struct sk_buff *skb,
2391 struct ieee80211_rate *rate)
2392 {
2393 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2394 struct ieee80211_local *local = hw_to_local(hw);
2395 struct ieee80211_sub_if_data *sdata;
2396 struct ieee80211_hdr *hdr;
2397 __le16 fc;
2398 struct ieee80211_rx_data rx;
2399 int prepares;
2400 struct ieee80211_sub_if_data *prev = NULL;
2401 struct sk_buff *skb_new;
2402 struct sta_info *sta, *tmp;
2403 bool found_sta = false;
2404 int err = 0;
2405
2406 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2407 memset(&rx, 0, sizeof(rx));
2408 rx.skb = skb;
2409 rx.local = local;
2410
2411 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2412 local->dot11ReceivedFragmentCount++;
2413
2414 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2415 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2416 rx.flags |= IEEE80211_RX_IN_SCAN;
2417
2418 if (ieee80211_is_mgmt(fc))
2419 err = skb_linearize(skb);
2420 else
2421 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2422
2423 if (err) {
2424 dev_kfree_skb(skb);
2425 return;
2426 }
2427
2428 hdr = (struct ieee80211_hdr *)skb->data;
2429 ieee80211_parse_qos(&rx);
2430 ieee80211_verify_alignment(&rx);
2431
2432 if (ieee80211_is_data(fc)) {
2433 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2434 rx.sta = sta;
2435 found_sta = true;
2436 rx.sdata = sta->sdata;
2437
2438 rx.flags |= IEEE80211_RX_RA_MATCH;
2439 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2440 if (prepares) {
2441 if (status->flag & RX_FLAG_MMIC_ERROR) {
2442 if (rx.flags & IEEE80211_RX_RA_MATCH)
2443 ieee80211_rx_michael_mic_report(hdr, &rx);
2444 } else
2445 prev = rx.sdata;
2446 }
2447 }
2448 }
2449 if (!found_sta) {
2450 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2451 if (!ieee80211_sdata_running(sdata))
2452 continue;
2453
2454 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2455 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2456 continue;
2457
2458 /*
2459 * frame is destined for this interface, but if it's
2460 * not also for the previous one we handle that after
2461 * the loop to avoid copying the SKB once too much
2462 */
2463
2464 if (!prev) {
2465 prev = sdata;
2466 continue;
2467 }
2468
2469 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2470
2471 rx.flags |= IEEE80211_RX_RA_MATCH;
2472 prepares = prepare_for_handlers(prev, &rx, hdr);
2473
2474 if (!prepares)
2475 goto next;
2476
2477 if (status->flag & RX_FLAG_MMIC_ERROR) {
2478 rx.sdata = prev;
2479 if (rx.flags & IEEE80211_RX_RA_MATCH)
2480 ieee80211_rx_michael_mic_report(hdr,
2481 &rx);
2482 goto next;
2483 }
2484
2485 /*
2486 * frame was destined for the previous interface
2487 * so invoke RX handlers for it
2488 */
2489
2490 skb_new = skb_copy(skb, GFP_ATOMIC);
2491 if (!skb_new) {
2492 if (net_ratelimit())
2493 printk(KERN_DEBUG "%s: failed to copy "
2494 "multicast frame for %s\n",
2495 wiphy_name(local->hw.wiphy),
2496 prev->name);
2497 goto next;
2498 }
2499 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2500 next:
2501 prev = sdata;
2502 }
2503
2504 if (prev) {
2505 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2506
2507 rx.flags |= IEEE80211_RX_RA_MATCH;
2508 prepares = prepare_for_handlers(prev, &rx, hdr);
2509
2510 if (!prepares)
2511 prev = NULL;
2512 }
2513 }
2514 if (prev)
2515 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2516 else
2517 dev_kfree_skb(skb);
2518 }
2519
2520 /*
2521 * This is the receive path handler. It is called by a low level driver when an
2522 * 802.11 MPDU is received from the hardware.
2523 */
2524 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2525 {
2526 struct ieee80211_local *local = hw_to_local(hw);
2527 struct ieee80211_rate *rate = NULL;
2528 struct ieee80211_supported_band *sband;
2529 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2530
2531 WARN_ON_ONCE(softirq_count() == 0);
2532
2533 if (WARN_ON(status->band < 0 ||
2534 status->band >= IEEE80211_NUM_BANDS))
2535 goto drop;
2536
2537 sband = local->hw.wiphy->bands[status->band];
2538 if (WARN_ON(!sband))
2539 goto drop;
2540
2541 /*
2542 * If we're suspending, it is possible although not too likely
2543 * that we'd be receiving frames after having already partially
2544 * quiesced the stack. We can't process such frames then since
2545 * that might, for example, cause stations to be added or other
2546 * driver callbacks be invoked.
2547 */
2548 if (unlikely(local->quiescing || local->suspended))
2549 goto drop;
2550
2551 /*
2552 * The same happens when we're not even started,
2553 * but that's worth a warning.
2554 */
2555 if (WARN_ON(!local->started))
2556 goto drop;
2557
2558 if (status->flag & RX_FLAG_HT) {
2559 /*
2560 * rate_idx is MCS index, which can be [0-76] as documented on:
2561 *
2562 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2563 *
2564 * Anything else would be some sort of driver or hardware error.
2565 * The driver should catch hardware errors.
2566 */
2567 if (WARN((status->rate_idx < 0 ||
2568 status->rate_idx > 76),
2569 "Rate marked as an HT rate but passed "
2570 "status->rate_idx is not "
2571 "an MCS index [0-76]: %d (0x%02x)\n",
2572 status->rate_idx,
2573 status->rate_idx))
2574 goto drop;
2575 } else {
2576 if (WARN_ON(status->rate_idx < 0 ||
2577 status->rate_idx >= sband->n_bitrates))
2578 goto drop;
2579 rate = &sband->bitrates[status->rate_idx];
2580 }
2581
2582 /*
2583 * key references and virtual interfaces are protected using RCU
2584 * and this requires that we are in a read-side RCU section during
2585 * receive processing
2586 */
2587 rcu_read_lock();
2588
2589 /*
2590 * Frames with failed FCS/PLCP checksum are not returned,
2591 * all other frames are returned without radiotap header
2592 * if it was previously present.
2593 * Also, frames with less than 16 bytes are dropped.
2594 */
2595 skb = ieee80211_rx_monitor(local, skb, rate);
2596 if (!skb) {
2597 rcu_read_unlock();
2598 return;
2599 }
2600
2601 __ieee80211_rx_handle_packet(hw, skb, rate);
2602
2603 rcu_read_unlock();
2604
2605 return;
2606 drop:
2607 kfree_skb(skb);
2608 }
2609 EXPORT_SYMBOL(ieee80211_rx);
2610
2611 /* This is a version of the rx handler that can be called from hard irq
2612 * context. Post the skb on the queue and schedule the tasklet */
2613 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2614 {
2615 struct ieee80211_local *local = hw_to_local(hw);
2616
2617 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2618
2619 skb->pkt_type = IEEE80211_RX_MSG;
2620 skb_queue_tail(&local->skb_queue, skb);
2621 tasklet_schedule(&local->tasklet);
2622 }
2623 EXPORT_SYMBOL(ieee80211_rx_irqsafe);