]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/mac80211/rx.c
regulator: palmas: Fix off-by-one for ramp_delay and register value mapping
[mirror_ubuntu-hirsute-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
58
59 return skb;
60 }
61
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
81 }
82
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
86 {
87 int len;
88
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 9;
91
92 /* allocate extra bitmap */
93 if (status->vendor_radiotap_len)
94 len += 4;
95
96 if (ieee80211_have_rx_timestamp(status)) {
97 len = ALIGN(len, 8);
98 len += 8;
99 }
100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
101 len += 1;
102
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
105
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
108
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
112 }
113
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
117 }
118
119 if (status->vendor_radiotap_len) {
120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
121 status->vendor_radiotap_align = 1;
122 /* align standard part of vendor namespace */
123 len = ALIGN(len, 2);
124 /* allocate standard part of vendor namespace */
125 len += 6;
126 /* align vendor-defined part */
127 len = ALIGN(len, status->vendor_radiotap_align);
128 /* vendor-defined part is already in skb */
129 }
130
131 return len;
132 }
133
134 /*
135 * ieee80211_add_rx_radiotap_header - add radiotap header
136 *
137 * add a radiotap header containing all the fields which the hardware provided.
138 */
139 static void
140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
141 struct sk_buff *skb,
142 struct ieee80211_rate *rate,
143 int rtap_len, bool has_fcs)
144 {
145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
146 struct ieee80211_radiotap_header *rthdr;
147 unsigned char *pos;
148 u16 rx_flags = 0;
149 int mpdulen;
150
151 mpdulen = skb->len;
152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
153 mpdulen += FCS_LEN;
154
155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
156 memset(rthdr, 0, rtap_len);
157
158 /* radiotap header, set always present flags */
159 rthdr->it_present =
160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
161 (1 << IEEE80211_RADIOTAP_CHANNEL) |
162 (1 << IEEE80211_RADIOTAP_ANTENNA) |
163 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
165
166 pos = (unsigned char *)(rthdr + 1);
167
168 if (status->vendor_radiotap_len) {
169 rthdr->it_present |=
170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) |
171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT));
172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos);
173 pos += 4;
174 }
175
176 /* the order of the following fields is important */
177
178 /* IEEE80211_RADIOTAP_TSFT */
179 if (ieee80211_have_rx_timestamp(status)) {
180 /* padding */
181 while ((pos - (u8 *)rthdr) & 7)
182 *pos++ = 0;
183 put_unaligned_le64(
184 ieee80211_calculate_rx_timestamp(local, status,
185 mpdulen, 0),
186 pos);
187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 pos += 8;
189 }
190
191 /* IEEE80211_RADIOTAP_FLAGS */
192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
193 *pos |= IEEE80211_RADIOTAP_F_FCS;
194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
196 if (status->flag & RX_FLAG_SHORTPRE)
197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
198 pos++;
199
200 /* IEEE80211_RADIOTAP_RATE */
201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
202 /*
203 * Without rate information don't add it. If we have,
204 * MCS information is a separate field in radiotap,
205 * added below. The byte here is needed as padding
206 * for the channel though, so initialise it to 0.
207 */
208 *pos = 0;
209 } else {
210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
211 *pos = rate->bitrate / 5;
212 }
213 pos++;
214
215 /* IEEE80211_RADIOTAP_CHANNEL */
216 put_unaligned_le16(status->freq, pos);
217 pos += 2;
218 if (status->band == IEEE80211_BAND_5GHZ)
219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
220 pos);
221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
223 pos);
224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
226 pos);
227 else if (rate)
228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
229 pos);
230 else
231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
232 pos += 2;
233
234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
237 *pos = status->signal;
238 rthdr->it_present |=
239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
240 pos++;
241 }
242
243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
244
245 /* IEEE80211_RADIOTAP_ANTENNA */
246 *pos = status->antenna;
247 pos++;
248
249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
250
251 /* IEEE80211_RADIOTAP_RX_FLAGS */
252 /* ensure 2 byte alignment for the 2 byte field as required */
253 if ((pos - (u8 *)rthdr) & 1)
254 *pos++ = 0;
255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
257 put_unaligned_le16(rx_flags, pos);
258 pos += 2;
259
260 if (status->flag & RX_FLAG_HT) {
261 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
262 *pos++ = local->hw.radiotap_mcs_details;
263 *pos = 0;
264 if (status->flag & RX_FLAG_SHORT_GI)
265 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
266 if (status->flag & RX_FLAG_40MHZ)
267 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
268 if (status->flag & RX_FLAG_HT_GF)
269 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
270 pos++;
271 *pos++ = status->rate_idx;
272 }
273
274 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
275 u16 flags = 0;
276
277 /* ensure 4 byte alignment */
278 while ((pos - (u8 *)rthdr) & 3)
279 pos++;
280 rthdr->it_present |=
281 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
282 put_unaligned_le32(status->ampdu_reference, pos);
283 pos += 4;
284 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
285 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
286 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
287 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
288 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
289 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
290 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
292 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
293 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
294 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
295 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
296 put_unaligned_le16(flags, pos);
297 pos += 2;
298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
299 *pos++ = status->ampdu_delimiter_crc;
300 else
301 *pos++ = 0;
302 *pos++ = 0;
303 }
304
305 if (status->flag & RX_FLAG_VHT) {
306 u16 known = local->hw.radiotap_vht_details;
307
308 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
309 /* known field - how to handle 80+80? */
310 if (status->flag & RX_FLAG_80P80MHZ)
311 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
312 put_unaligned_le16(known, pos);
313 pos += 2;
314 /* flags */
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
317 pos++;
318 /* bandwidth */
319 if (status->flag & RX_FLAG_80MHZ)
320 *pos++ = 4;
321 else if (status->flag & RX_FLAG_80P80MHZ)
322 *pos++ = 0; /* marked not known above */
323 else if (status->flag & RX_FLAG_160MHZ)
324 *pos++ = 11;
325 else if (status->flag & RX_FLAG_40MHZ)
326 *pos++ = 1;
327 else /* 20 MHz */
328 *pos++ = 0;
329 /* MCS/NSS */
330 *pos = (status->rate_idx << 4) | status->vht_nss;
331 pos += 4;
332 /* coding field */
333 pos++;
334 /* group ID */
335 pos++;
336 /* partial_aid */
337 pos += 2;
338 }
339
340 if (status->vendor_radiotap_len) {
341 /* ensure 2 byte alignment for the vendor field as required */
342 if ((pos - (u8 *)rthdr) & 1)
343 *pos++ = 0;
344 *pos++ = status->vendor_radiotap_oui[0];
345 *pos++ = status->vendor_radiotap_oui[1];
346 *pos++ = status->vendor_radiotap_oui[2];
347 *pos++ = status->vendor_radiotap_subns;
348 put_unaligned_le16(status->vendor_radiotap_len, pos);
349 pos += 2;
350 /* align the actual payload as requested */
351 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
352 *pos++ = 0;
353 }
354 }
355
356 /*
357 * This function copies a received frame to all monitor interfaces and
358 * returns a cleaned-up SKB that no longer includes the FCS nor the
359 * radiotap header the driver might have added.
360 */
361 static struct sk_buff *
362 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
363 struct ieee80211_rate *rate)
364 {
365 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
366 struct ieee80211_sub_if_data *sdata;
367 int needed_headroom;
368 struct sk_buff *skb, *skb2;
369 struct net_device *prev_dev = NULL;
370 int present_fcs_len = 0;
371
372 /*
373 * First, we may need to make a copy of the skb because
374 * (1) we need to modify it for radiotap (if not present), and
375 * (2) the other RX handlers will modify the skb we got.
376 *
377 * We don't need to, of course, if we aren't going to return
378 * the SKB because it has a bad FCS/PLCP checksum.
379 */
380
381 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
382 present_fcs_len = FCS_LEN;
383
384 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
385 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
386 dev_kfree_skb(origskb);
387 return NULL;
388 }
389
390 if (!local->monitors) {
391 if (should_drop_frame(origskb, present_fcs_len)) {
392 dev_kfree_skb(origskb);
393 return NULL;
394 }
395
396 return remove_monitor_info(local, origskb);
397 }
398
399 /* room for the radiotap header based on driver features */
400 needed_headroom = ieee80211_rx_radiotap_space(local, status);
401
402 if (should_drop_frame(origskb, present_fcs_len)) {
403 /* only need to expand headroom if necessary */
404 skb = origskb;
405 origskb = NULL;
406
407 /*
408 * This shouldn't trigger often because most devices have an
409 * RX header they pull before we get here, and that should
410 * be big enough for our radiotap information. We should
411 * probably export the length to drivers so that we can have
412 * them allocate enough headroom to start with.
413 */
414 if (skb_headroom(skb) < needed_headroom &&
415 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
416 dev_kfree_skb(skb);
417 return NULL;
418 }
419 } else {
420 /*
421 * Need to make a copy and possibly remove radiotap header
422 * and FCS from the original.
423 */
424 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
425
426 origskb = remove_monitor_info(local, origskb);
427
428 if (!skb)
429 return origskb;
430 }
431
432 /* prepend radiotap information */
433 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
434 true);
435
436 skb_reset_mac_header(skb);
437 skb->ip_summed = CHECKSUM_UNNECESSARY;
438 skb->pkt_type = PACKET_OTHERHOST;
439 skb->protocol = htons(ETH_P_802_2);
440
441 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
442 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
443 continue;
444
445 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
446 continue;
447
448 if (!ieee80211_sdata_running(sdata))
449 continue;
450
451 if (prev_dev) {
452 skb2 = skb_clone(skb, GFP_ATOMIC);
453 if (skb2) {
454 skb2->dev = prev_dev;
455 netif_receive_skb(skb2);
456 }
457 }
458
459 prev_dev = sdata->dev;
460 sdata->dev->stats.rx_packets++;
461 sdata->dev->stats.rx_bytes += skb->len;
462 }
463
464 if (prev_dev) {
465 skb->dev = prev_dev;
466 netif_receive_skb(skb);
467 } else
468 dev_kfree_skb(skb);
469
470 return origskb;
471 }
472
473 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
474 {
475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
476 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
477 int tid, seqno_idx, security_idx;
478
479 /* does the frame have a qos control field? */
480 if (ieee80211_is_data_qos(hdr->frame_control)) {
481 u8 *qc = ieee80211_get_qos_ctl(hdr);
482 /* frame has qos control */
483 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
484 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
485 status->rx_flags |= IEEE80211_RX_AMSDU;
486
487 seqno_idx = tid;
488 security_idx = tid;
489 } else {
490 /*
491 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
492 *
493 * Sequence numbers for management frames, QoS data
494 * frames with a broadcast/multicast address in the
495 * Address 1 field, and all non-QoS data frames sent
496 * by QoS STAs are assigned using an additional single
497 * modulo-4096 counter, [...]
498 *
499 * We also use that counter for non-QoS STAs.
500 */
501 seqno_idx = IEEE80211_NUM_TIDS;
502 security_idx = 0;
503 if (ieee80211_is_mgmt(hdr->frame_control))
504 security_idx = IEEE80211_NUM_TIDS;
505 tid = 0;
506 }
507
508 rx->seqno_idx = seqno_idx;
509 rx->security_idx = security_idx;
510 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
511 * For now, set skb->priority to 0 for other cases. */
512 rx->skb->priority = (tid > 7) ? 0 : tid;
513 }
514
515 /**
516 * DOC: Packet alignment
517 *
518 * Drivers always need to pass packets that are aligned to two-byte boundaries
519 * to the stack.
520 *
521 * Additionally, should, if possible, align the payload data in a way that
522 * guarantees that the contained IP header is aligned to a four-byte
523 * boundary. In the case of regular frames, this simply means aligning the
524 * payload to a four-byte boundary (because either the IP header is directly
525 * contained, or IV/RFC1042 headers that have a length divisible by four are
526 * in front of it). If the payload data is not properly aligned and the
527 * architecture doesn't support efficient unaligned operations, mac80211
528 * will align the data.
529 *
530 * With A-MSDU frames, however, the payload data address must yield two modulo
531 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
532 * push the IP header further back to a multiple of four again. Thankfully, the
533 * specs were sane enough this time around to require padding each A-MSDU
534 * subframe to a length that is a multiple of four.
535 *
536 * Padding like Atheros hardware adds which is between the 802.11 header and
537 * the payload is not supported, the driver is required to move the 802.11
538 * header to be directly in front of the payload in that case.
539 */
540 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
541 {
542 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
543 WARN_ONCE((unsigned long)rx->skb->data & 1,
544 "unaligned packet at 0x%p\n", rx->skb->data);
545 #endif
546 }
547
548
549 /* rx handlers */
550
551 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
552 {
553 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
554
555 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
556 return 0;
557
558 return ieee80211_is_robust_mgmt_frame(hdr);
559 }
560
561
562 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
563 {
564 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
565
566 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
567 return 0;
568
569 return ieee80211_is_robust_mgmt_frame(hdr);
570 }
571
572
573 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
574 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
575 {
576 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
577 struct ieee80211_mmie *mmie;
578
579 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
580 return -1;
581
582 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
583 return -1; /* not a robust management frame */
584
585 mmie = (struct ieee80211_mmie *)
586 (skb->data + skb->len - sizeof(*mmie));
587 if (mmie->element_id != WLAN_EID_MMIE ||
588 mmie->length != sizeof(*mmie) - 2)
589 return -1;
590
591 return le16_to_cpu(mmie->key_id);
592 }
593
594 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
595 {
596 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 char *dev_addr = rx->sdata->vif.addr;
598
599 if (ieee80211_is_data(hdr->frame_control)) {
600 if (is_multicast_ether_addr(hdr->addr1)) {
601 if (ieee80211_has_tods(hdr->frame_control) ||
602 !ieee80211_has_fromds(hdr->frame_control))
603 return RX_DROP_MONITOR;
604 if (ether_addr_equal(hdr->addr3, dev_addr))
605 return RX_DROP_MONITOR;
606 } else {
607 if (!ieee80211_has_a4(hdr->frame_control))
608 return RX_DROP_MONITOR;
609 if (ether_addr_equal(hdr->addr4, dev_addr))
610 return RX_DROP_MONITOR;
611 }
612 }
613
614 /* If there is not an established peer link and this is not a peer link
615 * establisment frame, beacon or probe, drop the frame.
616 */
617
618 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
619 struct ieee80211_mgmt *mgmt;
620
621 if (!ieee80211_is_mgmt(hdr->frame_control))
622 return RX_DROP_MONITOR;
623
624 if (ieee80211_is_action(hdr->frame_control)) {
625 u8 category;
626
627 /* make sure category field is present */
628 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
629 return RX_DROP_MONITOR;
630
631 mgmt = (struct ieee80211_mgmt *)hdr;
632 category = mgmt->u.action.category;
633 if (category != WLAN_CATEGORY_MESH_ACTION &&
634 category != WLAN_CATEGORY_SELF_PROTECTED)
635 return RX_DROP_MONITOR;
636 return RX_CONTINUE;
637 }
638
639 if (ieee80211_is_probe_req(hdr->frame_control) ||
640 ieee80211_is_probe_resp(hdr->frame_control) ||
641 ieee80211_is_beacon(hdr->frame_control) ||
642 ieee80211_is_auth(hdr->frame_control))
643 return RX_CONTINUE;
644
645 return RX_DROP_MONITOR;
646 }
647
648 return RX_CONTINUE;
649 }
650
651 #define SEQ_MODULO 0x1000
652 #define SEQ_MASK 0xfff
653
654 static inline int seq_less(u16 sq1, u16 sq2)
655 {
656 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
657 }
658
659 static inline u16 seq_inc(u16 sq)
660 {
661 return (sq + 1) & SEQ_MASK;
662 }
663
664 static inline u16 seq_sub(u16 sq1, u16 sq2)
665 {
666 return (sq1 - sq2) & SEQ_MASK;
667 }
668
669 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
670 struct tid_ampdu_rx *tid_agg_rx,
671 int index,
672 struct sk_buff_head *frames)
673 {
674 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
675 struct ieee80211_rx_status *status;
676
677 lockdep_assert_held(&tid_agg_rx->reorder_lock);
678
679 if (!skb)
680 goto no_frame;
681
682 /* release the frame from the reorder ring buffer */
683 tid_agg_rx->stored_mpdu_num--;
684 tid_agg_rx->reorder_buf[index] = NULL;
685 status = IEEE80211_SKB_RXCB(skb);
686 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
687 __skb_queue_tail(frames, skb);
688
689 no_frame:
690 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
691 }
692
693 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
694 struct tid_ampdu_rx *tid_agg_rx,
695 u16 head_seq_num,
696 struct sk_buff_head *frames)
697 {
698 int index;
699
700 lockdep_assert_held(&tid_agg_rx->reorder_lock);
701
702 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
703 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
704 tid_agg_rx->buf_size;
705 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
706 frames);
707 }
708 }
709
710 /*
711 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
712 * the skb was added to the buffer longer than this time ago, the earlier
713 * frames that have not yet been received are assumed to be lost and the skb
714 * can be released for processing. This may also release other skb's from the
715 * reorder buffer if there are no additional gaps between the frames.
716 *
717 * Callers must hold tid_agg_rx->reorder_lock.
718 */
719 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
720
721 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
722 struct tid_ampdu_rx *tid_agg_rx,
723 struct sk_buff_head *frames)
724 {
725 int index, j;
726
727 lockdep_assert_held(&tid_agg_rx->reorder_lock);
728
729 /* release the buffer until next missing frame */
730 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
731 tid_agg_rx->buf_size;
732 if (!tid_agg_rx->reorder_buf[index] &&
733 tid_agg_rx->stored_mpdu_num) {
734 /*
735 * No buffers ready to be released, but check whether any
736 * frames in the reorder buffer have timed out.
737 */
738 int skipped = 1;
739 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
740 j = (j + 1) % tid_agg_rx->buf_size) {
741 if (!tid_agg_rx->reorder_buf[j]) {
742 skipped++;
743 continue;
744 }
745 if (skipped &&
746 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
747 HT_RX_REORDER_BUF_TIMEOUT))
748 goto set_release_timer;
749
750 ht_dbg_ratelimited(sdata,
751 "release an RX reorder frame due to timeout on earlier frames\n");
752 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
753 frames);
754
755 /*
756 * Increment the head seq# also for the skipped slots.
757 */
758 tid_agg_rx->head_seq_num =
759 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
760 skipped = 0;
761 }
762 } else while (tid_agg_rx->reorder_buf[index]) {
763 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
764 frames);
765 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
766 tid_agg_rx->buf_size;
767 }
768
769 if (tid_agg_rx->stored_mpdu_num) {
770 j = index = seq_sub(tid_agg_rx->head_seq_num,
771 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
772
773 for (; j != (index - 1) % tid_agg_rx->buf_size;
774 j = (j + 1) % tid_agg_rx->buf_size) {
775 if (tid_agg_rx->reorder_buf[j])
776 break;
777 }
778
779 set_release_timer:
780
781 mod_timer(&tid_agg_rx->reorder_timer,
782 tid_agg_rx->reorder_time[j] + 1 +
783 HT_RX_REORDER_BUF_TIMEOUT);
784 } else {
785 del_timer(&tid_agg_rx->reorder_timer);
786 }
787 }
788
789 /*
790 * As this function belongs to the RX path it must be under
791 * rcu_read_lock protection. It returns false if the frame
792 * can be processed immediately, true if it was consumed.
793 */
794 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
795 struct tid_ampdu_rx *tid_agg_rx,
796 struct sk_buff *skb,
797 struct sk_buff_head *frames)
798 {
799 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
800 u16 sc = le16_to_cpu(hdr->seq_ctrl);
801 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
802 u16 head_seq_num, buf_size;
803 int index;
804 bool ret = true;
805
806 spin_lock(&tid_agg_rx->reorder_lock);
807
808 buf_size = tid_agg_rx->buf_size;
809 head_seq_num = tid_agg_rx->head_seq_num;
810
811 /* frame with out of date sequence number */
812 if (seq_less(mpdu_seq_num, head_seq_num)) {
813 dev_kfree_skb(skb);
814 goto out;
815 }
816
817 /*
818 * If frame the sequence number exceeds our buffering window
819 * size release some previous frames to make room for this one.
820 */
821 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
822 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
823 /* release stored frames up to new head to stack */
824 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
825 head_seq_num, frames);
826 }
827
828 /* Now the new frame is always in the range of the reordering buffer */
829
830 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
831
832 /* check if we already stored this frame */
833 if (tid_agg_rx->reorder_buf[index]) {
834 dev_kfree_skb(skb);
835 goto out;
836 }
837
838 /*
839 * If the current MPDU is in the right order and nothing else
840 * is stored we can process it directly, no need to buffer it.
841 * If it is first but there's something stored, we may be able
842 * to release frames after this one.
843 */
844 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
845 tid_agg_rx->stored_mpdu_num == 0) {
846 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
847 ret = false;
848 goto out;
849 }
850
851 /* put the frame in the reordering buffer */
852 tid_agg_rx->reorder_buf[index] = skb;
853 tid_agg_rx->reorder_time[index] = jiffies;
854 tid_agg_rx->stored_mpdu_num++;
855 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
856
857 out:
858 spin_unlock(&tid_agg_rx->reorder_lock);
859 return ret;
860 }
861
862 /*
863 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
864 * true if the MPDU was buffered, false if it should be processed.
865 */
866 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
867 struct sk_buff_head *frames)
868 {
869 struct sk_buff *skb = rx->skb;
870 struct ieee80211_local *local = rx->local;
871 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
872 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
873 struct sta_info *sta = rx->sta;
874 struct tid_ampdu_rx *tid_agg_rx;
875 u16 sc;
876 u8 tid, ack_policy;
877
878 if (!ieee80211_is_data_qos(hdr->frame_control))
879 goto dont_reorder;
880
881 /*
882 * filter the QoS data rx stream according to
883 * STA/TID and check if this STA/TID is on aggregation
884 */
885
886 if (!sta)
887 goto dont_reorder;
888
889 ack_policy = *ieee80211_get_qos_ctl(hdr) &
890 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
891 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
892
893 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
894 if (!tid_agg_rx)
895 goto dont_reorder;
896
897 /* qos null data frames are excluded */
898 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
899 goto dont_reorder;
900
901 /* not part of a BA session */
902 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
903 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
904 goto dont_reorder;
905
906 /* not actually part of this BA session */
907 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
908 goto dont_reorder;
909
910 /* new, potentially un-ordered, ampdu frame - process it */
911
912 /* reset session timer */
913 if (tid_agg_rx->timeout)
914 tid_agg_rx->last_rx = jiffies;
915
916 /* if this mpdu is fragmented - terminate rx aggregation session */
917 sc = le16_to_cpu(hdr->seq_ctrl);
918 if (sc & IEEE80211_SCTL_FRAG) {
919 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
920 skb_queue_tail(&rx->sdata->skb_queue, skb);
921 ieee80211_queue_work(&local->hw, &rx->sdata->work);
922 return;
923 }
924
925 /*
926 * No locking needed -- we will only ever process one
927 * RX packet at a time, and thus own tid_agg_rx. All
928 * other code manipulating it needs to (and does) make
929 * sure that we cannot get to it any more before doing
930 * anything with it.
931 */
932 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
933 frames))
934 return;
935
936 dont_reorder:
937 __skb_queue_tail(frames, skb);
938 }
939
940 static ieee80211_rx_result debug_noinline
941 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
942 {
943 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
944 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
945
946 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
947 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
948 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
949 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
950 hdr->seq_ctrl)) {
951 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
952 rx->local->dot11FrameDuplicateCount++;
953 rx->sta->num_duplicates++;
954 }
955 return RX_DROP_UNUSABLE;
956 } else
957 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
958 }
959
960 if (unlikely(rx->skb->len < 16)) {
961 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
962 return RX_DROP_MONITOR;
963 }
964
965 /* Drop disallowed frame classes based on STA auth/assoc state;
966 * IEEE 802.11, Chap 5.5.
967 *
968 * mac80211 filters only based on association state, i.e. it drops
969 * Class 3 frames from not associated stations. hostapd sends
970 * deauth/disassoc frames when needed. In addition, hostapd is
971 * responsible for filtering on both auth and assoc states.
972 */
973
974 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
975 return ieee80211_rx_mesh_check(rx);
976
977 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
978 ieee80211_is_pspoll(hdr->frame_control)) &&
979 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
980 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
981 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
982 /*
983 * accept port control frames from the AP even when it's not
984 * yet marked ASSOC to prevent a race where we don't set the
985 * assoc bit quickly enough before it sends the first frame
986 */
987 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
988 ieee80211_is_data_present(hdr->frame_control)) {
989 unsigned int hdrlen;
990 __be16 ethertype;
991
992 hdrlen = ieee80211_hdrlen(hdr->frame_control);
993
994 if (rx->skb->len < hdrlen + 8)
995 return RX_DROP_MONITOR;
996
997 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
998 if (ethertype == rx->sdata->control_port_protocol)
999 return RX_CONTINUE;
1000 }
1001
1002 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1003 cfg80211_rx_spurious_frame(rx->sdata->dev,
1004 hdr->addr2,
1005 GFP_ATOMIC))
1006 return RX_DROP_UNUSABLE;
1007
1008 return RX_DROP_MONITOR;
1009 }
1010
1011 return RX_CONTINUE;
1012 }
1013
1014
1015 static ieee80211_rx_result debug_noinline
1016 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1017 {
1018 struct sk_buff *skb = rx->skb;
1019 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1020 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1021 int keyidx;
1022 int hdrlen;
1023 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1024 struct ieee80211_key *sta_ptk = NULL;
1025 int mmie_keyidx = -1;
1026 __le16 fc;
1027
1028 /*
1029 * Key selection 101
1030 *
1031 * There are four types of keys:
1032 * - GTK (group keys)
1033 * - IGTK (group keys for management frames)
1034 * - PTK (pairwise keys)
1035 * - STK (station-to-station pairwise keys)
1036 *
1037 * When selecting a key, we have to distinguish between multicast
1038 * (including broadcast) and unicast frames, the latter can only
1039 * use PTKs and STKs while the former always use GTKs and IGTKs.
1040 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1041 * unicast frames can also use key indices like GTKs. Hence, if we
1042 * don't have a PTK/STK we check the key index for a WEP key.
1043 *
1044 * Note that in a regular BSS, multicast frames are sent by the
1045 * AP only, associated stations unicast the frame to the AP first
1046 * which then multicasts it on their behalf.
1047 *
1048 * There is also a slight problem in IBSS mode: GTKs are negotiated
1049 * with each station, that is something we don't currently handle.
1050 * The spec seems to expect that one negotiates the same key with
1051 * every station but there's no such requirement; VLANs could be
1052 * possible.
1053 */
1054
1055 /*
1056 * No point in finding a key and decrypting if the frame is neither
1057 * addressed to us nor a multicast frame.
1058 */
1059 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1060 return RX_CONTINUE;
1061
1062 /* start without a key */
1063 rx->key = NULL;
1064
1065 if (rx->sta)
1066 sta_ptk = rcu_dereference(rx->sta->ptk);
1067
1068 fc = hdr->frame_control;
1069
1070 if (!ieee80211_has_protected(fc))
1071 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1072
1073 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1074 rx->key = sta_ptk;
1075 if ((status->flag & RX_FLAG_DECRYPTED) &&
1076 (status->flag & RX_FLAG_IV_STRIPPED))
1077 return RX_CONTINUE;
1078 /* Skip decryption if the frame is not protected. */
1079 if (!ieee80211_has_protected(fc))
1080 return RX_CONTINUE;
1081 } else if (mmie_keyidx >= 0) {
1082 /* Broadcast/multicast robust management frame / BIP */
1083 if ((status->flag & RX_FLAG_DECRYPTED) &&
1084 (status->flag & RX_FLAG_IV_STRIPPED))
1085 return RX_CONTINUE;
1086
1087 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1088 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1089 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1090 if (rx->sta)
1091 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1092 if (!rx->key)
1093 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1094 } else if (!ieee80211_has_protected(fc)) {
1095 /*
1096 * The frame was not protected, so skip decryption. However, we
1097 * need to set rx->key if there is a key that could have been
1098 * used so that the frame may be dropped if encryption would
1099 * have been expected.
1100 */
1101 struct ieee80211_key *key = NULL;
1102 struct ieee80211_sub_if_data *sdata = rx->sdata;
1103 int i;
1104
1105 if (ieee80211_is_mgmt(fc) &&
1106 is_multicast_ether_addr(hdr->addr1) &&
1107 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1108 rx->key = key;
1109 else {
1110 if (rx->sta) {
1111 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1112 key = rcu_dereference(rx->sta->gtk[i]);
1113 if (key)
1114 break;
1115 }
1116 }
1117 if (!key) {
1118 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1119 key = rcu_dereference(sdata->keys[i]);
1120 if (key)
1121 break;
1122 }
1123 }
1124 if (key)
1125 rx->key = key;
1126 }
1127 return RX_CONTINUE;
1128 } else {
1129 u8 keyid;
1130 /*
1131 * The device doesn't give us the IV so we won't be
1132 * able to look up the key. That's ok though, we
1133 * don't need to decrypt the frame, we just won't
1134 * be able to keep statistics accurate.
1135 * Except for key threshold notifications, should
1136 * we somehow allow the driver to tell us which key
1137 * the hardware used if this flag is set?
1138 */
1139 if ((status->flag & RX_FLAG_DECRYPTED) &&
1140 (status->flag & RX_FLAG_IV_STRIPPED))
1141 return RX_CONTINUE;
1142
1143 hdrlen = ieee80211_hdrlen(fc);
1144
1145 if (rx->skb->len < 8 + hdrlen)
1146 return RX_DROP_UNUSABLE; /* TODO: count this? */
1147
1148 /*
1149 * no need to call ieee80211_wep_get_keyidx,
1150 * it verifies a bunch of things we've done already
1151 */
1152 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1153 keyidx = keyid >> 6;
1154
1155 /* check per-station GTK first, if multicast packet */
1156 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1157 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1158
1159 /* if not found, try default key */
1160 if (!rx->key) {
1161 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1162
1163 /*
1164 * RSNA-protected unicast frames should always be
1165 * sent with pairwise or station-to-station keys,
1166 * but for WEP we allow using a key index as well.
1167 */
1168 if (rx->key &&
1169 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1170 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1171 !is_multicast_ether_addr(hdr->addr1))
1172 rx->key = NULL;
1173 }
1174 }
1175
1176 if (rx->key) {
1177 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1178 return RX_DROP_MONITOR;
1179
1180 rx->key->tx_rx_count++;
1181 /* TODO: add threshold stuff again */
1182 } else {
1183 return RX_DROP_MONITOR;
1184 }
1185
1186 switch (rx->key->conf.cipher) {
1187 case WLAN_CIPHER_SUITE_WEP40:
1188 case WLAN_CIPHER_SUITE_WEP104:
1189 result = ieee80211_crypto_wep_decrypt(rx);
1190 break;
1191 case WLAN_CIPHER_SUITE_TKIP:
1192 result = ieee80211_crypto_tkip_decrypt(rx);
1193 break;
1194 case WLAN_CIPHER_SUITE_CCMP:
1195 result = ieee80211_crypto_ccmp_decrypt(rx);
1196 break;
1197 case WLAN_CIPHER_SUITE_AES_CMAC:
1198 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1199 break;
1200 default:
1201 /*
1202 * We can reach here only with HW-only algorithms
1203 * but why didn't it decrypt the frame?!
1204 */
1205 return RX_DROP_UNUSABLE;
1206 }
1207
1208 /* the hdr variable is invalid after the decrypt handlers */
1209
1210 /* either the frame has been decrypted or will be dropped */
1211 status->flag |= RX_FLAG_DECRYPTED;
1212
1213 return result;
1214 }
1215
1216 static ieee80211_rx_result debug_noinline
1217 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1218 {
1219 struct ieee80211_local *local;
1220 struct ieee80211_hdr *hdr;
1221 struct sk_buff *skb;
1222
1223 local = rx->local;
1224 skb = rx->skb;
1225 hdr = (struct ieee80211_hdr *) skb->data;
1226
1227 if (!local->pspolling)
1228 return RX_CONTINUE;
1229
1230 if (!ieee80211_has_fromds(hdr->frame_control))
1231 /* this is not from AP */
1232 return RX_CONTINUE;
1233
1234 if (!ieee80211_is_data(hdr->frame_control))
1235 return RX_CONTINUE;
1236
1237 if (!ieee80211_has_moredata(hdr->frame_control)) {
1238 /* AP has no more frames buffered for us */
1239 local->pspolling = false;
1240 return RX_CONTINUE;
1241 }
1242
1243 /* more data bit is set, let's request a new frame from the AP */
1244 ieee80211_send_pspoll(local, rx->sdata);
1245
1246 return RX_CONTINUE;
1247 }
1248
1249 static void sta_ps_start(struct sta_info *sta)
1250 {
1251 struct ieee80211_sub_if_data *sdata = sta->sdata;
1252 struct ieee80211_local *local = sdata->local;
1253 struct ps_data *ps;
1254
1255 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1256 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1257 ps = &sdata->bss->ps;
1258 else
1259 return;
1260
1261 atomic_inc(&ps->num_sta_ps);
1262 set_sta_flag(sta, WLAN_STA_PS_STA);
1263 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1264 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1265 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1266 sta->sta.addr, sta->sta.aid);
1267 }
1268
1269 static void sta_ps_end(struct sta_info *sta)
1270 {
1271 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1272 sta->sta.addr, sta->sta.aid);
1273
1274 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1275 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1276 sta->sta.addr, sta->sta.aid);
1277 return;
1278 }
1279
1280 ieee80211_sta_ps_deliver_wakeup(sta);
1281 }
1282
1283 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1284 {
1285 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1286 bool in_ps;
1287
1288 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1289
1290 /* Don't let the same PS state be set twice */
1291 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1292 if ((start && in_ps) || (!start && !in_ps))
1293 return -EINVAL;
1294
1295 if (start)
1296 sta_ps_start(sta_inf);
1297 else
1298 sta_ps_end(sta_inf);
1299
1300 return 0;
1301 }
1302 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1303
1304 static ieee80211_rx_result debug_noinline
1305 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1306 {
1307 struct ieee80211_sub_if_data *sdata = rx->sdata;
1308 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1310 int tid, ac;
1311
1312 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1313 return RX_CONTINUE;
1314
1315 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1316 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1317 return RX_CONTINUE;
1318
1319 /*
1320 * The device handles station powersave, so don't do anything about
1321 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1322 * it to mac80211 since they're handled.)
1323 */
1324 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1325 return RX_CONTINUE;
1326
1327 /*
1328 * Don't do anything if the station isn't already asleep. In
1329 * the uAPSD case, the station will probably be marked asleep,
1330 * in the PS-Poll case the station must be confused ...
1331 */
1332 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1333 return RX_CONTINUE;
1334
1335 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1336 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1337 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1338 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1339 else
1340 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1341 }
1342
1343 /* Free PS Poll skb here instead of returning RX_DROP that would
1344 * count as an dropped frame. */
1345 dev_kfree_skb(rx->skb);
1346
1347 return RX_QUEUED;
1348 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1349 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1350 ieee80211_has_pm(hdr->frame_control) &&
1351 (ieee80211_is_data_qos(hdr->frame_control) ||
1352 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1353 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1354 ac = ieee802_1d_to_ac[tid & 7];
1355
1356 /*
1357 * If this AC is not trigger-enabled do nothing.
1358 *
1359 * NB: This could/should check a separate bitmap of trigger-
1360 * enabled queues, but for now we only implement uAPSD w/o
1361 * TSPEC changes to the ACs, so they're always the same.
1362 */
1363 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1364 return RX_CONTINUE;
1365
1366 /* if we are in a service period, do nothing */
1367 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1368 return RX_CONTINUE;
1369
1370 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1371 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1372 else
1373 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1374 }
1375
1376 return RX_CONTINUE;
1377 }
1378
1379 static ieee80211_rx_result debug_noinline
1380 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1381 {
1382 struct sta_info *sta = rx->sta;
1383 struct sk_buff *skb = rx->skb;
1384 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1385 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1386
1387 if (!sta)
1388 return RX_CONTINUE;
1389
1390 /*
1391 * Update last_rx only for IBSS packets which are for the current
1392 * BSSID and for station already AUTHORIZED to avoid keeping the
1393 * current IBSS network alive in cases where other STAs start
1394 * using different BSSID. This will also give the station another
1395 * chance to restart the authentication/authorization in case
1396 * something went wrong the first time.
1397 */
1398 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1399 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1400 NL80211_IFTYPE_ADHOC);
1401 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1402 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1403 sta->last_rx = jiffies;
1404 if (ieee80211_is_data(hdr->frame_control)) {
1405 sta->last_rx_rate_idx = status->rate_idx;
1406 sta->last_rx_rate_flag = status->flag;
1407 sta->last_rx_rate_vht_nss = status->vht_nss;
1408 }
1409 }
1410 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1411 /*
1412 * Mesh beacons will update last_rx when if they are found to
1413 * match the current local configuration when processed.
1414 */
1415 sta->last_rx = jiffies;
1416 if (ieee80211_is_data(hdr->frame_control)) {
1417 sta->last_rx_rate_idx = status->rate_idx;
1418 sta->last_rx_rate_flag = status->flag;
1419 sta->last_rx_rate_vht_nss = status->vht_nss;
1420 }
1421 }
1422
1423 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1424 return RX_CONTINUE;
1425
1426 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1427 ieee80211_sta_rx_notify(rx->sdata, hdr);
1428
1429 sta->rx_fragments++;
1430 sta->rx_bytes += rx->skb->len;
1431 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1432 sta->last_signal = status->signal;
1433 ewma_add(&sta->avg_signal, -status->signal);
1434 }
1435
1436 /*
1437 * Change STA power saving mode only at the end of a frame
1438 * exchange sequence.
1439 */
1440 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1441 !ieee80211_has_morefrags(hdr->frame_control) &&
1442 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1443 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1444 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1445 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1446 /*
1447 * Ignore doze->wake transitions that are
1448 * indicated by non-data frames, the standard
1449 * is unclear here, but for example going to
1450 * PS mode and then scanning would cause a
1451 * doze->wake transition for the probe request,
1452 * and that is clearly undesirable.
1453 */
1454 if (ieee80211_is_data(hdr->frame_control) &&
1455 !ieee80211_has_pm(hdr->frame_control))
1456 sta_ps_end(sta);
1457 } else {
1458 if (ieee80211_has_pm(hdr->frame_control))
1459 sta_ps_start(sta);
1460 }
1461 }
1462
1463 /* mesh power save support */
1464 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1465 ieee80211_mps_rx_h_sta_process(sta, hdr);
1466
1467 /*
1468 * Drop (qos-)data::nullfunc frames silently, since they
1469 * are used only to control station power saving mode.
1470 */
1471 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1472 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1473 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1474
1475 /*
1476 * If we receive a 4-addr nullfunc frame from a STA
1477 * that was not moved to a 4-addr STA vlan yet send
1478 * the event to userspace and for older hostapd drop
1479 * the frame to the monitor interface.
1480 */
1481 if (ieee80211_has_a4(hdr->frame_control) &&
1482 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1483 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1484 !rx->sdata->u.vlan.sta))) {
1485 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1486 cfg80211_rx_unexpected_4addr_frame(
1487 rx->sdata->dev, sta->sta.addr,
1488 GFP_ATOMIC);
1489 return RX_DROP_MONITOR;
1490 }
1491 /*
1492 * Update counter and free packet here to avoid
1493 * counting this as a dropped packed.
1494 */
1495 sta->rx_packets++;
1496 dev_kfree_skb(rx->skb);
1497 return RX_QUEUED;
1498 }
1499
1500 return RX_CONTINUE;
1501 } /* ieee80211_rx_h_sta_process */
1502
1503 static inline struct ieee80211_fragment_entry *
1504 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1505 unsigned int frag, unsigned int seq, int rx_queue,
1506 struct sk_buff **skb)
1507 {
1508 struct ieee80211_fragment_entry *entry;
1509
1510 entry = &sdata->fragments[sdata->fragment_next++];
1511 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1512 sdata->fragment_next = 0;
1513
1514 if (!skb_queue_empty(&entry->skb_list))
1515 __skb_queue_purge(&entry->skb_list);
1516
1517 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1518 *skb = NULL;
1519 entry->first_frag_time = jiffies;
1520 entry->seq = seq;
1521 entry->rx_queue = rx_queue;
1522 entry->last_frag = frag;
1523 entry->ccmp = 0;
1524 entry->extra_len = 0;
1525
1526 return entry;
1527 }
1528
1529 static inline struct ieee80211_fragment_entry *
1530 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1531 unsigned int frag, unsigned int seq,
1532 int rx_queue, struct ieee80211_hdr *hdr)
1533 {
1534 struct ieee80211_fragment_entry *entry;
1535 int i, idx;
1536
1537 idx = sdata->fragment_next;
1538 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1539 struct ieee80211_hdr *f_hdr;
1540
1541 idx--;
1542 if (idx < 0)
1543 idx = IEEE80211_FRAGMENT_MAX - 1;
1544
1545 entry = &sdata->fragments[idx];
1546 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1547 entry->rx_queue != rx_queue ||
1548 entry->last_frag + 1 != frag)
1549 continue;
1550
1551 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1552
1553 /*
1554 * Check ftype and addresses are equal, else check next fragment
1555 */
1556 if (((hdr->frame_control ^ f_hdr->frame_control) &
1557 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1558 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1559 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1560 continue;
1561
1562 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1563 __skb_queue_purge(&entry->skb_list);
1564 continue;
1565 }
1566 return entry;
1567 }
1568
1569 return NULL;
1570 }
1571
1572 static ieee80211_rx_result debug_noinline
1573 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1574 {
1575 struct ieee80211_hdr *hdr;
1576 u16 sc;
1577 __le16 fc;
1578 unsigned int frag, seq;
1579 struct ieee80211_fragment_entry *entry;
1580 struct sk_buff *skb;
1581 struct ieee80211_rx_status *status;
1582
1583 hdr = (struct ieee80211_hdr *)rx->skb->data;
1584 fc = hdr->frame_control;
1585
1586 if (ieee80211_is_ctl(fc))
1587 return RX_CONTINUE;
1588
1589 sc = le16_to_cpu(hdr->seq_ctrl);
1590 frag = sc & IEEE80211_SCTL_FRAG;
1591
1592 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1593 is_multicast_ether_addr(hdr->addr1))) {
1594 /* not fragmented */
1595 goto out;
1596 }
1597 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1598
1599 if (skb_linearize(rx->skb))
1600 return RX_DROP_UNUSABLE;
1601
1602 /*
1603 * skb_linearize() might change the skb->data and
1604 * previously cached variables (in this case, hdr) need to
1605 * be refreshed with the new data.
1606 */
1607 hdr = (struct ieee80211_hdr *)rx->skb->data;
1608 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1609
1610 if (frag == 0) {
1611 /* This is the first fragment of a new frame. */
1612 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1613 rx->seqno_idx, &(rx->skb));
1614 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1615 ieee80211_has_protected(fc)) {
1616 int queue = rx->security_idx;
1617 /* Store CCMP PN so that we can verify that the next
1618 * fragment has a sequential PN value. */
1619 entry->ccmp = 1;
1620 memcpy(entry->last_pn,
1621 rx->key->u.ccmp.rx_pn[queue],
1622 CCMP_PN_LEN);
1623 }
1624 return RX_QUEUED;
1625 }
1626
1627 /* This is a fragment for a frame that should already be pending in
1628 * fragment cache. Add this fragment to the end of the pending entry.
1629 */
1630 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1631 rx->seqno_idx, hdr);
1632 if (!entry) {
1633 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1634 return RX_DROP_MONITOR;
1635 }
1636
1637 /* Verify that MPDUs within one MSDU have sequential PN values.
1638 * (IEEE 802.11i, 8.3.3.4.5) */
1639 if (entry->ccmp) {
1640 int i;
1641 u8 pn[CCMP_PN_LEN], *rpn;
1642 int queue;
1643 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1644 return RX_DROP_UNUSABLE;
1645 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1646 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1647 pn[i]++;
1648 if (pn[i])
1649 break;
1650 }
1651 queue = rx->security_idx;
1652 rpn = rx->key->u.ccmp.rx_pn[queue];
1653 if (memcmp(pn, rpn, CCMP_PN_LEN))
1654 return RX_DROP_UNUSABLE;
1655 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1656 }
1657
1658 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1659 __skb_queue_tail(&entry->skb_list, rx->skb);
1660 entry->last_frag = frag;
1661 entry->extra_len += rx->skb->len;
1662 if (ieee80211_has_morefrags(fc)) {
1663 rx->skb = NULL;
1664 return RX_QUEUED;
1665 }
1666
1667 rx->skb = __skb_dequeue(&entry->skb_list);
1668 if (skb_tailroom(rx->skb) < entry->extra_len) {
1669 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1670 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1671 GFP_ATOMIC))) {
1672 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1673 __skb_queue_purge(&entry->skb_list);
1674 return RX_DROP_UNUSABLE;
1675 }
1676 }
1677 while ((skb = __skb_dequeue(&entry->skb_list))) {
1678 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1679 dev_kfree_skb(skb);
1680 }
1681
1682 /* Complete frame has been reassembled - process it now */
1683 status = IEEE80211_SKB_RXCB(rx->skb);
1684 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1685
1686 out:
1687 if (rx->sta)
1688 rx->sta->rx_packets++;
1689 if (is_multicast_ether_addr(hdr->addr1))
1690 rx->local->dot11MulticastReceivedFrameCount++;
1691 else
1692 ieee80211_led_rx(rx->local);
1693 return RX_CONTINUE;
1694 }
1695
1696 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1697 {
1698 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1699 return -EACCES;
1700
1701 return 0;
1702 }
1703
1704 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1705 {
1706 struct sk_buff *skb = rx->skb;
1707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1708
1709 /*
1710 * Pass through unencrypted frames if the hardware has
1711 * decrypted them already.
1712 */
1713 if (status->flag & RX_FLAG_DECRYPTED)
1714 return 0;
1715
1716 /* Drop unencrypted frames if key is set. */
1717 if (unlikely(!ieee80211_has_protected(fc) &&
1718 !ieee80211_is_nullfunc(fc) &&
1719 ieee80211_is_data(fc) &&
1720 (rx->key || rx->sdata->drop_unencrypted)))
1721 return -EACCES;
1722
1723 return 0;
1724 }
1725
1726 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1727 {
1728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1729 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1730 __le16 fc = hdr->frame_control;
1731
1732 /*
1733 * Pass through unencrypted frames if the hardware has
1734 * decrypted them already.
1735 */
1736 if (status->flag & RX_FLAG_DECRYPTED)
1737 return 0;
1738
1739 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1740 if (unlikely(!ieee80211_has_protected(fc) &&
1741 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1742 rx->key)) {
1743 if (ieee80211_is_deauth(fc))
1744 cfg80211_send_unprot_deauth(rx->sdata->dev,
1745 rx->skb->data,
1746 rx->skb->len);
1747 else if (ieee80211_is_disassoc(fc))
1748 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1749 rx->skb->data,
1750 rx->skb->len);
1751 return -EACCES;
1752 }
1753 /* BIP does not use Protected field, so need to check MMIE */
1754 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1755 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1756 if (ieee80211_is_deauth(fc))
1757 cfg80211_send_unprot_deauth(rx->sdata->dev,
1758 rx->skb->data,
1759 rx->skb->len);
1760 else if (ieee80211_is_disassoc(fc))
1761 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1762 rx->skb->data,
1763 rx->skb->len);
1764 return -EACCES;
1765 }
1766 /*
1767 * When using MFP, Action frames are not allowed prior to
1768 * having configured keys.
1769 */
1770 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1771 ieee80211_is_robust_mgmt_frame(
1772 (struct ieee80211_hdr *) rx->skb->data)))
1773 return -EACCES;
1774 }
1775
1776 return 0;
1777 }
1778
1779 static int
1780 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1781 {
1782 struct ieee80211_sub_if_data *sdata = rx->sdata;
1783 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1784 bool check_port_control = false;
1785 struct ethhdr *ehdr;
1786 int ret;
1787
1788 *port_control = false;
1789 if (ieee80211_has_a4(hdr->frame_control) &&
1790 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1791 return -1;
1792
1793 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1794 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1795
1796 if (!sdata->u.mgd.use_4addr)
1797 return -1;
1798 else
1799 check_port_control = true;
1800 }
1801
1802 if (is_multicast_ether_addr(hdr->addr1) &&
1803 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1804 return -1;
1805
1806 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1807 if (ret < 0)
1808 return ret;
1809
1810 ehdr = (struct ethhdr *) rx->skb->data;
1811 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1812 *port_control = true;
1813 else if (check_port_control)
1814 return -1;
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * requires that rx->skb is a frame with ethernet header
1821 */
1822 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1823 {
1824 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1825 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1826 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1827
1828 /*
1829 * Allow EAPOL frames to us/the PAE group address regardless
1830 * of whether the frame was encrypted or not.
1831 */
1832 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1833 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1834 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1835 return true;
1836
1837 if (ieee80211_802_1x_port_control(rx) ||
1838 ieee80211_drop_unencrypted(rx, fc))
1839 return false;
1840
1841 return true;
1842 }
1843
1844 /*
1845 * requires that rx->skb is a frame with ethernet header
1846 */
1847 static void
1848 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1849 {
1850 struct ieee80211_sub_if_data *sdata = rx->sdata;
1851 struct net_device *dev = sdata->dev;
1852 struct sk_buff *skb, *xmit_skb;
1853 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1854 struct sta_info *dsta;
1855 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1856
1857 skb = rx->skb;
1858 xmit_skb = NULL;
1859
1860 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1861 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1862 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1863 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1864 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1865 if (is_multicast_ether_addr(ehdr->h_dest)) {
1866 /*
1867 * send multicast frames both to higher layers in
1868 * local net stack and back to the wireless medium
1869 */
1870 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1871 if (!xmit_skb)
1872 net_info_ratelimited("%s: failed to clone multicast frame\n",
1873 dev->name);
1874 } else {
1875 dsta = sta_info_get(sdata, skb->data);
1876 if (dsta) {
1877 /*
1878 * The destination station is associated to
1879 * this AP (in this VLAN), so send the frame
1880 * directly to it and do not pass it to local
1881 * net stack.
1882 */
1883 xmit_skb = skb;
1884 skb = NULL;
1885 }
1886 }
1887 }
1888
1889 if (skb) {
1890 int align __maybe_unused;
1891
1892 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1893 /*
1894 * 'align' will only take the values 0 or 2 here
1895 * since all frames are required to be aligned
1896 * to 2-byte boundaries when being passed to
1897 * mac80211. That also explains the __skb_push()
1898 * below.
1899 */
1900 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1901 if (align) {
1902 if (WARN_ON(skb_headroom(skb) < 3)) {
1903 dev_kfree_skb(skb);
1904 skb = NULL;
1905 } else {
1906 u8 *data = skb->data;
1907 size_t len = skb_headlen(skb);
1908 skb->data -= align;
1909 memmove(skb->data, data, len);
1910 skb_set_tail_pointer(skb, len);
1911 }
1912 }
1913 #endif
1914
1915 if (skb) {
1916 /* deliver to local stack */
1917 skb->protocol = eth_type_trans(skb, dev);
1918 memset(skb->cb, 0, sizeof(skb->cb));
1919 netif_receive_skb(skb);
1920 }
1921 }
1922
1923 if (xmit_skb) {
1924 /*
1925 * Send to wireless media and increase priority by 256 to
1926 * keep the received priority instead of reclassifying
1927 * the frame (see cfg80211_classify8021d).
1928 */
1929 xmit_skb->priority += 256;
1930 xmit_skb->protocol = htons(ETH_P_802_3);
1931 skb_reset_network_header(xmit_skb);
1932 skb_reset_mac_header(xmit_skb);
1933 dev_queue_xmit(xmit_skb);
1934 }
1935 }
1936
1937 static ieee80211_rx_result debug_noinline
1938 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1939 {
1940 struct net_device *dev = rx->sdata->dev;
1941 struct sk_buff *skb = rx->skb;
1942 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1943 __le16 fc = hdr->frame_control;
1944 struct sk_buff_head frame_list;
1945 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1946
1947 if (unlikely(!ieee80211_is_data(fc)))
1948 return RX_CONTINUE;
1949
1950 if (unlikely(!ieee80211_is_data_present(fc)))
1951 return RX_DROP_MONITOR;
1952
1953 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1954 return RX_CONTINUE;
1955
1956 if (ieee80211_has_a4(hdr->frame_control) &&
1957 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1958 !rx->sdata->u.vlan.sta)
1959 return RX_DROP_UNUSABLE;
1960
1961 if (is_multicast_ether_addr(hdr->addr1) &&
1962 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1963 rx->sdata->u.vlan.sta) ||
1964 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1965 rx->sdata->u.mgd.use_4addr)))
1966 return RX_DROP_UNUSABLE;
1967
1968 skb->dev = dev;
1969 __skb_queue_head_init(&frame_list);
1970
1971 if (skb_linearize(skb))
1972 return RX_DROP_UNUSABLE;
1973
1974 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1975 rx->sdata->vif.type,
1976 rx->local->hw.extra_tx_headroom, true);
1977
1978 while (!skb_queue_empty(&frame_list)) {
1979 rx->skb = __skb_dequeue(&frame_list);
1980
1981 if (!ieee80211_frame_allowed(rx, fc)) {
1982 dev_kfree_skb(rx->skb);
1983 continue;
1984 }
1985 dev->stats.rx_packets++;
1986 dev->stats.rx_bytes += rx->skb->len;
1987
1988 ieee80211_deliver_skb(rx);
1989 }
1990
1991 return RX_QUEUED;
1992 }
1993
1994 #ifdef CONFIG_MAC80211_MESH
1995 static ieee80211_rx_result
1996 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1997 {
1998 struct ieee80211_hdr *fwd_hdr, *hdr;
1999 struct ieee80211_tx_info *info;
2000 struct ieee80211s_hdr *mesh_hdr;
2001 struct sk_buff *skb = rx->skb, *fwd_skb;
2002 struct ieee80211_local *local = rx->local;
2003 struct ieee80211_sub_if_data *sdata = rx->sdata;
2004 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2005 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2006 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2007 u16 q, hdrlen;
2008
2009 hdr = (struct ieee80211_hdr *) skb->data;
2010 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2011
2012 /* make sure fixed part of mesh header is there, also checks skb len */
2013 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2014 return RX_DROP_MONITOR;
2015
2016 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2017
2018 /* make sure full mesh header is there, also checks skb len */
2019 if (!pskb_may_pull(rx->skb,
2020 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2021 return RX_DROP_MONITOR;
2022
2023 /* reload pointers */
2024 hdr = (struct ieee80211_hdr *) skb->data;
2025 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2026
2027 /* frame is in RMC, don't forward */
2028 if (ieee80211_is_data(hdr->frame_control) &&
2029 is_multicast_ether_addr(hdr->addr1) &&
2030 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2031 return RX_DROP_MONITOR;
2032
2033 if (!ieee80211_is_data(hdr->frame_control) ||
2034 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2035 return RX_CONTINUE;
2036
2037 if (!mesh_hdr->ttl)
2038 return RX_DROP_MONITOR;
2039
2040 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2041 struct mesh_path *mppath;
2042 char *proxied_addr;
2043 char *mpp_addr;
2044
2045 if (is_multicast_ether_addr(hdr->addr1)) {
2046 mpp_addr = hdr->addr3;
2047 proxied_addr = mesh_hdr->eaddr1;
2048 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2049 /* has_a4 already checked in ieee80211_rx_mesh_check */
2050 mpp_addr = hdr->addr4;
2051 proxied_addr = mesh_hdr->eaddr2;
2052 } else {
2053 return RX_DROP_MONITOR;
2054 }
2055
2056 rcu_read_lock();
2057 mppath = mpp_path_lookup(sdata, proxied_addr);
2058 if (!mppath) {
2059 mpp_path_add(sdata, proxied_addr, mpp_addr);
2060 } else {
2061 spin_lock_bh(&mppath->state_lock);
2062 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2063 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2064 spin_unlock_bh(&mppath->state_lock);
2065 }
2066 rcu_read_unlock();
2067 }
2068
2069 /* Frame has reached destination. Don't forward */
2070 if (!is_multicast_ether_addr(hdr->addr1) &&
2071 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2072 return RX_CONTINUE;
2073
2074 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2075 if (ieee80211_queue_stopped(&local->hw, q)) {
2076 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2077 return RX_DROP_MONITOR;
2078 }
2079 skb_set_queue_mapping(skb, q);
2080
2081 if (!--mesh_hdr->ttl) {
2082 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2083 goto out;
2084 }
2085
2086 if (!ifmsh->mshcfg.dot11MeshForwarding)
2087 goto out;
2088
2089 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2090 if (!fwd_skb) {
2091 net_info_ratelimited("%s: failed to clone mesh frame\n",
2092 sdata->name);
2093 goto out;
2094 }
2095
2096 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2097 info = IEEE80211_SKB_CB(fwd_skb);
2098 memset(info, 0, sizeof(*info));
2099 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2100 info->control.vif = &rx->sdata->vif;
2101 info->control.jiffies = jiffies;
2102 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2103 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2104 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2105 /* update power mode indication when forwarding */
2106 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2107 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2108 /* mesh power mode flags updated in mesh_nexthop_lookup */
2109 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2110 } else {
2111 /* unable to resolve next hop */
2112 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2113 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2114 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2115 kfree_skb(fwd_skb);
2116 return RX_DROP_MONITOR;
2117 }
2118
2119 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2120 ieee80211_add_pending_skb(local, fwd_skb);
2121 out:
2122 if (is_multicast_ether_addr(hdr->addr1) ||
2123 sdata->dev->flags & IFF_PROMISC)
2124 return RX_CONTINUE;
2125 else
2126 return RX_DROP_MONITOR;
2127 }
2128 #endif
2129
2130 static ieee80211_rx_result debug_noinline
2131 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2132 {
2133 struct ieee80211_sub_if_data *sdata = rx->sdata;
2134 struct ieee80211_local *local = rx->local;
2135 struct net_device *dev = sdata->dev;
2136 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2137 __le16 fc = hdr->frame_control;
2138 bool port_control;
2139 int err;
2140
2141 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2142 return RX_CONTINUE;
2143
2144 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2145 return RX_DROP_MONITOR;
2146
2147 /*
2148 * Send unexpected-4addr-frame event to hostapd. For older versions,
2149 * also drop the frame to cooked monitor interfaces.
2150 */
2151 if (ieee80211_has_a4(hdr->frame_control) &&
2152 sdata->vif.type == NL80211_IFTYPE_AP) {
2153 if (rx->sta &&
2154 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2155 cfg80211_rx_unexpected_4addr_frame(
2156 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2157 return RX_DROP_MONITOR;
2158 }
2159
2160 err = __ieee80211_data_to_8023(rx, &port_control);
2161 if (unlikely(err))
2162 return RX_DROP_UNUSABLE;
2163
2164 if (!ieee80211_frame_allowed(rx, fc))
2165 return RX_DROP_MONITOR;
2166
2167 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2168 unlikely(port_control) && sdata->bss) {
2169 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2170 u.ap);
2171 dev = sdata->dev;
2172 rx->sdata = sdata;
2173 }
2174
2175 rx->skb->dev = dev;
2176
2177 dev->stats.rx_packets++;
2178 dev->stats.rx_bytes += rx->skb->len;
2179
2180 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2181 !is_multicast_ether_addr(
2182 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2183 (!local->scanning &&
2184 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2185 mod_timer(&local->dynamic_ps_timer, jiffies +
2186 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2187 }
2188
2189 ieee80211_deliver_skb(rx);
2190
2191 return RX_QUEUED;
2192 }
2193
2194 static ieee80211_rx_result debug_noinline
2195 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2196 {
2197 struct sk_buff *skb = rx->skb;
2198 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2199 struct tid_ampdu_rx *tid_agg_rx;
2200 u16 start_seq_num;
2201 u16 tid;
2202
2203 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2204 return RX_CONTINUE;
2205
2206 if (ieee80211_is_back_req(bar->frame_control)) {
2207 struct {
2208 __le16 control, start_seq_num;
2209 } __packed bar_data;
2210
2211 if (!rx->sta)
2212 return RX_DROP_MONITOR;
2213
2214 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2215 &bar_data, sizeof(bar_data)))
2216 return RX_DROP_MONITOR;
2217
2218 tid = le16_to_cpu(bar_data.control) >> 12;
2219
2220 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2221 if (!tid_agg_rx)
2222 return RX_DROP_MONITOR;
2223
2224 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2225
2226 /* reset session timer */
2227 if (tid_agg_rx->timeout)
2228 mod_timer(&tid_agg_rx->session_timer,
2229 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2230
2231 spin_lock(&tid_agg_rx->reorder_lock);
2232 /* release stored frames up to start of BAR */
2233 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2234 start_seq_num, frames);
2235 spin_unlock(&tid_agg_rx->reorder_lock);
2236
2237 kfree_skb(skb);
2238 return RX_QUEUED;
2239 }
2240
2241 /*
2242 * After this point, we only want management frames,
2243 * so we can drop all remaining control frames to
2244 * cooked monitor interfaces.
2245 */
2246 return RX_DROP_MONITOR;
2247 }
2248
2249 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2250 struct ieee80211_mgmt *mgmt,
2251 size_t len)
2252 {
2253 struct ieee80211_local *local = sdata->local;
2254 struct sk_buff *skb;
2255 struct ieee80211_mgmt *resp;
2256
2257 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2258 /* Not to own unicast address */
2259 return;
2260 }
2261
2262 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2263 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2264 /* Not from the current AP or not associated yet. */
2265 return;
2266 }
2267
2268 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2269 /* Too short SA Query request frame */
2270 return;
2271 }
2272
2273 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2274 if (skb == NULL)
2275 return;
2276
2277 skb_reserve(skb, local->hw.extra_tx_headroom);
2278 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2279 memset(resp, 0, 24);
2280 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2281 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2282 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2283 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2284 IEEE80211_STYPE_ACTION);
2285 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2286 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2287 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2288 memcpy(resp->u.action.u.sa_query.trans_id,
2289 mgmt->u.action.u.sa_query.trans_id,
2290 WLAN_SA_QUERY_TR_ID_LEN);
2291
2292 ieee80211_tx_skb(sdata, skb);
2293 }
2294
2295 static ieee80211_rx_result debug_noinline
2296 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2297 {
2298 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2299 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2300
2301 /*
2302 * From here on, look only at management frames.
2303 * Data and control frames are already handled,
2304 * and unknown (reserved) frames are useless.
2305 */
2306 if (rx->skb->len < 24)
2307 return RX_DROP_MONITOR;
2308
2309 if (!ieee80211_is_mgmt(mgmt->frame_control))
2310 return RX_DROP_MONITOR;
2311
2312 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2313 ieee80211_is_beacon(mgmt->frame_control) &&
2314 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2315 int sig = 0;
2316
2317 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2318 sig = status->signal;
2319
2320 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2321 rx->skb->data, rx->skb->len,
2322 status->freq, sig);
2323 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2324 }
2325
2326 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2327 return RX_DROP_MONITOR;
2328
2329 if (ieee80211_drop_unencrypted_mgmt(rx))
2330 return RX_DROP_UNUSABLE;
2331
2332 return RX_CONTINUE;
2333 }
2334
2335 static ieee80211_rx_result debug_noinline
2336 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2337 {
2338 struct ieee80211_local *local = rx->local;
2339 struct ieee80211_sub_if_data *sdata = rx->sdata;
2340 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2341 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2342 int len = rx->skb->len;
2343
2344 if (!ieee80211_is_action(mgmt->frame_control))
2345 return RX_CONTINUE;
2346
2347 /* drop too small frames */
2348 if (len < IEEE80211_MIN_ACTION_SIZE)
2349 return RX_DROP_UNUSABLE;
2350
2351 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2352 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2353 return RX_DROP_UNUSABLE;
2354
2355 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2356 return RX_DROP_UNUSABLE;
2357
2358 switch (mgmt->u.action.category) {
2359 case WLAN_CATEGORY_HT:
2360 /* reject HT action frames from stations not supporting HT */
2361 if (!rx->sta->sta.ht_cap.ht_supported)
2362 goto invalid;
2363
2364 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2365 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2366 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2367 sdata->vif.type != NL80211_IFTYPE_AP &&
2368 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2369 break;
2370
2371 /* verify action & smps_control/chanwidth are present */
2372 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2373 goto invalid;
2374
2375 switch (mgmt->u.action.u.ht_smps.action) {
2376 case WLAN_HT_ACTION_SMPS: {
2377 struct ieee80211_supported_band *sband;
2378 enum ieee80211_smps_mode smps_mode;
2379
2380 /* convert to HT capability */
2381 switch (mgmt->u.action.u.ht_smps.smps_control) {
2382 case WLAN_HT_SMPS_CONTROL_DISABLED:
2383 smps_mode = IEEE80211_SMPS_OFF;
2384 break;
2385 case WLAN_HT_SMPS_CONTROL_STATIC:
2386 smps_mode = IEEE80211_SMPS_STATIC;
2387 break;
2388 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2389 smps_mode = IEEE80211_SMPS_DYNAMIC;
2390 break;
2391 default:
2392 goto invalid;
2393 }
2394
2395 /* if no change do nothing */
2396 if (rx->sta->sta.smps_mode == smps_mode)
2397 goto handled;
2398 rx->sta->sta.smps_mode = smps_mode;
2399
2400 sband = rx->local->hw.wiphy->bands[status->band];
2401
2402 rate_control_rate_update(local, sband, rx->sta,
2403 IEEE80211_RC_SMPS_CHANGED);
2404 goto handled;
2405 }
2406 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2407 struct ieee80211_supported_band *sband;
2408 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2409 enum ieee80211_sta_rx_bandwidth new_bw;
2410
2411 /* If it doesn't support 40 MHz it can't change ... */
2412 if (!(rx->sta->sta.ht_cap.cap &
2413 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2414 goto handled;
2415
2416 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2417 new_bw = IEEE80211_STA_RX_BW_20;
2418 else
2419 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2420
2421 if (rx->sta->sta.bandwidth == new_bw)
2422 goto handled;
2423
2424 sband = rx->local->hw.wiphy->bands[status->band];
2425
2426 rate_control_rate_update(local, sband, rx->sta,
2427 IEEE80211_RC_BW_CHANGED);
2428 goto handled;
2429 }
2430 default:
2431 goto invalid;
2432 }
2433
2434 break;
2435 case WLAN_CATEGORY_VHT:
2436 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2437 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2438 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2439 sdata->vif.type != NL80211_IFTYPE_AP &&
2440 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2441 break;
2442
2443 /* verify action code is present */
2444 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2445 goto invalid;
2446
2447 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2448 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2449 u8 opmode;
2450
2451 /* verify opmode is present */
2452 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2453 goto invalid;
2454
2455 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2456
2457 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2458 opmode, status->band,
2459 false);
2460 goto handled;
2461 }
2462 default:
2463 break;
2464 }
2465 break;
2466 case WLAN_CATEGORY_BACK:
2467 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2468 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2469 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2470 sdata->vif.type != NL80211_IFTYPE_AP &&
2471 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2472 break;
2473
2474 /* verify action_code is present */
2475 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2476 break;
2477
2478 switch (mgmt->u.action.u.addba_req.action_code) {
2479 case WLAN_ACTION_ADDBA_REQ:
2480 if (len < (IEEE80211_MIN_ACTION_SIZE +
2481 sizeof(mgmt->u.action.u.addba_req)))
2482 goto invalid;
2483 break;
2484 case WLAN_ACTION_ADDBA_RESP:
2485 if (len < (IEEE80211_MIN_ACTION_SIZE +
2486 sizeof(mgmt->u.action.u.addba_resp)))
2487 goto invalid;
2488 break;
2489 case WLAN_ACTION_DELBA:
2490 if (len < (IEEE80211_MIN_ACTION_SIZE +
2491 sizeof(mgmt->u.action.u.delba)))
2492 goto invalid;
2493 break;
2494 default:
2495 goto invalid;
2496 }
2497
2498 goto queue;
2499 case WLAN_CATEGORY_SPECTRUM_MGMT:
2500 if (status->band != IEEE80211_BAND_5GHZ)
2501 break;
2502
2503 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2504 break;
2505
2506 /* verify action_code is present */
2507 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2508 break;
2509
2510 switch (mgmt->u.action.u.measurement.action_code) {
2511 case WLAN_ACTION_SPCT_MSR_REQ:
2512 if (len < (IEEE80211_MIN_ACTION_SIZE +
2513 sizeof(mgmt->u.action.u.measurement)))
2514 break;
2515 ieee80211_process_measurement_req(sdata, mgmt, len);
2516 goto handled;
2517 case WLAN_ACTION_SPCT_CHL_SWITCH:
2518 if (len < (IEEE80211_MIN_ACTION_SIZE +
2519 sizeof(mgmt->u.action.u.chan_switch)))
2520 break;
2521
2522 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2523 break;
2524
2525 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2526 break;
2527
2528 goto queue;
2529 }
2530 break;
2531 case WLAN_CATEGORY_SA_QUERY:
2532 if (len < (IEEE80211_MIN_ACTION_SIZE +
2533 sizeof(mgmt->u.action.u.sa_query)))
2534 break;
2535
2536 switch (mgmt->u.action.u.sa_query.action) {
2537 case WLAN_ACTION_SA_QUERY_REQUEST:
2538 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2539 break;
2540 ieee80211_process_sa_query_req(sdata, mgmt, len);
2541 goto handled;
2542 }
2543 break;
2544 case WLAN_CATEGORY_SELF_PROTECTED:
2545 if (len < (IEEE80211_MIN_ACTION_SIZE +
2546 sizeof(mgmt->u.action.u.self_prot.action_code)))
2547 break;
2548
2549 switch (mgmt->u.action.u.self_prot.action_code) {
2550 case WLAN_SP_MESH_PEERING_OPEN:
2551 case WLAN_SP_MESH_PEERING_CLOSE:
2552 case WLAN_SP_MESH_PEERING_CONFIRM:
2553 if (!ieee80211_vif_is_mesh(&sdata->vif))
2554 goto invalid;
2555 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2556 /* userspace handles this frame */
2557 break;
2558 goto queue;
2559 case WLAN_SP_MGK_INFORM:
2560 case WLAN_SP_MGK_ACK:
2561 if (!ieee80211_vif_is_mesh(&sdata->vif))
2562 goto invalid;
2563 break;
2564 }
2565 break;
2566 case WLAN_CATEGORY_MESH_ACTION:
2567 if (len < (IEEE80211_MIN_ACTION_SIZE +
2568 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2569 break;
2570
2571 if (!ieee80211_vif_is_mesh(&sdata->vif))
2572 break;
2573 if (mesh_action_is_path_sel(mgmt) &&
2574 !mesh_path_sel_is_hwmp(sdata))
2575 break;
2576 goto queue;
2577 }
2578
2579 return RX_CONTINUE;
2580
2581 invalid:
2582 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2583 /* will return in the next handlers */
2584 return RX_CONTINUE;
2585
2586 handled:
2587 if (rx->sta)
2588 rx->sta->rx_packets++;
2589 dev_kfree_skb(rx->skb);
2590 return RX_QUEUED;
2591
2592 queue:
2593 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2594 skb_queue_tail(&sdata->skb_queue, rx->skb);
2595 ieee80211_queue_work(&local->hw, &sdata->work);
2596 if (rx->sta)
2597 rx->sta->rx_packets++;
2598 return RX_QUEUED;
2599 }
2600
2601 static ieee80211_rx_result debug_noinline
2602 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2603 {
2604 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2605 int sig = 0;
2606
2607 /* skip known-bad action frames and return them in the next handler */
2608 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2609 return RX_CONTINUE;
2610
2611 /*
2612 * Getting here means the kernel doesn't know how to handle
2613 * it, but maybe userspace does ... include returned frames
2614 * so userspace can register for those to know whether ones
2615 * it transmitted were processed or returned.
2616 */
2617
2618 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2619 sig = status->signal;
2620
2621 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2622 rx->skb->data, rx->skb->len,
2623 GFP_ATOMIC)) {
2624 if (rx->sta)
2625 rx->sta->rx_packets++;
2626 dev_kfree_skb(rx->skb);
2627 return RX_QUEUED;
2628 }
2629
2630 return RX_CONTINUE;
2631 }
2632
2633 static ieee80211_rx_result debug_noinline
2634 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2635 {
2636 struct ieee80211_local *local = rx->local;
2637 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2638 struct sk_buff *nskb;
2639 struct ieee80211_sub_if_data *sdata = rx->sdata;
2640 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2641
2642 if (!ieee80211_is_action(mgmt->frame_control))
2643 return RX_CONTINUE;
2644
2645 /*
2646 * For AP mode, hostapd is responsible for handling any action
2647 * frames that we didn't handle, including returning unknown
2648 * ones. For all other modes we will return them to the sender,
2649 * setting the 0x80 bit in the action category, as required by
2650 * 802.11-2012 9.24.4.
2651 * Newer versions of hostapd shall also use the management frame
2652 * registration mechanisms, but older ones still use cooked
2653 * monitor interfaces so push all frames there.
2654 */
2655 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2656 (sdata->vif.type == NL80211_IFTYPE_AP ||
2657 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2658 return RX_DROP_MONITOR;
2659
2660 if (is_multicast_ether_addr(mgmt->da))
2661 return RX_DROP_MONITOR;
2662
2663 /* do not return rejected action frames */
2664 if (mgmt->u.action.category & 0x80)
2665 return RX_DROP_UNUSABLE;
2666
2667 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2668 GFP_ATOMIC);
2669 if (nskb) {
2670 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2671
2672 nmgmt->u.action.category |= 0x80;
2673 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2674 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2675
2676 memset(nskb->cb, 0, sizeof(nskb->cb));
2677
2678 ieee80211_tx_skb(rx->sdata, nskb);
2679 }
2680 dev_kfree_skb(rx->skb);
2681 return RX_QUEUED;
2682 }
2683
2684 static ieee80211_rx_result debug_noinline
2685 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2686 {
2687 struct ieee80211_sub_if_data *sdata = rx->sdata;
2688 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2689 __le16 stype;
2690
2691 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2692
2693 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2694 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2695 sdata->vif.type != NL80211_IFTYPE_STATION)
2696 return RX_DROP_MONITOR;
2697
2698 switch (stype) {
2699 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2700 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2701 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2702 /* process for all: mesh, mlme, ibss */
2703 break;
2704 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2705 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2706 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2707 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2708 if (is_multicast_ether_addr(mgmt->da) &&
2709 !is_broadcast_ether_addr(mgmt->da))
2710 return RX_DROP_MONITOR;
2711
2712 /* process only for station */
2713 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2714 return RX_DROP_MONITOR;
2715 break;
2716 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2717 /* process only for ibss and mesh */
2718 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2719 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2720 return RX_DROP_MONITOR;
2721 break;
2722 default:
2723 return RX_DROP_MONITOR;
2724 }
2725
2726 /* queue up frame and kick off work to process it */
2727 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2728 skb_queue_tail(&sdata->skb_queue, rx->skb);
2729 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2730 if (rx->sta)
2731 rx->sta->rx_packets++;
2732
2733 return RX_QUEUED;
2734 }
2735
2736 /* TODO: use IEEE80211_RX_FRAGMENTED */
2737 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2738 struct ieee80211_rate *rate)
2739 {
2740 struct ieee80211_sub_if_data *sdata;
2741 struct ieee80211_local *local = rx->local;
2742 struct sk_buff *skb = rx->skb, *skb2;
2743 struct net_device *prev_dev = NULL;
2744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2745 int needed_headroom;
2746
2747 /*
2748 * If cooked monitor has been processed already, then
2749 * don't do it again. If not, set the flag.
2750 */
2751 if (rx->flags & IEEE80211_RX_CMNTR)
2752 goto out_free_skb;
2753 rx->flags |= IEEE80211_RX_CMNTR;
2754
2755 /* If there are no cooked monitor interfaces, just free the SKB */
2756 if (!local->cooked_mntrs)
2757 goto out_free_skb;
2758
2759 /* room for the radiotap header based on driver features */
2760 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2761
2762 if (skb_headroom(skb) < needed_headroom &&
2763 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2764 goto out_free_skb;
2765
2766 /* prepend radiotap information */
2767 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2768 false);
2769
2770 skb_set_mac_header(skb, 0);
2771 skb->ip_summed = CHECKSUM_UNNECESSARY;
2772 skb->pkt_type = PACKET_OTHERHOST;
2773 skb->protocol = htons(ETH_P_802_2);
2774
2775 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2776 if (!ieee80211_sdata_running(sdata))
2777 continue;
2778
2779 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2780 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2781 continue;
2782
2783 if (prev_dev) {
2784 skb2 = skb_clone(skb, GFP_ATOMIC);
2785 if (skb2) {
2786 skb2->dev = prev_dev;
2787 netif_receive_skb(skb2);
2788 }
2789 }
2790
2791 prev_dev = sdata->dev;
2792 sdata->dev->stats.rx_packets++;
2793 sdata->dev->stats.rx_bytes += skb->len;
2794 }
2795
2796 if (prev_dev) {
2797 skb->dev = prev_dev;
2798 netif_receive_skb(skb);
2799 return;
2800 }
2801
2802 out_free_skb:
2803 dev_kfree_skb(skb);
2804 }
2805
2806 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2807 ieee80211_rx_result res)
2808 {
2809 switch (res) {
2810 case RX_DROP_MONITOR:
2811 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2812 if (rx->sta)
2813 rx->sta->rx_dropped++;
2814 /* fall through */
2815 case RX_CONTINUE: {
2816 struct ieee80211_rate *rate = NULL;
2817 struct ieee80211_supported_band *sband;
2818 struct ieee80211_rx_status *status;
2819
2820 status = IEEE80211_SKB_RXCB((rx->skb));
2821
2822 sband = rx->local->hw.wiphy->bands[status->band];
2823 if (!(status->flag & RX_FLAG_HT) &&
2824 !(status->flag & RX_FLAG_VHT))
2825 rate = &sband->bitrates[status->rate_idx];
2826
2827 ieee80211_rx_cooked_monitor(rx, rate);
2828 break;
2829 }
2830 case RX_DROP_UNUSABLE:
2831 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2832 if (rx->sta)
2833 rx->sta->rx_dropped++;
2834 dev_kfree_skb(rx->skb);
2835 break;
2836 case RX_QUEUED:
2837 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2838 break;
2839 }
2840 }
2841
2842 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2843 struct sk_buff_head *frames)
2844 {
2845 ieee80211_rx_result res = RX_DROP_MONITOR;
2846 struct sk_buff *skb;
2847
2848 #define CALL_RXH(rxh) \
2849 do { \
2850 res = rxh(rx); \
2851 if (res != RX_CONTINUE) \
2852 goto rxh_next; \
2853 } while (0);
2854
2855 spin_lock_bh(&rx->local->rx_path_lock);
2856
2857 while ((skb = __skb_dequeue(frames))) {
2858 /*
2859 * all the other fields are valid across frames
2860 * that belong to an aMPDU since they are on the
2861 * same TID from the same station
2862 */
2863 rx->skb = skb;
2864
2865 CALL_RXH(ieee80211_rx_h_decrypt)
2866 CALL_RXH(ieee80211_rx_h_check_more_data)
2867 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2868 CALL_RXH(ieee80211_rx_h_sta_process)
2869 CALL_RXH(ieee80211_rx_h_defragment)
2870 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2871 /* must be after MMIC verify so header is counted in MPDU mic */
2872 #ifdef CONFIG_MAC80211_MESH
2873 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2874 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2875 #endif
2876 CALL_RXH(ieee80211_rx_h_amsdu)
2877 CALL_RXH(ieee80211_rx_h_data)
2878
2879 /* special treatment -- needs the queue */
2880 res = ieee80211_rx_h_ctrl(rx, frames);
2881 if (res != RX_CONTINUE)
2882 goto rxh_next;
2883
2884 CALL_RXH(ieee80211_rx_h_mgmt_check)
2885 CALL_RXH(ieee80211_rx_h_action)
2886 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2887 CALL_RXH(ieee80211_rx_h_action_return)
2888 CALL_RXH(ieee80211_rx_h_mgmt)
2889
2890 rxh_next:
2891 ieee80211_rx_handlers_result(rx, res);
2892
2893 #undef CALL_RXH
2894 }
2895
2896 spin_unlock_bh(&rx->local->rx_path_lock);
2897 }
2898
2899 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2900 {
2901 struct sk_buff_head reorder_release;
2902 ieee80211_rx_result res = RX_DROP_MONITOR;
2903
2904 __skb_queue_head_init(&reorder_release);
2905
2906 #define CALL_RXH(rxh) \
2907 do { \
2908 res = rxh(rx); \
2909 if (res != RX_CONTINUE) \
2910 goto rxh_next; \
2911 } while (0);
2912
2913 CALL_RXH(ieee80211_rx_h_check)
2914
2915 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2916
2917 ieee80211_rx_handlers(rx, &reorder_release);
2918 return;
2919
2920 rxh_next:
2921 ieee80211_rx_handlers_result(rx, res);
2922
2923 #undef CALL_RXH
2924 }
2925
2926 /*
2927 * This function makes calls into the RX path, therefore
2928 * it has to be invoked under RCU read lock.
2929 */
2930 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2931 {
2932 struct sk_buff_head frames;
2933 struct ieee80211_rx_data rx = {
2934 .sta = sta,
2935 .sdata = sta->sdata,
2936 .local = sta->local,
2937 /* This is OK -- must be QoS data frame */
2938 .security_idx = tid,
2939 .seqno_idx = tid,
2940 .flags = 0,
2941 };
2942 struct tid_ampdu_rx *tid_agg_rx;
2943
2944 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2945 if (!tid_agg_rx)
2946 return;
2947
2948 __skb_queue_head_init(&frames);
2949
2950 spin_lock(&tid_agg_rx->reorder_lock);
2951 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
2952 spin_unlock(&tid_agg_rx->reorder_lock);
2953
2954 ieee80211_rx_handlers(&rx, &frames);
2955 }
2956
2957 /* main receive path */
2958
2959 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2960 struct ieee80211_hdr *hdr)
2961 {
2962 struct ieee80211_sub_if_data *sdata = rx->sdata;
2963 struct sk_buff *skb = rx->skb;
2964 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2965 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2966 int multicast = is_multicast_ether_addr(hdr->addr1);
2967
2968 switch (sdata->vif.type) {
2969 case NL80211_IFTYPE_STATION:
2970 if (!bssid && !sdata->u.mgd.use_4addr)
2971 return 0;
2972 if (!multicast &&
2973 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2974 if (!(sdata->dev->flags & IFF_PROMISC) ||
2975 sdata->u.mgd.use_4addr)
2976 return 0;
2977 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2978 }
2979 break;
2980 case NL80211_IFTYPE_ADHOC:
2981 if (!bssid)
2982 return 0;
2983 if (ieee80211_is_beacon(hdr->frame_control)) {
2984 return 1;
2985 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2986 return 0;
2987 } else if (!multicast &&
2988 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
2989 if (!(sdata->dev->flags & IFF_PROMISC))
2990 return 0;
2991 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2992 } else if (!rx->sta) {
2993 int rate_idx;
2994 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
2995 rate_idx = 0; /* TODO: HT/VHT rates */
2996 else
2997 rate_idx = status->rate_idx;
2998 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
2999 BIT(rate_idx));
3000 }
3001 break;
3002 case NL80211_IFTYPE_MESH_POINT:
3003 if (!multicast &&
3004 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3005 if (!(sdata->dev->flags & IFF_PROMISC))
3006 return 0;
3007
3008 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3009 }
3010 break;
3011 case NL80211_IFTYPE_AP_VLAN:
3012 case NL80211_IFTYPE_AP:
3013 if (!bssid) {
3014 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3015 return 0;
3016 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3017 /*
3018 * Accept public action frames even when the
3019 * BSSID doesn't match, this is used for P2P
3020 * and location updates. Note that mac80211
3021 * itself never looks at these frames.
3022 */
3023 if (ieee80211_is_public_action(hdr, skb->len))
3024 return 1;
3025 if (!ieee80211_is_beacon(hdr->frame_control))
3026 return 0;
3027 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3028 }
3029 break;
3030 case NL80211_IFTYPE_WDS:
3031 if (bssid || !ieee80211_is_data(hdr->frame_control))
3032 return 0;
3033 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3034 return 0;
3035 break;
3036 case NL80211_IFTYPE_P2P_DEVICE:
3037 if (!ieee80211_is_public_action(hdr, skb->len) &&
3038 !ieee80211_is_probe_req(hdr->frame_control) &&
3039 !ieee80211_is_probe_resp(hdr->frame_control) &&
3040 !ieee80211_is_beacon(hdr->frame_control))
3041 return 0;
3042 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3043 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3044 break;
3045 default:
3046 /* should never get here */
3047 WARN_ON_ONCE(1);
3048 break;
3049 }
3050
3051 return 1;
3052 }
3053
3054 /*
3055 * This function returns whether or not the SKB
3056 * was destined for RX processing or not, which,
3057 * if consume is true, is equivalent to whether
3058 * or not the skb was consumed.
3059 */
3060 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3061 struct sk_buff *skb, bool consume)
3062 {
3063 struct ieee80211_local *local = rx->local;
3064 struct ieee80211_sub_if_data *sdata = rx->sdata;
3065 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3066 struct ieee80211_hdr *hdr = (void *)skb->data;
3067 int prepares;
3068
3069 rx->skb = skb;
3070 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3071 prepares = prepare_for_handlers(rx, hdr);
3072
3073 if (!prepares)
3074 return false;
3075
3076 if (!consume) {
3077 skb = skb_copy(skb, GFP_ATOMIC);
3078 if (!skb) {
3079 if (net_ratelimit())
3080 wiphy_debug(local->hw.wiphy,
3081 "failed to copy skb for %s\n",
3082 sdata->name);
3083 return true;
3084 }
3085
3086 rx->skb = skb;
3087 }
3088
3089 ieee80211_invoke_rx_handlers(rx);
3090 return true;
3091 }
3092
3093 /*
3094 * This is the actual Rx frames handler. as it blongs to Rx path it must
3095 * be called with rcu_read_lock protection.
3096 */
3097 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3098 struct sk_buff *skb)
3099 {
3100 struct ieee80211_local *local = hw_to_local(hw);
3101 struct ieee80211_sub_if_data *sdata;
3102 struct ieee80211_hdr *hdr;
3103 __le16 fc;
3104 struct ieee80211_rx_data rx;
3105 struct ieee80211_sub_if_data *prev;
3106 struct sta_info *sta, *tmp, *prev_sta;
3107 int err = 0;
3108
3109 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3110 memset(&rx, 0, sizeof(rx));
3111 rx.skb = skb;
3112 rx.local = local;
3113
3114 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3115 local->dot11ReceivedFragmentCount++;
3116
3117 if (ieee80211_is_mgmt(fc)) {
3118 /* drop frame if too short for header */
3119 if (skb->len < ieee80211_hdrlen(fc))
3120 err = -ENOBUFS;
3121 else
3122 err = skb_linearize(skb);
3123 } else {
3124 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3125 }
3126
3127 if (err) {
3128 dev_kfree_skb(skb);
3129 return;
3130 }
3131
3132 hdr = (struct ieee80211_hdr *)skb->data;
3133 ieee80211_parse_qos(&rx);
3134 ieee80211_verify_alignment(&rx);
3135
3136 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3137 ieee80211_is_beacon(hdr->frame_control)))
3138 ieee80211_scan_rx(local, skb);
3139
3140 if (ieee80211_is_data(fc)) {
3141 prev_sta = NULL;
3142
3143 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3144 if (!prev_sta) {
3145 prev_sta = sta;
3146 continue;
3147 }
3148
3149 rx.sta = prev_sta;
3150 rx.sdata = prev_sta->sdata;
3151 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3152
3153 prev_sta = sta;
3154 }
3155
3156 if (prev_sta) {
3157 rx.sta = prev_sta;
3158 rx.sdata = prev_sta->sdata;
3159
3160 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3161 return;
3162 goto out;
3163 }
3164 }
3165
3166 prev = NULL;
3167
3168 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3169 if (!ieee80211_sdata_running(sdata))
3170 continue;
3171
3172 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3173 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3174 continue;
3175
3176 /*
3177 * frame is destined for this interface, but if it's
3178 * not also for the previous one we handle that after
3179 * the loop to avoid copying the SKB once too much
3180 */
3181
3182 if (!prev) {
3183 prev = sdata;
3184 continue;
3185 }
3186
3187 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3188 rx.sdata = prev;
3189 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3190
3191 prev = sdata;
3192 }
3193
3194 if (prev) {
3195 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3196 rx.sdata = prev;
3197
3198 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3199 return;
3200 }
3201
3202 out:
3203 dev_kfree_skb(skb);
3204 }
3205
3206 /*
3207 * This is the receive path handler. It is called by a low level driver when an
3208 * 802.11 MPDU is received from the hardware.
3209 */
3210 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3211 {
3212 struct ieee80211_local *local = hw_to_local(hw);
3213 struct ieee80211_rate *rate = NULL;
3214 struct ieee80211_supported_band *sband;
3215 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3216
3217 WARN_ON_ONCE(softirq_count() == 0);
3218
3219 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3220 goto drop;
3221
3222 sband = local->hw.wiphy->bands[status->band];
3223 if (WARN_ON(!sband))
3224 goto drop;
3225
3226 /*
3227 * If we're suspending, it is possible although not too likely
3228 * that we'd be receiving frames after having already partially
3229 * quiesced the stack. We can't process such frames then since
3230 * that might, for example, cause stations to be added or other
3231 * driver callbacks be invoked.
3232 */
3233 if (unlikely(local->quiescing || local->suspended))
3234 goto drop;
3235
3236 /* We might be during a HW reconfig, prevent Rx for the same reason */
3237 if (unlikely(local->in_reconfig))
3238 goto drop;
3239
3240 /*
3241 * The same happens when we're not even started,
3242 * but that's worth a warning.
3243 */
3244 if (WARN_ON(!local->started))
3245 goto drop;
3246
3247 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3248 /*
3249 * Validate the rate, unless a PLCP error means that
3250 * we probably can't have a valid rate here anyway.
3251 */
3252
3253 if (status->flag & RX_FLAG_HT) {
3254 /*
3255 * rate_idx is MCS index, which can be [0-76]
3256 * as documented on:
3257 *
3258 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3259 *
3260 * Anything else would be some sort of driver or
3261 * hardware error. The driver should catch hardware
3262 * errors.
3263 */
3264 if (WARN(status->rate_idx > 76,
3265 "Rate marked as an HT rate but passed "
3266 "status->rate_idx is not "
3267 "an MCS index [0-76]: %d (0x%02x)\n",
3268 status->rate_idx,
3269 status->rate_idx))
3270 goto drop;
3271 } else if (status->flag & RX_FLAG_VHT) {
3272 if (WARN_ONCE(status->rate_idx > 9 ||
3273 !status->vht_nss ||
3274 status->vht_nss > 8,
3275 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3276 status->rate_idx, status->vht_nss))
3277 goto drop;
3278 } else {
3279 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3280 goto drop;
3281 rate = &sband->bitrates[status->rate_idx];
3282 }
3283 }
3284
3285 status->rx_flags = 0;
3286
3287 /*
3288 * key references and virtual interfaces are protected using RCU
3289 * and this requires that we are in a read-side RCU section during
3290 * receive processing
3291 */
3292 rcu_read_lock();
3293
3294 /*
3295 * Frames with failed FCS/PLCP checksum are not returned,
3296 * all other frames are returned without radiotap header
3297 * if it was previously present.
3298 * Also, frames with less than 16 bytes are dropped.
3299 */
3300 skb = ieee80211_rx_monitor(local, skb, rate);
3301 if (!skb) {
3302 rcu_read_unlock();
3303 return;
3304 }
3305
3306 ieee80211_tpt_led_trig_rx(local,
3307 ((struct ieee80211_hdr *)skb->data)->frame_control,
3308 skb->len);
3309 __ieee80211_rx_handle_packet(hw, skb);
3310
3311 rcu_read_unlock();
3312
3313 return;
3314 drop:
3315 kfree_skb(skb);
3316 }
3317 EXPORT_SYMBOL(ieee80211_rx);
3318
3319 /* This is a version of the rx handler that can be called from hard irq
3320 * context. Post the skb on the queue and schedule the tasklet */
3321 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3322 {
3323 struct ieee80211_local *local = hw_to_local(hw);
3324
3325 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3326
3327 skb->pkt_type = IEEE80211_RX_MSG;
3328 skb_queue_tail(&local->skb_queue, skb);
3329 tasklet_schedule(&local->tasklet);
3330 }
3331 EXPORT_SYMBOL(ieee80211_rx_irqsafe);