]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/rx.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/jiffies.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/skbuff.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
20 #include <linux/rcupdate.h>
21 #include <linux/export.h>
22 #include <linux/bitops.h>
23 #include <net/mac80211.h>
24 #include <net/ieee80211_radiotap.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "tkip.h"
34 #include "wme.h"
35 #include "rate.h"
36
37 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
38 {
39 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
40
41 u64_stats_update_begin(&tstats->syncp);
42 tstats->rx_packets++;
43 tstats->rx_bytes += len;
44 u64_stats_update_end(&tstats->syncp);
45 }
46
47 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
48 enum nl80211_iftype type)
49 {
50 __le16 fc = hdr->frame_control;
51
52 if (ieee80211_is_data(fc)) {
53 if (len < 24) /* drop incorrect hdr len (data) */
54 return NULL;
55
56 if (ieee80211_has_a4(fc))
57 return NULL;
58 if (ieee80211_has_tods(fc))
59 return hdr->addr1;
60 if (ieee80211_has_fromds(fc))
61 return hdr->addr2;
62
63 return hdr->addr3;
64 }
65
66 if (ieee80211_is_mgmt(fc)) {
67 if (len < 24) /* drop incorrect hdr len (mgmt) */
68 return NULL;
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_ctl(fc)) {
73 if (ieee80211_is_pspoll(fc))
74 return hdr->addr1;
75
76 if (ieee80211_is_back_req(fc)) {
77 switch (type) {
78 case NL80211_IFTYPE_STATION:
79 return hdr->addr2;
80 case NL80211_IFTYPE_AP:
81 case NL80211_IFTYPE_AP_VLAN:
82 return hdr->addr1;
83 default:
84 break; /* fall through to the return */
85 }
86 }
87 }
88
89 return NULL;
90 }
91
92 /*
93 * monitor mode reception
94 *
95 * This function cleans up the SKB, i.e. it removes all the stuff
96 * only useful for monitoring.
97 */
98 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 unsigned int rtap_vendor_space)
101 {
102 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
103 if (likely(skb->len > FCS_LEN))
104 __pskb_trim(skb, skb->len - FCS_LEN);
105 else {
106 /* driver bug */
107 WARN_ON(1);
108 dev_kfree_skb(skb);
109 return NULL;
110 }
111 }
112
113 __pskb_pull(skb, rtap_vendor_space);
114
115 return skb;
116 }
117
118 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
119 unsigned int rtap_vendor_space)
120 {
121 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
122 struct ieee80211_hdr *hdr;
123
124 hdr = (void *)(skb->data + rtap_vendor_space);
125
126 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
127 RX_FLAG_FAILED_PLCP_CRC |
128 RX_FLAG_ONLY_MONITOR))
129 return true;
130
131 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
132 return true;
133
134 if (ieee80211_is_ctl(hdr->frame_control) &&
135 !ieee80211_is_pspoll(hdr->frame_control) &&
136 !ieee80211_is_back_req(hdr->frame_control))
137 return true;
138
139 return false;
140 }
141
142 static int
143 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
144 struct ieee80211_rx_status *status,
145 struct sk_buff *skb)
146 {
147 int len;
148
149 /* always present fields */
150 len = sizeof(struct ieee80211_radiotap_header) + 8;
151
152 /* allocate extra bitmaps */
153 if (status->chains)
154 len += 4 * hweight8(status->chains);
155
156 if (ieee80211_have_rx_timestamp(status)) {
157 len = ALIGN(len, 8);
158 len += 8;
159 }
160 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
161 len += 1;
162
163 /* antenna field, if we don't have per-chain info */
164 if (!status->chains)
165 len += 1;
166
167 /* padding for RX_FLAGS if necessary */
168 len = ALIGN(len, 2);
169
170 if (status->flag & RX_FLAG_HT) /* HT info */
171 len += 3;
172
173 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
174 len = ALIGN(len, 4);
175 len += 8;
176 }
177
178 if (status->flag & RX_FLAG_VHT) {
179 len = ALIGN(len, 2);
180 len += 12;
181 }
182
183 if (local->hw.radiotap_timestamp.units_pos >= 0) {
184 len = ALIGN(len, 8);
185 len += 12;
186 }
187
188 if (status->chains) {
189 /* antenna and antenna signal fields */
190 len += 2 * hweight8(status->chains);
191 }
192
193 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
194 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
195
196 /* vendor presence bitmap */
197 len += 4;
198 /* alignment for fixed 6-byte vendor data header */
199 len = ALIGN(len, 2);
200 /* vendor data header */
201 len += 6;
202 if (WARN_ON(rtap->align == 0))
203 rtap->align = 1;
204 len = ALIGN(len, rtap->align);
205 len += rtap->len + rtap->pad;
206 }
207
208 return len;
209 }
210
211 /*
212 * ieee80211_add_rx_radiotap_header - add radiotap header
213 *
214 * add a radiotap header containing all the fields which the hardware provided.
215 */
216 static void
217 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
218 struct sk_buff *skb,
219 struct ieee80211_rate *rate,
220 int rtap_len, bool has_fcs)
221 {
222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
223 struct ieee80211_radiotap_header *rthdr;
224 unsigned char *pos;
225 __le32 *it_present;
226 u32 it_present_val;
227 u16 rx_flags = 0;
228 u16 channel_flags = 0;
229 int mpdulen, chain;
230 unsigned long chains = status->chains;
231 struct ieee80211_vendor_radiotap rtap = {};
232
233 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
234 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
235 /* rtap.len and rtap.pad are undone immediately */
236 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
237 }
238
239 mpdulen = skb->len;
240 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
241 mpdulen += FCS_LEN;
242
243 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
244 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
245 it_present = &rthdr->it_present;
246
247 /* radiotap header, set always present flags */
248 rthdr->it_len = cpu_to_le16(rtap_len);
249 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
250 BIT(IEEE80211_RADIOTAP_CHANNEL) |
251 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
252
253 if (!status->chains)
254 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
255
256 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
257 it_present_val |=
258 BIT(IEEE80211_RADIOTAP_EXT) |
259 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
260 put_unaligned_le32(it_present_val, it_present);
261 it_present++;
262 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
263 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
264 }
265
266 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
267 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
268 BIT(IEEE80211_RADIOTAP_EXT);
269 put_unaligned_le32(it_present_val, it_present);
270 it_present++;
271 it_present_val = rtap.present;
272 }
273
274 put_unaligned_le32(it_present_val, it_present);
275
276 pos = (void *)(it_present + 1);
277
278 /* the order of the following fields is important */
279
280 /* IEEE80211_RADIOTAP_TSFT */
281 if (ieee80211_have_rx_timestamp(status)) {
282 /* padding */
283 while ((pos - (u8 *)rthdr) & 7)
284 *pos++ = 0;
285 put_unaligned_le64(
286 ieee80211_calculate_rx_timestamp(local, status,
287 mpdulen, 0),
288 pos);
289 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
290 pos += 8;
291 }
292
293 /* IEEE80211_RADIOTAP_FLAGS */
294 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
295 *pos |= IEEE80211_RADIOTAP_F_FCS;
296 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
297 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
298 if (status->flag & RX_FLAG_SHORTPRE)
299 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
300 pos++;
301
302 /* IEEE80211_RADIOTAP_RATE */
303 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
304 /*
305 * Without rate information don't add it. If we have,
306 * MCS information is a separate field in radiotap,
307 * added below. The byte here is needed as padding
308 * for the channel though, so initialise it to 0.
309 */
310 *pos = 0;
311 } else {
312 int shift = 0;
313 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
314 if (status->flag & RX_FLAG_10MHZ)
315 shift = 1;
316 else if (status->flag & RX_FLAG_5MHZ)
317 shift = 2;
318 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
319 }
320 pos++;
321
322 /* IEEE80211_RADIOTAP_CHANNEL */
323 put_unaligned_le16(status->freq, pos);
324 pos += 2;
325 if (status->flag & RX_FLAG_10MHZ)
326 channel_flags |= IEEE80211_CHAN_HALF;
327 else if (status->flag & RX_FLAG_5MHZ)
328 channel_flags |= IEEE80211_CHAN_QUARTER;
329
330 if (status->band == NL80211_BAND_5GHZ)
331 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
332 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
333 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
334 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
335 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
336 else if (rate)
337 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
338 else
339 channel_flags |= IEEE80211_CHAN_2GHZ;
340 put_unaligned_le16(channel_flags, pos);
341 pos += 2;
342
343 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
344 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
345 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
346 *pos = status->signal;
347 rthdr->it_present |=
348 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
349 pos++;
350 }
351
352 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
353
354 if (!status->chains) {
355 /* IEEE80211_RADIOTAP_ANTENNA */
356 *pos = status->antenna;
357 pos++;
358 }
359
360 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
361
362 /* IEEE80211_RADIOTAP_RX_FLAGS */
363 /* ensure 2 byte alignment for the 2 byte field as required */
364 if ((pos - (u8 *)rthdr) & 1)
365 *pos++ = 0;
366 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
367 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
368 put_unaligned_le16(rx_flags, pos);
369 pos += 2;
370
371 if (status->flag & RX_FLAG_HT) {
372 unsigned int stbc;
373
374 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
375 *pos++ = local->hw.radiotap_mcs_details;
376 *pos = 0;
377 if (status->flag & RX_FLAG_SHORT_GI)
378 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
379 if (status->flag & RX_FLAG_40MHZ)
380 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
381 if (status->flag & RX_FLAG_HT_GF)
382 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
383 if (status->flag & RX_FLAG_LDPC)
384 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
385 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
386 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
387 pos++;
388 *pos++ = status->rate_idx;
389 }
390
391 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
392 u16 flags = 0;
393
394 /* ensure 4 byte alignment */
395 while ((pos - (u8 *)rthdr) & 3)
396 pos++;
397 rthdr->it_present |=
398 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
399 put_unaligned_le32(status->ampdu_reference, pos);
400 pos += 4;
401 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
402 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
403 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
404 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
405 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
406 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
407 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
408 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
409 put_unaligned_le16(flags, pos);
410 pos += 2;
411 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
412 *pos++ = status->ampdu_delimiter_crc;
413 else
414 *pos++ = 0;
415 *pos++ = 0;
416 }
417
418 if (status->flag & RX_FLAG_VHT) {
419 u16 known = local->hw.radiotap_vht_details;
420
421 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
422 put_unaligned_le16(known, pos);
423 pos += 2;
424 /* flags */
425 if (status->flag & RX_FLAG_SHORT_GI)
426 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
427 /* in VHT, STBC is binary */
428 if (status->flag & RX_FLAG_STBC_MASK)
429 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
430 if (status->vht_flag & RX_VHT_FLAG_BF)
431 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
432 pos++;
433 /* bandwidth */
434 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
435 *pos++ = 4;
436 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
437 *pos++ = 11;
438 else if (status->flag & RX_FLAG_40MHZ)
439 *pos++ = 1;
440 else /* 20 MHz */
441 *pos++ = 0;
442 /* MCS/NSS */
443 *pos = (status->rate_idx << 4) | status->vht_nss;
444 pos += 4;
445 /* coding field */
446 if (status->flag & RX_FLAG_LDPC)
447 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
448 pos++;
449 /* group ID */
450 pos++;
451 /* partial_aid */
452 pos += 2;
453 }
454
455 if (local->hw.radiotap_timestamp.units_pos >= 0) {
456 u16 accuracy = 0;
457 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
458
459 rthdr->it_present |=
460 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
461
462 /* ensure 8 byte alignment */
463 while ((pos - (u8 *)rthdr) & 7)
464 pos++;
465
466 put_unaligned_le64(status->device_timestamp, pos);
467 pos += sizeof(u64);
468
469 if (local->hw.radiotap_timestamp.accuracy >= 0) {
470 accuracy = local->hw.radiotap_timestamp.accuracy;
471 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
472 }
473 put_unaligned_le16(accuracy, pos);
474 pos += sizeof(u16);
475
476 *pos++ = local->hw.radiotap_timestamp.units_pos;
477 *pos++ = flags;
478 }
479
480 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
481 *pos++ = status->chain_signal[chain];
482 *pos++ = chain;
483 }
484
485 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
486 /* ensure 2 byte alignment for the vendor field as required */
487 if ((pos - (u8 *)rthdr) & 1)
488 *pos++ = 0;
489 *pos++ = rtap.oui[0];
490 *pos++ = rtap.oui[1];
491 *pos++ = rtap.oui[2];
492 *pos++ = rtap.subns;
493 put_unaligned_le16(rtap.len, pos);
494 pos += 2;
495 /* align the actual payload as requested */
496 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
497 *pos++ = 0;
498 /* data (and possible padding) already follows */
499 }
500 }
501
502 /*
503 * This function copies a received frame to all monitor interfaces and
504 * returns a cleaned-up SKB that no longer includes the FCS nor the
505 * radiotap header the driver might have added.
506 */
507 static struct sk_buff *
508 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
509 struct ieee80211_rate *rate)
510 {
511 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
512 struct ieee80211_sub_if_data *sdata;
513 int rt_hdrlen, needed_headroom;
514 struct sk_buff *skb, *skb2;
515 struct net_device *prev_dev = NULL;
516 int present_fcs_len = 0;
517 unsigned int rtap_vendor_space = 0;
518 struct ieee80211_mgmt *mgmt;
519 struct ieee80211_sub_if_data *monitor_sdata =
520 rcu_dereference(local->monitor_sdata);
521
522 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
523 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
524
525 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
526 }
527
528 /*
529 * First, we may need to make a copy of the skb because
530 * (1) we need to modify it for radiotap (if not present), and
531 * (2) the other RX handlers will modify the skb we got.
532 *
533 * We don't need to, of course, if we aren't going to return
534 * the SKB because it has a bad FCS/PLCP checksum.
535 */
536
537 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
538 present_fcs_len = FCS_LEN;
539
540 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
541 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
542 dev_kfree_skb(origskb);
543 return NULL;
544 }
545
546 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
547 if (should_drop_frame(origskb, present_fcs_len,
548 rtap_vendor_space)) {
549 dev_kfree_skb(origskb);
550 return NULL;
551 }
552
553 return remove_monitor_info(local, origskb, rtap_vendor_space);
554 }
555
556 /* room for the radiotap header based on driver features */
557 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
558 needed_headroom = rt_hdrlen - rtap_vendor_space;
559
560 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
561 /* only need to expand headroom if necessary */
562 skb = origskb;
563 origskb = NULL;
564
565 /*
566 * This shouldn't trigger often because most devices have an
567 * RX header they pull before we get here, and that should
568 * be big enough for our radiotap information. We should
569 * probably export the length to drivers so that we can have
570 * them allocate enough headroom to start with.
571 */
572 if (skb_headroom(skb) < needed_headroom &&
573 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
574 dev_kfree_skb(skb);
575 return NULL;
576 }
577 } else {
578 /*
579 * Need to make a copy and possibly remove radiotap header
580 * and FCS from the original.
581 */
582 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
583
584 origskb = remove_monitor_info(local, origskb,
585 rtap_vendor_space);
586
587 if (!skb)
588 return origskb;
589 }
590
591 /* prepend radiotap information */
592 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
593
594 skb_reset_mac_header(skb);
595 skb->ip_summed = CHECKSUM_UNNECESSARY;
596 skb->pkt_type = PACKET_OTHERHOST;
597 skb->protocol = htons(ETH_P_802_2);
598
599 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
600 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
601 continue;
602
603 if (sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)
604 continue;
605
606 if (!ieee80211_sdata_running(sdata))
607 continue;
608
609 if (prev_dev) {
610 skb2 = skb_clone(skb, GFP_ATOMIC);
611 if (skb2) {
612 skb2->dev = prev_dev;
613 netif_receive_skb(skb2);
614 }
615 }
616
617 prev_dev = sdata->dev;
618 ieee80211_rx_stats(sdata->dev, skb->len);
619 }
620
621 mgmt = (void *)skb->data;
622 if (monitor_sdata &&
623 skb->len >= IEEE80211_MIN_ACTION_SIZE + 1 + VHT_MUMIMO_GROUPS_DATA_LEN &&
624 ieee80211_is_action(mgmt->frame_control) &&
625 mgmt->u.action.category == WLAN_CATEGORY_VHT &&
626 mgmt->u.action.u.vht_group_notif.action_code == WLAN_VHT_ACTION_GROUPID_MGMT &&
627 is_valid_ether_addr(monitor_sdata->u.mntr.mu_follow_addr) &&
628 ether_addr_equal(mgmt->da, monitor_sdata->u.mntr.mu_follow_addr)) {
629 struct sk_buff *mu_skb = skb_copy(skb, GFP_ATOMIC);
630
631 if (mu_skb) {
632 mu_skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
633 skb_queue_tail(&monitor_sdata->skb_queue, mu_skb);
634 ieee80211_queue_work(&local->hw, &monitor_sdata->work);
635 }
636 }
637
638 if (prev_dev) {
639 skb->dev = prev_dev;
640 netif_receive_skb(skb);
641 } else
642 dev_kfree_skb(skb);
643
644 return origskb;
645 }
646
647 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
648 {
649 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
650 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
651 int tid, seqno_idx, security_idx;
652
653 /* does the frame have a qos control field? */
654 if (ieee80211_is_data_qos(hdr->frame_control)) {
655 u8 *qc = ieee80211_get_qos_ctl(hdr);
656 /* frame has qos control */
657 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
658 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
659 status->rx_flags |= IEEE80211_RX_AMSDU;
660
661 seqno_idx = tid;
662 security_idx = tid;
663 } else {
664 /*
665 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
666 *
667 * Sequence numbers for management frames, QoS data
668 * frames with a broadcast/multicast address in the
669 * Address 1 field, and all non-QoS data frames sent
670 * by QoS STAs are assigned using an additional single
671 * modulo-4096 counter, [...]
672 *
673 * We also use that counter for non-QoS STAs.
674 */
675 seqno_idx = IEEE80211_NUM_TIDS;
676 security_idx = 0;
677 if (ieee80211_is_mgmt(hdr->frame_control))
678 security_idx = IEEE80211_NUM_TIDS;
679 tid = 0;
680 }
681
682 rx->seqno_idx = seqno_idx;
683 rx->security_idx = security_idx;
684 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
685 * For now, set skb->priority to 0 for other cases. */
686 rx->skb->priority = (tid > 7) ? 0 : tid;
687 }
688
689 /**
690 * DOC: Packet alignment
691 *
692 * Drivers always need to pass packets that are aligned to two-byte boundaries
693 * to the stack.
694 *
695 * Additionally, should, if possible, align the payload data in a way that
696 * guarantees that the contained IP header is aligned to a four-byte
697 * boundary. In the case of regular frames, this simply means aligning the
698 * payload to a four-byte boundary (because either the IP header is directly
699 * contained, or IV/RFC1042 headers that have a length divisible by four are
700 * in front of it). If the payload data is not properly aligned and the
701 * architecture doesn't support efficient unaligned operations, mac80211
702 * will align the data.
703 *
704 * With A-MSDU frames, however, the payload data address must yield two modulo
705 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
706 * push the IP header further back to a multiple of four again. Thankfully, the
707 * specs were sane enough this time around to require padding each A-MSDU
708 * subframe to a length that is a multiple of four.
709 *
710 * Padding like Atheros hardware adds which is between the 802.11 header and
711 * the payload is not supported, the driver is required to move the 802.11
712 * header to be directly in front of the payload in that case.
713 */
714 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
715 {
716 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
717 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
718 #endif
719 }
720
721
722 /* rx handlers */
723
724 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
725 {
726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
727
728 if (is_multicast_ether_addr(hdr->addr1))
729 return 0;
730
731 return ieee80211_is_robust_mgmt_frame(skb);
732 }
733
734
735 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
736 {
737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
738
739 if (!is_multicast_ether_addr(hdr->addr1))
740 return 0;
741
742 return ieee80211_is_robust_mgmt_frame(skb);
743 }
744
745
746 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
747 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
748 {
749 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
750 struct ieee80211_mmie *mmie;
751 struct ieee80211_mmie_16 *mmie16;
752
753 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
754 return -1;
755
756 if (!ieee80211_is_robust_mgmt_frame(skb))
757 return -1; /* not a robust management frame */
758
759 mmie = (struct ieee80211_mmie *)
760 (skb->data + skb->len - sizeof(*mmie));
761 if (mmie->element_id == WLAN_EID_MMIE &&
762 mmie->length == sizeof(*mmie) - 2)
763 return le16_to_cpu(mmie->key_id);
764
765 mmie16 = (struct ieee80211_mmie_16 *)
766 (skb->data + skb->len - sizeof(*mmie16));
767 if (skb->len >= 24 + sizeof(*mmie16) &&
768 mmie16->element_id == WLAN_EID_MMIE &&
769 mmie16->length == sizeof(*mmie16) - 2)
770 return le16_to_cpu(mmie16->key_id);
771
772 return -1;
773 }
774
775 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
776 struct sk_buff *skb)
777 {
778 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
779 __le16 fc;
780 int hdrlen;
781 u8 keyid;
782
783 fc = hdr->frame_control;
784 hdrlen = ieee80211_hdrlen(fc);
785
786 if (skb->len < hdrlen + cs->hdr_len)
787 return -EINVAL;
788
789 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
790 keyid &= cs->key_idx_mask;
791 keyid >>= cs->key_idx_shift;
792
793 return keyid;
794 }
795
796 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
797 {
798 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
799 char *dev_addr = rx->sdata->vif.addr;
800
801 if (ieee80211_is_data(hdr->frame_control)) {
802 if (is_multicast_ether_addr(hdr->addr1)) {
803 if (ieee80211_has_tods(hdr->frame_control) ||
804 !ieee80211_has_fromds(hdr->frame_control))
805 return RX_DROP_MONITOR;
806 if (ether_addr_equal(hdr->addr3, dev_addr))
807 return RX_DROP_MONITOR;
808 } else {
809 if (!ieee80211_has_a4(hdr->frame_control))
810 return RX_DROP_MONITOR;
811 if (ether_addr_equal(hdr->addr4, dev_addr))
812 return RX_DROP_MONITOR;
813 }
814 }
815
816 /* If there is not an established peer link and this is not a peer link
817 * establisment frame, beacon or probe, drop the frame.
818 */
819
820 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
821 struct ieee80211_mgmt *mgmt;
822
823 if (!ieee80211_is_mgmt(hdr->frame_control))
824 return RX_DROP_MONITOR;
825
826 if (ieee80211_is_action(hdr->frame_control)) {
827 u8 category;
828
829 /* make sure category field is present */
830 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
831 return RX_DROP_MONITOR;
832
833 mgmt = (struct ieee80211_mgmt *)hdr;
834 category = mgmt->u.action.category;
835 if (category != WLAN_CATEGORY_MESH_ACTION &&
836 category != WLAN_CATEGORY_SELF_PROTECTED)
837 return RX_DROP_MONITOR;
838 return RX_CONTINUE;
839 }
840
841 if (ieee80211_is_probe_req(hdr->frame_control) ||
842 ieee80211_is_probe_resp(hdr->frame_control) ||
843 ieee80211_is_beacon(hdr->frame_control) ||
844 ieee80211_is_auth(hdr->frame_control))
845 return RX_CONTINUE;
846
847 return RX_DROP_MONITOR;
848 }
849
850 return RX_CONTINUE;
851 }
852
853 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
854 int index)
855 {
856 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
857 struct sk_buff *tail = skb_peek_tail(frames);
858 struct ieee80211_rx_status *status;
859
860 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
861 return true;
862
863 if (!tail)
864 return false;
865
866 status = IEEE80211_SKB_RXCB(tail);
867 if (status->flag & RX_FLAG_AMSDU_MORE)
868 return false;
869
870 return true;
871 }
872
873 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
874 struct tid_ampdu_rx *tid_agg_rx,
875 int index,
876 struct sk_buff_head *frames)
877 {
878 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
879 struct sk_buff *skb;
880 struct ieee80211_rx_status *status;
881
882 lockdep_assert_held(&tid_agg_rx->reorder_lock);
883
884 if (skb_queue_empty(skb_list))
885 goto no_frame;
886
887 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
888 __skb_queue_purge(skb_list);
889 goto no_frame;
890 }
891
892 /* release frames from the reorder ring buffer */
893 tid_agg_rx->stored_mpdu_num--;
894 while ((skb = __skb_dequeue(skb_list))) {
895 status = IEEE80211_SKB_RXCB(skb);
896 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
897 __skb_queue_tail(frames, skb);
898 }
899
900 no_frame:
901 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
902 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
903 }
904
905 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
906 struct tid_ampdu_rx *tid_agg_rx,
907 u16 head_seq_num,
908 struct sk_buff_head *frames)
909 {
910 int index;
911
912 lockdep_assert_held(&tid_agg_rx->reorder_lock);
913
914 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
915 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
916 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
917 frames);
918 }
919 }
920
921 /*
922 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
923 * the skb was added to the buffer longer than this time ago, the earlier
924 * frames that have not yet been received are assumed to be lost and the skb
925 * can be released for processing. This may also release other skb's from the
926 * reorder buffer if there are no additional gaps between the frames.
927 *
928 * Callers must hold tid_agg_rx->reorder_lock.
929 */
930 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
931
932 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
933 struct tid_ampdu_rx *tid_agg_rx,
934 struct sk_buff_head *frames)
935 {
936 int index, i, j;
937
938 lockdep_assert_held(&tid_agg_rx->reorder_lock);
939
940 /* release the buffer until next missing frame */
941 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
942 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
943 tid_agg_rx->stored_mpdu_num) {
944 /*
945 * No buffers ready to be released, but check whether any
946 * frames in the reorder buffer have timed out.
947 */
948 int skipped = 1;
949 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
950 j = (j + 1) % tid_agg_rx->buf_size) {
951 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
952 skipped++;
953 continue;
954 }
955 if (skipped &&
956 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
957 HT_RX_REORDER_BUF_TIMEOUT))
958 goto set_release_timer;
959
960 /* don't leave incomplete A-MSDUs around */
961 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
962 i = (i + 1) % tid_agg_rx->buf_size)
963 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
964
965 ht_dbg_ratelimited(sdata,
966 "release an RX reorder frame due to timeout on earlier frames\n");
967 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
968 frames);
969
970 /*
971 * Increment the head seq# also for the skipped slots.
972 */
973 tid_agg_rx->head_seq_num =
974 (tid_agg_rx->head_seq_num +
975 skipped) & IEEE80211_SN_MASK;
976 skipped = 0;
977 }
978 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
979 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
980 frames);
981 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
982 }
983
984 if (tid_agg_rx->stored_mpdu_num) {
985 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
986
987 for (; j != (index - 1) % tid_agg_rx->buf_size;
988 j = (j + 1) % tid_agg_rx->buf_size) {
989 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
990 break;
991 }
992
993 set_release_timer:
994
995 if (!tid_agg_rx->removed)
996 mod_timer(&tid_agg_rx->reorder_timer,
997 tid_agg_rx->reorder_time[j] + 1 +
998 HT_RX_REORDER_BUF_TIMEOUT);
999 } else {
1000 del_timer(&tid_agg_rx->reorder_timer);
1001 }
1002 }
1003
1004 /*
1005 * As this function belongs to the RX path it must be under
1006 * rcu_read_lock protection. It returns false if the frame
1007 * can be processed immediately, true if it was consumed.
1008 */
1009 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1010 struct tid_ampdu_rx *tid_agg_rx,
1011 struct sk_buff *skb,
1012 struct sk_buff_head *frames)
1013 {
1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1015 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1016 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1017 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1018 u16 head_seq_num, buf_size;
1019 int index;
1020 bool ret = true;
1021
1022 spin_lock(&tid_agg_rx->reorder_lock);
1023
1024 /*
1025 * Offloaded BA sessions have no known starting sequence number so pick
1026 * one from first Rxed frame for this tid after BA was started.
1027 */
1028 if (unlikely(tid_agg_rx->auto_seq)) {
1029 tid_agg_rx->auto_seq = false;
1030 tid_agg_rx->ssn = mpdu_seq_num;
1031 tid_agg_rx->head_seq_num = mpdu_seq_num;
1032 }
1033
1034 buf_size = tid_agg_rx->buf_size;
1035 head_seq_num = tid_agg_rx->head_seq_num;
1036
1037 /*
1038 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1039 * be reordered.
1040 */
1041 if (unlikely(!tid_agg_rx->started)) {
1042 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1043 ret = false;
1044 goto out;
1045 }
1046 tid_agg_rx->started = true;
1047 }
1048
1049 /* frame with out of date sequence number */
1050 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1051 dev_kfree_skb(skb);
1052 goto out;
1053 }
1054
1055 /*
1056 * If frame the sequence number exceeds our buffering window
1057 * size release some previous frames to make room for this one.
1058 */
1059 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1060 head_seq_num = ieee80211_sn_inc(
1061 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1062 /* release stored frames up to new head to stack */
1063 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1064 head_seq_num, frames);
1065 }
1066
1067 /* Now the new frame is always in the range of the reordering buffer */
1068
1069 index = mpdu_seq_num % tid_agg_rx->buf_size;
1070
1071 /* check if we already stored this frame */
1072 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1073 dev_kfree_skb(skb);
1074 goto out;
1075 }
1076
1077 /*
1078 * If the current MPDU is in the right order and nothing else
1079 * is stored we can process it directly, no need to buffer it.
1080 * If it is first but there's something stored, we may be able
1081 * to release frames after this one.
1082 */
1083 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1084 tid_agg_rx->stored_mpdu_num == 0) {
1085 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1086 tid_agg_rx->head_seq_num =
1087 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1088 ret = false;
1089 goto out;
1090 }
1091
1092 /* put the frame in the reordering buffer */
1093 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1094 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1095 tid_agg_rx->reorder_time[index] = jiffies;
1096 tid_agg_rx->stored_mpdu_num++;
1097 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1098 }
1099
1100 out:
1101 spin_unlock(&tid_agg_rx->reorder_lock);
1102 return ret;
1103 }
1104
1105 /*
1106 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1107 * true if the MPDU was buffered, false if it should be processed.
1108 */
1109 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1110 struct sk_buff_head *frames)
1111 {
1112 struct sk_buff *skb = rx->skb;
1113 struct ieee80211_local *local = rx->local;
1114 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1115 struct sta_info *sta = rx->sta;
1116 struct tid_ampdu_rx *tid_agg_rx;
1117 u16 sc;
1118 u8 tid, ack_policy;
1119
1120 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1121 is_multicast_ether_addr(hdr->addr1))
1122 goto dont_reorder;
1123
1124 /*
1125 * filter the QoS data rx stream according to
1126 * STA/TID and check if this STA/TID is on aggregation
1127 */
1128
1129 if (!sta)
1130 goto dont_reorder;
1131
1132 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1133 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1134 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1135
1136 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1137 if (!tid_agg_rx) {
1138 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1139 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1140 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1141 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1142 WLAN_BACK_RECIPIENT,
1143 WLAN_REASON_QSTA_REQUIRE_SETUP);
1144 goto dont_reorder;
1145 }
1146
1147 /* qos null data frames are excluded */
1148 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1149 goto dont_reorder;
1150
1151 /* not part of a BA session */
1152 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1153 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1154 goto dont_reorder;
1155
1156 /* new, potentially un-ordered, ampdu frame - process it */
1157
1158 /* reset session timer */
1159 if (tid_agg_rx->timeout)
1160 tid_agg_rx->last_rx = jiffies;
1161
1162 /* if this mpdu is fragmented - terminate rx aggregation session */
1163 sc = le16_to_cpu(hdr->seq_ctrl);
1164 if (sc & IEEE80211_SCTL_FRAG) {
1165 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1166 skb_queue_tail(&rx->sdata->skb_queue, skb);
1167 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1168 return;
1169 }
1170
1171 /*
1172 * No locking needed -- we will only ever process one
1173 * RX packet at a time, and thus own tid_agg_rx. All
1174 * other code manipulating it needs to (and does) make
1175 * sure that we cannot get to it any more before doing
1176 * anything with it.
1177 */
1178 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1179 frames))
1180 return;
1181
1182 dont_reorder:
1183 __skb_queue_tail(frames, skb);
1184 }
1185
1186 static ieee80211_rx_result debug_noinline
1187 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1188 {
1189 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1190 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1191
1192 if (status->flag & RX_FLAG_DUP_VALIDATED)
1193 return RX_CONTINUE;
1194
1195 /*
1196 * Drop duplicate 802.11 retransmissions
1197 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1198 */
1199
1200 if (rx->skb->len < 24)
1201 return RX_CONTINUE;
1202
1203 if (ieee80211_is_ctl(hdr->frame_control) ||
1204 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1205 is_multicast_ether_addr(hdr->addr1))
1206 return RX_CONTINUE;
1207
1208 if (!rx->sta)
1209 return RX_CONTINUE;
1210
1211 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1212 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1213 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1214 rx->sta->rx_stats.num_duplicates++;
1215 return RX_DROP_UNUSABLE;
1216 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1217 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1218 }
1219
1220 return RX_CONTINUE;
1221 }
1222
1223 static ieee80211_rx_result debug_noinline
1224 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1225 {
1226 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1227
1228 /* Drop disallowed frame classes based on STA auth/assoc state;
1229 * IEEE 802.11, Chap 5.5.
1230 *
1231 * mac80211 filters only based on association state, i.e. it drops
1232 * Class 3 frames from not associated stations. hostapd sends
1233 * deauth/disassoc frames when needed. In addition, hostapd is
1234 * responsible for filtering on both auth and assoc states.
1235 */
1236
1237 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1238 return ieee80211_rx_mesh_check(rx);
1239
1240 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1241 ieee80211_is_pspoll(hdr->frame_control)) &&
1242 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1243 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1244 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1245 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1246 /*
1247 * accept port control frames from the AP even when it's not
1248 * yet marked ASSOC to prevent a race where we don't set the
1249 * assoc bit quickly enough before it sends the first frame
1250 */
1251 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1252 ieee80211_is_data_present(hdr->frame_control)) {
1253 unsigned int hdrlen;
1254 __be16 ethertype;
1255
1256 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1257
1258 if (rx->skb->len < hdrlen + 8)
1259 return RX_DROP_MONITOR;
1260
1261 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1262 if (ethertype == rx->sdata->control_port_protocol)
1263 return RX_CONTINUE;
1264 }
1265
1266 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1267 cfg80211_rx_spurious_frame(rx->sdata->dev,
1268 hdr->addr2,
1269 GFP_ATOMIC))
1270 return RX_DROP_UNUSABLE;
1271
1272 return RX_DROP_MONITOR;
1273 }
1274
1275 return RX_CONTINUE;
1276 }
1277
1278
1279 static ieee80211_rx_result debug_noinline
1280 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1281 {
1282 struct ieee80211_local *local;
1283 struct ieee80211_hdr *hdr;
1284 struct sk_buff *skb;
1285
1286 local = rx->local;
1287 skb = rx->skb;
1288 hdr = (struct ieee80211_hdr *) skb->data;
1289
1290 if (!local->pspolling)
1291 return RX_CONTINUE;
1292
1293 if (!ieee80211_has_fromds(hdr->frame_control))
1294 /* this is not from AP */
1295 return RX_CONTINUE;
1296
1297 if (!ieee80211_is_data(hdr->frame_control))
1298 return RX_CONTINUE;
1299
1300 if (!ieee80211_has_moredata(hdr->frame_control)) {
1301 /* AP has no more frames buffered for us */
1302 local->pspolling = false;
1303 return RX_CONTINUE;
1304 }
1305
1306 /* more data bit is set, let's request a new frame from the AP */
1307 ieee80211_send_pspoll(local, rx->sdata);
1308
1309 return RX_CONTINUE;
1310 }
1311
1312 static void sta_ps_start(struct sta_info *sta)
1313 {
1314 struct ieee80211_sub_if_data *sdata = sta->sdata;
1315 struct ieee80211_local *local = sdata->local;
1316 struct ps_data *ps;
1317 int tid;
1318
1319 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1320 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1321 ps = &sdata->bss->ps;
1322 else
1323 return;
1324
1325 atomic_inc(&ps->num_sta_ps);
1326 set_sta_flag(sta, WLAN_STA_PS_STA);
1327 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1328 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1329 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1330 sta->sta.addr, sta->sta.aid);
1331
1332 ieee80211_clear_fast_xmit(sta);
1333
1334 if (!sta->sta.txq[0])
1335 return;
1336
1337 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1338 if (txq_has_queue(sta->sta.txq[tid]))
1339 set_bit(tid, &sta->txq_buffered_tids);
1340 else
1341 clear_bit(tid, &sta->txq_buffered_tids);
1342 }
1343 }
1344
1345 static void sta_ps_end(struct sta_info *sta)
1346 {
1347 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1348 sta->sta.addr, sta->sta.aid);
1349
1350 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1351 /*
1352 * Clear the flag only if the other one is still set
1353 * so that the TX path won't start TX'ing new frames
1354 * directly ... In the case that the driver flag isn't
1355 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1356 */
1357 clear_sta_flag(sta, WLAN_STA_PS_STA);
1358 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1359 sta->sta.addr, sta->sta.aid);
1360 return;
1361 }
1362
1363 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1364 clear_sta_flag(sta, WLAN_STA_PS_STA);
1365 ieee80211_sta_ps_deliver_wakeup(sta);
1366 }
1367
1368 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1369 {
1370 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1371 bool in_ps;
1372
1373 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1374
1375 /* Don't let the same PS state be set twice */
1376 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1377 if ((start && in_ps) || (!start && !in_ps))
1378 return -EINVAL;
1379
1380 if (start)
1381 sta_ps_start(sta);
1382 else
1383 sta_ps_end(sta);
1384
1385 return 0;
1386 }
1387 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1388
1389 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1390 {
1391 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1392
1393 if (test_sta_flag(sta, WLAN_STA_SP))
1394 return;
1395
1396 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1397 ieee80211_sta_ps_deliver_poll_response(sta);
1398 else
1399 set_sta_flag(sta, WLAN_STA_PSPOLL);
1400 }
1401 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1402
1403 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1404 {
1405 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1406 int ac = ieee80211_ac_from_tid(tid);
1407
1408 /*
1409 * If this AC is not trigger-enabled do nothing unless the
1410 * driver is calling us after it already checked.
1411 *
1412 * NB: This could/should check a separate bitmap of trigger-
1413 * enabled queues, but for now we only implement uAPSD w/o
1414 * TSPEC changes to the ACs, so they're always the same.
1415 */
1416 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1417 tid != IEEE80211_NUM_TIDS)
1418 return;
1419
1420 /* if we are in a service period, do nothing */
1421 if (test_sta_flag(sta, WLAN_STA_SP))
1422 return;
1423
1424 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1425 ieee80211_sta_ps_deliver_uapsd(sta);
1426 else
1427 set_sta_flag(sta, WLAN_STA_UAPSD);
1428 }
1429 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1430
1431 static ieee80211_rx_result debug_noinline
1432 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1433 {
1434 struct ieee80211_sub_if_data *sdata = rx->sdata;
1435 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1436 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1437
1438 if (!rx->sta)
1439 return RX_CONTINUE;
1440
1441 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1442 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1443 return RX_CONTINUE;
1444
1445 /*
1446 * The device handles station powersave, so don't do anything about
1447 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1448 * it to mac80211 since they're handled.)
1449 */
1450 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1451 return RX_CONTINUE;
1452
1453 /*
1454 * Don't do anything if the station isn't already asleep. In
1455 * the uAPSD case, the station will probably be marked asleep,
1456 * in the PS-Poll case the station must be confused ...
1457 */
1458 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1459 return RX_CONTINUE;
1460
1461 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1462 ieee80211_sta_pspoll(&rx->sta->sta);
1463
1464 /* Free PS Poll skb here instead of returning RX_DROP that would
1465 * count as an dropped frame. */
1466 dev_kfree_skb(rx->skb);
1467
1468 return RX_QUEUED;
1469 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1470 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1471 ieee80211_has_pm(hdr->frame_control) &&
1472 (ieee80211_is_data_qos(hdr->frame_control) ||
1473 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1474 u8 tid;
1475
1476 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1477
1478 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1479 }
1480
1481 return RX_CONTINUE;
1482 }
1483
1484 static ieee80211_rx_result debug_noinline
1485 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1486 {
1487 struct sta_info *sta = rx->sta;
1488 struct sk_buff *skb = rx->skb;
1489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1490 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1491 int i;
1492
1493 if (!sta)
1494 return RX_CONTINUE;
1495
1496 /*
1497 * Update last_rx only for IBSS packets which are for the current
1498 * BSSID and for station already AUTHORIZED to avoid keeping the
1499 * current IBSS network alive in cases where other STAs start
1500 * using different BSSID. This will also give the station another
1501 * chance to restart the authentication/authorization in case
1502 * something went wrong the first time.
1503 */
1504 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1505 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1506 NL80211_IFTYPE_ADHOC);
1507 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1508 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1509 sta->rx_stats.last_rx = jiffies;
1510 if (ieee80211_is_data(hdr->frame_control) &&
1511 !is_multicast_ether_addr(hdr->addr1))
1512 sta->rx_stats.last_rate =
1513 sta_stats_encode_rate(status);
1514 }
1515 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1516 sta->rx_stats.last_rx = jiffies;
1517 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1518 /*
1519 * Mesh beacons will update last_rx when if they are found to
1520 * match the current local configuration when processed.
1521 */
1522 sta->rx_stats.last_rx = jiffies;
1523 if (ieee80211_is_data(hdr->frame_control))
1524 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1525 }
1526
1527 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1528 ieee80211_sta_rx_notify(rx->sdata, hdr);
1529
1530 sta->rx_stats.fragments++;
1531
1532 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1533 sta->rx_stats.bytes += rx->skb->len;
1534 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1535
1536 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1537 sta->rx_stats.last_signal = status->signal;
1538 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1539 }
1540
1541 if (status->chains) {
1542 sta->rx_stats.chains = status->chains;
1543 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1544 int signal = status->chain_signal[i];
1545
1546 if (!(status->chains & BIT(i)))
1547 continue;
1548
1549 sta->rx_stats.chain_signal_last[i] = signal;
1550 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1551 -signal);
1552 }
1553 }
1554
1555 /*
1556 * Change STA power saving mode only at the end of a frame
1557 * exchange sequence.
1558 */
1559 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1560 !ieee80211_has_morefrags(hdr->frame_control) &&
1561 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1562 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1563 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1564 /* PM bit is only checked in frames where it isn't reserved,
1565 * in AP mode it's reserved in non-bufferable management frames
1566 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1567 */
1568 (!ieee80211_is_mgmt(hdr->frame_control) ||
1569 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1570 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1571 if (!ieee80211_has_pm(hdr->frame_control))
1572 sta_ps_end(sta);
1573 } else {
1574 if (ieee80211_has_pm(hdr->frame_control))
1575 sta_ps_start(sta);
1576 }
1577 }
1578
1579 /* mesh power save support */
1580 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1581 ieee80211_mps_rx_h_sta_process(sta, hdr);
1582
1583 /*
1584 * Drop (qos-)data::nullfunc frames silently, since they
1585 * are used only to control station power saving mode.
1586 */
1587 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1588 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1589 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1590
1591 /*
1592 * If we receive a 4-addr nullfunc frame from a STA
1593 * that was not moved to a 4-addr STA vlan yet send
1594 * the event to userspace and for older hostapd drop
1595 * the frame to the monitor interface.
1596 */
1597 if (ieee80211_has_a4(hdr->frame_control) &&
1598 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1599 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1600 !rx->sdata->u.vlan.sta))) {
1601 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1602 cfg80211_rx_unexpected_4addr_frame(
1603 rx->sdata->dev, sta->sta.addr,
1604 GFP_ATOMIC);
1605 return RX_DROP_MONITOR;
1606 }
1607 /*
1608 * Update counter and free packet here to avoid
1609 * counting this as a dropped packed.
1610 */
1611 sta->rx_stats.packets++;
1612 dev_kfree_skb(rx->skb);
1613 return RX_QUEUED;
1614 }
1615
1616 return RX_CONTINUE;
1617 } /* ieee80211_rx_h_sta_process */
1618
1619 static ieee80211_rx_result debug_noinline
1620 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1621 {
1622 struct sk_buff *skb = rx->skb;
1623 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1624 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1625 int keyidx;
1626 int hdrlen;
1627 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1628 struct ieee80211_key *sta_ptk = NULL;
1629 int mmie_keyidx = -1;
1630 __le16 fc;
1631 const struct ieee80211_cipher_scheme *cs = NULL;
1632
1633 /*
1634 * Key selection 101
1635 *
1636 * There are four types of keys:
1637 * - GTK (group keys)
1638 * - IGTK (group keys for management frames)
1639 * - PTK (pairwise keys)
1640 * - STK (station-to-station pairwise keys)
1641 *
1642 * When selecting a key, we have to distinguish between multicast
1643 * (including broadcast) and unicast frames, the latter can only
1644 * use PTKs and STKs while the former always use GTKs and IGTKs.
1645 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1646 * unicast frames can also use key indices like GTKs. Hence, if we
1647 * don't have a PTK/STK we check the key index for a WEP key.
1648 *
1649 * Note that in a regular BSS, multicast frames are sent by the
1650 * AP only, associated stations unicast the frame to the AP first
1651 * which then multicasts it on their behalf.
1652 *
1653 * There is also a slight problem in IBSS mode: GTKs are negotiated
1654 * with each station, that is something we don't currently handle.
1655 * The spec seems to expect that one negotiates the same key with
1656 * every station but there's no such requirement; VLANs could be
1657 * possible.
1658 */
1659
1660 /* start without a key */
1661 rx->key = NULL;
1662 fc = hdr->frame_control;
1663
1664 if (rx->sta) {
1665 int keyid = rx->sta->ptk_idx;
1666
1667 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1668 cs = rx->sta->cipher_scheme;
1669 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1670 if (unlikely(keyid < 0))
1671 return RX_DROP_UNUSABLE;
1672 }
1673 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1674 }
1675
1676 if (!ieee80211_has_protected(fc))
1677 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1678
1679 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1680 rx->key = sta_ptk;
1681 if ((status->flag & RX_FLAG_DECRYPTED) &&
1682 (status->flag & RX_FLAG_IV_STRIPPED))
1683 return RX_CONTINUE;
1684 /* Skip decryption if the frame is not protected. */
1685 if (!ieee80211_has_protected(fc))
1686 return RX_CONTINUE;
1687 } else if (mmie_keyidx >= 0) {
1688 /* Broadcast/multicast robust management frame / BIP */
1689 if ((status->flag & RX_FLAG_DECRYPTED) &&
1690 (status->flag & RX_FLAG_IV_STRIPPED))
1691 return RX_CONTINUE;
1692
1693 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1694 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1695 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1696 if (rx->sta) {
1697 if (ieee80211_is_group_privacy_action(skb) &&
1698 test_sta_flag(rx->sta, WLAN_STA_MFP))
1699 return RX_DROP_MONITOR;
1700
1701 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1702 }
1703 if (!rx->key)
1704 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1705 } else if (!ieee80211_has_protected(fc)) {
1706 /*
1707 * The frame was not protected, so skip decryption. However, we
1708 * need to set rx->key if there is a key that could have been
1709 * used so that the frame may be dropped if encryption would
1710 * have been expected.
1711 */
1712 struct ieee80211_key *key = NULL;
1713 struct ieee80211_sub_if_data *sdata = rx->sdata;
1714 int i;
1715
1716 if (ieee80211_is_mgmt(fc) &&
1717 is_multicast_ether_addr(hdr->addr1) &&
1718 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1719 rx->key = key;
1720 else {
1721 if (rx->sta) {
1722 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1723 key = rcu_dereference(rx->sta->gtk[i]);
1724 if (key)
1725 break;
1726 }
1727 }
1728 if (!key) {
1729 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1730 key = rcu_dereference(sdata->keys[i]);
1731 if (key)
1732 break;
1733 }
1734 }
1735 if (key)
1736 rx->key = key;
1737 }
1738 return RX_CONTINUE;
1739 } else {
1740 u8 keyid;
1741
1742 /*
1743 * The device doesn't give us the IV so we won't be
1744 * able to look up the key. That's ok though, we
1745 * don't need to decrypt the frame, we just won't
1746 * be able to keep statistics accurate.
1747 * Except for key threshold notifications, should
1748 * we somehow allow the driver to tell us which key
1749 * the hardware used if this flag is set?
1750 */
1751 if ((status->flag & RX_FLAG_DECRYPTED) &&
1752 (status->flag & RX_FLAG_IV_STRIPPED))
1753 return RX_CONTINUE;
1754
1755 hdrlen = ieee80211_hdrlen(fc);
1756
1757 if (cs) {
1758 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1759
1760 if (unlikely(keyidx < 0))
1761 return RX_DROP_UNUSABLE;
1762 } else {
1763 if (rx->skb->len < 8 + hdrlen)
1764 return RX_DROP_UNUSABLE; /* TODO: count this? */
1765 /*
1766 * no need to call ieee80211_wep_get_keyidx,
1767 * it verifies a bunch of things we've done already
1768 */
1769 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1770 keyidx = keyid >> 6;
1771 }
1772
1773 /* check per-station GTK first, if multicast packet */
1774 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1775 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1776
1777 /* if not found, try default key */
1778 if (!rx->key) {
1779 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1780
1781 /*
1782 * RSNA-protected unicast frames should always be
1783 * sent with pairwise or station-to-station keys,
1784 * but for WEP we allow using a key index as well.
1785 */
1786 if (rx->key &&
1787 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1788 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1789 !is_multicast_ether_addr(hdr->addr1))
1790 rx->key = NULL;
1791 }
1792 }
1793
1794 if (rx->key) {
1795 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1796 return RX_DROP_MONITOR;
1797
1798 /* TODO: add threshold stuff again */
1799 } else {
1800 return RX_DROP_MONITOR;
1801 }
1802
1803 switch (rx->key->conf.cipher) {
1804 case WLAN_CIPHER_SUITE_WEP40:
1805 case WLAN_CIPHER_SUITE_WEP104:
1806 result = ieee80211_crypto_wep_decrypt(rx);
1807 break;
1808 case WLAN_CIPHER_SUITE_TKIP:
1809 result = ieee80211_crypto_tkip_decrypt(rx);
1810 break;
1811 case WLAN_CIPHER_SUITE_CCMP:
1812 result = ieee80211_crypto_ccmp_decrypt(
1813 rx, IEEE80211_CCMP_MIC_LEN);
1814 break;
1815 case WLAN_CIPHER_SUITE_CCMP_256:
1816 result = ieee80211_crypto_ccmp_decrypt(
1817 rx, IEEE80211_CCMP_256_MIC_LEN);
1818 break;
1819 case WLAN_CIPHER_SUITE_AES_CMAC:
1820 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1821 break;
1822 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1823 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1824 break;
1825 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1826 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1827 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1828 break;
1829 case WLAN_CIPHER_SUITE_GCMP:
1830 case WLAN_CIPHER_SUITE_GCMP_256:
1831 result = ieee80211_crypto_gcmp_decrypt(rx);
1832 break;
1833 default:
1834 result = ieee80211_crypto_hw_decrypt(rx);
1835 }
1836
1837 /* the hdr variable is invalid after the decrypt handlers */
1838
1839 /* either the frame has been decrypted or will be dropped */
1840 status->flag |= RX_FLAG_DECRYPTED;
1841
1842 return result;
1843 }
1844
1845 static inline struct ieee80211_fragment_entry *
1846 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1847 unsigned int frag, unsigned int seq, int rx_queue,
1848 struct sk_buff **skb)
1849 {
1850 struct ieee80211_fragment_entry *entry;
1851
1852 entry = &sdata->fragments[sdata->fragment_next++];
1853 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1854 sdata->fragment_next = 0;
1855
1856 if (!skb_queue_empty(&entry->skb_list))
1857 __skb_queue_purge(&entry->skb_list);
1858
1859 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1860 *skb = NULL;
1861 entry->first_frag_time = jiffies;
1862 entry->seq = seq;
1863 entry->rx_queue = rx_queue;
1864 entry->last_frag = frag;
1865 entry->check_sequential_pn = false;
1866 entry->extra_len = 0;
1867
1868 return entry;
1869 }
1870
1871 static inline struct ieee80211_fragment_entry *
1872 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1873 unsigned int frag, unsigned int seq,
1874 int rx_queue, struct ieee80211_hdr *hdr)
1875 {
1876 struct ieee80211_fragment_entry *entry;
1877 int i, idx;
1878
1879 idx = sdata->fragment_next;
1880 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1881 struct ieee80211_hdr *f_hdr;
1882
1883 idx--;
1884 if (idx < 0)
1885 idx = IEEE80211_FRAGMENT_MAX - 1;
1886
1887 entry = &sdata->fragments[idx];
1888 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1889 entry->rx_queue != rx_queue ||
1890 entry->last_frag + 1 != frag)
1891 continue;
1892
1893 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1894
1895 /*
1896 * Check ftype and addresses are equal, else check next fragment
1897 */
1898 if (((hdr->frame_control ^ f_hdr->frame_control) &
1899 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1900 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1901 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1902 continue;
1903
1904 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1905 __skb_queue_purge(&entry->skb_list);
1906 continue;
1907 }
1908 return entry;
1909 }
1910
1911 return NULL;
1912 }
1913
1914 static ieee80211_rx_result debug_noinline
1915 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1916 {
1917 struct ieee80211_hdr *hdr;
1918 u16 sc;
1919 __le16 fc;
1920 unsigned int frag, seq;
1921 struct ieee80211_fragment_entry *entry;
1922 struct sk_buff *skb;
1923
1924 hdr = (struct ieee80211_hdr *)rx->skb->data;
1925 fc = hdr->frame_control;
1926
1927 if (ieee80211_is_ctl(fc))
1928 return RX_CONTINUE;
1929
1930 sc = le16_to_cpu(hdr->seq_ctrl);
1931 frag = sc & IEEE80211_SCTL_FRAG;
1932
1933 if (is_multicast_ether_addr(hdr->addr1)) {
1934 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1935 goto out_no_led;
1936 }
1937
1938 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1939 goto out;
1940
1941 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1942
1943 if (skb_linearize(rx->skb))
1944 return RX_DROP_UNUSABLE;
1945
1946 /*
1947 * skb_linearize() might change the skb->data and
1948 * previously cached variables (in this case, hdr) need to
1949 * be refreshed with the new data.
1950 */
1951 hdr = (struct ieee80211_hdr *)rx->skb->data;
1952 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1953
1954 if (frag == 0) {
1955 /* This is the first fragment of a new frame. */
1956 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1957 rx->seqno_idx, &(rx->skb));
1958 if (rx->key &&
1959 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1960 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1961 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1962 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1963 ieee80211_has_protected(fc)) {
1964 int queue = rx->security_idx;
1965
1966 /* Store CCMP/GCMP PN so that we can verify that the
1967 * next fragment has a sequential PN value.
1968 */
1969 entry->check_sequential_pn = true;
1970 memcpy(entry->last_pn,
1971 rx->key->u.ccmp.rx_pn[queue],
1972 IEEE80211_CCMP_PN_LEN);
1973 BUILD_BUG_ON(offsetof(struct ieee80211_key,
1974 u.ccmp.rx_pn) !=
1975 offsetof(struct ieee80211_key,
1976 u.gcmp.rx_pn));
1977 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1978 sizeof(rx->key->u.gcmp.rx_pn[queue]));
1979 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1980 IEEE80211_GCMP_PN_LEN);
1981 }
1982 return RX_QUEUED;
1983 }
1984
1985 /* This is a fragment for a frame that should already be pending in
1986 * fragment cache. Add this fragment to the end of the pending entry.
1987 */
1988 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1989 rx->seqno_idx, hdr);
1990 if (!entry) {
1991 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1992 return RX_DROP_MONITOR;
1993 }
1994
1995 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
1996 * MPDU PN values are not incrementing in steps of 1."
1997 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1998 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1999 */
2000 if (entry->check_sequential_pn) {
2001 int i;
2002 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2003 int queue;
2004
2005 if (!rx->key ||
2006 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2007 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2008 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2009 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2010 return RX_DROP_UNUSABLE;
2011 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2012 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2013 pn[i]++;
2014 if (pn[i])
2015 break;
2016 }
2017 queue = rx->security_idx;
2018 rpn = rx->key->u.ccmp.rx_pn[queue];
2019 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2020 return RX_DROP_UNUSABLE;
2021 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2022 }
2023
2024 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2025 __skb_queue_tail(&entry->skb_list, rx->skb);
2026 entry->last_frag = frag;
2027 entry->extra_len += rx->skb->len;
2028 if (ieee80211_has_morefrags(fc)) {
2029 rx->skb = NULL;
2030 return RX_QUEUED;
2031 }
2032
2033 rx->skb = __skb_dequeue(&entry->skb_list);
2034 if (skb_tailroom(rx->skb) < entry->extra_len) {
2035 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2036 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2037 GFP_ATOMIC))) {
2038 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2039 __skb_queue_purge(&entry->skb_list);
2040 return RX_DROP_UNUSABLE;
2041 }
2042 }
2043 while ((skb = __skb_dequeue(&entry->skb_list))) {
2044 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
2045 dev_kfree_skb(skb);
2046 }
2047
2048 out:
2049 ieee80211_led_rx(rx->local);
2050 out_no_led:
2051 if (rx->sta)
2052 rx->sta->rx_stats.packets++;
2053 return RX_CONTINUE;
2054 }
2055
2056 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2057 {
2058 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2059 return -EACCES;
2060
2061 return 0;
2062 }
2063
2064 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2065 {
2066 struct sk_buff *skb = rx->skb;
2067 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2068
2069 /*
2070 * Pass through unencrypted frames if the hardware has
2071 * decrypted them already.
2072 */
2073 if (status->flag & RX_FLAG_DECRYPTED)
2074 return 0;
2075
2076 /* Drop unencrypted frames if key is set. */
2077 if (unlikely(!ieee80211_has_protected(fc) &&
2078 !ieee80211_is_nullfunc(fc) &&
2079 ieee80211_is_data(fc) && rx->key))
2080 return -EACCES;
2081
2082 return 0;
2083 }
2084
2085 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2086 {
2087 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2088 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2089 __le16 fc = hdr->frame_control;
2090
2091 /*
2092 * Pass through unencrypted frames if the hardware has
2093 * decrypted them already.
2094 */
2095 if (status->flag & RX_FLAG_DECRYPTED)
2096 return 0;
2097
2098 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2099 if (unlikely(!ieee80211_has_protected(fc) &&
2100 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2101 rx->key)) {
2102 if (ieee80211_is_deauth(fc) ||
2103 ieee80211_is_disassoc(fc))
2104 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2105 rx->skb->data,
2106 rx->skb->len);
2107 return -EACCES;
2108 }
2109 /* BIP does not use Protected field, so need to check MMIE */
2110 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2111 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2112 if (ieee80211_is_deauth(fc) ||
2113 ieee80211_is_disassoc(fc))
2114 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2115 rx->skb->data,
2116 rx->skb->len);
2117 return -EACCES;
2118 }
2119 /*
2120 * When using MFP, Action frames are not allowed prior to
2121 * having configured keys.
2122 */
2123 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2124 ieee80211_is_robust_mgmt_frame(rx->skb)))
2125 return -EACCES;
2126 }
2127
2128 return 0;
2129 }
2130
2131 static int
2132 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2133 {
2134 struct ieee80211_sub_if_data *sdata = rx->sdata;
2135 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2136 bool check_port_control = false;
2137 struct ethhdr *ehdr;
2138 int ret;
2139
2140 *port_control = false;
2141 if (ieee80211_has_a4(hdr->frame_control) &&
2142 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2143 return -1;
2144
2145 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2146 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2147
2148 if (!sdata->u.mgd.use_4addr)
2149 return -1;
2150 else
2151 check_port_control = true;
2152 }
2153
2154 if (is_multicast_ether_addr(hdr->addr1) &&
2155 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2156 return -1;
2157
2158 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2159 if (ret < 0)
2160 return ret;
2161
2162 ehdr = (struct ethhdr *) rx->skb->data;
2163 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2164 *port_control = true;
2165 else if (check_port_control)
2166 return -1;
2167
2168 return 0;
2169 }
2170
2171 /*
2172 * requires that rx->skb is a frame with ethernet header
2173 */
2174 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2175 {
2176 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2177 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2178 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2179
2180 /*
2181 * Allow EAPOL frames to us/the PAE group address regardless
2182 * of whether the frame was encrypted or not.
2183 */
2184 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2185 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2186 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2187 return true;
2188
2189 if (ieee80211_802_1x_port_control(rx) ||
2190 ieee80211_drop_unencrypted(rx, fc))
2191 return false;
2192
2193 return true;
2194 }
2195
2196 /*
2197 * requires that rx->skb is a frame with ethernet header
2198 */
2199 static void
2200 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2201 {
2202 struct ieee80211_sub_if_data *sdata = rx->sdata;
2203 struct net_device *dev = sdata->dev;
2204 struct sk_buff *skb, *xmit_skb;
2205 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2206 struct sta_info *dsta;
2207
2208 skb = rx->skb;
2209 xmit_skb = NULL;
2210
2211 ieee80211_rx_stats(dev, skb->len);
2212
2213 if (rx->sta) {
2214 /* The seqno index has the same property as needed
2215 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2216 * for non-QoS-data frames. Here we know it's a data
2217 * frame, so count MSDUs.
2218 */
2219 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2220 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2221 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2222 }
2223
2224 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2225 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2226 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2227 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2228 if (is_multicast_ether_addr(ehdr->h_dest) &&
2229 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2230 /*
2231 * send multicast frames both to higher layers in
2232 * local net stack and back to the wireless medium
2233 */
2234 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2235 if (!xmit_skb)
2236 net_info_ratelimited("%s: failed to clone multicast frame\n",
2237 dev->name);
2238 } else if (!is_multicast_ether_addr(ehdr->h_dest)) {
2239 dsta = sta_info_get(sdata, skb->data);
2240 if (dsta) {
2241 /*
2242 * The destination station is associated to
2243 * this AP (in this VLAN), so send the frame
2244 * directly to it and do not pass it to local
2245 * net stack.
2246 */
2247 xmit_skb = skb;
2248 skb = NULL;
2249 }
2250 }
2251 }
2252
2253 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2254 if (skb) {
2255 /* 'align' will only take the values 0 or 2 here since all
2256 * frames are required to be aligned to 2-byte boundaries
2257 * when being passed to mac80211; the code here works just
2258 * as well if that isn't true, but mac80211 assumes it can
2259 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2260 */
2261 int align;
2262
2263 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2264 if (align) {
2265 if (WARN_ON(skb_headroom(skb) < 3)) {
2266 dev_kfree_skb(skb);
2267 skb = NULL;
2268 } else {
2269 u8 *data = skb->data;
2270 size_t len = skb_headlen(skb);
2271 skb->data -= align;
2272 memmove(skb->data, data, len);
2273 skb_set_tail_pointer(skb, len);
2274 }
2275 }
2276 }
2277 #endif
2278
2279 if (skb) {
2280 /* deliver to local stack */
2281 skb->protocol = eth_type_trans(skb, dev);
2282 memset(skb->cb, 0, sizeof(skb->cb));
2283 if (rx->napi)
2284 napi_gro_receive(rx->napi, skb);
2285 else
2286 netif_receive_skb(skb);
2287 }
2288
2289 if (xmit_skb) {
2290 /*
2291 * Send to wireless media and increase priority by 256 to
2292 * keep the received priority instead of reclassifying
2293 * the frame (see cfg80211_classify8021d).
2294 */
2295 xmit_skb->priority += 256;
2296 xmit_skb->protocol = htons(ETH_P_802_3);
2297 skb_reset_network_header(xmit_skb);
2298 skb_reset_mac_header(xmit_skb);
2299 dev_queue_xmit(xmit_skb);
2300 }
2301 }
2302
2303 static ieee80211_rx_result debug_noinline
2304 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2305 {
2306 struct net_device *dev = rx->sdata->dev;
2307 struct sk_buff *skb = rx->skb;
2308 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2309 __le16 fc = hdr->frame_control;
2310 struct sk_buff_head frame_list;
2311 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2312 struct ethhdr ethhdr;
2313 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2314
2315 if (unlikely(!ieee80211_is_data(fc)))
2316 return RX_CONTINUE;
2317
2318 if (unlikely(!ieee80211_is_data_present(fc)))
2319 return RX_DROP_MONITOR;
2320
2321 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2322 return RX_CONTINUE;
2323
2324 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2325 switch (rx->sdata->vif.type) {
2326 case NL80211_IFTYPE_AP_VLAN:
2327 if (!rx->sdata->u.vlan.sta)
2328 return RX_DROP_UNUSABLE;
2329 break;
2330 case NL80211_IFTYPE_STATION:
2331 if (!rx->sdata->u.mgd.use_4addr)
2332 return RX_DROP_UNUSABLE;
2333 break;
2334 default:
2335 return RX_DROP_UNUSABLE;
2336 }
2337 check_da = NULL;
2338 check_sa = NULL;
2339 } else switch (rx->sdata->vif.type) {
2340 case NL80211_IFTYPE_AP:
2341 case NL80211_IFTYPE_AP_VLAN:
2342 check_da = NULL;
2343 break;
2344 case NL80211_IFTYPE_STATION:
2345 if (!rx->sta ||
2346 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2347 check_sa = NULL;
2348 break;
2349 case NL80211_IFTYPE_MESH_POINT:
2350 check_sa = NULL;
2351 break;
2352 default:
2353 break;
2354 }
2355
2356 if (is_multicast_ether_addr(hdr->addr1))
2357 return RX_DROP_UNUSABLE;
2358
2359 skb->dev = dev;
2360 __skb_queue_head_init(&frame_list);
2361
2362 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2363 rx->sdata->vif.addr,
2364 rx->sdata->vif.type))
2365 return RX_DROP_UNUSABLE;
2366
2367 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2368 rx->sdata->vif.type,
2369 rx->local->hw.extra_tx_headroom,
2370 check_da, check_sa);
2371
2372 while (!skb_queue_empty(&frame_list)) {
2373 rx->skb = __skb_dequeue(&frame_list);
2374
2375 if (!ieee80211_frame_allowed(rx, fc)) {
2376 dev_kfree_skb(rx->skb);
2377 continue;
2378 }
2379
2380 ieee80211_deliver_skb(rx);
2381 }
2382
2383 return RX_QUEUED;
2384 }
2385
2386 #ifdef CONFIG_MAC80211_MESH
2387 static ieee80211_rx_result
2388 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2389 {
2390 struct ieee80211_hdr *fwd_hdr, *hdr;
2391 struct ieee80211_tx_info *info;
2392 struct ieee80211s_hdr *mesh_hdr;
2393 struct sk_buff *skb = rx->skb, *fwd_skb;
2394 struct ieee80211_local *local = rx->local;
2395 struct ieee80211_sub_if_data *sdata = rx->sdata;
2396 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2397 u16 ac, q, hdrlen;
2398
2399 hdr = (struct ieee80211_hdr *) skb->data;
2400 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2401
2402 /* make sure fixed part of mesh header is there, also checks skb len */
2403 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2404 return RX_DROP_MONITOR;
2405
2406 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2407
2408 /* make sure full mesh header is there, also checks skb len */
2409 if (!pskb_may_pull(rx->skb,
2410 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2411 return RX_DROP_MONITOR;
2412
2413 /* reload pointers */
2414 hdr = (struct ieee80211_hdr *) skb->data;
2415 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2416
2417 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2418 return RX_DROP_MONITOR;
2419
2420 /* frame is in RMC, don't forward */
2421 if (ieee80211_is_data(hdr->frame_control) &&
2422 is_multicast_ether_addr(hdr->addr1) &&
2423 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2424 return RX_DROP_MONITOR;
2425
2426 if (!ieee80211_is_data(hdr->frame_control))
2427 return RX_CONTINUE;
2428
2429 if (!mesh_hdr->ttl)
2430 return RX_DROP_MONITOR;
2431
2432 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2433 struct mesh_path *mppath;
2434 char *proxied_addr;
2435 char *mpp_addr;
2436
2437 if (is_multicast_ether_addr(hdr->addr1)) {
2438 mpp_addr = hdr->addr3;
2439 proxied_addr = mesh_hdr->eaddr1;
2440 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2441 /* has_a4 already checked in ieee80211_rx_mesh_check */
2442 mpp_addr = hdr->addr4;
2443 proxied_addr = mesh_hdr->eaddr2;
2444 } else {
2445 return RX_DROP_MONITOR;
2446 }
2447
2448 rcu_read_lock();
2449 mppath = mpp_path_lookup(sdata, proxied_addr);
2450 if (!mppath) {
2451 mpp_path_add(sdata, proxied_addr, mpp_addr);
2452 } else {
2453 spin_lock_bh(&mppath->state_lock);
2454 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2455 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2456 mppath->exp_time = jiffies;
2457 spin_unlock_bh(&mppath->state_lock);
2458 }
2459 rcu_read_unlock();
2460 }
2461
2462 /* Frame has reached destination. Don't forward */
2463 if (!is_multicast_ether_addr(hdr->addr1) &&
2464 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2465 return RX_CONTINUE;
2466
2467 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2468 q = sdata->vif.hw_queue[ac];
2469 if (ieee80211_queue_stopped(&local->hw, q)) {
2470 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2471 return RX_DROP_MONITOR;
2472 }
2473 skb_set_queue_mapping(skb, q);
2474
2475 if (!--mesh_hdr->ttl) {
2476 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2477 goto out;
2478 }
2479
2480 if (!ifmsh->mshcfg.dot11MeshForwarding)
2481 goto out;
2482
2483 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2484 sdata->encrypt_headroom, 0, GFP_ATOMIC);
2485 if (!fwd_skb) {
2486 net_info_ratelimited("%s: failed to clone mesh frame\n",
2487 sdata->name);
2488 goto out;
2489 }
2490
2491 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2492 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2493 info = IEEE80211_SKB_CB(fwd_skb);
2494 memset(info, 0, sizeof(*info));
2495 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2496 info->control.vif = &rx->sdata->vif;
2497 info->control.jiffies = jiffies;
2498 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2499 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2500 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2501 /* update power mode indication when forwarding */
2502 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2503 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2504 /* mesh power mode flags updated in mesh_nexthop_lookup */
2505 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2506 } else {
2507 /* unable to resolve next hop */
2508 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2509 fwd_hdr->addr3, 0,
2510 WLAN_REASON_MESH_PATH_NOFORWARD,
2511 fwd_hdr->addr2);
2512 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2513 kfree_skb(fwd_skb);
2514 return RX_DROP_MONITOR;
2515 }
2516
2517 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2518 ieee80211_add_pending_skb(local, fwd_skb);
2519 out:
2520 if (is_multicast_ether_addr(hdr->addr1))
2521 return RX_CONTINUE;
2522 return RX_DROP_MONITOR;
2523 }
2524 #endif
2525
2526 static ieee80211_rx_result debug_noinline
2527 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2528 {
2529 struct ieee80211_sub_if_data *sdata = rx->sdata;
2530 struct ieee80211_local *local = rx->local;
2531 struct net_device *dev = sdata->dev;
2532 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2533 __le16 fc = hdr->frame_control;
2534 bool port_control;
2535 int err;
2536
2537 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2538 return RX_CONTINUE;
2539
2540 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2541 return RX_DROP_MONITOR;
2542
2543 /*
2544 * Send unexpected-4addr-frame event to hostapd. For older versions,
2545 * also drop the frame to cooked monitor interfaces.
2546 */
2547 if (ieee80211_has_a4(hdr->frame_control) &&
2548 sdata->vif.type == NL80211_IFTYPE_AP) {
2549 if (rx->sta &&
2550 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2551 cfg80211_rx_unexpected_4addr_frame(
2552 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2553 return RX_DROP_MONITOR;
2554 }
2555
2556 err = __ieee80211_data_to_8023(rx, &port_control);
2557 if (unlikely(err))
2558 return RX_DROP_UNUSABLE;
2559
2560 if (!ieee80211_frame_allowed(rx, fc))
2561 return RX_DROP_MONITOR;
2562
2563 /* directly handle TDLS channel switch requests/responses */
2564 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2565 cpu_to_be16(ETH_P_TDLS))) {
2566 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2567
2568 if (pskb_may_pull(rx->skb,
2569 offsetof(struct ieee80211_tdls_data, u)) &&
2570 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2571 tf->category == WLAN_CATEGORY_TDLS &&
2572 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2573 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2574 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2575 schedule_work(&local->tdls_chsw_work);
2576 if (rx->sta)
2577 rx->sta->rx_stats.packets++;
2578
2579 return RX_QUEUED;
2580 }
2581 }
2582
2583 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2584 unlikely(port_control) && sdata->bss) {
2585 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2586 u.ap);
2587 dev = sdata->dev;
2588 rx->sdata = sdata;
2589 }
2590
2591 rx->skb->dev = dev;
2592
2593 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2594 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2595 !is_multicast_ether_addr(
2596 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2597 (!local->scanning &&
2598 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2599 mod_timer(&local->dynamic_ps_timer, jiffies +
2600 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2601
2602 ieee80211_deliver_skb(rx);
2603
2604 return RX_QUEUED;
2605 }
2606
2607 static ieee80211_rx_result debug_noinline
2608 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2609 {
2610 struct sk_buff *skb = rx->skb;
2611 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2612 struct tid_ampdu_rx *tid_agg_rx;
2613 u16 start_seq_num;
2614 u16 tid;
2615
2616 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2617 return RX_CONTINUE;
2618
2619 if (ieee80211_is_back_req(bar->frame_control)) {
2620 struct {
2621 __le16 control, start_seq_num;
2622 } __packed bar_data;
2623 struct ieee80211_event event = {
2624 .type = BAR_RX_EVENT,
2625 };
2626
2627 if (!rx->sta)
2628 return RX_DROP_MONITOR;
2629
2630 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2631 &bar_data, sizeof(bar_data)))
2632 return RX_DROP_MONITOR;
2633
2634 tid = le16_to_cpu(bar_data.control) >> 12;
2635
2636 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2637 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2638 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2639 WLAN_BACK_RECIPIENT,
2640 WLAN_REASON_QSTA_REQUIRE_SETUP);
2641
2642 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2643 if (!tid_agg_rx)
2644 return RX_DROP_MONITOR;
2645
2646 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2647 event.u.ba.tid = tid;
2648 event.u.ba.ssn = start_seq_num;
2649 event.u.ba.sta = &rx->sta->sta;
2650
2651 /* reset session timer */
2652 if (tid_agg_rx->timeout)
2653 mod_timer(&tid_agg_rx->session_timer,
2654 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2655
2656 spin_lock(&tid_agg_rx->reorder_lock);
2657 /* release stored frames up to start of BAR */
2658 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2659 start_seq_num, frames);
2660 spin_unlock(&tid_agg_rx->reorder_lock);
2661
2662 drv_event_callback(rx->local, rx->sdata, &event);
2663
2664 kfree_skb(skb);
2665 return RX_QUEUED;
2666 }
2667
2668 /*
2669 * After this point, we only want management frames,
2670 * so we can drop all remaining control frames to
2671 * cooked monitor interfaces.
2672 */
2673 return RX_DROP_MONITOR;
2674 }
2675
2676 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2677 struct ieee80211_mgmt *mgmt,
2678 size_t len)
2679 {
2680 struct ieee80211_local *local = sdata->local;
2681 struct sk_buff *skb;
2682 struct ieee80211_mgmt *resp;
2683
2684 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2685 /* Not to own unicast address */
2686 return;
2687 }
2688
2689 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2690 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2691 /* Not from the current AP or not associated yet. */
2692 return;
2693 }
2694
2695 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2696 /* Too short SA Query request frame */
2697 return;
2698 }
2699
2700 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2701 if (skb == NULL)
2702 return;
2703
2704 skb_reserve(skb, local->hw.extra_tx_headroom);
2705 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2706 memset(resp, 0, 24);
2707 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2708 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2709 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2710 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2711 IEEE80211_STYPE_ACTION);
2712 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2713 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2714 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2715 memcpy(resp->u.action.u.sa_query.trans_id,
2716 mgmt->u.action.u.sa_query.trans_id,
2717 WLAN_SA_QUERY_TR_ID_LEN);
2718
2719 ieee80211_tx_skb(sdata, skb);
2720 }
2721
2722 static ieee80211_rx_result debug_noinline
2723 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2724 {
2725 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2727
2728 /*
2729 * From here on, look only at management frames.
2730 * Data and control frames are already handled,
2731 * and unknown (reserved) frames are useless.
2732 */
2733 if (rx->skb->len < 24)
2734 return RX_DROP_MONITOR;
2735
2736 if (!ieee80211_is_mgmt(mgmt->frame_control))
2737 return RX_DROP_MONITOR;
2738
2739 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2740 ieee80211_is_beacon(mgmt->frame_control) &&
2741 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2742 int sig = 0;
2743
2744 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2745 sig = status->signal;
2746
2747 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2748 rx->skb->data, rx->skb->len,
2749 status->freq, sig);
2750 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2751 }
2752
2753 if (ieee80211_drop_unencrypted_mgmt(rx))
2754 return RX_DROP_UNUSABLE;
2755
2756 return RX_CONTINUE;
2757 }
2758
2759 static ieee80211_rx_result debug_noinline
2760 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2761 {
2762 struct ieee80211_local *local = rx->local;
2763 struct ieee80211_sub_if_data *sdata = rx->sdata;
2764 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2766 int len = rx->skb->len;
2767
2768 if (!ieee80211_is_action(mgmt->frame_control))
2769 return RX_CONTINUE;
2770
2771 /* drop too small frames */
2772 if (len < IEEE80211_MIN_ACTION_SIZE)
2773 return RX_DROP_UNUSABLE;
2774
2775 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2776 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2777 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2778 return RX_DROP_UNUSABLE;
2779
2780 switch (mgmt->u.action.category) {
2781 case WLAN_CATEGORY_HT:
2782 /* reject HT action frames from stations not supporting HT */
2783 if (!rx->sta->sta.ht_cap.ht_supported)
2784 goto invalid;
2785
2786 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2787 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2788 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2789 sdata->vif.type != NL80211_IFTYPE_AP &&
2790 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2791 break;
2792
2793 /* verify action & smps_control/chanwidth are present */
2794 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2795 goto invalid;
2796
2797 switch (mgmt->u.action.u.ht_smps.action) {
2798 case WLAN_HT_ACTION_SMPS: {
2799 struct ieee80211_supported_band *sband;
2800 enum ieee80211_smps_mode smps_mode;
2801
2802 /* convert to HT capability */
2803 switch (mgmt->u.action.u.ht_smps.smps_control) {
2804 case WLAN_HT_SMPS_CONTROL_DISABLED:
2805 smps_mode = IEEE80211_SMPS_OFF;
2806 break;
2807 case WLAN_HT_SMPS_CONTROL_STATIC:
2808 smps_mode = IEEE80211_SMPS_STATIC;
2809 break;
2810 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2811 smps_mode = IEEE80211_SMPS_DYNAMIC;
2812 break;
2813 default:
2814 goto invalid;
2815 }
2816
2817 /* if no change do nothing */
2818 if (rx->sta->sta.smps_mode == smps_mode)
2819 goto handled;
2820 rx->sta->sta.smps_mode = smps_mode;
2821
2822 sband = rx->local->hw.wiphy->bands[status->band];
2823
2824 rate_control_rate_update(local, sband, rx->sta,
2825 IEEE80211_RC_SMPS_CHANGED);
2826 goto handled;
2827 }
2828 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2829 struct ieee80211_supported_band *sband;
2830 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2831 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2832
2833 /* If it doesn't support 40 MHz it can't change ... */
2834 if (!(rx->sta->sta.ht_cap.cap &
2835 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2836 goto handled;
2837
2838 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2839 max_bw = IEEE80211_STA_RX_BW_20;
2840 else
2841 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2842
2843 /* set cur_max_bandwidth and recalc sta bw */
2844 rx->sta->cur_max_bandwidth = max_bw;
2845 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2846
2847 if (rx->sta->sta.bandwidth == new_bw)
2848 goto handled;
2849
2850 rx->sta->sta.bandwidth = new_bw;
2851 sband = rx->local->hw.wiphy->bands[status->band];
2852
2853 rate_control_rate_update(local, sband, rx->sta,
2854 IEEE80211_RC_BW_CHANGED);
2855 goto handled;
2856 }
2857 default:
2858 goto invalid;
2859 }
2860
2861 break;
2862 case WLAN_CATEGORY_PUBLIC:
2863 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2864 goto invalid;
2865 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2866 break;
2867 if (!rx->sta)
2868 break;
2869 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2870 break;
2871 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2872 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2873 break;
2874 if (len < offsetof(struct ieee80211_mgmt,
2875 u.action.u.ext_chan_switch.variable))
2876 goto invalid;
2877 goto queue;
2878 case WLAN_CATEGORY_VHT:
2879 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2880 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2881 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2882 sdata->vif.type != NL80211_IFTYPE_AP &&
2883 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2884 break;
2885
2886 /* verify action code is present */
2887 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2888 goto invalid;
2889
2890 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2891 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2892 /* verify opmode is present */
2893 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2894 goto invalid;
2895 goto queue;
2896 }
2897 case WLAN_VHT_ACTION_GROUPID_MGMT: {
2898 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
2899 goto invalid;
2900 goto queue;
2901 }
2902 default:
2903 break;
2904 }
2905 break;
2906 case WLAN_CATEGORY_BACK:
2907 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2908 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2909 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2910 sdata->vif.type != NL80211_IFTYPE_AP &&
2911 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2912 break;
2913
2914 /* verify action_code is present */
2915 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2916 break;
2917
2918 switch (mgmt->u.action.u.addba_req.action_code) {
2919 case WLAN_ACTION_ADDBA_REQ:
2920 if (len < (IEEE80211_MIN_ACTION_SIZE +
2921 sizeof(mgmt->u.action.u.addba_req)))
2922 goto invalid;
2923 break;
2924 case WLAN_ACTION_ADDBA_RESP:
2925 if (len < (IEEE80211_MIN_ACTION_SIZE +
2926 sizeof(mgmt->u.action.u.addba_resp)))
2927 goto invalid;
2928 break;
2929 case WLAN_ACTION_DELBA:
2930 if (len < (IEEE80211_MIN_ACTION_SIZE +
2931 sizeof(mgmt->u.action.u.delba)))
2932 goto invalid;
2933 break;
2934 default:
2935 goto invalid;
2936 }
2937
2938 goto queue;
2939 case WLAN_CATEGORY_SPECTRUM_MGMT:
2940 /* verify action_code is present */
2941 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2942 break;
2943
2944 switch (mgmt->u.action.u.measurement.action_code) {
2945 case WLAN_ACTION_SPCT_MSR_REQ:
2946 if (status->band != NL80211_BAND_5GHZ)
2947 break;
2948
2949 if (len < (IEEE80211_MIN_ACTION_SIZE +
2950 sizeof(mgmt->u.action.u.measurement)))
2951 break;
2952
2953 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2954 break;
2955
2956 ieee80211_process_measurement_req(sdata, mgmt, len);
2957 goto handled;
2958 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2959 u8 *bssid;
2960 if (len < (IEEE80211_MIN_ACTION_SIZE +
2961 sizeof(mgmt->u.action.u.chan_switch)))
2962 break;
2963
2964 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2965 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2966 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2967 break;
2968
2969 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2970 bssid = sdata->u.mgd.bssid;
2971 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2972 bssid = sdata->u.ibss.bssid;
2973 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2974 bssid = mgmt->sa;
2975 else
2976 break;
2977
2978 if (!ether_addr_equal(mgmt->bssid, bssid))
2979 break;
2980
2981 goto queue;
2982 }
2983 }
2984 break;
2985 case WLAN_CATEGORY_SA_QUERY:
2986 if (len < (IEEE80211_MIN_ACTION_SIZE +
2987 sizeof(mgmt->u.action.u.sa_query)))
2988 break;
2989
2990 switch (mgmt->u.action.u.sa_query.action) {
2991 case WLAN_ACTION_SA_QUERY_REQUEST:
2992 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2993 break;
2994 ieee80211_process_sa_query_req(sdata, mgmt, len);
2995 goto handled;
2996 }
2997 break;
2998 case WLAN_CATEGORY_SELF_PROTECTED:
2999 if (len < (IEEE80211_MIN_ACTION_SIZE +
3000 sizeof(mgmt->u.action.u.self_prot.action_code)))
3001 break;
3002
3003 switch (mgmt->u.action.u.self_prot.action_code) {
3004 case WLAN_SP_MESH_PEERING_OPEN:
3005 case WLAN_SP_MESH_PEERING_CLOSE:
3006 case WLAN_SP_MESH_PEERING_CONFIRM:
3007 if (!ieee80211_vif_is_mesh(&sdata->vif))
3008 goto invalid;
3009 if (sdata->u.mesh.user_mpm)
3010 /* userspace handles this frame */
3011 break;
3012 goto queue;
3013 case WLAN_SP_MGK_INFORM:
3014 case WLAN_SP_MGK_ACK:
3015 if (!ieee80211_vif_is_mesh(&sdata->vif))
3016 goto invalid;
3017 break;
3018 }
3019 break;
3020 case WLAN_CATEGORY_MESH_ACTION:
3021 if (len < (IEEE80211_MIN_ACTION_SIZE +
3022 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3023 break;
3024
3025 if (!ieee80211_vif_is_mesh(&sdata->vif))
3026 break;
3027 if (mesh_action_is_path_sel(mgmt) &&
3028 !mesh_path_sel_is_hwmp(sdata))
3029 break;
3030 goto queue;
3031 }
3032
3033 return RX_CONTINUE;
3034
3035 invalid:
3036 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3037 /* will return in the next handlers */
3038 return RX_CONTINUE;
3039
3040 handled:
3041 if (rx->sta)
3042 rx->sta->rx_stats.packets++;
3043 dev_kfree_skb(rx->skb);
3044 return RX_QUEUED;
3045
3046 queue:
3047 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3048 skb_queue_tail(&sdata->skb_queue, rx->skb);
3049 ieee80211_queue_work(&local->hw, &sdata->work);
3050 if (rx->sta)
3051 rx->sta->rx_stats.packets++;
3052 return RX_QUEUED;
3053 }
3054
3055 static ieee80211_rx_result debug_noinline
3056 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3057 {
3058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3059 int sig = 0;
3060
3061 /* skip known-bad action frames and return them in the next handler */
3062 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3063 return RX_CONTINUE;
3064
3065 /*
3066 * Getting here means the kernel doesn't know how to handle
3067 * it, but maybe userspace does ... include returned frames
3068 * so userspace can register for those to know whether ones
3069 * it transmitted were processed or returned.
3070 */
3071
3072 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
3073 sig = status->signal;
3074
3075 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3076 rx->skb->data, rx->skb->len, 0)) {
3077 if (rx->sta)
3078 rx->sta->rx_stats.packets++;
3079 dev_kfree_skb(rx->skb);
3080 return RX_QUEUED;
3081 }
3082
3083 return RX_CONTINUE;
3084 }
3085
3086 static ieee80211_rx_result debug_noinline
3087 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3088 {
3089 struct ieee80211_local *local = rx->local;
3090 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3091 struct sk_buff *nskb;
3092 struct ieee80211_sub_if_data *sdata = rx->sdata;
3093 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3094
3095 if (!ieee80211_is_action(mgmt->frame_control))
3096 return RX_CONTINUE;
3097
3098 /*
3099 * For AP mode, hostapd is responsible for handling any action
3100 * frames that we didn't handle, including returning unknown
3101 * ones. For all other modes we will return them to the sender,
3102 * setting the 0x80 bit in the action category, as required by
3103 * 802.11-2012 9.24.4.
3104 * Newer versions of hostapd shall also use the management frame
3105 * registration mechanisms, but older ones still use cooked
3106 * monitor interfaces so push all frames there.
3107 */
3108 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3109 (sdata->vif.type == NL80211_IFTYPE_AP ||
3110 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3111 return RX_DROP_MONITOR;
3112
3113 if (is_multicast_ether_addr(mgmt->da))
3114 return RX_DROP_MONITOR;
3115
3116 /* do not return rejected action frames */
3117 if (mgmt->u.action.category & 0x80)
3118 return RX_DROP_UNUSABLE;
3119
3120 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3121 GFP_ATOMIC);
3122 if (nskb) {
3123 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3124
3125 nmgmt->u.action.category |= 0x80;
3126 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3127 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3128
3129 memset(nskb->cb, 0, sizeof(nskb->cb));
3130
3131 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3132 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3133
3134 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3135 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3136 IEEE80211_TX_CTL_NO_CCK_RATE;
3137 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3138 info->hw_queue =
3139 local->hw.offchannel_tx_hw_queue;
3140 }
3141
3142 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3143 status->band);
3144 }
3145 dev_kfree_skb(rx->skb);
3146 return RX_QUEUED;
3147 }
3148
3149 static ieee80211_rx_result debug_noinline
3150 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3151 {
3152 struct ieee80211_sub_if_data *sdata = rx->sdata;
3153 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3154 __le16 stype;
3155
3156 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3157
3158 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3159 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3160 sdata->vif.type != NL80211_IFTYPE_OCB &&
3161 sdata->vif.type != NL80211_IFTYPE_STATION)
3162 return RX_DROP_MONITOR;
3163
3164 switch (stype) {
3165 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3166 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3167 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3168 /* process for all: mesh, mlme, ibss */
3169 break;
3170 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3171 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3172 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3173 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3174 if (is_multicast_ether_addr(mgmt->da) &&
3175 !is_broadcast_ether_addr(mgmt->da))
3176 return RX_DROP_MONITOR;
3177
3178 /* process only for station */
3179 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3180 return RX_DROP_MONITOR;
3181 break;
3182 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3183 /* process only for ibss and mesh */
3184 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3185 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3186 return RX_DROP_MONITOR;
3187 break;
3188 default:
3189 return RX_DROP_MONITOR;
3190 }
3191
3192 /* queue up frame and kick off work to process it */
3193 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3194 skb_queue_tail(&sdata->skb_queue, rx->skb);
3195 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3196 if (rx->sta)
3197 rx->sta->rx_stats.packets++;
3198
3199 return RX_QUEUED;
3200 }
3201
3202 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3203 struct ieee80211_rate *rate)
3204 {
3205 struct ieee80211_sub_if_data *sdata;
3206 struct ieee80211_local *local = rx->local;
3207 struct sk_buff *skb = rx->skb, *skb2;
3208 struct net_device *prev_dev = NULL;
3209 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3210 int needed_headroom;
3211
3212 /*
3213 * If cooked monitor has been processed already, then
3214 * don't do it again. If not, set the flag.
3215 */
3216 if (rx->flags & IEEE80211_RX_CMNTR)
3217 goto out_free_skb;
3218 rx->flags |= IEEE80211_RX_CMNTR;
3219
3220 /* If there are no cooked monitor interfaces, just free the SKB */
3221 if (!local->cooked_mntrs)
3222 goto out_free_skb;
3223
3224 /* vendor data is long removed here */
3225 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3226 /* room for the radiotap header based on driver features */
3227 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3228
3229 if (skb_headroom(skb) < needed_headroom &&
3230 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3231 goto out_free_skb;
3232
3233 /* prepend radiotap information */
3234 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3235 false);
3236
3237 skb_reset_mac_header(skb);
3238 skb->ip_summed = CHECKSUM_UNNECESSARY;
3239 skb->pkt_type = PACKET_OTHERHOST;
3240 skb->protocol = htons(ETH_P_802_2);
3241
3242 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3243 if (!ieee80211_sdata_running(sdata))
3244 continue;
3245
3246 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3247 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3248 continue;
3249
3250 if (prev_dev) {
3251 skb2 = skb_clone(skb, GFP_ATOMIC);
3252 if (skb2) {
3253 skb2->dev = prev_dev;
3254 netif_receive_skb(skb2);
3255 }
3256 }
3257
3258 prev_dev = sdata->dev;
3259 ieee80211_rx_stats(sdata->dev, skb->len);
3260 }
3261
3262 if (prev_dev) {
3263 skb->dev = prev_dev;
3264 netif_receive_skb(skb);
3265 return;
3266 }
3267
3268 out_free_skb:
3269 dev_kfree_skb(skb);
3270 }
3271
3272 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3273 ieee80211_rx_result res)
3274 {
3275 switch (res) {
3276 case RX_DROP_MONITOR:
3277 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3278 if (rx->sta)
3279 rx->sta->rx_stats.dropped++;
3280 /* fall through */
3281 case RX_CONTINUE: {
3282 struct ieee80211_rate *rate = NULL;
3283 struct ieee80211_supported_band *sband;
3284 struct ieee80211_rx_status *status;
3285
3286 status = IEEE80211_SKB_RXCB((rx->skb));
3287
3288 sband = rx->local->hw.wiphy->bands[status->band];
3289 if (!(status->flag & RX_FLAG_HT) &&
3290 !(status->flag & RX_FLAG_VHT))
3291 rate = &sband->bitrates[status->rate_idx];
3292
3293 ieee80211_rx_cooked_monitor(rx, rate);
3294 break;
3295 }
3296 case RX_DROP_UNUSABLE:
3297 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3298 if (rx->sta)
3299 rx->sta->rx_stats.dropped++;
3300 dev_kfree_skb(rx->skb);
3301 break;
3302 case RX_QUEUED:
3303 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3304 break;
3305 }
3306 }
3307
3308 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3309 struct sk_buff_head *frames)
3310 {
3311 ieee80211_rx_result res = RX_DROP_MONITOR;
3312 struct sk_buff *skb;
3313
3314 #define CALL_RXH(rxh) \
3315 do { \
3316 res = rxh(rx); \
3317 if (res != RX_CONTINUE) \
3318 goto rxh_next; \
3319 } while (0)
3320
3321 /* Lock here to avoid hitting all of the data used in the RX
3322 * path (e.g. key data, station data, ...) concurrently when
3323 * a frame is released from the reorder buffer due to timeout
3324 * from the timer, potentially concurrently with RX from the
3325 * driver.
3326 */
3327 spin_lock_bh(&rx->local->rx_path_lock);
3328
3329 while ((skb = __skb_dequeue(frames))) {
3330 /*
3331 * all the other fields are valid across frames
3332 * that belong to an aMPDU since they are on the
3333 * same TID from the same station
3334 */
3335 rx->skb = skb;
3336
3337 CALL_RXH(ieee80211_rx_h_check_more_data);
3338 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3339 CALL_RXH(ieee80211_rx_h_sta_process);
3340 CALL_RXH(ieee80211_rx_h_decrypt);
3341 CALL_RXH(ieee80211_rx_h_defragment);
3342 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3343 /* must be after MMIC verify so header is counted in MPDU mic */
3344 #ifdef CONFIG_MAC80211_MESH
3345 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3346 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3347 #endif
3348 CALL_RXH(ieee80211_rx_h_amsdu);
3349 CALL_RXH(ieee80211_rx_h_data);
3350
3351 /* special treatment -- needs the queue */
3352 res = ieee80211_rx_h_ctrl(rx, frames);
3353 if (res != RX_CONTINUE)
3354 goto rxh_next;
3355
3356 CALL_RXH(ieee80211_rx_h_mgmt_check);
3357 CALL_RXH(ieee80211_rx_h_action);
3358 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3359 CALL_RXH(ieee80211_rx_h_action_return);
3360 CALL_RXH(ieee80211_rx_h_mgmt);
3361
3362 rxh_next:
3363 ieee80211_rx_handlers_result(rx, res);
3364
3365 #undef CALL_RXH
3366 }
3367
3368 spin_unlock_bh(&rx->local->rx_path_lock);
3369 }
3370
3371 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3372 {
3373 struct sk_buff_head reorder_release;
3374 ieee80211_rx_result res = RX_DROP_MONITOR;
3375
3376 __skb_queue_head_init(&reorder_release);
3377
3378 #define CALL_RXH(rxh) \
3379 do { \
3380 res = rxh(rx); \
3381 if (res != RX_CONTINUE) \
3382 goto rxh_next; \
3383 } while (0)
3384
3385 CALL_RXH(ieee80211_rx_h_check_dup);
3386 CALL_RXH(ieee80211_rx_h_check);
3387
3388 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3389
3390 ieee80211_rx_handlers(rx, &reorder_release);
3391 return;
3392
3393 rxh_next:
3394 ieee80211_rx_handlers_result(rx, res);
3395
3396 #undef CALL_RXH
3397 }
3398
3399 /*
3400 * This function makes calls into the RX path, therefore
3401 * it has to be invoked under RCU read lock.
3402 */
3403 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3404 {
3405 struct sk_buff_head frames;
3406 struct ieee80211_rx_data rx = {
3407 .sta = sta,
3408 .sdata = sta->sdata,
3409 .local = sta->local,
3410 /* This is OK -- must be QoS data frame */
3411 .security_idx = tid,
3412 .seqno_idx = tid,
3413 .napi = NULL, /* must be NULL to not have races */
3414 };
3415 struct tid_ampdu_rx *tid_agg_rx;
3416
3417 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3418 if (!tid_agg_rx)
3419 return;
3420
3421 __skb_queue_head_init(&frames);
3422
3423 spin_lock(&tid_agg_rx->reorder_lock);
3424 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3425 spin_unlock(&tid_agg_rx->reorder_lock);
3426
3427 if (!skb_queue_empty(&frames)) {
3428 struct ieee80211_event event = {
3429 .type = BA_FRAME_TIMEOUT,
3430 .u.ba.tid = tid,
3431 .u.ba.sta = &sta->sta,
3432 };
3433 drv_event_callback(rx.local, rx.sdata, &event);
3434 }
3435
3436 ieee80211_rx_handlers(&rx, &frames);
3437 }
3438
3439 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3440 u16 ssn, u64 filtered,
3441 u16 received_mpdus)
3442 {
3443 struct sta_info *sta;
3444 struct tid_ampdu_rx *tid_agg_rx;
3445 struct sk_buff_head frames;
3446 struct ieee80211_rx_data rx = {
3447 /* This is OK -- must be QoS data frame */
3448 .security_idx = tid,
3449 .seqno_idx = tid,
3450 };
3451 int i, diff;
3452
3453 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3454 return;
3455
3456 __skb_queue_head_init(&frames);
3457
3458 sta = container_of(pubsta, struct sta_info, sta);
3459
3460 rx.sta = sta;
3461 rx.sdata = sta->sdata;
3462 rx.local = sta->local;
3463
3464 rcu_read_lock();
3465 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3466 if (!tid_agg_rx)
3467 goto out;
3468
3469 spin_lock_bh(&tid_agg_rx->reorder_lock);
3470
3471 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3472 int release;
3473
3474 /* release all frames in the reorder buffer */
3475 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3476 IEEE80211_SN_MODULO;
3477 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3478 release, &frames);
3479 /* update ssn to match received ssn */
3480 tid_agg_rx->head_seq_num = ssn;
3481 } else {
3482 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3483 &frames);
3484 }
3485
3486 /* handle the case that received ssn is behind the mac ssn.
3487 * it can be tid_agg_rx->buf_size behind and still be valid */
3488 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3489 if (diff >= tid_agg_rx->buf_size) {
3490 tid_agg_rx->reorder_buf_filtered = 0;
3491 goto release;
3492 }
3493 filtered = filtered >> diff;
3494 ssn += diff;
3495
3496 /* update bitmap */
3497 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3498 int index = (ssn + i) % tid_agg_rx->buf_size;
3499
3500 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3501 if (filtered & BIT_ULL(i))
3502 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3503 }
3504
3505 /* now process also frames that the filter marking released */
3506 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3507
3508 release:
3509 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3510
3511 ieee80211_rx_handlers(&rx, &frames);
3512
3513 out:
3514 rcu_read_unlock();
3515 }
3516 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3517
3518 /* main receive path */
3519
3520 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3521 {
3522 struct ieee80211_sub_if_data *sdata = rx->sdata;
3523 struct sk_buff *skb = rx->skb;
3524 struct ieee80211_hdr *hdr = (void *)skb->data;
3525 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3526 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3527 int multicast = is_multicast_ether_addr(hdr->addr1);
3528
3529 switch (sdata->vif.type) {
3530 case NL80211_IFTYPE_STATION:
3531 if (!bssid && !sdata->u.mgd.use_4addr)
3532 return false;
3533 if (multicast)
3534 return true;
3535 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3536 case NL80211_IFTYPE_ADHOC:
3537 if (!bssid)
3538 return false;
3539 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3540 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3541 return false;
3542 if (ieee80211_is_beacon(hdr->frame_control))
3543 return true;
3544 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3545 return false;
3546 if (!multicast &&
3547 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3548 return false;
3549 if (!rx->sta) {
3550 int rate_idx;
3551 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3552 rate_idx = 0; /* TODO: HT/VHT rates */
3553 else
3554 rate_idx = status->rate_idx;
3555 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3556 BIT(rate_idx));
3557 }
3558 return true;
3559 case NL80211_IFTYPE_OCB:
3560 if (!bssid)
3561 return false;
3562 if (!ieee80211_is_data_present(hdr->frame_control))
3563 return false;
3564 if (!is_broadcast_ether_addr(bssid))
3565 return false;
3566 if (!multicast &&
3567 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3568 return false;
3569 if (!rx->sta) {
3570 int rate_idx;
3571 if (status->flag & RX_FLAG_HT)
3572 rate_idx = 0; /* TODO: HT rates */
3573 else
3574 rate_idx = status->rate_idx;
3575 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3576 BIT(rate_idx));
3577 }
3578 return true;
3579 case NL80211_IFTYPE_MESH_POINT:
3580 if (multicast)
3581 return true;
3582 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3583 case NL80211_IFTYPE_AP_VLAN:
3584 case NL80211_IFTYPE_AP:
3585 if (!bssid)
3586 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3587
3588 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3589 /*
3590 * Accept public action frames even when the
3591 * BSSID doesn't match, this is used for P2P
3592 * and location updates. Note that mac80211
3593 * itself never looks at these frames.
3594 */
3595 if (!multicast &&
3596 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3597 return false;
3598 if (ieee80211_is_public_action(hdr, skb->len))
3599 return true;
3600 return ieee80211_is_beacon(hdr->frame_control);
3601 }
3602
3603 if (!ieee80211_has_tods(hdr->frame_control)) {
3604 /* ignore data frames to TDLS-peers */
3605 if (ieee80211_is_data(hdr->frame_control))
3606 return false;
3607 /* ignore action frames to TDLS-peers */
3608 if (ieee80211_is_action(hdr->frame_control) &&
3609 !is_broadcast_ether_addr(bssid) &&
3610 !ether_addr_equal(bssid, hdr->addr1))
3611 return false;
3612 }
3613 return true;
3614 case NL80211_IFTYPE_WDS:
3615 if (bssid || !ieee80211_is_data(hdr->frame_control))
3616 return false;
3617 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3618 case NL80211_IFTYPE_P2P_DEVICE:
3619 return ieee80211_is_public_action(hdr, skb->len) ||
3620 ieee80211_is_probe_req(hdr->frame_control) ||
3621 ieee80211_is_probe_resp(hdr->frame_control) ||
3622 ieee80211_is_beacon(hdr->frame_control);
3623 case NL80211_IFTYPE_NAN:
3624 /* Currently no frames on NAN interface are allowed */
3625 return false;
3626 default:
3627 break;
3628 }
3629
3630 WARN_ON_ONCE(1);
3631 return false;
3632 }
3633
3634 void ieee80211_check_fast_rx(struct sta_info *sta)
3635 {
3636 struct ieee80211_sub_if_data *sdata = sta->sdata;
3637 struct ieee80211_local *local = sdata->local;
3638 struct ieee80211_key *key;
3639 struct ieee80211_fast_rx fastrx = {
3640 .dev = sdata->dev,
3641 .vif_type = sdata->vif.type,
3642 .control_port_protocol = sdata->control_port_protocol,
3643 }, *old, *new = NULL;
3644 bool assign = false;
3645
3646 /* use sparse to check that we don't return without updating */
3647 __acquire(check_fast_rx);
3648
3649 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3650 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3651 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3652 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3653
3654 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3655
3656 /* fast-rx doesn't do reordering */
3657 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3658 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3659 goto clear;
3660
3661 switch (sdata->vif.type) {
3662 case NL80211_IFTYPE_STATION:
3663 /* 4-addr is harder to deal with, later maybe */
3664 if (sdata->u.mgd.use_4addr)
3665 goto clear;
3666 /* software powersave is a huge mess, avoid all of it */
3667 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3668 goto clear;
3669 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3670 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3671 goto clear;
3672 if (sta->sta.tdls) {
3673 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3674 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3675 fastrx.expected_ds_bits = 0;
3676 } else {
3677 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3678 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3679 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3680 fastrx.expected_ds_bits =
3681 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3682 }
3683 break;
3684 case NL80211_IFTYPE_AP_VLAN:
3685 case NL80211_IFTYPE_AP:
3686 /* parallel-rx requires this, at least with calls to
3687 * ieee80211_sta_ps_transition()
3688 */
3689 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3690 goto clear;
3691 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3692 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3693 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3694
3695 fastrx.internal_forward =
3696 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3697 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3698 !sdata->u.vlan.sta);
3699 break;
3700 default:
3701 goto clear;
3702 }
3703
3704 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3705 goto clear;
3706
3707 rcu_read_lock();
3708 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3709 if (key) {
3710 switch (key->conf.cipher) {
3711 case WLAN_CIPHER_SUITE_TKIP:
3712 /* we don't want to deal with MMIC in fast-rx */
3713 goto clear_rcu;
3714 case WLAN_CIPHER_SUITE_CCMP:
3715 case WLAN_CIPHER_SUITE_CCMP_256:
3716 case WLAN_CIPHER_SUITE_GCMP:
3717 case WLAN_CIPHER_SUITE_GCMP_256:
3718 break;
3719 default:
3720 /* we also don't want to deal with WEP or cipher scheme
3721 * since those require looking up the key idx in the
3722 * frame, rather than assuming the PTK is used
3723 * (we need to revisit this once we implement the real
3724 * PTK index, which is now valid in the spec, but we
3725 * haven't implemented that part yet)
3726 */
3727 goto clear_rcu;
3728 }
3729
3730 fastrx.key = true;
3731 fastrx.icv_len = key->conf.icv_len;
3732 }
3733
3734 assign = true;
3735 clear_rcu:
3736 rcu_read_unlock();
3737 clear:
3738 __release(check_fast_rx);
3739
3740 if (assign)
3741 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
3742
3743 spin_lock_bh(&sta->lock);
3744 old = rcu_dereference_protected(sta->fast_rx, true);
3745 rcu_assign_pointer(sta->fast_rx, new);
3746 spin_unlock_bh(&sta->lock);
3747
3748 if (old)
3749 kfree_rcu(old, rcu_head);
3750 }
3751
3752 void ieee80211_clear_fast_rx(struct sta_info *sta)
3753 {
3754 struct ieee80211_fast_rx *old;
3755
3756 spin_lock_bh(&sta->lock);
3757 old = rcu_dereference_protected(sta->fast_rx, true);
3758 RCU_INIT_POINTER(sta->fast_rx, NULL);
3759 spin_unlock_bh(&sta->lock);
3760
3761 if (old)
3762 kfree_rcu(old, rcu_head);
3763 }
3764
3765 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3766 {
3767 struct ieee80211_local *local = sdata->local;
3768 struct sta_info *sta;
3769
3770 lockdep_assert_held(&local->sta_mtx);
3771
3772 list_for_each_entry_rcu(sta, &local->sta_list, list) {
3773 if (sdata != sta->sdata &&
3774 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
3775 continue;
3776 ieee80211_check_fast_rx(sta);
3777 }
3778 }
3779
3780 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
3781 {
3782 struct ieee80211_local *local = sdata->local;
3783
3784 mutex_lock(&local->sta_mtx);
3785 __ieee80211_check_fast_rx_iface(sdata);
3786 mutex_unlock(&local->sta_mtx);
3787 }
3788
3789 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
3790 struct ieee80211_fast_rx *fast_rx)
3791 {
3792 struct sk_buff *skb = rx->skb;
3793 struct ieee80211_hdr *hdr = (void *)skb->data;
3794 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3795 struct sta_info *sta = rx->sta;
3796 int orig_len = skb->len;
3797 int snap_offs = ieee80211_hdrlen(hdr->frame_control);
3798 struct {
3799 u8 snap[sizeof(rfc1042_header)];
3800 __be16 proto;
3801 } *payload __aligned(2);
3802 struct {
3803 u8 da[ETH_ALEN];
3804 u8 sa[ETH_ALEN];
3805 } addrs __aligned(2);
3806 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
3807
3808 if (fast_rx->uses_rss)
3809 stats = this_cpu_ptr(sta->pcpu_rx_stats);
3810
3811 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
3812 * to a common data structure; drivers can implement that per queue
3813 * but we don't have that information in mac80211
3814 */
3815 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
3816 return false;
3817
3818 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
3819
3820 /* If using encryption, we also need to have:
3821 * - PN_VALIDATED: similar, but the implementation is tricky
3822 * - DECRYPTED: necessary for PN_VALIDATED
3823 */
3824 if (fast_rx->key &&
3825 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
3826 return false;
3827
3828 /* we don't deal with A-MSDU deaggregation here */
3829 if (status->rx_flags & IEEE80211_RX_AMSDU)
3830 return false;
3831
3832 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3833 return false;
3834
3835 if (unlikely(ieee80211_is_frag(hdr)))
3836 return false;
3837
3838 /* Since our interface address cannot be multicast, this
3839 * implicitly also rejects multicast frames without the
3840 * explicit check.
3841 *
3842 * We shouldn't get any *data* frames not addressed to us
3843 * (AP mode will accept multicast *management* frames), but
3844 * punting here will make it go through the full checks in
3845 * ieee80211_accept_frame().
3846 */
3847 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
3848 return false;
3849
3850 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
3851 IEEE80211_FCTL_TODS)) !=
3852 fast_rx->expected_ds_bits)
3853 goto drop;
3854
3855 /* assign the key to drop unencrypted frames (later)
3856 * and strip the IV/MIC if necessary
3857 */
3858 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
3859 /* GCMP header length is the same */
3860 snap_offs += IEEE80211_CCMP_HDR_LEN;
3861 }
3862
3863 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
3864 goto drop;
3865 payload = (void *)(skb->data + snap_offs);
3866
3867 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
3868 return false;
3869
3870 /* Don't handle these here since they require special code.
3871 * Accept AARP and IPX even though they should come with a
3872 * bridge-tunnel header - but if we get them this way then
3873 * there's little point in discarding them.
3874 */
3875 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
3876 payload->proto == fast_rx->control_port_protocol))
3877 return false;
3878
3879 /* after this point, don't punt to the slowpath! */
3880
3881 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
3882 pskb_trim(skb, skb->len - fast_rx->icv_len))
3883 goto drop;
3884
3885 if (unlikely(fast_rx->sta_notify)) {
3886 ieee80211_sta_rx_notify(rx->sdata, hdr);
3887 fast_rx->sta_notify = false;
3888 }
3889
3890 /* statistics part of ieee80211_rx_h_sta_process() */
3891 stats->last_rx = jiffies;
3892 stats->last_rate = sta_stats_encode_rate(status);
3893
3894 stats->fragments++;
3895 stats->packets++;
3896
3897 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
3898 stats->last_signal = status->signal;
3899 if (!fast_rx->uses_rss)
3900 ewma_signal_add(&sta->rx_stats_avg.signal,
3901 -status->signal);
3902 }
3903
3904 if (status->chains) {
3905 int i;
3906
3907 stats->chains = status->chains;
3908 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
3909 int signal = status->chain_signal[i];
3910
3911 if (!(status->chains & BIT(i)))
3912 continue;
3913
3914 stats->chain_signal_last[i] = signal;
3915 if (!fast_rx->uses_rss)
3916 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
3917 -signal);
3918 }
3919 }
3920 /* end of statistics */
3921
3922 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
3923 goto drop;
3924
3925 /* do the header conversion - first grab the addresses */
3926 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
3927 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
3928 /* remove the SNAP but leave the ethertype */
3929 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
3930 /* push the addresses in front */
3931 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
3932
3933 skb->dev = fast_rx->dev;
3934
3935 ieee80211_rx_stats(fast_rx->dev, skb->len);
3936
3937 /* The seqno index has the same property as needed
3938 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
3939 * for non-QoS-data frames. Here we know it's a data
3940 * frame, so count MSDUs.
3941 */
3942 u64_stats_update_begin(&stats->syncp);
3943 stats->msdu[rx->seqno_idx]++;
3944 stats->bytes += orig_len;
3945 u64_stats_update_end(&stats->syncp);
3946
3947 if (fast_rx->internal_forward) {
3948 struct sk_buff *xmit_skb = NULL;
3949 bool multicast = is_multicast_ether_addr(skb->data);
3950
3951 if (multicast) {
3952 xmit_skb = skb_copy(skb, GFP_ATOMIC);
3953 } else if (sta_info_get(rx->sdata, skb->data)) {
3954 xmit_skb = skb;
3955 skb = NULL;
3956 }
3957
3958 if (xmit_skb) {
3959 /*
3960 * Send to wireless media and increase priority by 256
3961 * to keep the received priority instead of
3962 * reclassifying the frame (see cfg80211_classify8021d).
3963 */
3964 xmit_skb->priority += 256;
3965 xmit_skb->protocol = htons(ETH_P_802_3);
3966 skb_reset_network_header(xmit_skb);
3967 skb_reset_mac_header(xmit_skb);
3968 dev_queue_xmit(xmit_skb);
3969 }
3970
3971 if (!skb)
3972 return true;
3973 }
3974
3975 /* deliver to local stack */
3976 skb->protocol = eth_type_trans(skb, fast_rx->dev);
3977 memset(skb->cb, 0, sizeof(skb->cb));
3978 if (rx->napi)
3979 napi_gro_receive(rx->napi, skb);
3980 else
3981 netif_receive_skb(skb);
3982
3983 return true;
3984 drop:
3985 dev_kfree_skb(skb);
3986 stats->dropped++;
3987 return true;
3988 }
3989
3990 /*
3991 * This function returns whether or not the SKB
3992 * was destined for RX processing or not, which,
3993 * if consume is true, is equivalent to whether
3994 * or not the skb was consumed.
3995 */
3996 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3997 struct sk_buff *skb, bool consume)
3998 {
3999 struct ieee80211_local *local = rx->local;
4000 struct ieee80211_sub_if_data *sdata = rx->sdata;
4001
4002 rx->skb = skb;
4003
4004 /* See if we can do fast-rx; if we have to copy we already lost,
4005 * so punt in that case. We should never have to deliver a data
4006 * frame to multiple interfaces anyway.
4007 *
4008 * We skip the ieee80211_accept_frame() call and do the necessary
4009 * checking inside ieee80211_invoke_fast_rx().
4010 */
4011 if (consume && rx->sta) {
4012 struct ieee80211_fast_rx *fast_rx;
4013
4014 fast_rx = rcu_dereference(rx->sta->fast_rx);
4015 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4016 return true;
4017 }
4018
4019 if (!ieee80211_accept_frame(rx))
4020 return false;
4021
4022 if (!consume) {
4023 skb = skb_copy(skb, GFP_ATOMIC);
4024 if (!skb) {
4025 if (net_ratelimit())
4026 wiphy_debug(local->hw.wiphy,
4027 "failed to copy skb for %s\n",
4028 sdata->name);
4029 return true;
4030 }
4031
4032 rx->skb = skb;
4033 }
4034
4035 ieee80211_invoke_rx_handlers(rx);
4036 return true;
4037 }
4038
4039 /*
4040 * This is the actual Rx frames handler. as it belongs to Rx path it must
4041 * be called with rcu_read_lock protection.
4042 */
4043 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4044 struct ieee80211_sta *pubsta,
4045 struct sk_buff *skb,
4046 struct napi_struct *napi)
4047 {
4048 struct ieee80211_local *local = hw_to_local(hw);
4049 struct ieee80211_sub_if_data *sdata;
4050 struct ieee80211_hdr *hdr;
4051 __le16 fc;
4052 struct ieee80211_rx_data rx;
4053 struct ieee80211_sub_if_data *prev;
4054 struct rhlist_head *tmp;
4055 int err = 0;
4056
4057 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4058 memset(&rx, 0, sizeof(rx));
4059 rx.skb = skb;
4060 rx.local = local;
4061 rx.napi = napi;
4062
4063 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4064 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4065
4066 if (ieee80211_is_mgmt(fc)) {
4067 /* drop frame if too short for header */
4068 if (skb->len < ieee80211_hdrlen(fc))
4069 err = -ENOBUFS;
4070 else
4071 err = skb_linearize(skb);
4072 } else {
4073 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4074 }
4075
4076 if (err) {
4077 dev_kfree_skb(skb);
4078 return;
4079 }
4080
4081 hdr = (struct ieee80211_hdr *)skb->data;
4082 ieee80211_parse_qos(&rx);
4083 ieee80211_verify_alignment(&rx);
4084
4085 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4086 ieee80211_is_beacon(hdr->frame_control)))
4087 ieee80211_scan_rx(local, skb);
4088
4089 if (ieee80211_is_data(fc)) {
4090 struct sta_info *sta, *prev_sta;
4091
4092 if (pubsta) {
4093 rx.sta = container_of(pubsta, struct sta_info, sta);
4094 rx.sdata = rx.sta->sdata;
4095 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4096 return;
4097 goto out;
4098 }
4099
4100 prev_sta = NULL;
4101
4102 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4103 if (!prev_sta) {
4104 prev_sta = sta;
4105 continue;
4106 }
4107
4108 rx.sta = prev_sta;
4109 rx.sdata = prev_sta->sdata;
4110 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4111
4112 prev_sta = sta;
4113 }
4114
4115 if (prev_sta) {
4116 rx.sta = prev_sta;
4117 rx.sdata = prev_sta->sdata;
4118
4119 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4120 return;
4121 goto out;
4122 }
4123 }
4124
4125 prev = NULL;
4126
4127 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4128 if (!ieee80211_sdata_running(sdata))
4129 continue;
4130
4131 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4132 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4133 continue;
4134
4135 /*
4136 * frame is destined for this interface, but if it's
4137 * not also for the previous one we handle that after
4138 * the loop to avoid copying the SKB once too much
4139 */
4140
4141 if (!prev) {
4142 prev = sdata;
4143 continue;
4144 }
4145
4146 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4147 rx.sdata = prev;
4148 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4149
4150 prev = sdata;
4151 }
4152
4153 if (prev) {
4154 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4155 rx.sdata = prev;
4156
4157 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4158 return;
4159 }
4160
4161 out:
4162 dev_kfree_skb(skb);
4163 }
4164
4165 /*
4166 * This is the receive path handler. It is called by a low level driver when an
4167 * 802.11 MPDU is received from the hardware.
4168 */
4169 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4170 struct sk_buff *skb, struct napi_struct *napi)
4171 {
4172 struct ieee80211_local *local = hw_to_local(hw);
4173 struct ieee80211_rate *rate = NULL;
4174 struct ieee80211_supported_band *sband;
4175 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4176
4177 WARN_ON_ONCE(softirq_count() == 0);
4178
4179 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4180 goto drop;
4181
4182 sband = local->hw.wiphy->bands[status->band];
4183 if (WARN_ON(!sband))
4184 goto drop;
4185
4186 /*
4187 * If we're suspending, it is possible although not too likely
4188 * that we'd be receiving frames after having already partially
4189 * quiesced the stack. We can't process such frames then since
4190 * that might, for example, cause stations to be added or other
4191 * driver callbacks be invoked.
4192 */
4193 if (unlikely(local->quiescing || local->suspended))
4194 goto drop;
4195
4196 /* We might be during a HW reconfig, prevent Rx for the same reason */
4197 if (unlikely(local->in_reconfig))
4198 goto drop;
4199
4200 /*
4201 * The same happens when we're not even started,
4202 * but that's worth a warning.
4203 */
4204 if (WARN_ON(!local->started))
4205 goto drop;
4206
4207 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4208 /*
4209 * Validate the rate, unless a PLCP error means that
4210 * we probably can't have a valid rate here anyway.
4211 */
4212
4213 if (status->flag & RX_FLAG_HT) {
4214 /*
4215 * rate_idx is MCS index, which can be [0-76]
4216 * as documented on:
4217 *
4218 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4219 *
4220 * Anything else would be some sort of driver or
4221 * hardware error. The driver should catch hardware
4222 * errors.
4223 */
4224 if (WARN(status->rate_idx > 76,
4225 "Rate marked as an HT rate but passed "
4226 "status->rate_idx is not "
4227 "an MCS index [0-76]: %d (0x%02x)\n",
4228 status->rate_idx,
4229 status->rate_idx))
4230 goto drop;
4231 } else if (status->flag & RX_FLAG_VHT) {
4232 if (WARN_ONCE(status->rate_idx > 9 ||
4233 !status->vht_nss ||
4234 status->vht_nss > 8,
4235 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4236 status->rate_idx, status->vht_nss))
4237 goto drop;
4238 } else {
4239 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4240 goto drop;
4241 rate = &sband->bitrates[status->rate_idx];
4242 }
4243 }
4244
4245 status->rx_flags = 0;
4246
4247 /*
4248 * key references and virtual interfaces are protected using RCU
4249 * and this requires that we are in a read-side RCU section during
4250 * receive processing
4251 */
4252 rcu_read_lock();
4253
4254 /*
4255 * Frames with failed FCS/PLCP checksum are not returned,
4256 * all other frames are returned without radiotap header
4257 * if it was previously present.
4258 * Also, frames with less than 16 bytes are dropped.
4259 */
4260 skb = ieee80211_rx_monitor(local, skb, rate);
4261 if (!skb) {
4262 rcu_read_unlock();
4263 return;
4264 }
4265
4266 ieee80211_tpt_led_trig_rx(local,
4267 ((struct ieee80211_hdr *)skb->data)->frame_control,
4268 skb->len);
4269
4270 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4271
4272 rcu_read_unlock();
4273
4274 return;
4275 drop:
4276 kfree_skb(skb);
4277 }
4278 EXPORT_SYMBOL(ieee80211_rx_napi);
4279
4280 /* This is a version of the rx handler that can be called from hard irq
4281 * context. Post the skb on the queue and schedule the tasklet */
4282 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4283 {
4284 struct ieee80211_local *local = hw_to_local(hw);
4285
4286 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4287
4288 skb->pkt_type = IEEE80211_RX_MSG;
4289 skb_queue_tail(&local->skb_queue, skb);
4290 tasklet_schedule(&local->tasklet);
4291 }
4292 EXPORT_SYMBOL(ieee80211_rx_irqsafe);