]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/rx.c
Fix common misspellings
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
90
91 return len;
92 }
93
94 /*
95 * ieee80211_add_rx_radiotap_header - add radiotap header
96 *
97 * add a radiotap header containing all the fields which the hardware provided.
98 */
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
104 {
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
109
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
112
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
120
121 pos = (unsigned char *)(rthdr+1);
122
123 /* the order of the following fields is important */
124
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
131 }
132
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
141
142 /* IEEE80211_RADIOTAP_RATE */
143 if (status->flag & RX_FLAG_HT) {
144 /*
145 * MCS information is a separate field in radiotap,
146 * added below.
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196
197 if (status->flag & RX_FLAG_HT) {
198 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
199 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
200 IEEE80211_RADIOTAP_MCS_HAVE_GI |
201 IEEE80211_RADIOTAP_MCS_HAVE_BW;
202 *pos = 0;
203 if (status->flag & RX_FLAG_SHORT_GI)
204 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
205 if (status->flag & RX_FLAG_40MHZ)
206 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
207 pos++;
208 *pos++ = status->rate_idx;
209 }
210 }
211
212 /*
213 * This function copies a received frame to all monitor interfaces and
214 * returns a cleaned-up SKB that no longer includes the FCS nor the
215 * radiotap header the driver might have added.
216 */
217 static struct sk_buff *
218 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
219 struct ieee80211_rate *rate)
220 {
221 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
222 struct ieee80211_sub_if_data *sdata;
223 int needed_headroom = 0;
224 struct sk_buff *skb, *skb2;
225 struct net_device *prev_dev = NULL;
226 int present_fcs_len = 0;
227
228 /*
229 * First, we may need to make a copy of the skb because
230 * (1) we need to modify it for radiotap (if not present), and
231 * (2) the other RX handlers will modify the skb we got.
232 *
233 * We don't need to, of course, if we aren't going to return
234 * the SKB because it has a bad FCS/PLCP checksum.
235 */
236
237 /* room for the radiotap header based on driver features */
238 needed_headroom = ieee80211_rx_radiotap_len(local, status);
239
240 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
241 present_fcs_len = FCS_LEN;
242
243 /* make sure hdr->frame_control is on the linear part */
244 if (!pskb_may_pull(origskb, 2)) {
245 dev_kfree_skb(origskb);
246 return NULL;
247 }
248
249 if (!local->monitors) {
250 if (should_drop_frame(origskb, present_fcs_len)) {
251 dev_kfree_skb(origskb);
252 return NULL;
253 }
254
255 return remove_monitor_info(local, origskb);
256 }
257
258 if (should_drop_frame(origskb, present_fcs_len)) {
259 /* only need to expand headroom if necessary */
260 skb = origskb;
261 origskb = NULL;
262
263 /*
264 * This shouldn't trigger often because most devices have an
265 * RX header they pull before we get here, and that should
266 * be big enough for our radiotap information. We should
267 * probably export the length to drivers so that we can have
268 * them allocate enough headroom to start with.
269 */
270 if (skb_headroom(skb) < needed_headroom &&
271 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
272 dev_kfree_skb(skb);
273 return NULL;
274 }
275 } else {
276 /*
277 * Need to make a copy and possibly remove radiotap header
278 * and FCS from the original.
279 */
280 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
281
282 origskb = remove_monitor_info(local, origskb);
283
284 if (!skb)
285 return origskb;
286 }
287
288 /* prepend radiotap information */
289 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
290
291 skb_reset_mac_header(skb);
292 skb->ip_summed = CHECKSUM_UNNECESSARY;
293 skb->pkt_type = PACKET_OTHERHOST;
294 skb->protocol = htons(ETH_P_802_2);
295
296 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
297 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
298 continue;
299
300 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
301 continue;
302
303 if (!ieee80211_sdata_running(sdata))
304 continue;
305
306 if (prev_dev) {
307 skb2 = skb_clone(skb, GFP_ATOMIC);
308 if (skb2) {
309 skb2->dev = prev_dev;
310 netif_receive_skb(skb2);
311 }
312 }
313
314 prev_dev = sdata->dev;
315 sdata->dev->stats.rx_packets++;
316 sdata->dev->stats.rx_bytes += skb->len;
317 }
318
319 if (prev_dev) {
320 skb->dev = prev_dev;
321 netif_receive_skb(skb);
322 } else
323 dev_kfree_skb(skb);
324
325 return origskb;
326 }
327
328
329 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
330 {
331 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
332 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
333 int tid;
334
335 /* does the frame have a qos control field? */
336 if (ieee80211_is_data_qos(hdr->frame_control)) {
337 u8 *qc = ieee80211_get_qos_ctl(hdr);
338 /* frame has qos control */
339 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
340 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
341 status->rx_flags |= IEEE80211_RX_AMSDU;
342 } else {
343 /*
344 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
345 *
346 * Sequence numbers for management frames, QoS data
347 * frames with a broadcast/multicast address in the
348 * Address 1 field, and all non-QoS data frames sent
349 * by QoS STAs are assigned using an additional single
350 * modulo-4096 counter, [...]
351 *
352 * We also use that counter for non-QoS STAs.
353 */
354 tid = NUM_RX_DATA_QUEUES - 1;
355 }
356
357 rx->queue = tid;
358 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
359 * For now, set skb->priority to 0 for other cases. */
360 rx->skb->priority = (tid > 7) ? 0 : tid;
361 }
362
363 /**
364 * DOC: Packet alignment
365 *
366 * Drivers always need to pass packets that are aligned to two-byte boundaries
367 * to the stack.
368 *
369 * Additionally, should, if possible, align the payload data in a way that
370 * guarantees that the contained IP header is aligned to a four-byte
371 * boundary. In the case of regular frames, this simply means aligning the
372 * payload to a four-byte boundary (because either the IP header is directly
373 * contained, or IV/RFC1042 headers that have a length divisible by four are
374 * in front of it). If the payload data is not properly aligned and the
375 * architecture doesn't support efficient unaligned operations, mac80211
376 * will align the data.
377 *
378 * With A-MSDU frames, however, the payload data address must yield two modulo
379 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
380 * push the IP header further back to a multiple of four again. Thankfully, the
381 * specs were sane enough this time around to require padding each A-MSDU
382 * subframe to a length that is a multiple of four.
383 *
384 * Padding like Atheros hardware adds which is between the 802.11 header and
385 * the payload is not supported, the driver is required to move the 802.11
386 * header to be directly in front of the payload in that case.
387 */
388 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
389 {
390 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
391 WARN_ONCE((unsigned long)rx->skb->data & 1,
392 "unaligned packet at 0x%p\n", rx->skb->data);
393 #endif
394 }
395
396
397 /* rx handlers */
398
399 static ieee80211_rx_result debug_noinline
400 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
401 {
402 struct ieee80211_local *local = rx->local;
403 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
404 struct sk_buff *skb = rx->skb;
405
406 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
407 return RX_CONTINUE;
408
409 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
410 test_bit(SCAN_SW_SCANNING, &local->scanning))
411 return ieee80211_scan_rx(rx->sdata, skb);
412
413 /* scanning finished during invoking of handlers */
414 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
415 return RX_DROP_UNUSABLE;
416 }
417
418
419 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
420 {
421 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
422
423 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
424 return 0;
425
426 return ieee80211_is_robust_mgmt_frame(hdr);
427 }
428
429
430 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
431 {
432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
433
434 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
435 return 0;
436
437 return ieee80211_is_robust_mgmt_frame(hdr);
438 }
439
440
441 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
442 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
443 {
444 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
445 struct ieee80211_mmie *mmie;
446
447 if (skb->len < 24 + sizeof(*mmie) ||
448 !is_multicast_ether_addr(hdr->da))
449 return -1;
450
451 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
452 return -1; /* not a robust management frame */
453
454 mmie = (struct ieee80211_mmie *)
455 (skb->data + skb->len - sizeof(*mmie));
456 if (mmie->element_id != WLAN_EID_MMIE ||
457 mmie->length != sizeof(*mmie) - 2)
458 return -1;
459
460 return le16_to_cpu(mmie->key_id);
461 }
462
463
464 static ieee80211_rx_result
465 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
466 {
467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
468 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
469 char *dev_addr = rx->sdata->vif.addr;
470
471 if (ieee80211_is_data(hdr->frame_control)) {
472 if (is_multicast_ether_addr(hdr->addr1)) {
473 if (ieee80211_has_tods(hdr->frame_control) ||
474 !ieee80211_has_fromds(hdr->frame_control))
475 return RX_DROP_MONITOR;
476 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
477 return RX_DROP_MONITOR;
478 } else {
479 if (!ieee80211_has_a4(hdr->frame_control))
480 return RX_DROP_MONITOR;
481 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
482 return RX_DROP_MONITOR;
483 }
484 }
485
486 /* If there is not an established peer link and this is not a peer link
487 * establisment frame, beacon or probe, drop the frame.
488 */
489
490 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
491 struct ieee80211_mgmt *mgmt;
492
493 if (!ieee80211_is_mgmt(hdr->frame_control))
494 return RX_DROP_MONITOR;
495
496 if (ieee80211_is_action(hdr->frame_control)) {
497 mgmt = (struct ieee80211_mgmt *)hdr;
498 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
499 return RX_DROP_MONITOR;
500 return RX_CONTINUE;
501 }
502
503 if (ieee80211_is_probe_req(hdr->frame_control) ||
504 ieee80211_is_probe_resp(hdr->frame_control) ||
505 ieee80211_is_beacon(hdr->frame_control))
506 return RX_CONTINUE;
507
508 return RX_DROP_MONITOR;
509
510 }
511
512 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
513
514 if (ieee80211_is_data(hdr->frame_control) &&
515 is_multicast_ether_addr(hdr->addr1) &&
516 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
517 return RX_DROP_MONITOR;
518 #undef msh_h_get
519
520 return RX_CONTINUE;
521 }
522
523 #define SEQ_MODULO 0x1000
524 #define SEQ_MASK 0xfff
525
526 static inline int seq_less(u16 sq1, u16 sq2)
527 {
528 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
529 }
530
531 static inline u16 seq_inc(u16 sq)
532 {
533 return (sq + 1) & SEQ_MASK;
534 }
535
536 static inline u16 seq_sub(u16 sq1, u16 sq2)
537 {
538 return (sq1 - sq2) & SEQ_MASK;
539 }
540
541
542 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
543 struct tid_ampdu_rx *tid_agg_rx,
544 int index)
545 {
546 struct ieee80211_local *local = hw_to_local(hw);
547 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
548 struct ieee80211_rx_status *status;
549
550 lockdep_assert_held(&tid_agg_rx->reorder_lock);
551
552 if (!skb)
553 goto no_frame;
554
555 /* release the frame from the reorder ring buffer */
556 tid_agg_rx->stored_mpdu_num--;
557 tid_agg_rx->reorder_buf[index] = NULL;
558 status = IEEE80211_SKB_RXCB(skb);
559 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
560 skb_queue_tail(&local->rx_skb_queue, skb);
561
562 no_frame:
563 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
564 }
565
566 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
567 struct tid_ampdu_rx *tid_agg_rx,
568 u16 head_seq_num)
569 {
570 int index;
571
572 lockdep_assert_held(&tid_agg_rx->reorder_lock);
573
574 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
575 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
576 tid_agg_rx->buf_size;
577 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
578 }
579 }
580
581 /*
582 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
583 * the skb was added to the buffer longer than this time ago, the earlier
584 * frames that have not yet been received are assumed to be lost and the skb
585 * can be released for processing. This may also release other skb's from the
586 * reorder buffer if there are no additional gaps between the frames.
587 *
588 * Callers must hold tid_agg_rx->reorder_lock.
589 */
590 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
591
592 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
593 struct tid_ampdu_rx *tid_agg_rx)
594 {
595 int index, j;
596
597 lockdep_assert_held(&tid_agg_rx->reorder_lock);
598
599 /* release the buffer until next missing frame */
600 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
601 tid_agg_rx->buf_size;
602 if (!tid_agg_rx->reorder_buf[index] &&
603 tid_agg_rx->stored_mpdu_num > 1) {
604 /*
605 * No buffers ready to be released, but check whether any
606 * frames in the reorder buffer have timed out.
607 */
608 int skipped = 1;
609 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
610 j = (j + 1) % tid_agg_rx->buf_size) {
611 if (!tid_agg_rx->reorder_buf[j]) {
612 skipped++;
613 continue;
614 }
615 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
616 HT_RX_REORDER_BUF_TIMEOUT))
617 goto set_release_timer;
618
619 #ifdef CONFIG_MAC80211_HT_DEBUG
620 if (net_ratelimit())
621 wiphy_debug(hw->wiphy,
622 "release an RX reorder frame due to timeout on earlier frames\n");
623 #endif
624 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
625
626 /*
627 * Increment the head seq# also for the skipped slots.
628 */
629 tid_agg_rx->head_seq_num =
630 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
631 skipped = 0;
632 }
633 } else while (tid_agg_rx->reorder_buf[index]) {
634 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
635 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
636 tid_agg_rx->buf_size;
637 }
638
639 if (tid_agg_rx->stored_mpdu_num) {
640 j = index = seq_sub(tid_agg_rx->head_seq_num,
641 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
642
643 for (; j != (index - 1) % tid_agg_rx->buf_size;
644 j = (j + 1) % tid_agg_rx->buf_size) {
645 if (tid_agg_rx->reorder_buf[j])
646 break;
647 }
648
649 set_release_timer:
650
651 mod_timer(&tid_agg_rx->reorder_timer,
652 tid_agg_rx->reorder_time[j] +
653 HT_RX_REORDER_BUF_TIMEOUT);
654 } else {
655 del_timer(&tid_agg_rx->reorder_timer);
656 }
657 }
658
659 /*
660 * As this function belongs to the RX path it must be under
661 * rcu_read_lock protection. It returns false if the frame
662 * can be processed immediately, true if it was consumed.
663 */
664 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
665 struct tid_ampdu_rx *tid_agg_rx,
666 struct sk_buff *skb)
667 {
668 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
669 u16 sc = le16_to_cpu(hdr->seq_ctrl);
670 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
671 u16 head_seq_num, buf_size;
672 int index;
673 bool ret = true;
674
675 spin_lock(&tid_agg_rx->reorder_lock);
676
677 buf_size = tid_agg_rx->buf_size;
678 head_seq_num = tid_agg_rx->head_seq_num;
679
680 /* frame with out of date sequence number */
681 if (seq_less(mpdu_seq_num, head_seq_num)) {
682 dev_kfree_skb(skb);
683 goto out;
684 }
685
686 /*
687 * If frame the sequence number exceeds our buffering window
688 * size release some previous frames to make room for this one.
689 */
690 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
691 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
692 /* release stored frames up to new head to stack */
693 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
694 }
695
696 /* Now the new frame is always in the range of the reordering buffer */
697
698 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
699
700 /* check if we already stored this frame */
701 if (tid_agg_rx->reorder_buf[index]) {
702 dev_kfree_skb(skb);
703 goto out;
704 }
705
706 /*
707 * If the current MPDU is in the right order and nothing else
708 * is stored we can process it directly, no need to buffer it.
709 */
710 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
711 tid_agg_rx->stored_mpdu_num == 0) {
712 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
713 ret = false;
714 goto out;
715 }
716
717 /* put the frame in the reordering buffer */
718 tid_agg_rx->reorder_buf[index] = skb;
719 tid_agg_rx->reorder_time[index] = jiffies;
720 tid_agg_rx->stored_mpdu_num++;
721 ieee80211_sta_reorder_release(hw, tid_agg_rx);
722
723 out:
724 spin_unlock(&tid_agg_rx->reorder_lock);
725 return ret;
726 }
727
728 /*
729 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
730 * true if the MPDU was buffered, false if it should be processed.
731 */
732 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
733 {
734 struct sk_buff *skb = rx->skb;
735 struct ieee80211_local *local = rx->local;
736 struct ieee80211_hw *hw = &local->hw;
737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
738 struct sta_info *sta = rx->sta;
739 struct tid_ampdu_rx *tid_agg_rx;
740 u16 sc;
741 int tid;
742
743 if (!ieee80211_is_data_qos(hdr->frame_control))
744 goto dont_reorder;
745
746 /*
747 * filter the QoS data rx stream according to
748 * STA/TID and check if this STA/TID is on aggregation
749 */
750
751 if (!sta)
752 goto dont_reorder;
753
754 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
755
756 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
757 if (!tid_agg_rx)
758 goto dont_reorder;
759
760 /* qos null data frames are excluded */
761 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
762 goto dont_reorder;
763
764 /* new, potentially un-ordered, ampdu frame - process it */
765
766 /* reset session timer */
767 if (tid_agg_rx->timeout)
768 mod_timer(&tid_agg_rx->session_timer,
769 TU_TO_EXP_TIME(tid_agg_rx->timeout));
770
771 /* if this mpdu is fragmented - terminate rx aggregation session */
772 sc = le16_to_cpu(hdr->seq_ctrl);
773 if (sc & IEEE80211_SCTL_FRAG) {
774 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
775 skb_queue_tail(&rx->sdata->skb_queue, skb);
776 ieee80211_queue_work(&local->hw, &rx->sdata->work);
777 return;
778 }
779
780 /*
781 * No locking needed -- we will only ever process one
782 * RX packet at a time, and thus own tid_agg_rx. All
783 * other code manipulating it needs to (and does) make
784 * sure that we cannot get to it any more before doing
785 * anything with it.
786 */
787 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
788 return;
789
790 dont_reorder:
791 skb_queue_tail(&local->rx_skb_queue, skb);
792 }
793
794 static ieee80211_rx_result debug_noinline
795 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
796 {
797 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
798 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
799
800 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
801 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
802 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
803 rx->sta->last_seq_ctrl[rx->queue] ==
804 hdr->seq_ctrl)) {
805 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
806 rx->local->dot11FrameDuplicateCount++;
807 rx->sta->num_duplicates++;
808 }
809 return RX_DROP_UNUSABLE;
810 } else
811 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
812 }
813
814 if (unlikely(rx->skb->len < 16)) {
815 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
816 return RX_DROP_MONITOR;
817 }
818
819 /* Drop disallowed frame classes based on STA auth/assoc state;
820 * IEEE 802.11, Chap 5.5.
821 *
822 * mac80211 filters only based on association state, i.e. it drops
823 * Class 3 frames from not associated stations. hostapd sends
824 * deauth/disassoc frames when needed. In addition, hostapd is
825 * responsible for filtering on both auth and assoc states.
826 */
827
828 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
829 return ieee80211_rx_mesh_check(rx);
830
831 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
832 ieee80211_is_pspoll(hdr->frame_control)) &&
833 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
834 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
835 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC))))
836 return RX_DROP_MONITOR;
837
838 return RX_CONTINUE;
839 }
840
841
842 static ieee80211_rx_result debug_noinline
843 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
844 {
845 struct sk_buff *skb = rx->skb;
846 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
847 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
848 int keyidx;
849 int hdrlen;
850 ieee80211_rx_result result = RX_DROP_UNUSABLE;
851 struct ieee80211_key *sta_ptk = NULL;
852 int mmie_keyidx = -1;
853 __le16 fc;
854
855 /*
856 * Key selection 101
857 *
858 * There are four types of keys:
859 * - GTK (group keys)
860 * - IGTK (group keys for management frames)
861 * - PTK (pairwise keys)
862 * - STK (station-to-station pairwise keys)
863 *
864 * When selecting a key, we have to distinguish between multicast
865 * (including broadcast) and unicast frames, the latter can only
866 * use PTKs and STKs while the former always use GTKs and IGTKs.
867 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
868 * unicast frames can also use key indices like GTKs. Hence, if we
869 * don't have a PTK/STK we check the key index for a WEP key.
870 *
871 * Note that in a regular BSS, multicast frames are sent by the
872 * AP only, associated stations unicast the frame to the AP first
873 * which then multicasts it on their behalf.
874 *
875 * There is also a slight problem in IBSS mode: GTKs are negotiated
876 * with each station, that is something we don't currently handle.
877 * The spec seems to expect that one negotiates the same key with
878 * every station but there's no such requirement; VLANs could be
879 * possible.
880 */
881
882 /*
883 * No point in finding a key and decrypting if the frame is neither
884 * addressed to us nor a multicast frame.
885 */
886 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
887 return RX_CONTINUE;
888
889 /* start without a key */
890 rx->key = NULL;
891
892 if (rx->sta)
893 sta_ptk = rcu_dereference(rx->sta->ptk);
894
895 fc = hdr->frame_control;
896
897 if (!ieee80211_has_protected(fc))
898 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
899
900 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
901 rx->key = sta_ptk;
902 if ((status->flag & RX_FLAG_DECRYPTED) &&
903 (status->flag & RX_FLAG_IV_STRIPPED))
904 return RX_CONTINUE;
905 /* Skip decryption if the frame is not protected. */
906 if (!ieee80211_has_protected(fc))
907 return RX_CONTINUE;
908 } else if (mmie_keyidx >= 0) {
909 /* Broadcast/multicast robust management frame / BIP */
910 if ((status->flag & RX_FLAG_DECRYPTED) &&
911 (status->flag & RX_FLAG_IV_STRIPPED))
912 return RX_CONTINUE;
913
914 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
915 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
916 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
917 if (rx->sta)
918 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
919 if (!rx->key)
920 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
921 } else if (!ieee80211_has_protected(fc)) {
922 /*
923 * The frame was not protected, so skip decryption. However, we
924 * need to set rx->key if there is a key that could have been
925 * used so that the frame may be dropped if encryption would
926 * have been expected.
927 */
928 struct ieee80211_key *key = NULL;
929 struct ieee80211_sub_if_data *sdata = rx->sdata;
930 int i;
931
932 if (ieee80211_is_mgmt(fc) &&
933 is_multicast_ether_addr(hdr->addr1) &&
934 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
935 rx->key = key;
936 else {
937 if (rx->sta) {
938 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
939 key = rcu_dereference(rx->sta->gtk[i]);
940 if (key)
941 break;
942 }
943 }
944 if (!key) {
945 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
946 key = rcu_dereference(sdata->keys[i]);
947 if (key)
948 break;
949 }
950 }
951 if (key)
952 rx->key = key;
953 }
954 return RX_CONTINUE;
955 } else {
956 u8 keyid;
957 /*
958 * The device doesn't give us the IV so we won't be
959 * able to look up the key. That's ok though, we
960 * don't need to decrypt the frame, we just won't
961 * be able to keep statistics accurate.
962 * Except for key threshold notifications, should
963 * we somehow allow the driver to tell us which key
964 * the hardware used if this flag is set?
965 */
966 if ((status->flag & RX_FLAG_DECRYPTED) &&
967 (status->flag & RX_FLAG_IV_STRIPPED))
968 return RX_CONTINUE;
969
970 hdrlen = ieee80211_hdrlen(fc);
971
972 if (rx->skb->len < 8 + hdrlen)
973 return RX_DROP_UNUSABLE; /* TODO: count this? */
974
975 /*
976 * no need to call ieee80211_wep_get_keyidx,
977 * it verifies a bunch of things we've done already
978 */
979 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
980 keyidx = keyid >> 6;
981
982 /* check per-station GTK first, if multicast packet */
983 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
984 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
985
986 /* if not found, try default key */
987 if (!rx->key) {
988 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
989
990 /*
991 * RSNA-protected unicast frames should always be
992 * sent with pairwise or station-to-station keys,
993 * but for WEP we allow using a key index as well.
994 */
995 if (rx->key &&
996 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
997 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
998 !is_multicast_ether_addr(hdr->addr1))
999 rx->key = NULL;
1000 }
1001 }
1002
1003 if (rx->key) {
1004 rx->key->tx_rx_count++;
1005 /* TODO: add threshold stuff again */
1006 } else {
1007 return RX_DROP_MONITOR;
1008 }
1009
1010 if (skb_linearize(rx->skb))
1011 return RX_DROP_UNUSABLE;
1012 /* the hdr variable is invalid now! */
1013
1014 switch (rx->key->conf.cipher) {
1015 case WLAN_CIPHER_SUITE_WEP40:
1016 case WLAN_CIPHER_SUITE_WEP104:
1017 /* Check for weak IVs if possible */
1018 if (rx->sta && ieee80211_is_data(fc) &&
1019 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1020 !(status->flag & RX_FLAG_DECRYPTED)) &&
1021 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1022 rx->sta->wep_weak_iv_count++;
1023
1024 result = ieee80211_crypto_wep_decrypt(rx);
1025 break;
1026 case WLAN_CIPHER_SUITE_TKIP:
1027 result = ieee80211_crypto_tkip_decrypt(rx);
1028 break;
1029 case WLAN_CIPHER_SUITE_CCMP:
1030 result = ieee80211_crypto_ccmp_decrypt(rx);
1031 break;
1032 case WLAN_CIPHER_SUITE_AES_CMAC:
1033 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1034 break;
1035 default:
1036 /*
1037 * We can reach here only with HW-only algorithms
1038 * but why didn't it decrypt the frame?!
1039 */
1040 return RX_DROP_UNUSABLE;
1041 }
1042
1043 /* either the frame has been decrypted or will be dropped */
1044 status->flag |= RX_FLAG_DECRYPTED;
1045
1046 return result;
1047 }
1048
1049 static ieee80211_rx_result debug_noinline
1050 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1051 {
1052 struct ieee80211_local *local;
1053 struct ieee80211_hdr *hdr;
1054 struct sk_buff *skb;
1055
1056 local = rx->local;
1057 skb = rx->skb;
1058 hdr = (struct ieee80211_hdr *) skb->data;
1059
1060 if (!local->pspolling)
1061 return RX_CONTINUE;
1062
1063 if (!ieee80211_has_fromds(hdr->frame_control))
1064 /* this is not from AP */
1065 return RX_CONTINUE;
1066
1067 if (!ieee80211_is_data(hdr->frame_control))
1068 return RX_CONTINUE;
1069
1070 if (!ieee80211_has_moredata(hdr->frame_control)) {
1071 /* AP has no more frames buffered for us */
1072 local->pspolling = false;
1073 return RX_CONTINUE;
1074 }
1075
1076 /* more data bit is set, let's request a new frame from the AP */
1077 ieee80211_send_pspoll(local, rx->sdata);
1078
1079 return RX_CONTINUE;
1080 }
1081
1082 static void ap_sta_ps_start(struct sta_info *sta)
1083 {
1084 struct ieee80211_sub_if_data *sdata = sta->sdata;
1085 struct ieee80211_local *local = sdata->local;
1086
1087 atomic_inc(&sdata->bss->num_sta_ps);
1088 set_sta_flags(sta, WLAN_STA_PS_STA);
1089 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1090 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1091 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1092 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1093 sdata->name, sta->sta.addr, sta->sta.aid);
1094 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1095 }
1096
1097 static void ap_sta_ps_end(struct sta_info *sta)
1098 {
1099 struct ieee80211_sub_if_data *sdata = sta->sdata;
1100
1101 atomic_dec(&sdata->bss->num_sta_ps);
1102
1103 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1104 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1105 sdata->name, sta->sta.addr, sta->sta.aid);
1106 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1107
1108 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1109 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1110 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1111 sdata->name, sta->sta.addr, sta->sta.aid);
1112 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1113 return;
1114 }
1115
1116 ieee80211_sta_ps_deliver_wakeup(sta);
1117 }
1118
1119 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1120 {
1121 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1122 bool in_ps;
1123
1124 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1125
1126 /* Don't let the same PS state be set twice */
1127 in_ps = test_sta_flags(sta_inf, WLAN_STA_PS_STA);
1128 if ((start && in_ps) || (!start && !in_ps))
1129 return -EINVAL;
1130
1131 if (start)
1132 ap_sta_ps_start(sta_inf);
1133 else
1134 ap_sta_ps_end(sta_inf);
1135
1136 return 0;
1137 }
1138 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1139
1140 static ieee80211_rx_result debug_noinline
1141 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1142 {
1143 struct sta_info *sta = rx->sta;
1144 struct sk_buff *skb = rx->skb;
1145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1146 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1147
1148 if (!sta)
1149 return RX_CONTINUE;
1150
1151 /*
1152 * Update last_rx only for IBSS packets which are for the current
1153 * BSSID to avoid keeping the current IBSS network alive in cases
1154 * where other STAs start using different BSSID.
1155 */
1156 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1157 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1158 NL80211_IFTYPE_ADHOC);
1159 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1160 sta->last_rx = jiffies;
1161 if (ieee80211_is_data(hdr->frame_control)) {
1162 sta->last_rx_rate_idx = status->rate_idx;
1163 sta->last_rx_rate_flag = status->flag;
1164 }
1165 }
1166 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1167 /*
1168 * Mesh beacons will update last_rx when if they are found to
1169 * match the current local configuration when processed.
1170 */
1171 sta->last_rx = jiffies;
1172 if (ieee80211_is_data(hdr->frame_control)) {
1173 sta->last_rx_rate_idx = status->rate_idx;
1174 sta->last_rx_rate_flag = status->flag;
1175 }
1176 }
1177
1178 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1179 return RX_CONTINUE;
1180
1181 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1182 ieee80211_sta_rx_notify(rx->sdata, hdr);
1183
1184 sta->rx_fragments++;
1185 sta->rx_bytes += rx->skb->len;
1186 sta->last_signal = status->signal;
1187 ewma_add(&sta->avg_signal, -status->signal);
1188
1189 /*
1190 * Change STA power saving mode only at the end of a frame
1191 * exchange sequence.
1192 */
1193 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1194 !ieee80211_has_morefrags(hdr->frame_control) &&
1195 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1196 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1197 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1198 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1199 /*
1200 * Ignore doze->wake transitions that are
1201 * indicated by non-data frames, the standard
1202 * is unclear here, but for example going to
1203 * PS mode and then scanning would cause a
1204 * doze->wake transition for the probe request,
1205 * and that is clearly undesirable.
1206 */
1207 if (ieee80211_is_data(hdr->frame_control) &&
1208 !ieee80211_has_pm(hdr->frame_control))
1209 ap_sta_ps_end(sta);
1210 } else {
1211 if (ieee80211_has_pm(hdr->frame_control))
1212 ap_sta_ps_start(sta);
1213 }
1214 }
1215
1216 /*
1217 * Drop (qos-)data::nullfunc frames silently, since they
1218 * are used only to control station power saving mode.
1219 */
1220 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1221 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1222 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1223
1224 /*
1225 * If we receive a 4-addr nullfunc frame from a STA
1226 * that was not moved to a 4-addr STA vlan yet, drop
1227 * the frame to the monitor interface, to make sure
1228 * that hostapd sees it
1229 */
1230 if (ieee80211_has_a4(hdr->frame_control) &&
1231 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1232 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1233 !rx->sdata->u.vlan.sta)))
1234 return RX_DROP_MONITOR;
1235 /*
1236 * Update counter and free packet here to avoid
1237 * counting this as a dropped packed.
1238 */
1239 sta->rx_packets++;
1240 dev_kfree_skb(rx->skb);
1241 return RX_QUEUED;
1242 }
1243
1244 return RX_CONTINUE;
1245 } /* ieee80211_rx_h_sta_process */
1246
1247 static inline struct ieee80211_fragment_entry *
1248 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1249 unsigned int frag, unsigned int seq, int rx_queue,
1250 struct sk_buff **skb)
1251 {
1252 struct ieee80211_fragment_entry *entry;
1253 int idx;
1254
1255 idx = sdata->fragment_next;
1256 entry = &sdata->fragments[sdata->fragment_next++];
1257 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1258 sdata->fragment_next = 0;
1259
1260 if (!skb_queue_empty(&entry->skb_list)) {
1261 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1262 struct ieee80211_hdr *hdr =
1263 (struct ieee80211_hdr *) entry->skb_list.next->data;
1264 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1265 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1266 "addr1=%pM addr2=%pM\n",
1267 sdata->name, idx,
1268 jiffies - entry->first_frag_time, entry->seq,
1269 entry->last_frag, hdr->addr1, hdr->addr2);
1270 #endif
1271 __skb_queue_purge(&entry->skb_list);
1272 }
1273
1274 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1275 *skb = NULL;
1276 entry->first_frag_time = jiffies;
1277 entry->seq = seq;
1278 entry->rx_queue = rx_queue;
1279 entry->last_frag = frag;
1280 entry->ccmp = 0;
1281 entry->extra_len = 0;
1282
1283 return entry;
1284 }
1285
1286 static inline struct ieee80211_fragment_entry *
1287 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1288 unsigned int frag, unsigned int seq,
1289 int rx_queue, struct ieee80211_hdr *hdr)
1290 {
1291 struct ieee80211_fragment_entry *entry;
1292 int i, idx;
1293
1294 idx = sdata->fragment_next;
1295 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1296 struct ieee80211_hdr *f_hdr;
1297
1298 idx--;
1299 if (idx < 0)
1300 idx = IEEE80211_FRAGMENT_MAX - 1;
1301
1302 entry = &sdata->fragments[idx];
1303 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1304 entry->rx_queue != rx_queue ||
1305 entry->last_frag + 1 != frag)
1306 continue;
1307
1308 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1309
1310 /*
1311 * Check ftype and addresses are equal, else check next fragment
1312 */
1313 if (((hdr->frame_control ^ f_hdr->frame_control) &
1314 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1315 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1316 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1317 continue;
1318
1319 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1320 __skb_queue_purge(&entry->skb_list);
1321 continue;
1322 }
1323 return entry;
1324 }
1325
1326 return NULL;
1327 }
1328
1329 static ieee80211_rx_result debug_noinline
1330 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1331 {
1332 struct ieee80211_hdr *hdr;
1333 u16 sc;
1334 __le16 fc;
1335 unsigned int frag, seq;
1336 struct ieee80211_fragment_entry *entry;
1337 struct sk_buff *skb;
1338 struct ieee80211_rx_status *status;
1339
1340 hdr = (struct ieee80211_hdr *)rx->skb->data;
1341 fc = hdr->frame_control;
1342 sc = le16_to_cpu(hdr->seq_ctrl);
1343 frag = sc & IEEE80211_SCTL_FRAG;
1344
1345 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1346 (rx->skb)->len < 24 ||
1347 is_multicast_ether_addr(hdr->addr1))) {
1348 /* not fragmented */
1349 goto out;
1350 }
1351 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1352
1353 if (skb_linearize(rx->skb))
1354 return RX_DROP_UNUSABLE;
1355
1356 /*
1357 * skb_linearize() might change the skb->data and
1358 * previously cached variables (in this case, hdr) need to
1359 * be refreshed with the new data.
1360 */
1361 hdr = (struct ieee80211_hdr *)rx->skb->data;
1362 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1363
1364 if (frag == 0) {
1365 /* This is the first fragment of a new frame. */
1366 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1367 rx->queue, &(rx->skb));
1368 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1369 ieee80211_has_protected(fc)) {
1370 int queue = ieee80211_is_mgmt(fc) ?
1371 NUM_RX_DATA_QUEUES : rx->queue;
1372 /* Store CCMP PN so that we can verify that the next
1373 * fragment has a sequential PN value. */
1374 entry->ccmp = 1;
1375 memcpy(entry->last_pn,
1376 rx->key->u.ccmp.rx_pn[queue],
1377 CCMP_PN_LEN);
1378 }
1379 return RX_QUEUED;
1380 }
1381
1382 /* This is a fragment for a frame that should already be pending in
1383 * fragment cache. Add this fragment to the end of the pending entry.
1384 */
1385 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1386 if (!entry) {
1387 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1388 return RX_DROP_MONITOR;
1389 }
1390
1391 /* Verify that MPDUs within one MSDU have sequential PN values.
1392 * (IEEE 802.11i, 8.3.3.4.5) */
1393 if (entry->ccmp) {
1394 int i;
1395 u8 pn[CCMP_PN_LEN], *rpn;
1396 int queue;
1397 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1398 return RX_DROP_UNUSABLE;
1399 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1400 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1401 pn[i]++;
1402 if (pn[i])
1403 break;
1404 }
1405 queue = ieee80211_is_mgmt(fc) ?
1406 NUM_RX_DATA_QUEUES : rx->queue;
1407 rpn = rx->key->u.ccmp.rx_pn[queue];
1408 if (memcmp(pn, rpn, CCMP_PN_LEN))
1409 return RX_DROP_UNUSABLE;
1410 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1411 }
1412
1413 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1414 __skb_queue_tail(&entry->skb_list, rx->skb);
1415 entry->last_frag = frag;
1416 entry->extra_len += rx->skb->len;
1417 if (ieee80211_has_morefrags(fc)) {
1418 rx->skb = NULL;
1419 return RX_QUEUED;
1420 }
1421
1422 rx->skb = __skb_dequeue(&entry->skb_list);
1423 if (skb_tailroom(rx->skb) < entry->extra_len) {
1424 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1425 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1426 GFP_ATOMIC))) {
1427 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1428 __skb_queue_purge(&entry->skb_list);
1429 return RX_DROP_UNUSABLE;
1430 }
1431 }
1432 while ((skb = __skb_dequeue(&entry->skb_list))) {
1433 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1434 dev_kfree_skb(skb);
1435 }
1436
1437 /* Complete frame has been reassembled - process it now */
1438 status = IEEE80211_SKB_RXCB(rx->skb);
1439 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1440
1441 out:
1442 if (rx->sta)
1443 rx->sta->rx_packets++;
1444 if (is_multicast_ether_addr(hdr->addr1))
1445 rx->local->dot11MulticastReceivedFrameCount++;
1446 else
1447 ieee80211_led_rx(rx->local);
1448 return RX_CONTINUE;
1449 }
1450
1451 static ieee80211_rx_result debug_noinline
1452 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1453 {
1454 struct ieee80211_sub_if_data *sdata = rx->sdata;
1455 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1456 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1457
1458 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1459 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1460 return RX_CONTINUE;
1461
1462 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1463 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1464 return RX_DROP_UNUSABLE;
1465
1466 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1467 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1468 else
1469 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1470
1471 /* Free PS Poll skb here instead of returning RX_DROP that would
1472 * count as an dropped frame. */
1473 dev_kfree_skb(rx->skb);
1474
1475 return RX_QUEUED;
1476 }
1477
1478 static ieee80211_rx_result debug_noinline
1479 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1480 {
1481 u8 *data = rx->skb->data;
1482 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1483
1484 if (!ieee80211_is_data_qos(hdr->frame_control))
1485 return RX_CONTINUE;
1486
1487 /* remove the qos control field, update frame type and meta-data */
1488 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1489 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1490 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1491 /* change frame type to non QOS */
1492 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1493
1494 return RX_CONTINUE;
1495 }
1496
1497 static int
1498 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1499 {
1500 if (unlikely(!rx->sta ||
1501 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1502 return -EACCES;
1503
1504 return 0;
1505 }
1506
1507 static int
1508 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1509 {
1510 struct sk_buff *skb = rx->skb;
1511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1512
1513 /*
1514 * Pass through unencrypted frames if the hardware has
1515 * decrypted them already.
1516 */
1517 if (status->flag & RX_FLAG_DECRYPTED)
1518 return 0;
1519
1520 /* Drop unencrypted frames if key is set. */
1521 if (unlikely(!ieee80211_has_protected(fc) &&
1522 !ieee80211_is_nullfunc(fc) &&
1523 ieee80211_is_data(fc) &&
1524 (rx->key || rx->sdata->drop_unencrypted)))
1525 return -EACCES;
1526
1527 return 0;
1528 }
1529
1530 static int
1531 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1532 {
1533 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1534 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1535 __le16 fc = hdr->frame_control;
1536
1537 /*
1538 * Pass through unencrypted frames if the hardware has
1539 * decrypted them already.
1540 */
1541 if (status->flag & RX_FLAG_DECRYPTED)
1542 return 0;
1543
1544 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1545 if (unlikely(!ieee80211_has_protected(fc) &&
1546 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1547 rx->key)) {
1548 if (ieee80211_is_deauth(fc))
1549 cfg80211_send_unprot_deauth(rx->sdata->dev,
1550 rx->skb->data,
1551 rx->skb->len);
1552 else if (ieee80211_is_disassoc(fc))
1553 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1554 rx->skb->data,
1555 rx->skb->len);
1556 return -EACCES;
1557 }
1558 /* BIP does not use Protected field, so need to check MMIE */
1559 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1560 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1561 if (ieee80211_is_deauth(fc))
1562 cfg80211_send_unprot_deauth(rx->sdata->dev,
1563 rx->skb->data,
1564 rx->skb->len);
1565 else if (ieee80211_is_disassoc(fc))
1566 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1567 rx->skb->data,
1568 rx->skb->len);
1569 return -EACCES;
1570 }
1571 /*
1572 * When using MFP, Action frames are not allowed prior to
1573 * having configured keys.
1574 */
1575 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1576 ieee80211_is_robust_mgmt_frame(
1577 (struct ieee80211_hdr *) rx->skb->data)))
1578 return -EACCES;
1579 }
1580
1581 return 0;
1582 }
1583
1584 static int
1585 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1586 {
1587 struct ieee80211_sub_if_data *sdata = rx->sdata;
1588 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1589 bool check_port_control = false;
1590 struct ethhdr *ehdr;
1591 int ret;
1592
1593 if (ieee80211_has_a4(hdr->frame_control) &&
1594 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1595 return -1;
1596
1597 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1598 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1599
1600 if (!sdata->u.mgd.use_4addr)
1601 return -1;
1602 else
1603 check_port_control = true;
1604 }
1605
1606 if (is_multicast_ether_addr(hdr->addr1) &&
1607 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1608 return -1;
1609
1610 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1611 if (ret < 0 || !check_port_control)
1612 return ret;
1613
1614 ehdr = (struct ethhdr *) rx->skb->data;
1615 if (ehdr->h_proto != rx->sdata->control_port_protocol)
1616 return -1;
1617
1618 return 0;
1619 }
1620
1621 /*
1622 * requires that rx->skb is a frame with ethernet header
1623 */
1624 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1625 {
1626 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1627 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1628 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1629
1630 /*
1631 * Allow EAPOL frames to us/the PAE group address regardless
1632 * of whether the frame was encrypted or not.
1633 */
1634 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1635 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1636 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1637 return true;
1638
1639 if (ieee80211_802_1x_port_control(rx) ||
1640 ieee80211_drop_unencrypted(rx, fc))
1641 return false;
1642
1643 return true;
1644 }
1645
1646 /*
1647 * requires that rx->skb is a frame with ethernet header
1648 */
1649 static void
1650 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1651 {
1652 struct ieee80211_sub_if_data *sdata = rx->sdata;
1653 struct net_device *dev = sdata->dev;
1654 struct sk_buff *skb, *xmit_skb;
1655 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1656 struct sta_info *dsta;
1657 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1658
1659 skb = rx->skb;
1660 xmit_skb = NULL;
1661
1662 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1663 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1664 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1665 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1666 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1667 if (is_multicast_ether_addr(ehdr->h_dest)) {
1668 /*
1669 * send multicast frames both to higher layers in
1670 * local net stack and back to the wireless medium
1671 */
1672 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1673 if (!xmit_skb && net_ratelimit())
1674 printk(KERN_DEBUG "%s: failed to clone "
1675 "multicast frame\n", dev->name);
1676 } else {
1677 dsta = sta_info_get(sdata, skb->data);
1678 if (dsta) {
1679 /*
1680 * The destination station is associated to
1681 * this AP (in this VLAN), so send the frame
1682 * directly to it and do not pass it to local
1683 * net stack.
1684 */
1685 xmit_skb = skb;
1686 skb = NULL;
1687 }
1688 }
1689 }
1690
1691 if (skb) {
1692 int align __maybe_unused;
1693
1694 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1695 /*
1696 * 'align' will only take the values 0 or 2 here
1697 * since all frames are required to be aligned
1698 * to 2-byte boundaries when being passed to
1699 * mac80211. That also explains the __skb_push()
1700 * below.
1701 */
1702 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1703 if (align) {
1704 if (WARN_ON(skb_headroom(skb) < 3)) {
1705 dev_kfree_skb(skb);
1706 skb = NULL;
1707 } else {
1708 u8 *data = skb->data;
1709 size_t len = skb_headlen(skb);
1710 skb->data -= align;
1711 memmove(skb->data, data, len);
1712 skb_set_tail_pointer(skb, len);
1713 }
1714 }
1715 #endif
1716
1717 if (skb) {
1718 /* deliver to local stack */
1719 skb->protocol = eth_type_trans(skb, dev);
1720 memset(skb->cb, 0, sizeof(skb->cb));
1721 netif_receive_skb(skb);
1722 }
1723 }
1724
1725 if (xmit_skb) {
1726 /* send to wireless media */
1727 xmit_skb->protocol = htons(ETH_P_802_3);
1728 skb_reset_network_header(xmit_skb);
1729 skb_reset_mac_header(xmit_skb);
1730 dev_queue_xmit(xmit_skb);
1731 }
1732 }
1733
1734 static ieee80211_rx_result debug_noinline
1735 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1736 {
1737 struct net_device *dev = rx->sdata->dev;
1738 struct sk_buff *skb = rx->skb;
1739 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1740 __le16 fc = hdr->frame_control;
1741 struct sk_buff_head frame_list;
1742 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1743
1744 if (unlikely(!ieee80211_is_data(fc)))
1745 return RX_CONTINUE;
1746
1747 if (unlikely(!ieee80211_is_data_present(fc)))
1748 return RX_DROP_MONITOR;
1749
1750 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1751 return RX_CONTINUE;
1752
1753 if (ieee80211_has_a4(hdr->frame_control) &&
1754 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1755 !rx->sdata->u.vlan.sta)
1756 return RX_DROP_UNUSABLE;
1757
1758 if (is_multicast_ether_addr(hdr->addr1) &&
1759 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1760 rx->sdata->u.vlan.sta) ||
1761 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1762 rx->sdata->u.mgd.use_4addr)))
1763 return RX_DROP_UNUSABLE;
1764
1765 skb->dev = dev;
1766 __skb_queue_head_init(&frame_list);
1767
1768 if (skb_linearize(skb))
1769 return RX_DROP_UNUSABLE;
1770
1771 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1772 rx->sdata->vif.type,
1773 rx->local->hw.extra_tx_headroom);
1774
1775 while (!skb_queue_empty(&frame_list)) {
1776 rx->skb = __skb_dequeue(&frame_list);
1777
1778 if (!ieee80211_frame_allowed(rx, fc)) {
1779 dev_kfree_skb(rx->skb);
1780 continue;
1781 }
1782 dev->stats.rx_packets++;
1783 dev->stats.rx_bytes += rx->skb->len;
1784
1785 ieee80211_deliver_skb(rx);
1786 }
1787
1788 return RX_QUEUED;
1789 }
1790
1791 #ifdef CONFIG_MAC80211_MESH
1792 static ieee80211_rx_result
1793 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1794 {
1795 struct ieee80211_hdr *hdr;
1796 struct ieee80211s_hdr *mesh_hdr;
1797 unsigned int hdrlen;
1798 struct sk_buff *skb = rx->skb, *fwd_skb;
1799 struct ieee80211_local *local = rx->local;
1800 struct ieee80211_sub_if_data *sdata = rx->sdata;
1801 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1802
1803 hdr = (struct ieee80211_hdr *) skb->data;
1804 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1805 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1806
1807 if (!ieee80211_is_data(hdr->frame_control))
1808 return RX_CONTINUE;
1809
1810 if (!mesh_hdr->ttl)
1811 /* illegal frame */
1812 return RX_DROP_MONITOR;
1813
1814 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1815 struct mesh_path *mppath;
1816 char *proxied_addr;
1817 char *mpp_addr;
1818
1819 if (is_multicast_ether_addr(hdr->addr1)) {
1820 mpp_addr = hdr->addr3;
1821 proxied_addr = mesh_hdr->eaddr1;
1822 } else {
1823 mpp_addr = hdr->addr4;
1824 proxied_addr = mesh_hdr->eaddr2;
1825 }
1826
1827 rcu_read_lock();
1828 mppath = mpp_path_lookup(proxied_addr, sdata);
1829 if (!mppath) {
1830 mpp_path_add(proxied_addr, mpp_addr, sdata);
1831 } else {
1832 spin_lock_bh(&mppath->state_lock);
1833 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1834 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1835 spin_unlock_bh(&mppath->state_lock);
1836 }
1837 rcu_read_unlock();
1838 }
1839
1840 /* Frame has reached destination. Don't forward */
1841 if (!is_multicast_ether_addr(hdr->addr1) &&
1842 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1843 return RX_CONTINUE;
1844
1845 mesh_hdr->ttl--;
1846
1847 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1848 if (!mesh_hdr->ttl)
1849 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1850 dropped_frames_ttl);
1851 else {
1852 struct ieee80211_hdr *fwd_hdr;
1853 struct ieee80211_tx_info *info;
1854
1855 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1856
1857 if (!fwd_skb && net_ratelimit())
1858 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1859 sdata->name);
1860 if (!fwd_skb)
1861 goto out;
1862
1863 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1864 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1865 info = IEEE80211_SKB_CB(fwd_skb);
1866 memset(info, 0, sizeof(*info));
1867 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1868 info->control.vif = &rx->sdata->vif;
1869 skb_set_queue_mapping(skb,
1870 ieee80211_select_queue(rx->sdata, fwd_skb));
1871 ieee80211_set_qos_hdr(local, skb);
1872 if (is_multicast_ether_addr(fwd_hdr->addr1))
1873 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1874 fwded_mcast);
1875 else {
1876 int err;
1877 /*
1878 * Save TA to addr1 to send TA a path error if a
1879 * suitable next hop is not found
1880 */
1881 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1882 ETH_ALEN);
1883 err = mesh_nexthop_lookup(fwd_skb, sdata);
1884 /* Failed to immediately resolve next hop:
1885 * fwded frame was dropped or will be added
1886 * later to the pending skb queue. */
1887 if (err)
1888 return RX_DROP_MONITOR;
1889
1890 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1891 fwded_unicast);
1892 }
1893 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1894 fwded_frames);
1895 ieee80211_add_pending_skb(local, fwd_skb);
1896 }
1897 }
1898
1899 out:
1900 if (is_multicast_ether_addr(hdr->addr1) ||
1901 sdata->dev->flags & IFF_PROMISC)
1902 return RX_CONTINUE;
1903 else
1904 return RX_DROP_MONITOR;
1905 }
1906 #endif
1907
1908 static ieee80211_rx_result debug_noinline
1909 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1910 {
1911 struct ieee80211_sub_if_data *sdata = rx->sdata;
1912 struct ieee80211_local *local = rx->local;
1913 struct net_device *dev = sdata->dev;
1914 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1915 __le16 fc = hdr->frame_control;
1916 int err;
1917
1918 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1919 return RX_CONTINUE;
1920
1921 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1922 return RX_DROP_MONITOR;
1923
1924 /*
1925 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1926 * that a 4-addr station can be detected and moved into a separate VLAN
1927 */
1928 if (ieee80211_has_a4(hdr->frame_control) &&
1929 sdata->vif.type == NL80211_IFTYPE_AP)
1930 return RX_DROP_MONITOR;
1931
1932 err = __ieee80211_data_to_8023(rx);
1933 if (unlikely(err))
1934 return RX_DROP_UNUSABLE;
1935
1936 if (!ieee80211_frame_allowed(rx, fc))
1937 return RX_DROP_MONITOR;
1938
1939 rx->skb->dev = dev;
1940
1941 dev->stats.rx_packets++;
1942 dev->stats.rx_bytes += rx->skb->len;
1943
1944 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1945 !is_multicast_ether_addr(
1946 ((struct ethhdr *)rx->skb->data)->h_dest) &&
1947 (!local->scanning &&
1948 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
1949 mod_timer(&local->dynamic_ps_timer, jiffies +
1950 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1951 }
1952
1953 ieee80211_deliver_skb(rx);
1954
1955 return RX_QUEUED;
1956 }
1957
1958 static ieee80211_rx_result debug_noinline
1959 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1960 {
1961 struct ieee80211_local *local = rx->local;
1962 struct ieee80211_hw *hw = &local->hw;
1963 struct sk_buff *skb = rx->skb;
1964 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1965 struct tid_ampdu_rx *tid_agg_rx;
1966 u16 start_seq_num;
1967 u16 tid;
1968
1969 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1970 return RX_CONTINUE;
1971
1972 if (ieee80211_is_back_req(bar->frame_control)) {
1973 struct {
1974 __le16 control, start_seq_num;
1975 } __packed bar_data;
1976
1977 if (!rx->sta)
1978 return RX_DROP_MONITOR;
1979
1980 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1981 &bar_data, sizeof(bar_data)))
1982 return RX_DROP_MONITOR;
1983
1984 tid = le16_to_cpu(bar_data.control) >> 12;
1985
1986 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1987 if (!tid_agg_rx)
1988 return RX_DROP_MONITOR;
1989
1990 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1991
1992 /* reset session timer */
1993 if (tid_agg_rx->timeout)
1994 mod_timer(&tid_agg_rx->session_timer,
1995 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1996
1997 spin_lock(&tid_agg_rx->reorder_lock);
1998 /* release stored frames up to start of BAR */
1999 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2000 spin_unlock(&tid_agg_rx->reorder_lock);
2001
2002 kfree_skb(skb);
2003 return RX_QUEUED;
2004 }
2005
2006 /*
2007 * After this point, we only want management frames,
2008 * so we can drop all remaining control frames to
2009 * cooked monitor interfaces.
2010 */
2011 return RX_DROP_MONITOR;
2012 }
2013
2014 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2015 struct ieee80211_mgmt *mgmt,
2016 size_t len)
2017 {
2018 struct ieee80211_local *local = sdata->local;
2019 struct sk_buff *skb;
2020 struct ieee80211_mgmt *resp;
2021
2022 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2023 /* Not to own unicast address */
2024 return;
2025 }
2026
2027 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2028 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2029 /* Not from the current AP or not associated yet. */
2030 return;
2031 }
2032
2033 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2034 /* Too short SA Query request frame */
2035 return;
2036 }
2037
2038 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2039 if (skb == NULL)
2040 return;
2041
2042 skb_reserve(skb, local->hw.extra_tx_headroom);
2043 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2044 memset(resp, 0, 24);
2045 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2046 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2047 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2048 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2049 IEEE80211_STYPE_ACTION);
2050 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2051 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2052 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2053 memcpy(resp->u.action.u.sa_query.trans_id,
2054 mgmt->u.action.u.sa_query.trans_id,
2055 WLAN_SA_QUERY_TR_ID_LEN);
2056
2057 ieee80211_tx_skb(sdata, skb);
2058 }
2059
2060 static ieee80211_rx_result debug_noinline
2061 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2062 {
2063 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2064 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2065
2066 /*
2067 * From here on, look only at management frames.
2068 * Data and control frames are already handled,
2069 * and unknown (reserved) frames are useless.
2070 */
2071 if (rx->skb->len < 24)
2072 return RX_DROP_MONITOR;
2073
2074 if (!ieee80211_is_mgmt(mgmt->frame_control))
2075 return RX_DROP_MONITOR;
2076
2077 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2078 return RX_DROP_MONITOR;
2079
2080 if (ieee80211_drop_unencrypted_mgmt(rx))
2081 return RX_DROP_UNUSABLE;
2082
2083 return RX_CONTINUE;
2084 }
2085
2086 static ieee80211_rx_result debug_noinline
2087 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2088 {
2089 struct ieee80211_local *local = rx->local;
2090 struct ieee80211_sub_if_data *sdata = rx->sdata;
2091 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2092 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2093 int len = rx->skb->len;
2094
2095 if (!ieee80211_is_action(mgmt->frame_control))
2096 return RX_CONTINUE;
2097
2098 /* drop too small frames */
2099 if (len < IEEE80211_MIN_ACTION_SIZE)
2100 return RX_DROP_UNUSABLE;
2101
2102 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2103 return RX_DROP_UNUSABLE;
2104
2105 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2106 return RX_DROP_UNUSABLE;
2107
2108 switch (mgmt->u.action.category) {
2109 case WLAN_CATEGORY_BACK:
2110 /*
2111 * The aggregation code is not prepared to handle
2112 * anything but STA/AP due to the BSSID handling;
2113 * IBSS could work in the code but isn't supported
2114 * by drivers or the standard.
2115 */
2116 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2117 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2118 sdata->vif.type != NL80211_IFTYPE_AP)
2119 break;
2120
2121 /* verify action_code is present */
2122 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2123 break;
2124
2125 switch (mgmt->u.action.u.addba_req.action_code) {
2126 case WLAN_ACTION_ADDBA_REQ:
2127 if (len < (IEEE80211_MIN_ACTION_SIZE +
2128 sizeof(mgmt->u.action.u.addba_req)))
2129 goto invalid;
2130 break;
2131 case WLAN_ACTION_ADDBA_RESP:
2132 if (len < (IEEE80211_MIN_ACTION_SIZE +
2133 sizeof(mgmt->u.action.u.addba_resp)))
2134 goto invalid;
2135 break;
2136 case WLAN_ACTION_DELBA:
2137 if (len < (IEEE80211_MIN_ACTION_SIZE +
2138 sizeof(mgmt->u.action.u.delba)))
2139 goto invalid;
2140 break;
2141 default:
2142 goto invalid;
2143 }
2144
2145 goto queue;
2146 case WLAN_CATEGORY_SPECTRUM_MGMT:
2147 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2148 break;
2149
2150 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2151 break;
2152
2153 /* verify action_code is present */
2154 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2155 break;
2156
2157 switch (mgmt->u.action.u.measurement.action_code) {
2158 case WLAN_ACTION_SPCT_MSR_REQ:
2159 if (len < (IEEE80211_MIN_ACTION_SIZE +
2160 sizeof(mgmt->u.action.u.measurement)))
2161 break;
2162 ieee80211_process_measurement_req(sdata, mgmt, len);
2163 goto handled;
2164 case WLAN_ACTION_SPCT_CHL_SWITCH:
2165 if (len < (IEEE80211_MIN_ACTION_SIZE +
2166 sizeof(mgmt->u.action.u.chan_switch)))
2167 break;
2168
2169 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2170 break;
2171
2172 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2173 break;
2174
2175 goto queue;
2176 }
2177 break;
2178 case WLAN_CATEGORY_SA_QUERY:
2179 if (len < (IEEE80211_MIN_ACTION_SIZE +
2180 sizeof(mgmt->u.action.u.sa_query)))
2181 break;
2182
2183 switch (mgmt->u.action.u.sa_query.action) {
2184 case WLAN_ACTION_SA_QUERY_REQUEST:
2185 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2186 break;
2187 ieee80211_process_sa_query_req(sdata, mgmt, len);
2188 goto handled;
2189 }
2190 break;
2191 case WLAN_CATEGORY_MESH_PLINK:
2192 if (!ieee80211_vif_is_mesh(&sdata->vif))
2193 break;
2194 goto queue;
2195 case WLAN_CATEGORY_MESH_PATH_SEL:
2196 if (!mesh_path_sel_is_hwmp(sdata))
2197 break;
2198 goto queue;
2199 }
2200
2201 return RX_CONTINUE;
2202
2203 invalid:
2204 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2205 /* will return in the next handlers */
2206 return RX_CONTINUE;
2207
2208 handled:
2209 if (rx->sta)
2210 rx->sta->rx_packets++;
2211 dev_kfree_skb(rx->skb);
2212 return RX_QUEUED;
2213
2214 queue:
2215 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2216 skb_queue_tail(&sdata->skb_queue, rx->skb);
2217 ieee80211_queue_work(&local->hw, &sdata->work);
2218 if (rx->sta)
2219 rx->sta->rx_packets++;
2220 return RX_QUEUED;
2221 }
2222
2223 static ieee80211_rx_result debug_noinline
2224 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2225 {
2226 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2227
2228 /* skip known-bad action frames and return them in the next handler */
2229 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2230 return RX_CONTINUE;
2231
2232 /*
2233 * Getting here means the kernel doesn't know how to handle
2234 * it, but maybe userspace does ... include returned frames
2235 * so userspace can register for those to know whether ones
2236 * it transmitted were processed or returned.
2237 */
2238
2239 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2240 rx->skb->data, rx->skb->len,
2241 GFP_ATOMIC)) {
2242 if (rx->sta)
2243 rx->sta->rx_packets++;
2244 dev_kfree_skb(rx->skb);
2245 return RX_QUEUED;
2246 }
2247
2248
2249 return RX_CONTINUE;
2250 }
2251
2252 static ieee80211_rx_result debug_noinline
2253 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2254 {
2255 struct ieee80211_local *local = rx->local;
2256 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2257 struct sk_buff *nskb;
2258 struct ieee80211_sub_if_data *sdata = rx->sdata;
2259 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2260
2261 if (!ieee80211_is_action(mgmt->frame_control))
2262 return RX_CONTINUE;
2263
2264 /*
2265 * For AP mode, hostapd is responsible for handling any action
2266 * frames that we didn't handle, including returning unknown
2267 * ones. For all other modes we will return them to the sender,
2268 * setting the 0x80 bit in the action category, as required by
2269 * 802.11-2007 7.3.1.11.
2270 * Newer versions of hostapd shall also use the management frame
2271 * registration mechanisms, but older ones still use cooked
2272 * monitor interfaces so push all frames there.
2273 */
2274 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2275 (sdata->vif.type == NL80211_IFTYPE_AP ||
2276 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2277 return RX_DROP_MONITOR;
2278
2279 /* do not return rejected action frames */
2280 if (mgmt->u.action.category & 0x80)
2281 return RX_DROP_UNUSABLE;
2282
2283 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2284 GFP_ATOMIC);
2285 if (nskb) {
2286 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2287
2288 nmgmt->u.action.category |= 0x80;
2289 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2290 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2291
2292 memset(nskb->cb, 0, sizeof(nskb->cb));
2293
2294 ieee80211_tx_skb(rx->sdata, nskb);
2295 }
2296 dev_kfree_skb(rx->skb);
2297 return RX_QUEUED;
2298 }
2299
2300 static ieee80211_rx_result debug_noinline
2301 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2302 {
2303 struct ieee80211_sub_if_data *sdata = rx->sdata;
2304 ieee80211_rx_result rxs;
2305 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2306 __le16 stype;
2307
2308 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2309 if (rxs != RX_CONTINUE)
2310 return rxs;
2311
2312 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2313
2314 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2315 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2316 sdata->vif.type != NL80211_IFTYPE_STATION)
2317 return RX_DROP_MONITOR;
2318
2319 switch (stype) {
2320 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2321 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2322 /* process for all: mesh, mlme, ibss */
2323 break;
2324 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2325 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2326 if (is_multicast_ether_addr(mgmt->da) &&
2327 !is_broadcast_ether_addr(mgmt->da))
2328 return RX_DROP_MONITOR;
2329
2330 /* process only for station */
2331 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2332 return RX_DROP_MONITOR;
2333 break;
2334 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2335 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2336 /* process only for ibss */
2337 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2338 return RX_DROP_MONITOR;
2339 break;
2340 default:
2341 return RX_DROP_MONITOR;
2342 }
2343
2344 /* queue up frame and kick off work to process it */
2345 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2346 skb_queue_tail(&sdata->skb_queue, rx->skb);
2347 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2348 if (rx->sta)
2349 rx->sta->rx_packets++;
2350
2351 return RX_QUEUED;
2352 }
2353
2354 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2355 struct ieee80211_rx_data *rx)
2356 {
2357 int keyidx;
2358 unsigned int hdrlen;
2359
2360 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2361 if (rx->skb->len >= hdrlen + 4)
2362 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2363 else
2364 keyidx = -1;
2365
2366 if (!rx->sta) {
2367 /*
2368 * Some hardware seem to generate incorrect Michael MIC
2369 * reports; ignore them to avoid triggering countermeasures.
2370 */
2371 return;
2372 }
2373
2374 if (!ieee80211_has_protected(hdr->frame_control))
2375 return;
2376
2377 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2378 /*
2379 * APs with pairwise keys should never receive Michael MIC
2380 * errors for non-zero keyidx because these are reserved for
2381 * group keys and only the AP is sending real multicast
2382 * frames in the BSS.
2383 */
2384 return;
2385 }
2386
2387 if (!ieee80211_is_data(hdr->frame_control) &&
2388 !ieee80211_is_auth(hdr->frame_control))
2389 return;
2390
2391 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2392 GFP_ATOMIC);
2393 }
2394
2395 /* TODO: use IEEE80211_RX_FRAGMENTED */
2396 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2397 struct ieee80211_rate *rate)
2398 {
2399 struct ieee80211_sub_if_data *sdata;
2400 struct ieee80211_local *local = rx->local;
2401 struct ieee80211_rtap_hdr {
2402 struct ieee80211_radiotap_header hdr;
2403 u8 flags;
2404 u8 rate_or_pad;
2405 __le16 chan_freq;
2406 __le16 chan_flags;
2407 } __packed *rthdr;
2408 struct sk_buff *skb = rx->skb, *skb2;
2409 struct net_device *prev_dev = NULL;
2410 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2411
2412 /*
2413 * If cooked monitor has been processed already, then
2414 * don't do it again. If not, set the flag.
2415 */
2416 if (rx->flags & IEEE80211_RX_CMNTR)
2417 goto out_free_skb;
2418 rx->flags |= IEEE80211_RX_CMNTR;
2419
2420 if (skb_headroom(skb) < sizeof(*rthdr) &&
2421 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2422 goto out_free_skb;
2423
2424 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2425 memset(rthdr, 0, sizeof(*rthdr));
2426 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2427 rthdr->hdr.it_present =
2428 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2429 (1 << IEEE80211_RADIOTAP_CHANNEL));
2430
2431 if (rate) {
2432 rthdr->rate_or_pad = rate->bitrate / 5;
2433 rthdr->hdr.it_present |=
2434 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2435 }
2436 rthdr->chan_freq = cpu_to_le16(status->freq);
2437
2438 if (status->band == IEEE80211_BAND_5GHZ)
2439 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2440 IEEE80211_CHAN_5GHZ);
2441 else
2442 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2443 IEEE80211_CHAN_2GHZ);
2444
2445 skb_set_mac_header(skb, 0);
2446 skb->ip_summed = CHECKSUM_UNNECESSARY;
2447 skb->pkt_type = PACKET_OTHERHOST;
2448 skb->protocol = htons(ETH_P_802_2);
2449
2450 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2451 if (!ieee80211_sdata_running(sdata))
2452 continue;
2453
2454 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2455 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2456 continue;
2457
2458 if (prev_dev) {
2459 skb2 = skb_clone(skb, GFP_ATOMIC);
2460 if (skb2) {
2461 skb2->dev = prev_dev;
2462 netif_receive_skb(skb2);
2463 }
2464 }
2465
2466 prev_dev = sdata->dev;
2467 sdata->dev->stats.rx_packets++;
2468 sdata->dev->stats.rx_bytes += skb->len;
2469 }
2470
2471 if (prev_dev) {
2472 skb->dev = prev_dev;
2473 netif_receive_skb(skb);
2474 return;
2475 }
2476
2477 out_free_skb:
2478 dev_kfree_skb(skb);
2479 }
2480
2481 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2482 ieee80211_rx_result res)
2483 {
2484 switch (res) {
2485 case RX_DROP_MONITOR:
2486 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2487 if (rx->sta)
2488 rx->sta->rx_dropped++;
2489 /* fall through */
2490 case RX_CONTINUE: {
2491 struct ieee80211_rate *rate = NULL;
2492 struct ieee80211_supported_band *sband;
2493 struct ieee80211_rx_status *status;
2494
2495 status = IEEE80211_SKB_RXCB((rx->skb));
2496
2497 sband = rx->local->hw.wiphy->bands[status->band];
2498 if (!(status->flag & RX_FLAG_HT))
2499 rate = &sband->bitrates[status->rate_idx];
2500
2501 ieee80211_rx_cooked_monitor(rx, rate);
2502 break;
2503 }
2504 case RX_DROP_UNUSABLE:
2505 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2506 if (rx->sta)
2507 rx->sta->rx_dropped++;
2508 dev_kfree_skb(rx->skb);
2509 break;
2510 case RX_QUEUED:
2511 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2512 break;
2513 }
2514 }
2515
2516 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2517 {
2518 ieee80211_rx_result res = RX_DROP_MONITOR;
2519 struct sk_buff *skb;
2520
2521 #define CALL_RXH(rxh) \
2522 do { \
2523 res = rxh(rx); \
2524 if (res != RX_CONTINUE) \
2525 goto rxh_next; \
2526 } while (0);
2527
2528 spin_lock(&rx->local->rx_skb_queue.lock);
2529 if (rx->local->running_rx_handler)
2530 goto unlock;
2531
2532 rx->local->running_rx_handler = true;
2533
2534 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2535 spin_unlock(&rx->local->rx_skb_queue.lock);
2536
2537 /*
2538 * all the other fields are valid across frames
2539 * that belong to an aMPDU since they are on the
2540 * same TID from the same station
2541 */
2542 rx->skb = skb;
2543 rx->flags = 0;
2544
2545 CALL_RXH(ieee80211_rx_h_decrypt)
2546 CALL_RXH(ieee80211_rx_h_check_more_data)
2547 CALL_RXH(ieee80211_rx_h_sta_process)
2548 CALL_RXH(ieee80211_rx_h_defragment)
2549 CALL_RXH(ieee80211_rx_h_ps_poll)
2550 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2551 /* must be after MMIC verify so header is counted in MPDU mic */
2552 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2553 CALL_RXH(ieee80211_rx_h_amsdu)
2554 #ifdef CONFIG_MAC80211_MESH
2555 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2556 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2557 #endif
2558 CALL_RXH(ieee80211_rx_h_data)
2559 CALL_RXH(ieee80211_rx_h_ctrl);
2560 CALL_RXH(ieee80211_rx_h_mgmt_check)
2561 CALL_RXH(ieee80211_rx_h_action)
2562 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2563 CALL_RXH(ieee80211_rx_h_action_return)
2564 CALL_RXH(ieee80211_rx_h_mgmt)
2565
2566 rxh_next:
2567 ieee80211_rx_handlers_result(rx, res);
2568 spin_lock(&rx->local->rx_skb_queue.lock);
2569 #undef CALL_RXH
2570 }
2571
2572 rx->local->running_rx_handler = false;
2573
2574 unlock:
2575 spin_unlock(&rx->local->rx_skb_queue.lock);
2576 }
2577
2578 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2579 {
2580 ieee80211_rx_result res = RX_DROP_MONITOR;
2581
2582 #define CALL_RXH(rxh) \
2583 do { \
2584 res = rxh(rx); \
2585 if (res != RX_CONTINUE) \
2586 goto rxh_next; \
2587 } while (0);
2588
2589 CALL_RXH(ieee80211_rx_h_passive_scan)
2590 CALL_RXH(ieee80211_rx_h_check)
2591
2592 ieee80211_rx_reorder_ampdu(rx);
2593
2594 ieee80211_rx_handlers(rx);
2595 return;
2596
2597 rxh_next:
2598 ieee80211_rx_handlers_result(rx, res);
2599
2600 #undef CALL_RXH
2601 }
2602
2603 /*
2604 * This function makes calls into the RX path, therefore
2605 * it has to be invoked under RCU read lock.
2606 */
2607 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2608 {
2609 struct ieee80211_rx_data rx = {
2610 .sta = sta,
2611 .sdata = sta->sdata,
2612 .local = sta->local,
2613 .queue = tid,
2614 };
2615 struct tid_ampdu_rx *tid_agg_rx;
2616
2617 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2618 if (!tid_agg_rx)
2619 return;
2620
2621 spin_lock(&tid_agg_rx->reorder_lock);
2622 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2623 spin_unlock(&tid_agg_rx->reorder_lock);
2624
2625 ieee80211_rx_handlers(&rx);
2626 }
2627
2628 /* main receive path */
2629
2630 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2631 struct ieee80211_hdr *hdr)
2632 {
2633 struct ieee80211_sub_if_data *sdata = rx->sdata;
2634 struct sk_buff *skb = rx->skb;
2635 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2636 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2637 int multicast = is_multicast_ether_addr(hdr->addr1);
2638
2639 switch (sdata->vif.type) {
2640 case NL80211_IFTYPE_STATION:
2641 if (!bssid && !sdata->u.mgd.use_4addr)
2642 return 0;
2643 if (!multicast &&
2644 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2645 if (!(sdata->dev->flags & IFF_PROMISC) ||
2646 sdata->u.mgd.use_4addr)
2647 return 0;
2648 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2649 }
2650 break;
2651 case NL80211_IFTYPE_ADHOC:
2652 if (!bssid)
2653 return 0;
2654 if (ieee80211_is_beacon(hdr->frame_control)) {
2655 return 1;
2656 }
2657 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2658 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2659 return 0;
2660 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2661 } else if (!multicast &&
2662 compare_ether_addr(sdata->vif.addr,
2663 hdr->addr1) != 0) {
2664 if (!(sdata->dev->flags & IFF_PROMISC))
2665 return 0;
2666 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2667 } else if (!rx->sta) {
2668 int rate_idx;
2669 if (status->flag & RX_FLAG_HT)
2670 rate_idx = 0; /* TODO: HT rates */
2671 else
2672 rate_idx = status->rate_idx;
2673 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2674 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2675 }
2676 break;
2677 case NL80211_IFTYPE_MESH_POINT:
2678 if (!multicast &&
2679 compare_ether_addr(sdata->vif.addr,
2680 hdr->addr1) != 0) {
2681 if (!(sdata->dev->flags & IFF_PROMISC))
2682 return 0;
2683
2684 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2685 }
2686 break;
2687 case NL80211_IFTYPE_AP_VLAN:
2688 case NL80211_IFTYPE_AP:
2689 if (!bssid) {
2690 if (compare_ether_addr(sdata->vif.addr,
2691 hdr->addr1))
2692 return 0;
2693 } else if (!ieee80211_bssid_match(bssid,
2694 sdata->vif.addr)) {
2695 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2696 !ieee80211_is_beacon(hdr->frame_control))
2697 return 0;
2698 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2699 }
2700 break;
2701 case NL80211_IFTYPE_WDS:
2702 if (bssid || !ieee80211_is_data(hdr->frame_control))
2703 return 0;
2704 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2705 return 0;
2706 break;
2707 default:
2708 /* should never get here */
2709 WARN_ON(1);
2710 break;
2711 }
2712
2713 return 1;
2714 }
2715
2716 /*
2717 * This function returns whether or not the SKB
2718 * was destined for RX processing or not, which,
2719 * if consume is true, is equivalent to whether
2720 * or not the skb was consumed.
2721 */
2722 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2723 struct sk_buff *skb, bool consume)
2724 {
2725 struct ieee80211_local *local = rx->local;
2726 struct ieee80211_sub_if_data *sdata = rx->sdata;
2727 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2728 struct ieee80211_hdr *hdr = (void *)skb->data;
2729 int prepares;
2730
2731 rx->skb = skb;
2732 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2733 prepares = prepare_for_handlers(rx, hdr);
2734
2735 if (!prepares)
2736 return false;
2737
2738 if (status->flag & RX_FLAG_MMIC_ERROR) {
2739 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2740 ieee80211_rx_michael_mic_report(hdr, rx);
2741 return false;
2742 }
2743
2744 if (!consume) {
2745 skb = skb_copy(skb, GFP_ATOMIC);
2746 if (!skb) {
2747 if (net_ratelimit())
2748 wiphy_debug(local->hw.wiphy,
2749 "failed to copy skb for %s\n",
2750 sdata->name);
2751 return true;
2752 }
2753
2754 rx->skb = skb;
2755 }
2756
2757 ieee80211_invoke_rx_handlers(rx);
2758 return true;
2759 }
2760
2761 /*
2762 * This is the actual Rx frames handler. as it blongs to Rx path it must
2763 * be called with rcu_read_lock protection.
2764 */
2765 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2766 struct sk_buff *skb)
2767 {
2768 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2769 struct ieee80211_local *local = hw_to_local(hw);
2770 struct ieee80211_sub_if_data *sdata;
2771 struct ieee80211_hdr *hdr;
2772 __le16 fc;
2773 struct ieee80211_rx_data rx;
2774 struct ieee80211_sub_if_data *prev;
2775 struct sta_info *sta, *tmp, *prev_sta;
2776 int err = 0;
2777
2778 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2779 memset(&rx, 0, sizeof(rx));
2780 rx.skb = skb;
2781 rx.local = local;
2782
2783 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2784 local->dot11ReceivedFragmentCount++;
2785
2786 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2787 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2788 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2789
2790 if (ieee80211_is_mgmt(fc))
2791 err = skb_linearize(skb);
2792 else
2793 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2794
2795 if (err) {
2796 dev_kfree_skb(skb);
2797 return;
2798 }
2799
2800 hdr = (struct ieee80211_hdr *)skb->data;
2801 ieee80211_parse_qos(&rx);
2802 ieee80211_verify_alignment(&rx);
2803
2804 if (ieee80211_is_data(fc)) {
2805 prev_sta = NULL;
2806
2807 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2808 if (!prev_sta) {
2809 prev_sta = sta;
2810 continue;
2811 }
2812
2813 rx.sta = prev_sta;
2814 rx.sdata = prev_sta->sdata;
2815 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2816
2817 prev_sta = sta;
2818 }
2819
2820 if (prev_sta) {
2821 rx.sta = prev_sta;
2822 rx.sdata = prev_sta->sdata;
2823
2824 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2825 return;
2826 goto out;
2827 }
2828 }
2829
2830 prev = NULL;
2831
2832 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2833 if (!ieee80211_sdata_running(sdata))
2834 continue;
2835
2836 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2837 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2838 continue;
2839
2840 /*
2841 * frame is destined for this interface, but if it's
2842 * not also for the previous one we handle that after
2843 * the loop to avoid copying the SKB once too much
2844 */
2845
2846 if (!prev) {
2847 prev = sdata;
2848 continue;
2849 }
2850
2851 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2852 rx.sdata = prev;
2853 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2854
2855 prev = sdata;
2856 }
2857
2858 if (prev) {
2859 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2860 rx.sdata = prev;
2861
2862 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2863 return;
2864 }
2865
2866 out:
2867 dev_kfree_skb(skb);
2868 }
2869
2870 /*
2871 * This is the receive path handler. It is called by a low level driver when an
2872 * 802.11 MPDU is received from the hardware.
2873 */
2874 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2875 {
2876 struct ieee80211_local *local = hw_to_local(hw);
2877 struct ieee80211_rate *rate = NULL;
2878 struct ieee80211_supported_band *sband;
2879 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2880
2881 WARN_ON_ONCE(softirq_count() == 0);
2882
2883 if (WARN_ON(status->band < 0 ||
2884 status->band >= IEEE80211_NUM_BANDS))
2885 goto drop;
2886
2887 sband = local->hw.wiphy->bands[status->band];
2888 if (WARN_ON(!sband))
2889 goto drop;
2890
2891 /*
2892 * If we're suspending, it is possible although not too likely
2893 * that we'd be receiving frames after having already partially
2894 * quiesced the stack. We can't process such frames then since
2895 * that might, for example, cause stations to be added or other
2896 * driver callbacks be invoked.
2897 */
2898 if (unlikely(local->quiescing || local->suspended))
2899 goto drop;
2900
2901 /*
2902 * The same happens when we're not even started,
2903 * but that's worth a warning.
2904 */
2905 if (WARN_ON(!local->started))
2906 goto drop;
2907
2908 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2909 /*
2910 * Validate the rate, unless a PLCP error means that
2911 * we probably can't have a valid rate here anyway.
2912 */
2913
2914 if (status->flag & RX_FLAG_HT) {
2915 /*
2916 * rate_idx is MCS index, which can be [0-76]
2917 * as documented on:
2918 *
2919 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2920 *
2921 * Anything else would be some sort of driver or
2922 * hardware error. The driver should catch hardware
2923 * errors.
2924 */
2925 if (WARN((status->rate_idx < 0 ||
2926 status->rate_idx > 76),
2927 "Rate marked as an HT rate but passed "
2928 "status->rate_idx is not "
2929 "an MCS index [0-76]: %d (0x%02x)\n",
2930 status->rate_idx,
2931 status->rate_idx))
2932 goto drop;
2933 } else {
2934 if (WARN_ON(status->rate_idx < 0 ||
2935 status->rate_idx >= sband->n_bitrates))
2936 goto drop;
2937 rate = &sband->bitrates[status->rate_idx];
2938 }
2939 }
2940
2941 status->rx_flags = 0;
2942
2943 /*
2944 * key references and virtual interfaces are protected using RCU
2945 * and this requires that we are in a read-side RCU section during
2946 * receive processing
2947 */
2948 rcu_read_lock();
2949
2950 /*
2951 * Frames with failed FCS/PLCP checksum are not returned,
2952 * all other frames are returned without radiotap header
2953 * if it was previously present.
2954 * Also, frames with less than 16 bytes are dropped.
2955 */
2956 skb = ieee80211_rx_monitor(local, skb, rate);
2957 if (!skb) {
2958 rcu_read_unlock();
2959 return;
2960 }
2961
2962 ieee80211_tpt_led_trig_rx(local,
2963 ((struct ieee80211_hdr *)skb->data)->frame_control,
2964 skb->len);
2965 __ieee80211_rx_handle_packet(hw, skb);
2966
2967 rcu_read_unlock();
2968
2969 return;
2970 drop:
2971 kfree_skb(skb);
2972 }
2973 EXPORT_SYMBOL(ieee80211_rx);
2974
2975 /* This is a version of the rx handler that can be called from hard irq
2976 * context. Post the skb on the queue and schedule the tasklet */
2977 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2978 {
2979 struct ieee80211_local *local = hw_to_local(hw);
2980
2981 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2982
2983 skb->pkt_type = IEEE80211_RX_MSG;
2984 skb_queue_tail(&local->skb_queue, skb);
2985 tasklet_schedule(&local->tasklet);
2986 }
2987 EXPORT_SYMBOL(ieee80211_rx_irqsafe);