]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/mac80211/rx.c
net/smc: use termination worker under send_lock
[mirror_ubuntu-jammy-kernel.git] / net / mac80211 / rx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2020 Intel Corporation
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bitops.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38
39 u64_stats_update_begin(&tstats->syncp);
40 tstats->rx_packets++;
41 tstats->rx_bytes += len;
42 u64_stats_update_end(&tstats->syncp);
43 }
44
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 enum nl80211_iftype type)
47 {
48 __le16 fc = hdr->frame_control;
49
50 if (ieee80211_is_data(fc)) {
51 if (len < 24) /* drop incorrect hdr len (data) */
52 return NULL;
53
54 if (ieee80211_has_a4(fc))
55 return NULL;
56 if (ieee80211_has_tods(fc))
57 return hdr->addr1;
58 if (ieee80211_has_fromds(fc))
59 return hdr->addr2;
60
61 return hdr->addr3;
62 }
63
64 if (ieee80211_is_mgmt(fc)) {
65 if (len < 24) /* drop incorrect hdr len (mgmt) */
66 return NULL;
67 return hdr->addr3;
68 }
69
70 if (ieee80211_is_ctl(fc)) {
71 if (ieee80211_is_pspoll(fc))
72 return hdr->addr1;
73
74 if (ieee80211_is_back_req(fc)) {
75 switch (type) {
76 case NL80211_IFTYPE_STATION:
77 return hdr->addr2;
78 case NL80211_IFTYPE_AP:
79 case NL80211_IFTYPE_AP_VLAN:
80 return hdr->addr1;
81 default:
82 break; /* fall through to the return */
83 }
84 }
85 }
86
87 return NULL;
88 }
89
90 /*
91 * monitor mode reception
92 *
93 * This function cleans up the SKB, i.e. it removes all the stuff
94 * only useful for monitoring.
95 */
96 static void remove_monitor_info(struct sk_buff *skb,
97 unsigned int present_fcs_len,
98 unsigned int rtap_space)
99 {
100 if (present_fcs_len)
101 __pskb_trim(skb, skb->len - present_fcs_len);
102 __pskb_pull(skb, rtap_space);
103 }
104
105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
106 unsigned int rtap_space)
107 {
108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
109 struct ieee80211_hdr *hdr;
110
111 hdr = (void *)(skb->data + rtap_space);
112
113 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
114 RX_FLAG_FAILED_PLCP_CRC |
115 RX_FLAG_ONLY_MONITOR |
116 RX_FLAG_NO_PSDU))
117 return true;
118
119 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
120 return true;
121
122 if (ieee80211_is_ctl(hdr->frame_control) &&
123 !ieee80211_is_pspoll(hdr->frame_control) &&
124 !ieee80211_is_back_req(hdr->frame_control))
125 return true;
126
127 return false;
128 }
129
130 static int
131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
132 struct ieee80211_rx_status *status,
133 struct sk_buff *skb)
134 {
135 int len;
136
137 /* always present fields */
138 len = sizeof(struct ieee80211_radiotap_header) + 8;
139
140 /* allocate extra bitmaps */
141 if (status->chains)
142 len += 4 * hweight8(status->chains);
143 /* vendor presence bitmap */
144 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)
145 len += 4;
146
147 if (ieee80211_have_rx_timestamp(status)) {
148 len = ALIGN(len, 8);
149 len += 8;
150 }
151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
152 len += 1;
153
154 /* antenna field, if we don't have per-chain info */
155 if (!status->chains)
156 len += 1;
157
158 /* padding for RX_FLAGS if necessary */
159 len = ALIGN(len, 2);
160
161 if (status->encoding == RX_ENC_HT) /* HT info */
162 len += 3;
163
164 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
165 len = ALIGN(len, 4);
166 len += 8;
167 }
168
169 if (status->encoding == RX_ENC_VHT) {
170 len = ALIGN(len, 2);
171 len += 12;
172 }
173
174 if (local->hw.radiotap_timestamp.units_pos >= 0) {
175 len = ALIGN(len, 8);
176 len += 12;
177 }
178
179 if (status->encoding == RX_ENC_HE &&
180 status->flag & RX_FLAG_RADIOTAP_HE) {
181 len = ALIGN(len, 2);
182 len += 12;
183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
184 }
185
186 if (status->encoding == RX_ENC_HE &&
187 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
188 len = ALIGN(len, 2);
189 len += 12;
190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
191 }
192
193 if (status->flag & RX_FLAG_NO_PSDU)
194 len += 1;
195
196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
197 len = ALIGN(len, 2);
198 len += 4;
199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
200 }
201
202 if (status->chains) {
203 /* antenna and antenna signal fields */
204 len += 2 * hweight8(status->chains);
205 }
206
207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
208 struct ieee80211_vendor_radiotap *rtap;
209 int vendor_data_offset = 0;
210
211 /*
212 * The position to look at depends on the existence (or non-
213 * existence) of other elements, so take that into account...
214 */
215 if (status->flag & RX_FLAG_RADIOTAP_HE)
216 vendor_data_offset +=
217 sizeof(struct ieee80211_radiotap_he);
218 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
219 vendor_data_offset +=
220 sizeof(struct ieee80211_radiotap_he_mu);
221 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
222 vendor_data_offset +=
223 sizeof(struct ieee80211_radiotap_lsig);
224
225 rtap = (void *)&skb->data[vendor_data_offset];
226
227 /* alignment for fixed 6-byte vendor data header */
228 len = ALIGN(len, 2);
229 /* vendor data header */
230 len += 6;
231 if (WARN_ON(rtap->align == 0))
232 rtap->align = 1;
233 len = ALIGN(len, rtap->align);
234 len += rtap->len + rtap->pad;
235 }
236
237 return len;
238 }
239
240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
241 struct sk_buff *skb,
242 int rtap_space)
243 {
244 struct {
245 struct ieee80211_hdr_3addr hdr;
246 u8 category;
247 u8 action_code;
248 } __packed __aligned(2) action;
249
250 if (!sdata)
251 return;
252
253 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
254
255 if (skb->len < rtap_space + sizeof(action) +
256 VHT_MUMIMO_GROUPS_DATA_LEN)
257 return;
258
259 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
260 return;
261
262 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
263
264 if (!ieee80211_is_action(action.hdr.frame_control))
265 return;
266
267 if (action.category != WLAN_CATEGORY_VHT)
268 return;
269
270 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
271 return;
272
273 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
274 return;
275
276 skb = skb_copy(skb, GFP_ATOMIC);
277 if (!skb)
278 return;
279
280 skb_queue_tail(&sdata->skb_queue, skb);
281 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
282 }
283
284 /*
285 * ieee80211_add_rx_radiotap_header - add radiotap header
286 *
287 * add a radiotap header containing all the fields which the hardware provided.
288 */
289 static void
290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
291 struct sk_buff *skb,
292 struct ieee80211_rate *rate,
293 int rtap_len, bool has_fcs)
294 {
295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
296 struct ieee80211_radiotap_header *rthdr;
297 unsigned char *pos;
298 __le32 *it_present;
299 u32 it_present_val;
300 u16 rx_flags = 0;
301 u16 channel_flags = 0;
302 int mpdulen, chain;
303 unsigned long chains = status->chains;
304 struct ieee80211_vendor_radiotap rtap = {};
305 struct ieee80211_radiotap_he he = {};
306 struct ieee80211_radiotap_he_mu he_mu = {};
307 struct ieee80211_radiotap_lsig lsig = {};
308
309 if (status->flag & RX_FLAG_RADIOTAP_HE) {
310 he = *(struct ieee80211_radiotap_he *)skb->data;
311 skb_pull(skb, sizeof(he));
312 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
313 }
314
315 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
316 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
317 skb_pull(skb, sizeof(he_mu));
318 }
319
320 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
321 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
322 skb_pull(skb, sizeof(lsig));
323 }
324
325 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
326 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
327 /* rtap.len and rtap.pad are undone immediately */
328 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
329 }
330
331 mpdulen = skb->len;
332 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
333 mpdulen += FCS_LEN;
334
335 rthdr = skb_push(skb, rtap_len);
336 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
337 it_present = &rthdr->it_present;
338
339 /* radiotap header, set always present flags */
340 rthdr->it_len = cpu_to_le16(rtap_len);
341 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
342 BIT(IEEE80211_RADIOTAP_CHANNEL) |
343 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
344
345 if (!status->chains)
346 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
347
348 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
349 it_present_val |=
350 BIT(IEEE80211_RADIOTAP_EXT) |
351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
352 put_unaligned_le32(it_present_val, it_present);
353 it_present++;
354 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
356 }
357
358 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
359 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
360 BIT(IEEE80211_RADIOTAP_EXT);
361 put_unaligned_le32(it_present_val, it_present);
362 it_present++;
363 it_present_val = rtap.present;
364 }
365
366 put_unaligned_le32(it_present_val, it_present);
367
368 pos = (void *)(it_present + 1);
369
370 /* the order of the following fields is important */
371
372 /* IEEE80211_RADIOTAP_TSFT */
373 if (ieee80211_have_rx_timestamp(status)) {
374 /* padding */
375 while ((pos - (u8 *)rthdr) & 7)
376 *pos++ = 0;
377 put_unaligned_le64(
378 ieee80211_calculate_rx_timestamp(local, status,
379 mpdulen, 0),
380 pos);
381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
382 pos += 8;
383 }
384
385 /* IEEE80211_RADIOTAP_FLAGS */
386 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
387 *pos |= IEEE80211_RADIOTAP_F_FCS;
388 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
389 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
390 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
391 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
392 pos++;
393
394 /* IEEE80211_RADIOTAP_RATE */
395 if (!rate || status->encoding != RX_ENC_LEGACY) {
396 /*
397 * Without rate information don't add it. If we have,
398 * MCS information is a separate field in radiotap,
399 * added below. The byte here is needed as padding
400 * for the channel though, so initialise it to 0.
401 */
402 *pos = 0;
403 } else {
404 int shift = 0;
405 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
406 if (status->bw == RATE_INFO_BW_10)
407 shift = 1;
408 else if (status->bw == RATE_INFO_BW_5)
409 shift = 2;
410 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
411 }
412 pos++;
413
414 /* IEEE80211_RADIOTAP_CHANNEL */
415 put_unaligned_le16(status->freq, pos);
416 pos += 2;
417 if (status->bw == RATE_INFO_BW_10)
418 channel_flags |= IEEE80211_CHAN_HALF;
419 else if (status->bw == RATE_INFO_BW_5)
420 channel_flags |= IEEE80211_CHAN_QUARTER;
421
422 if (status->band == NL80211_BAND_5GHZ)
423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
424 else if (status->encoding != RX_ENC_LEGACY)
425 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
426 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
427 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
428 else if (rate)
429 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
430 else
431 channel_flags |= IEEE80211_CHAN_2GHZ;
432 put_unaligned_le16(channel_flags, pos);
433 pos += 2;
434
435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
436 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
438 *pos = status->signal;
439 rthdr->it_present |=
440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
441 pos++;
442 }
443
444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
445
446 if (!status->chains) {
447 /* IEEE80211_RADIOTAP_ANTENNA */
448 *pos = status->antenna;
449 pos++;
450 }
451
452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
453
454 /* IEEE80211_RADIOTAP_RX_FLAGS */
455 /* ensure 2 byte alignment for the 2 byte field as required */
456 if ((pos - (u8 *)rthdr) & 1)
457 *pos++ = 0;
458 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
459 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
460 put_unaligned_le16(rx_flags, pos);
461 pos += 2;
462
463 if (status->encoding == RX_ENC_HT) {
464 unsigned int stbc;
465
466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
467 *pos++ = local->hw.radiotap_mcs_details;
468 *pos = 0;
469 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
470 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
471 if (status->bw == RATE_INFO_BW_40)
472 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
473 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
474 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
475 if (status->enc_flags & RX_ENC_FLAG_LDPC)
476 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
477 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
478 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
479 pos++;
480 *pos++ = status->rate_idx;
481 }
482
483 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
484 u16 flags = 0;
485
486 /* ensure 4 byte alignment */
487 while ((pos - (u8 *)rthdr) & 3)
488 pos++;
489 rthdr->it_present |=
490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
491 put_unaligned_le32(status->ampdu_reference, pos);
492 pos += 4;
493 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
494 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
495 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
496 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
497 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
498 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
499 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
500 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
501 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
502 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
503 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
504 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
505 put_unaligned_le16(flags, pos);
506 pos += 2;
507 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
508 *pos++ = status->ampdu_delimiter_crc;
509 else
510 *pos++ = 0;
511 *pos++ = 0;
512 }
513
514 if (status->encoding == RX_ENC_VHT) {
515 u16 known = local->hw.radiotap_vht_details;
516
517 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
518 put_unaligned_le16(known, pos);
519 pos += 2;
520 /* flags */
521 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
522 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
523 /* in VHT, STBC is binary */
524 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
525 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
526 if (status->enc_flags & RX_ENC_FLAG_BF)
527 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
528 pos++;
529 /* bandwidth */
530 switch (status->bw) {
531 case RATE_INFO_BW_80:
532 *pos++ = 4;
533 break;
534 case RATE_INFO_BW_160:
535 *pos++ = 11;
536 break;
537 case RATE_INFO_BW_40:
538 *pos++ = 1;
539 break;
540 default:
541 *pos++ = 0;
542 }
543 /* MCS/NSS */
544 *pos = (status->rate_idx << 4) | status->nss;
545 pos += 4;
546 /* coding field */
547 if (status->enc_flags & RX_ENC_FLAG_LDPC)
548 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
549 pos++;
550 /* group ID */
551 pos++;
552 /* partial_aid */
553 pos += 2;
554 }
555
556 if (local->hw.radiotap_timestamp.units_pos >= 0) {
557 u16 accuracy = 0;
558 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
559
560 rthdr->it_present |=
561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
562
563 /* ensure 8 byte alignment */
564 while ((pos - (u8 *)rthdr) & 7)
565 pos++;
566
567 put_unaligned_le64(status->device_timestamp, pos);
568 pos += sizeof(u64);
569
570 if (local->hw.radiotap_timestamp.accuracy >= 0) {
571 accuracy = local->hw.radiotap_timestamp.accuracy;
572 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
573 }
574 put_unaligned_le16(accuracy, pos);
575 pos += sizeof(u16);
576
577 *pos++ = local->hw.radiotap_timestamp.units_pos;
578 *pos++ = flags;
579 }
580
581 if (status->encoding == RX_ENC_HE &&
582 status->flag & RX_FLAG_RADIOTAP_HE) {
583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
584
585 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
586 he.data6 |= HE_PREP(DATA6_NSTS,
587 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
588 status->enc_flags));
589 he.data3 |= HE_PREP(DATA3_STBC, 1);
590 } else {
591 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
592 }
593
594 #define CHECK_GI(s) \
595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
596 (int)NL80211_RATE_INFO_HE_GI_##s)
597
598 CHECK_GI(0_8);
599 CHECK_GI(1_6);
600 CHECK_GI(3_2);
601
602 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
603 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
604 he.data3 |= HE_PREP(DATA3_CODING,
605 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
606
607 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
608
609 switch (status->bw) {
610 case RATE_INFO_BW_20:
611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
613 break;
614 case RATE_INFO_BW_40:
615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
617 break;
618 case RATE_INFO_BW_80:
619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
621 break;
622 case RATE_INFO_BW_160:
623 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
625 break;
626 case RATE_INFO_BW_HE_RU:
627 #define CHECK_RU_ALLOC(s) \
628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
630
631 CHECK_RU_ALLOC(26);
632 CHECK_RU_ALLOC(52);
633 CHECK_RU_ALLOC(106);
634 CHECK_RU_ALLOC(242);
635 CHECK_RU_ALLOC(484);
636 CHECK_RU_ALLOC(996);
637 CHECK_RU_ALLOC(2x996);
638
639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
640 status->he_ru + 4);
641 break;
642 default:
643 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
644 }
645
646 /* ensure 2 byte alignment */
647 while ((pos - (u8 *)rthdr) & 1)
648 pos++;
649 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
650 memcpy(pos, &he, sizeof(he));
651 pos += sizeof(he);
652 }
653
654 if (status->encoding == RX_ENC_HE &&
655 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
656 /* ensure 2 byte alignment */
657 while ((pos - (u8 *)rthdr) & 1)
658 pos++;
659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
660 memcpy(pos, &he_mu, sizeof(he_mu));
661 pos += sizeof(he_mu);
662 }
663
664 if (status->flag & RX_FLAG_NO_PSDU) {
665 rthdr->it_present |=
666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
667 *pos++ = status->zero_length_psdu_type;
668 }
669
670 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
671 /* ensure 2 byte alignment */
672 while ((pos - (u8 *)rthdr) & 1)
673 pos++;
674 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
675 memcpy(pos, &lsig, sizeof(lsig));
676 pos += sizeof(lsig);
677 }
678
679 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
680 *pos++ = status->chain_signal[chain];
681 *pos++ = chain;
682 }
683
684 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
685 /* ensure 2 byte alignment for the vendor field as required */
686 if ((pos - (u8 *)rthdr) & 1)
687 *pos++ = 0;
688 *pos++ = rtap.oui[0];
689 *pos++ = rtap.oui[1];
690 *pos++ = rtap.oui[2];
691 *pos++ = rtap.subns;
692 put_unaligned_le16(rtap.len, pos);
693 pos += 2;
694 /* align the actual payload as requested */
695 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
696 *pos++ = 0;
697 /* data (and possible padding) already follows */
698 }
699 }
700
701 static struct sk_buff *
702 ieee80211_make_monitor_skb(struct ieee80211_local *local,
703 struct sk_buff **origskb,
704 struct ieee80211_rate *rate,
705 int rtap_space, bool use_origskb)
706 {
707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
708 int rt_hdrlen, needed_headroom;
709 struct sk_buff *skb;
710
711 /* room for the radiotap header based on driver features */
712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
713 needed_headroom = rt_hdrlen - rtap_space;
714
715 if (use_origskb) {
716 /* only need to expand headroom if necessary */
717 skb = *origskb;
718 *origskb = NULL;
719
720 /*
721 * This shouldn't trigger often because most devices have an
722 * RX header they pull before we get here, and that should
723 * be big enough for our radiotap information. We should
724 * probably export the length to drivers so that we can have
725 * them allocate enough headroom to start with.
726 */
727 if (skb_headroom(skb) < needed_headroom &&
728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
729 dev_kfree_skb(skb);
730 return NULL;
731 }
732 } else {
733 /*
734 * Need to make a copy and possibly remove radiotap header
735 * and FCS from the original.
736 */
737 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
738
739 if (!skb)
740 return NULL;
741 }
742
743 /* prepend radiotap information */
744 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
745
746 skb_reset_mac_header(skb);
747 skb->ip_summed = CHECKSUM_UNNECESSARY;
748 skb->pkt_type = PACKET_OTHERHOST;
749 skb->protocol = htons(ETH_P_802_2);
750
751 return skb;
752 }
753
754 /*
755 * This function copies a received frame to all monitor interfaces and
756 * returns a cleaned-up SKB that no longer includes the FCS nor the
757 * radiotap header the driver might have added.
758 */
759 static struct sk_buff *
760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
761 struct ieee80211_rate *rate)
762 {
763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
764 struct ieee80211_sub_if_data *sdata;
765 struct sk_buff *monskb = NULL;
766 int present_fcs_len = 0;
767 unsigned int rtap_space = 0;
768 struct ieee80211_sub_if_data *monitor_sdata =
769 rcu_dereference(local->monitor_sdata);
770 bool only_monitor = false;
771 unsigned int min_head_len;
772
773 if (status->flag & RX_FLAG_RADIOTAP_HE)
774 rtap_space += sizeof(struct ieee80211_radiotap_he);
775
776 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
777 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
778
779 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
780 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
781
782 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
783 struct ieee80211_vendor_radiotap *rtap =
784 (void *)(origskb->data + rtap_space);
785
786 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
787 }
788
789 min_head_len = rtap_space;
790
791 /*
792 * First, we may need to make a copy of the skb because
793 * (1) we need to modify it for radiotap (if not present), and
794 * (2) the other RX handlers will modify the skb we got.
795 *
796 * We don't need to, of course, if we aren't going to return
797 * the SKB because it has a bad FCS/PLCP checksum.
798 */
799
800 if (!(status->flag & RX_FLAG_NO_PSDU)) {
801 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
802 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
803 /* driver bug */
804 WARN_ON(1);
805 dev_kfree_skb(origskb);
806 return NULL;
807 }
808 present_fcs_len = FCS_LEN;
809 }
810
811 /* also consider the hdr->frame_control */
812 min_head_len += 2;
813 }
814
815 /* ensure that the expected data elements are in skb head */
816 if (!pskb_may_pull(origskb, min_head_len)) {
817 dev_kfree_skb(origskb);
818 return NULL;
819 }
820
821 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
822
823 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
824 if (only_monitor) {
825 dev_kfree_skb(origskb);
826 return NULL;
827 }
828
829 remove_monitor_info(origskb, present_fcs_len, rtap_space);
830 return origskb;
831 }
832
833 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
834
835 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
836 bool last_monitor = list_is_last(&sdata->u.mntr.list,
837 &local->mon_list);
838
839 if (!monskb)
840 monskb = ieee80211_make_monitor_skb(local, &origskb,
841 rate, rtap_space,
842 only_monitor &&
843 last_monitor);
844
845 if (monskb) {
846 struct sk_buff *skb;
847
848 if (last_monitor) {
849 skb = monskb;
850 monskb = NULL;
851 } else {
852 skb = skb_clone(monskb, GFP_ATOMIC);
853 }
854
855 if (skb) {
856 skb->dev = sdata->dev;
857 ieee80211_rx_stats(skb->dev, skb->len);
858 netif_receive_skb(skb);
859 }
860 }
861
862 if (last_monitor)
863 break;
864 }
865
866 /* this happens if last_monitor was erroneously false */
867 dev_kfree_skb(monskb);
868
869 /* ditto */
870 if (!origskb)
871 return NULL;
872
873 remove_monitor_info(origskb, present_fcs_len, rtap_space);
874 return origskb;
875 }
876
877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
878 {
879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
881 int tid, seqno_idx, security_idx;
882
883 /* does the frame have a qos control field? */
884 if (ieee80211_is_data_qos(hdr->frame_control)) {
885 u8 *qc = ieee80211_get_qos_ctl(hdr);
886 /* frame has qos control */
887 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
888 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
889 status->rx_flags |= IEEE80211_RX_AMSDU;
890
891 seqno_idx = tid;
892 security_idx = tid;
893 } else {
894 /*
895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
896 *
897 * Sequence numbers for management frames, QoS data
898 * frames with a broadcast/multicast address in the
899 * Address 1 field, and all non-QoS data frames sent
900 * by QoS STAs are assigned using an additional single
901 * modulo-4096 counter, [...]
902 *
903 * We also use that counter for non-QoS STAs.
904 */
905 seqno_idx = IEEE80211_NUM_TIDS;
906 security_idx = 0;
907 if (ieee80211_is_mgmt(hdr->frame_control))
908 security_idx = IEEE80211_NUM_TIDS;
909 tid = 0;
910 }
911
912 rx->seqno_idx = seqno_idx;
913 rx->security_idx = security_idx;
914 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
915 * For now, set skb->priority to 0 for other cases. */
916 rx->skb->priority = (tid > 7) ? 0 : tid;
917 }
918
919 /**
920 * DOC: Packet alignment
921 *
922 * Drivers always need to pass packets that are aligned to two-byte boundaries
923 * to the stack.
924 *
925 * Additionally, should, if possible, align the payload data in a way that
926 * guarantees that the contained IP header is aligned to a four-byte
927 * boundary. In the case of regular frames, this simply means aligning the
928 * payload to a four-byte boundary (because either the IP header is directly
929 * contained, or IV/RFC1042 headers that have a length divisible by four are
930 * in front of it). If the payload data is not properly aligned and the
931 * architecture doesn't support efficient unaligned operations, mac80211
932 * will align the data.
933 *
934 * With A-MSDU frames, however, the payload data address must yield two modulo
935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
936 * push the IP header further back to a multiple of four again. Thankfully, the
937 * specs were sane enough this time around to require padding each A-MSDU
938 * subframe to a length that is a multiple of four.
939 *
940 * Padding like Atheros hardware adds which is between the 802.11 header and
941 * the payload is not supported, the driver is required to move the 802.11
942 * header to be directly in front of the payload in that case.
943 */
944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
945 {
946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
947 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
948 #endif
949 }
950
951
952 /* rx handlers */
953
954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
955 {
956 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
957
958 if (is_multicast_ether_addr(hdr->addr1))
959 return 0;
960
961 return ieee80211_is_robust_mgmt_frame(skb);
962 }
963
964
965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
966 {
967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
968
969 if (!is_multicast_ether_addr(hdr->addr1))
970 return 0;
971
972 return ieee80211_is_robust_mgmt_frame(skb);
973 }
974
975
976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
978 {
979 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
980 struct ieee80211_mmie *mmie;
981 struct ieee80211_mmie_16 *mmie16;
982
983 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
984 return -1;
985
986 if (!ieee80211_is_robust_mgmt_frame(skb))
987 return -1; /* not a robust management frame */
988
989 mmie = (struct ieee80211_mmie *)
990 (skb->data + skb->len - sizeof(*mmie));
991 if (mmie->element_id == WLAN_EID_MMIE &&
992 mmie->length == sizeof(*mmie) - 2)
993 return le16_to_cpu(mmie->key_id);
994
995 mmie16 = (struct ieee80211_mmie_16 *)
996 (skb->data + skb->len - sizeof(*mmie16));
997 if (skb->len >= 24 + sizeof(*mmie16) &&
998 mmie16->element_id == WLAN_EID_MMIE &&
999 mmie16->length == sizeof(*mmie16) - 2)
1000 return le16_to_cpu(mmie16->key_id);
1001
1002 return -1;
1003 }
1004
1005 static int ieee80211_get_keyid(struct sk_buff *skb,
1006 const struct ieee80211_cipher_scheme *cs)
1007 {
1008 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1009 __le16 fc;
1010 int hdrlen;
1011 int minlen;
1012 u8 key_idx_off;
1013 u8 key_idx_shift;
1014 u8 keyid;
1015
1016 fc = hdr->frame_control;
1017 hdrlen = ieee80211_hdrlen(fc);
1018
1019 if (cs) {
1020 minlen = hdrlen + cs->hdr_len;
1021 key_idx_off = hdrlen + cs->key_idx_off;
1022 key_idx_shift = cs->key_idx_shift;
1023 } else {
1024 /* WEP, TKIP, CCMP and GCMP */
1025 minlen = hdrlen + IEEE80211_WEP_IV_LEN;
1026 key_idx_off = hdrlen + 3;
1027 key_idx_shift = 6;
1028 }
1029
1030 if (unlikely(skb->len < minlen))
1031 return -EINVAL;
1032
1033 skb_copy_bits(skb, key_idx_off, &keyid, 1);
1034
1035 if (cs)
1036 keyid &= cs->key_idx_mask;
1037 keyid >>= key_idx_shift;
1038
1039 /* cs could use more than the usual two bits for the keyid */
1040 if (unlikely(keyid >= NUM_DEFAULT_KEYS))
1041 return -EINVAL;
1042
1043 return keyid;
1044 }
1045
1046 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1047 {
1048 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1049 char *dev_addr = rx->sdata->vif.addr;
1050
1051 if (ieee80211_is_data(hdr->frame_control)) {
1052 if (is_multicast_ether_addr(hdr->addr1)) {
1053 if (ieee80211_has_tods(hdr->frame_control) ||
1054 !ieee80211_has_fromds(hdr->frame_control))
1055 return RX_DROP_MONITOR;
1056 if (ether_addr_equal(hdr->addr3, dev_addr))
1057 return RX_DROP_MONITOR;
1058 } else {
1059 if (!ieee80211_has_a4(hdr->frame_control))
1060 return RX_DROP_MONITOR;
1061 if (ether_addr_equal(hdr->addr4, dev_addr))
1062 return RX_DROP_MONITOR;
1063 }
1064 }
1065
1066 /* If there is not an established peer link and this is not a peer link
1067 * establisment frame, beacon or probe, drop the frame.
1068 */
1069
1070 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1071 struct ieee80211_mgmt *mgmt;
1072
1073 if (!ieee80211_is_mgmt(hdr->frame_control))
1074 return RX_DROP_MONITOR;
1075
1076 if (ieee80211_is_action(hdr->frame_control)) {
1077 u8 category;
1078
1079 /* make sure category field is present */
1080 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1081 return RX_DROP_MONITOR;
1082
1083 mgmt = (struct ieee80211_mgmt *)hdr;
1084 category = mgmt->u.action.category;
1085 if (category != WLAN_CATEGORY_MESH_ACTION &&
1086 category != WLAN_CATEGORY_SELF_PROTECTED)
1087 return RX_DROP_MONITOR;
1088 return RX_CONTINUE;
1089 }
1090
1091 if (ieee80211_is_probe_req(hdr->frame_control) ||
1092 ieee80211_is_probe_resp(hdr->frame_control) ||
1093 ieee80211_is_beacon(hdr->frame_control) ||
1094 ieee80211_is_auth(hdr->frame_control))
1095 return RX_CONTINUE;
1096
1097 return RX_DROP_MONITOR;
1098 }
1099
1100 return RX_CONTINUE;
1101 }
1102
1103 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1104 int index)
1105 {
1106 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1107 struct sk_buff *tail = skb_peek_tail(frames);
1108 struct ieee80211_rx_status *status;
1109
1110 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1111 return true;
1112
1113 if (!tail)
1114 return false;
1115
1116 status = IEEE80211_SKB_RXCB(tail);
1117 if (status->flag & RX_FLAG_AMSDU_MORE)
1118 return false;
1119
1120 return true;
1121 }
1122
1123 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1124 struct tid_ampdu_rx *tid_agg_rx,
1125 int index,
1126 struct sk_buff_head *frames)
1127 {
1128 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1129 struct sk_buff *skb;
1130 struct ieee80211_rx_status *status;
1131
1132 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1133
1134 if (skb_queue_empty(skb_list))
1135 goto no_frame;
1136
1137 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1138 __skb_queue_purge(skb_list);
1139 goto no_frame;
1140 }
1141
1142 /* release frames from the reorder ring buffer */
1143 tid_agg_rx->stored_mpdu_num--;
1144 while ((skb = __skb_dequeue(skb_list))) {
1145 status = IEEE80211_SKB_RXCB(skb);
1146 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1147 __skb_queue_tail(frames, skb);
1148 }
1149
1150 no_frame:
1151 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1152 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1153 }
1154
1155 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1156 struct tid_ampdu_rx *tid_agg_rx,
1157 u16 head_seq_num,
1158 struct sk_buff_head *frames)
1159 {
1160 int index;
1161
1162 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1163
1164 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1165 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1166 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1167 frames);
1168 }
1169 }
1170
1171 /*
1172 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1173 * the skb was added to the buffer longer than this time ago, the earlier
1174 * frames that have not yet been received are assumed to be lost and the skb
1175 * can be released for processing. This may also release other skb's from the
1176 * reorder buffer if there are no additional gaps between the frames.
1177 *
1178 * Callers must hold tid_agg_rx->reorder_lock.
1179 */
1180 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1181
1182 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1183 struct tid_ampdu_rx *tid_agg_rx,
1184 struct sk_buff_head *frames)
1185 {
1186 int index, i, j;
1187
1188 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1189
1190 /* release the buffer until next missing frame */
1191 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1192 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1193 tid_agg_rx->stored_mpdu_num) {
1194 /*
1195 * No buffers ready to be released, but check whether any
1196 * frames in the reorder buffer have timed out.
1197 */
1198 int skipped = 1;
1199 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1200 j = (j + 1) % tid_agg_rx->buf_size) {
1201 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1202 skipped++;
1203 continue;
1204 }
1205 if (skipped &&
1206 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1207 HT_RX_REORDER_BUF_TIMEOUT))
1208 goto set_release_timer;
1209
1210 /* don't leave incomplete A-MSDUs around */
1211 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1212 i = (i + 1) % tid_agg_rx->buf_size)
1213 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1214
1215 ht_dbg_ratelimited(sdata,
1216 "release an RX reorder frame due to timeout on earlier frames\n");
1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1218 frames);
1219
1220 /*
1221 * Increment the head seq# also for the skipped slots.
1222 */
1223 tid_agg_rx->head_seq_num =
1224 (tid_agg_rx->head_seq_num +
1225 skipped) & IEEE80211_SN_MASK;
1226 skipped = 0;
1227 }
1228 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1229 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1230 frames);
1231 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1232 }
1233
1234 if (tid_agg_rx->stored_mpdu_num) {
1235 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1236
1237 for (; j != (index - 1) % tid_agg_rx->buf_size;
1238 j = (j + 1) % tid_agg_rx->buf_size) {
1239 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1240 break;
1241 }
1242
1243 set_release_timer:
1244
1245 if (!tid_agg_rx->removed)
1246 mod_timer(&tid_agg_rx->reorder_timer,
1247 tid_agg_rx->reorder_time[j] + 1 +
1248 HT_RX_REORDER_BUF_TIMEOUT);
1249 } else {
1250 del_timer(&tid_agg_rx->reorder_timer);
1251 }
1252 }
1253
1254 /*
1255 * As this function belongs to the RX path it must be under
1256 * rcu_read_lock protection. It returns false if the frame
1257 * can be processed immediately, true if it was consumed.
1258 */
1259 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1260 struct tid_ampdu_rx *tid_agg_rx,
1261 struct sk_buff *skb,
1262 struct sk_buff_head *frames)
1263 {
1264 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1266 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1267 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1268 u16 head_seq_num, buf_size;
1269 int index;
1270 bool ret = true;
1271
1272 spin_lock(&tid_agg_rx->reorder_lock);
1273
1274 /*
1275 * Offloaded BA sessions have no known starting sequence number so pick
1276 * one from first Rxed frame for this tid after BA was started.
1277 */
1278 if (unlikely(tid_agg_rx->auto_seq)) {
1279 tid_agg_rx->auto_seq = false;
1280 tid_agg_rx->ssn = mpdu_seq_num;
1281 tid_agg_rx->head_seq_num = mpdu_seq_num;
1282 }
1283
1284 buf_size = tid_agg_rx->buf_size;
1285 head_seq_num = tid_agg_rx->head_seq_num;
1286
1287 /*
1288 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1289 * be reordered.
1290 */
1291 if (unlikely(!tid_agg_rx->started)) {
1292 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1293 ret = false;
1294 goto out;
1295 }
1296 tid_agg_rx->started = true;
1297 }
1298
1299 /* frame with out of date sequence number */
1300 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1301 dev_kfree_skb(skb);
1302 goto out;
1303 }
1304
1305 /*
1306 * If frame the sequence number exceeds our buffering window
1307 * size release some previous frames to make room for this one.
1308 */
1309 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1310 head_seq_num = ieee80211_sn_inc(
1311 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1312 /* release stored frames up to new head to stack */
1313 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1314 head_seq_num, frames);
1315 }
1316
1317 /* Now the new frame is always in the range of the reordering buffer */
1318
1319 index = mpdu_seq_num % tid_agg_rx->buf_size;
1320
1321 /* check if we already stored this frame */
1322 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1323 dev_kfree_skb(skb);
1324 goto out;
1325 }
1326
1327 /*
1328 * If the current MPDU is in the right order and nothing else
1329 * is stored we can process it directly, no need to buffer it.
1330 * If it is first but there's something stored, we may be able
1331 * to release frames after this one.
1332 */
1333 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1334 tid_agg_rx->stored_mpdu_num == 0) {
1335 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1336 tid_agg_rx->head_seq_num =
1337 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1338 ret = false;
1339 goto out;
1340 }
1341
1342 /* put the frame in the reordering buffer */
1343 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1344 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1345 tid_agg_rx->reorder_time[index] = jiffies;
1346 tid_agg_rx->stored_mpdu_num++;
1347 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1348 }
1349
1350 out:
1351 spin_unlock(&tid_agg_rx->reorder_lock);
1352 return ret;
1353 }
1354
1355 /*
1356 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1357 * true if the MPDU was buffered, false if it should be processed.
1358 */
1359 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1360 struct sk_buff_head *frames)
1361 {
1362 struct sk_buff *skb = rx->skb;
1363 struct ieee80211_local *local = rx->local;
1364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1365 struct sta_info *sta = rx->sta;
1366 struct tid_ampdu_rx *tid_agg_rx;
1367 u16 sc;
1368 u8 tid, ack_policy;
1369
1370 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1371 is_multicast_ether_addr(hdr->addr1))
1372 goto dont_reorder;
1373
1374 /*
1375 * filter the QoS data rx stream according to
1376 * STA/TID and check if this STA/TID is on aggregation
1377 */
1378
1379 if (!sta)
1380 goto dont_reorder;
1381
1382 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1383 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1384 tid = ieee80211_get_tid(hdr);
1385
1386 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1387 if (!tid_agg_rx) {
1388 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1389 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1390 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1391 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1392 WLAN_BACK_RECIPIENT,
1393 WLAN_REASON_QSTA_REQUIRE_SETUP);
1394 goto dont_reorder;
1395 }
1396
1397 /* qos null data frames are excluded */
1398 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1399 goto dont_reorder;
1400
1401 /* not part of a BA session */
1402 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1403 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1404 goto dont_reorder;
1405
1406 /* new, potentially un-ordered, ampdu frame - process it */
1407
1408 /* reset session timer */
1409 if (tid_agg_rx->timeout)
1410 tid_agg_rx->last_rx = jiffies;
1411
1412 /* if this mpdu is fragmented - terminate rx aggregation session */
1413 sc = le16_to_cpu(hdr->seq_ctrl);
1414 if (sc & IEEE80211_SCTL_FRAG) {
1415 skb_queue_tail(&rx->sdata->skb_queue, skb);
1416 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1417 return;
1418 }
1419
1420 /*
1421 * No locking needed -- we will only ever process one
1422 * RX packet at a time, and thus own tid_agg_rx. All
1423 * other code manipulating it needs to (and does) make
1424 * sure that we cannot get to it any more before doing
1425 * anything with it.
1426 */
1427 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1428 frames))
1429 return;
1430
1431 dont_reorder:
1432 __skb_queue_tail(frames, skb);
1433 }
1434
1435 static ieee80211_rx_result debug_noinline
1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1437 {
1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1440
1441 if (status->flag & RX_FLAG_DUP_VALIDATED)
1442 return RX_CONTINUE;
1443
1444 /*
1445 * Drop duplicate 802.11 retransmissions
1446 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1447 */
1448
1449 if (rx->skb->len < 24)
1450 return RX_CONTINUE;
1451
1452 if (ieee80211_is_ctl(hdr->frame_control) ||
1453 ieee80211_is_any_nullfunc(hdr->frame_control) ||
1454 is_multicast_ether_addr(hdr->addr1))
1455 return RX_CONTINUE;
1456
1457 if (!rx->sta)
1458 return RX_CONTINUE;
1459
1460 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1461 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1462 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1463 rx->sta->rx_stats.num_duplicates++;
1464 return RX_DROP_UNUSABLE;
1465 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1466 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1467 }
1468
1469 return RX_CONTINUE;
1470 }
1471
1472 static ieee80211_rx_result debug_noinline
1473 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1474 {
1475 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1476
1477 /* Drop disallowed frame classes based on STA auth/assoc state;
1478 * IEEE 802.11, Chap 5.5.
1479 *
1480 * mac80211 filters only based on association state, i.e. it drops
1481 * Class 3 frames from not associated stations. hostapd sends
1482 * deauth/disassoc frames when needed. In addition, hostapd is
1483 * responsible for filtering on both auth and assoc states.
1484 */
1485
1486 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1487 return ieee80211_rx_mesh_check(rx);
1488
1489 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1490 ieee80211_is_pspoll(hdr->frame_control)) &&
1491 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1492 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1493 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1494 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1495 /*
1496 * accept port control frames from the AP even when it's not
1497 * yet marked ASSOC to prevent a race where we don't set the
1498 * assoc bit quickly enough before it sends the first frame
1499 */
1500 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1501 ieee80211_is_data_present(hdr->frame_control)) {
1502 unsigned int hdrlen;
1503 __be16 ethertype;
1504
1505 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1506
1507 if (rx->skb->len < hdrlen + 8)
1508 return RX_DROP_MONITOR;
1509
1510 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1511 if (ethertype == rx->sdata->control_port_protocol)
1512 return RX_CONTINUE;
1513 }
1514
1515 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1516 cfg80211_rx_spurious_frame(rx->sdata->dev,
1517 hdr->addr2,
1518 GFP_ATOMIC))
1519 return RX_DROP_UNUSABLE;
1520
1521 return RX_DROP_MONITOR;
1522 }
1523
1524 return RX_CONTINUE;
1525 }
1526
1527
1528 static ieee80211_rx_result debug_noinline
1529 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1530 {
1531 struct ieee80211_local *local;
1532 struct ieee80211_hdr *hdr;
1533 struct sk_buff *skb;
1534
1535 local = rx->local;
1536 skb = rx->skb;
1537 hdr = (struct ieee80211_hdr *) skb->data;
1538
1539 if (!local->pspolling)
1540 return RX_CONTINUE;
1541
1542 if (!ieee80211_has_fromds(hdr->frame_control))
1543 /* this is not from AP */
1544 return RX_CONTINUE;
1545
1546 if (!ieee80211_is_data(hdr->frame_control))
1547 return RX_CONTINUE;
1548
1549 if (!ieee80211_has_moredata(hdr->frame_control)) {
1550 /* AP has no more frames buffered for us */
1551 local->pspolling = false;
1552 return RX_CONTINUE;
1553 }
1554
1555 /* more data bit is set, let's request a new frame from the AP */
1556 ieee80211_send_pspoll(local, rx->sdata);
1557
1558 return RX_CONTINUE;
1559 }
1560
1561 static void sta_ps_start(struct sta_info *sta)
1562 {
1563 struct ieee80211_sub_if_data *sdata = sta->sdata;
1564 struct ieee80211_local *local = sdata->local;
1565 struct ps_data *ps;
1566 int tid;
1567
1568 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1569 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1570 ps = &sdata->bss->ps;
1571 else
1572 return;
1573
1574 atomic_inc(&ps->num_sta_ps);
1575 set_sta_flag(sta, WLAN_STA_PS_STA);
1576 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1577 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1578 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1579 sta->sta.addr, sta->sta.aid);
1580
1581 ieee80211_clear_fast_xmit(sta);
1582
1583 if (!sta->sta.txq[0])
1584 return;
1585
1586 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1587 struct ieee80211_txq *txq = sta->sta.txq[tid];
1588 struct txq_info *txqi = to_txq_info(txq);
1589
1590 spin_lock(&local->active_txq_lock[txq->ac]);
1591 if (!list_empty(&txqi->schedule_order))
1592 list_del_init(&txqi->schedule_order);
1593 spin_unlock(&local->active_txq_lock[txq->ac]);
1594
1595 if (txq_has_queue(txq))
1596 set_bit(tid, &sta->txq_buffered_tids);
1597 else
1598 clear_bit(tid, &sta->txq_buffered_tids);
1599 }
1600 }
1601
1602 static void sta_ps_end(struct sta_info *sta)
1603 {
1604 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1605 sta->sta.addr, sta->sta.aid);
1606
1607 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1608 /*
1609 * Clear the flag only if the other one is still set
1610 * so that the TX path won't start TX'ing new frames
1611 * directly ... In the case that the driver flag isn't
1612 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1613 */
1614 clear_sta_flag(sta, WLAN_STA_PS_STA);
1615 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1616 sta->sta.addr, sta->sta.aid);
1617 return;
1618 }
1619
1620 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1621 clear_sta_flag(sta, WLAN_STA_PS_STA);
1622 ieee80211_sta_ps_deliver_wakeup(sta);
1623 }
1624
1625 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1626 {
1627 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1628 bool in_ps;
1629
1630 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1631
1632 /* Don't let the same PS state be set twice */
1633 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1634 if ((start && in_ps) || (!start && !in_ps))
1635 return -EINVAL;
1636
1637 if (start)
1638 sta_ps_start(sta);
1639 else
1640 sta_ps_end(sta);
1641
1642 return 0;
1643 }
1644 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1645
1646 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1647 {
1648 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1649
1650 if (test_sta_flag(sta, WLAN_STA_SP))
1651 return;
1652
1653 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1654 ieee80211_sta_ps_deliver_poll_response(sta);
1655 else
1656 set_sta_flag(sta, WLAN_STA_PSPOLL);
1657 }
1658 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1659
1660 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1661 {
1662 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1663 int ac = ieee80211_ac_from_tid(tid);
1664
1665 /*
1666 * If this AC is not trigger-enabled do nothing unless the
1667 * driver is calling us after it already checked.
1668 *
1669 * NB: This could/should check a separate bitmap of trigger-
1670 * enabled queues, but for now we only implement uAPSD w/o
1671 * TSPEC changes to the ACs, so they're always the same.
1672 */
1673 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1674 tid != IEEE80211_NUM_TIDS)
1675 return;
1676
1677 /* if we are in a service period, do nothing */
1678 if (test_sta_flag(sta, WLAN_STA_SP))
1679 return;
1680
1681 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1682 ieee80211_sta_ps_deliver_uapsd(sta);
1683 else
1684 set_sta_flag(sta, WLAN_STA_UAPSD);
1685 }
1686 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1687
1688 static ieee80211_rx_result debug_noinline
1689 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1690 {
1691 struct ieee80211_sub_if_data *sdata = rx->sdata;
1692 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1693 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1694
1695 if (!rx->sta)
1696 return RX_CONTINUE;
1697
1698 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1699 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1700 return RX_CONTINUE;
1701
1702 /*
1703 * The device handles station powersave, so don't do anything about
1704 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1705 * it to mac80211 since they're handled.)
1706 */
1707 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1708 return RX_CONTINUE;
1709
1710 /*
1711 * Don't do anything if the station isn't already asleep. In
1712 * the uAPSD case, the station will probably be marked asleep,
1713 * in the PS-Poll case the station must be confused ...
1714 */
1715 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1716 return RX_CONTINUE;
1717
1718 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1719 ieee80211_sta_pspoll(&rx->sta->sta);
1720
1721 /* Free PS Poll skb here instead of returning RX_DROP that would
1722 * count as an dropped frame. */
1723 dev_kfree_skb(rx->skb);
1724
1725 return RX_QUEUED;
1726 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1727 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1728 ieee80211_has_pm(hdr->frame_control) &&
1729 (ieee80211_is_data_qos(hdr->frame_control) ||
1730 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1731 u8 tid = ieee80211_get_tid(hdr);
1732
1733 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1734 }
1735
1736 return RX_CONTINUE;
1737 }
1738
1739 static ieee80211_rx_result debug_noinline
1740 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1741 {
1742 struct sta_info *sta = rx->sta;
1743 struct sk_buff *skb = rx->skb;
1744 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1745 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1746 int i;
1747
1748 if (!sta)
1749 return RX_CONTINUE;
1750
1751 /*
1752 * Update last_rx only for IBSS packets which are for the current
1753 * BSSID and for station already AUTHORIZED to avoid keeping the
1754 * current IBSS network alive in cases where other STAs start
1755 * using different BSSID. This will also give the station another
1756 * chance to restart the authentication/authorization in case
1757 * something went wrong the first time.
1758 */
1759 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1760 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1761 NL80211_IFTYPE_ADHOC);
1762 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1763 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1764 sta->rx_stats.last_rx = jiffies;
1765 if (ieee80211_is_data(hdr->frame_control) &&
1766 !is_multicast_ether_addr(hdr->addr1))
1767 sta->rx_stats.last_rate =
1768 sta_stats_encode_rate(status);
1769 }
1770 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1771 sta->rx_stats.last_rx = jiffies;
1772 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1773 /*
1774 * Mesh beacons will update last_rx when if they are found to
1775 * match the current local configuration when processed.
1776 */
1777 sta->rx_stats.last_rx = jiffies;
1778 if (ieee80211_is_data(hdr->frame_control))
1779 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1780 }
1781
1782 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1783 ieee80211_sta_rx_notify(rx->sdata, hdr);
1784
1785 sta->rx_stats.fragments++;
1786
1787 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1788 sta->rx_stats.bytes += rx->skb->len;
1789 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1790
1791 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1792 sta->rx_stats.last_signal = status->signal;
1793 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1794 }
1795
1796 if (status->chains) {
1797 sta->rx_stats.chains = status->chains;
1798 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1799 int signal = status->chain_signal[i];
1800
1801 if (!(status->chains & BIT(i)))
1802 continue;
1803
1804 sta->rx_stats.chain_signal_last[i] = signal;
1805 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1806 -signal);
1807 }
1808 }
1809
1810 /*
1811 * Change STA power saving mode only at the end of a frame
1812 * exchange sequence, and only for a data or management
1813 * frame as specified in IEEE 802.11-2016 11.2.3.2
1814 */
1815 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1816 !ieee80211_has_morefrags(hdr->frame_control) &&
1817 !is_multicast_ether_addr(hdr->addr1) &&
1818 (ieee80211_is_mgmt(hdr->frame_control) ||
1819 ieee80211_is_data(hdr->frame_control)) &&
1820 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1821 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1822 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1823 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1824 if (!ieee80211_has_pm(hdr->frame_control))
1825 sta_ps_end(sta);
1826 } else {
1827 if (ieee80211_has_pm(hdr->frame_control))
1828 sta_ps_start(sta);
1829 }
1830 }
1831
1832 /* mesh power save support */
1833 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1834 ieee80211_mps_rx_h_sta_process(sta, hdr);
1835
1836 /*
1837 * Drop (qos-)data::nullfunc frames silently, since they
1838 * are used only to control station power saving mode.
1839 */
1840 if (ieee80211_is_any_nullfunc(hdr->frame_control)) {
1841 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1842
1843 /*
1844 * If we receive a 4-addr nullfunc frame from a STA
1845 * that was not moved to a 4-addr STA vlan yet send
1846 * the event to userspace and for older hostapd drop
1847 * the frame to the monitor interface.
1848 */
1849 if (ieee80211_has_a4(hdr->frame_control) &&
1850 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1852 !rx->sdata->u.vlan.sta))) {
1853 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1854 cfg80211_rx_unexpected_4addr_frame(
1855 rx->sdata->dev, sta->sta.addr,
1856 GFP_ATOMIC);
1857 return RX_DROP_MONITOR;
1858 }
1859 /*
1860 * Update counter and free packet here to avoid
1861 * counting this as a dropped packed.
1862 */
1863 sta->rx_stats.packets++;
1864 dev_kfree_skb(rx->skb);
1865 return RX_QUEUED;
1866 }
1867
1868 return RX_CONTINUE;
1869 } /* ieee80211_rx_h_sta_process */
1870
1871 static ieee80211_rx_result debug_noinline
1872 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1873 {
1874 struct sk_buff *skb = rx->skb;
1875 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1876 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1877 int keyidx;
1878 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1879 struct ieee80211_key *sta_ptk = NULL;
1880 struct ieee80211_key *ptk_idx = NULL;
1881 int mmie_keyidx = -1;
1882 __le16 fc;
1883 const struct ieee80211_cipher_scheme *cs = NULL;
1884
1885 /*
1886 * Key selection 101
1887 *
1888 * There are four types of keys:
1889 * - GTK (group keys)
1890 * - IGTK (group keys for management frames)
1891 * - PTK (pairwise keys)
1892 * - STK (station-to-station pairwise keys)
1893 *
1894 * When selecting a key, we have to distinguish between multicast
1895 * (including broadcast) and unicast frames, the latter can only
1896 * use PTKs and STKs while the former always use GTKs and IGTKs.
1897 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1898 * unicast frames can also use key indices like GTKs. Hence, if we
1899 * don't have a PTK/STK we check the key index for a WEP key.
1900 *
1901 * Note that in a regular BSS, multicast frames are sent by the
1902 * AP only, associated stations unicast the frame to the AP first
1903 * which then multicasts it on their behalf.
1904 *
1905 * There is also a slight problem in IBSS mode: GTKs are negotiated
1906 * with each station, that is something we don't currently handle.
1907 * The spec seems to expect that one negotiates the same key with
1908 * every station but there's no such requirement; VLANs could be
1909 * possible.
1910 */
1911
1912 /* start without a key */
1913 rx->key = NULL;
1914 fc = hdr->frame_control;
1915
1916 if (rx->sta) {
1917 int keyid = rx->sta->ptk_idx;
1918 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1919
1920 if (ieee80211_has_protected(fc)) {
1921 cs = rx->sta->cipher_scheme;
1922 keyid = ieee80211_get_keyid(rx->skb, cs);
1923
1924 if (unlikely(keyid < 0))
1925 return RX_DROP_UNUSABLE;
1926
1927 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1928 }
1929 }
1930
1931 if (!ieee80211_has_protected(fc))
1932 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1933
1934 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1935 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1936 if ((status->flag & RX_FLAG_DECRYPTED) &&
1937 (status->flag & RX_FLAG_IV_STRIPPED))
1938 return RX_CONTINUE;
1939 /* Skip decryption if the frame is not protected. */
1940 if (!ieee80211_has_protected(fc))
1941 return RX_CONTINUE;
1942 } else if (mmie_keyidx >= 0) {
1943 /* Broadcast/multicast robust management frame / BIP */
1944 if ((status->flag & RX_FLAG_DECRYPTED) &&
1945 (status->flag & RX_FLAG_IV_STRIPPED))
1946 return RX_CONTINUE;
1947
1948 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1949 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1950 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1951 if (rx->sta) {
1952 if (ieee80211_is_group_privacy_action(skb) &&
1953 test_sta_flag(rx->sta, WLAN_STA_MFP))
1954 return RX_DROP_MONITOR;
1955
1956 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1957 }
1958 if (!rx->key)
1959 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1960 } else if (!ieee80211_has_protected(fc)) {
1961 /*
1962 * The frame was not protected, so skip decryption. However, we
1963 * need to set rx->key if there is a key that could have been
1964 * used so that the frame may be dropped if encryption would
1965 * have been expected.
1966 */
1967 struct ieee80211_key *key = NULL;
1968 struct ieee80211_sub_if_data *sdata = rx->sdata;
1969 int i;
1970
1971 if (ieee80211_is_mgmt(fc) &&
1972 is_multicast_ether_addr(hdr->addr1) &&
1973 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1974 rx->key = key;
1975 else {
1976 if (rx->sta) {
1977 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1978 key = rcu_dereference(rx->sta->gtk[i]);
1979 if (key)
1980 break;
1981 }
1982 }
1983 if (!key) {
1984 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1985 key = rcu_dereference(sdata->keys[i]);
1986 if (key)
1987 break;
1988 }
1989 }
1990 if (key)
1991 rx->key = key;
1992 }
1993 return RX_CONTINUE;
1994 } else {
1995 /*
1996 * The device doesn't give us the IV so we won't be
1997 * able to look up the key. That's ok though, we
1998 * don't need to decrypt the frame, we just won't
1999 * be able to keep statistics accurate.
2000 * Except for key threshold notifications, should
2001 * we somehow allow the driver to tell us which key
2002 * the hardware used if this flag is set?
2003 */
2004 if ((status->flag & RX_FLAG_DECRYPTED) &&
2005 (status->flag & RX_FLAG_IV_STRIPPED))
2006 return RX_CONTINUE;
2007
2008 keyidx = ieee80211_get_keyid(rx->skb, cs);
2009
2010 if (unlikely(keyidx < 0))
2011 return RX_DROP_UNUSABLE;
2012
2013 /* check per-station GTK first, if multicast packet */
2014 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
2015 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
2016
2017 /* if not found, try default key */
2018 if (!rx->key) {
2019 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2020
2021 /*
2022 * RSNA-protected unicast frames should always be
2023 * sent with pairwise or station-to-station keys,
2024 * but for WEP we allow using a key index as well.
2025 */
2026 if (rx->key &&
2027 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2028 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2029 !is_multicast_ether_addr(hdr->addr1))
2030 rx->key = NULL;
2031 }
2032 }
2033
2034 if (rx->key) {
2035 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2036 return RX_DROP_MONITOR;
2037
2038 /* TODO: add threshold stuff again */
2039 } else {
2040 return RX_DROP_MONITOR;
2041 }
2042
2043 switch (rx->key->conf.cipher) {
2044 case WLAN_CIPHER_SUITE_WEP40:
2045 case WLAN_CIPHER_SUITE_WEP104:
2046 result = ieee80211_crypto_wep_decrypt(rx);
2047 break;
2048 case WLAN_CIPHER_SUITE_TKIP:
2049 result = ieee80211_crypto_tkip_decrypt(rx);
2050 break;
2051 case WLAN_CIPHER_SUITE_CCMP:
2052 result = ieee80211_crypto_ccmp_decrypt(
2053 rx, IEEE80211_CCMP_MIC_LEN);
2054 break;
2055 case WLAN_CIPHER_SUITE_CCMP_256:
2056 result = ieee80211_crypto_ccmp_decrypt(
2057 rx, IEEE80211_CCMP_256_MIC_LEN);
2058 break;
2059 case WLAN_CIPHER_SUITE_AES_CMAC:
2060 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2061 break;
2062 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2063 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2064 break;
2065 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2066 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2067 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2068 break;
2069 case WLAN_CIPHER_SUITE_GCMP:
2070 case WLAN_CIPHER_SUITE_GCMP_256:
2071 result = ieee80211_crypto_gcmp_decrypt(rx);
2072 break;
2073 default:
2074 result = ieee80211_crypto_hw_decrypt(rx);
2075 }
2076
2077 /* the hdr variable is invalid after the decrypt handlers */
2078
2079 /* either the frame has been decrypted or will be dropped */
2080 status->flag |= RX_FLAG_DECRYPTED;
2081
2082 return result;
2083 }
2084
2085 static inline struct ieee80211_fragment_entry *
2086 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2087 unsigned int frag, unsigned int seq, int rx_queue,
2088 struct sk_buff **skb)
2089 {
2090 struct ieee80211_fragment_entry *entry;
2091
2092 entry = &sdata->fragments[sdata->fragment_next++];
2093 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2094 sdata->fragment_next = 0;
2095
2096 if (!skb_queue_empty(&entry->skb_list))
2097 __skb_queue_purge(&entry->skb_list);
2098
2099 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2100 *skb = NULL;
2101 entry->first_frag_time = jiffies;
2102 entry->seq = seq;
2103 entry->rx_queue = rx_queue;
2104 entry->last_frag = frag;
2105 entry->check_sequential_pn = false;
2106 entry->extra_len = 0;
2107
2108 return entry;
2109 }
2110
2111 static inline struct ieee80211_fragment_entry *
2112 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2113 unsigned int frag, unsigned int seq,
2114 int rx_queue, struct ieee80211_hdr *hdr)
2115 {
2116 struct ieee80211_fragment_entry *entry;
2117 int i, idx;
2118
2119 idx = sdata->fragment_next;
2120 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2121 struct ieee80211_hdr *f_hdr;
2122 struct sk_buff *f_skb;
2123
2124 idx--;
2125 if (idx < 0)
2126 idx = IEEE80211_FRAGMENT_MAX - 1;
2127
2128 entry = &sdata->fragments[idx];
2129 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2130 entry->rx_queue != rx_queue ||
2131 entry->last_frag + 1 != frag)
2132 continue;
2133
2134 f_skb = __skb_peek(&entry->skb_list);
2135 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2136
2137 /*
2138 * Check ftype and addresses are equal, else check next fragment
2139 */
2140 if (((hdr->frame_control ^ f_hdr->frame_control) &
2141 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2142 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2143 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2144 continue;
2145
2146 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2147 __skb_queue_purge(&entry->skb_list);
2148 continue;
2149 }
2150 return entry;
2151 }
2152
2153 return NULL;
2154 }
2155
2156 static ieee80211_rx_result debug_noinline
2157 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2158 {
2159 struct ieee80211_hdr *hdr;
2160 u16 sc;
2161 __le16 fc;
2162 unsigned int frag, seq;
2163 struct ieee80211_fragment_entry *entry;
2164 struct sk_buff *skb;
2165
2166 hdr = (struct ieee80211_hdr *)rx->skb->data;
2167 fc = hdr->frame_control;
2168
2169 if (ieee80211_is_ctl(fc))
2170 return RX_CONTINUE;
2171
2172 sc = le16_to_cpu(hdr->seq_ctrl);
2173 frag = sc & IEEE80211_SCTL_FRAG;
2174
2175 if (is_multicast_ether_addr(hdr->addr1)) {
2176 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2177 goto out_no_led;
2178 }
2179
2180 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2181 goto out;
2182
2183 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2184
2185 if (skb_linearize(rx->skb))
2186 return RX_DROP_UNUSABLE;
2187
2188 /*
2189 * skb_linearize() might change the skb->data and
2190 * previously cached variables (in this case, hdr) need to
2191 * be refreshed with the new data.
2192 */
2193 hdr = (struct ieee80211_hdr *)rx->skb->data;
2194 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2195
2196 if (frag == 0) {
2197 /* This is the first fragment of a new frame. */
2198 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2199 rx->seqno_idx, &(rx->skb));
2200 if (rx->key &&
2201 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2202 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2203 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2204 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2205 ieee80211_has_protected(fc)) {
2206 int queue = rx->security_idx;
2207
2208 /* Store CCMP/GCMP PN so that we can verify that the
2209 * next fragment has a sequential PN value.
2210 */
2211 entry->check_sequential_pn = true;
2212 memcpy(entry->last_pn,
2213 rx->key->u.ccmp.rx_pn[queue],
2214 IEEE80211_CCMP_PN_LEN);
2215 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2216 u.ccmp.rx_pn) !=
2217 offsetof(struct ieee80211_key,
2218 u.gcmp.rx_pn));
2219 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2220 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2221 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2222 IEEE80211_GCMP_PN_LEN);
2223 }
2224 return RX_QUEUED;
2225 }
2226
2227 /* This is a fragment for a frame that should already be pending in
2228 * fragment cache. Add this fragment to the end of the pending entry.
2229 */
2230 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2231 rx->seqno_idx, hdr);
2232 if (!entry) {
2233 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2234 return RX_DROP_MONITOR;
2235 }
2236
2237 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2238 * MPDU PN values are not incrementing in steps of 1."
2239 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2240 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2241 */
2242 if (entry->check_sequential_pn) {
2243 int i;
2244 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2245 int queue;
2246
2247 if (!rx->key ||
2248 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2249 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2250 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2251 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2252 return RX_DROP_UNUSABLE;
2253 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2254 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2255 pn[i]++;
2256 if (pn[i])
2257 break;
2258 }
2259 queue = rx->security_idx;
2260 rpn = rx->key->u.ccmp.rx_pn[queue];
2261 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2262 return RX_DROP_UNUSABLE;
2263 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2264 }
2265
2266 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2267 __skb_queue_tail(&entry->skb_list, rx->skb);
2268 entry->last_frag = frag;
2269 entry->extra_len += rx->skb->len;
2270 if (ieee80211_has_morefrags(fc)) {
2271 rx->skb = NULL;
2272 return RX_QUEUED;
2273 }
2274
2275 rx->skb = __skb_dequeue(&entry->skb_list);
2276 if (skb_tailroom(rx->skb) < entry->extra_len) {
2277 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2278 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2279 GFP_ATOMIC))) {
2280 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2281 __skb_queue_purge(&entry->skb_list);
2282 return RX_DROP_UNUSABLE;
2283 }
2284 }
2285 while ((skb = __skb_dequeue(&entry->skb_list))) {
2286 skb_put_data(rx->skb, skb->data, skb->len);
2287 dev_kfree_skb(skb);
2288 }
2289
2290 out:
2291 ieee80211_led_rx(rx->local);
2292 out_no_led:
2293 if (rx->sta)
2294 rx->sta->rx_stats.packets++;
2295 return RX_CONTINUE;
2296 }
2297
2298 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2299 {
2300 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2301 return -EACCES;
2302
2303 return 0;
2304 }
2305
2306 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2307 {
2308 struct sk_buff *skb = rx->skb;
2309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2310
2311 /*
2312 * Pass through unencrypted frames if the hardware has
2313 * decrypted them already.
2314 */
2315 if (status->flag & RX_FLAG_DECRYPTED)
2316 return 0;
2317
2318 /* Drop unencrypted frames if key is set. */
2319 if (unlikely(!ieee80211_has_protected(fc) &&
2320 !ieee80211_is_any_nullfunc(fc) &&
2321 ieee80211_is_data(fc) && rx->key))
2322 return -EACCES;
2323
2324 return 0;
2325 }
2326
2327 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2328 {
2329 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2330 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2331 __le16 fc = hdr->frame_control;
2332
2333 /*
2334 * Pass through unencrypted frames if the hardware has
2335 * decrypted them already.
2336 */
2337 if (status->flag & RX_FLAG_DECRYPTED)
2338 return 0;
2339
2340 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2341 if (unlikely(!ieee80211_has_protected(fc) &&
2342 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2343 rx->key)) {
2344 if (ieee80211_is_deauth(fc) ||
2345 ieee80211_is_disassoc(fc))
2346 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2347 rx->skb->data,
2348 rx->skb->len);
2349 return -EACCES;
2350 }
2351 /* BIP does not use Protected field, so need to check MMIE */
2352 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2353 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2354 if (ieee80211_is_deauth(fc) ||
2355 ieee80211_is_disassoc(fc))
2356 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2357 rx->skb->data,
2358 rx->skb->len);
2359 return -EACCES;
2360 }
2361 /*
2362 * When using MFP, Action frames are not allowed prior to
2363 * having configured keys.
2364 */
2365 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2366 ieee80211_is_robust_mgmt_frame(rx->skb)))
2367 return -EACCES;
2368 }
2369
2370 return 0;
2371 }
2372
2373 static int
2374 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2375 {
2376 struct ieee80211_sub_if_data *sdata = rx->sdata;
2377 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2378 bool check_port_control = false;
2379 struct ethhdr *ehdr;
2380 int ret;
2381
2382 *port_control = false;
2383 if (ieee80211_has_a4(hdr->frame_control) &&
2384 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2385 return -1;
2386
2387 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2388 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2389
2390 if (!sdata->u.mgd.use_4addr)
2391 return -1;
2392 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2393 check_port_control = true;
2394 }
2395
2396 if (is_multicast_ether_addr(hdr->addr1) &&
2397 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2398 return -1;
2399
2400 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2401 if (ret < 0)
2402 return ret;
2403
2404 ehdr = (struct ethhdr *) rx->skb->data;
2405 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2406 *port_control = true;
2407 else if (check_port_control)
2408 return -1;
2409
2410 return 0;
2411 }
2412
2413 /*
2414 * requires that rx->skb is a frame with ethernet header
2415 */
2416 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2417 {
2418 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2419 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2420 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2421
2422 /*
2423 * Allow EAPOL frames to us/the PAE group address regardless
2424 * of whether the frame was encrypted or not.
2425 */
2426 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2427 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2428 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2429 return true;
2430
2431 if (ieee80211_802_1x_port_control(rx) ||
2432 ieee80211_drop_unencrypted(rx, fc))
2433 return false;
2434
2435 return true;
2436 }
2437
2438 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2439 struct ieee80211_rx_data *rx)
2440 {
2441 struct ieee80211_sub_if_data *sdata = rx->sdata;
2442 struct net_device *dev = sdata->dev;
2443
2444 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2445 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2446 sdata->control_port_over_nl80211)) {
2447 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2448 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2449
2450 cfg80211_rx_control_port(dev, skb, noencrypt);
2451 dev_kfree_skb(skb);
2452 } else {
2453 memset(skb->cb, 0, sizeof(skb->cb));
2454
2455 /* deliver to local stack */
2456 if (rx->napi)
2457 napi_gro_receive(rx->napi, skb);
2458 else
2459 netif_receive_skb(skb);
2460 }
2461 }
2462
2463 /*
2464 * requires that rx->skb is a frame with ethernet header
2465 */
2466 static void
2467 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2468 {
2469 struct ieee80211_sub_if_data *sdata = rx->sdata;
2470 struct net_device *dev = sdata->dev;
2471 struct sk_buff *skb, *xmit_skb;
2472 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2473 struct sta_info *dsta;
2474
2475 skb = rx->skb;
2476 xmit_skb = NULL;
2477
2478 ieee80211_rx_stats(dev, skb->len);
2479
2480 if (rx->sta) {
2481 /* The seqno index has the same property as needed
2482 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2483 * for non-QoS-data frames. Here we know it's a data
2484 * frame, so count MSDUs.
2485 */
2486 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2487 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2488 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2489 }
2490
2491 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2492 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2493 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2494 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2495 if (is_multicast_ether_addr(ehdr->h_dest) &&
2496 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2497 /*
2498 * send multicast frames both to higher layers in
2499 * local net stack and back to the wireless medium
2500 */
2501 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2502 if (!xmit_skb)
2503 net_info_ratelimited("%s: failed to clone multicast frame\n",
2504 dev->name);
2505 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2506 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2507 dsta = sta_info_get(sdata, ehdr->h_dest);
2508 if (dsta) {
2509 /*
2510 * The destination station is associated to
2511 * this AP (in this VLAN), so send the frame
2512 * directly to it and do not pass it to local
2513 * net stack.
2514 */
2515 xmit_skb = skb;
2516 skb = NULL;
2517 }
2518 }
2519 }
2520
2521 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2522 if (skb) {
2523 /* 'align' will only take the values 0 or 2 here since all
2524 * frames are required to be aligned to 2-byte boundaries
2525 * when being passed to mac80211; the code here works just
2526 * as well if that isn't true, but mac80211 assumes it can
2527 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2528 */
2529 int align;
2530
2531 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2532 if (align) {
2533 if (WARN_ON(skb_headroom(skb) < 3)) {
2534 dev_kfree_skb(skb);
2535 skb = NULL;
2536 } else {
2537 u8 *data = skb->data;
2538 size_t len = skb_headlen(skb);
2539 skb->data -= align;
2540 memmove(skb->data, data, len);
2541 skb_set_tail_pointer(skb, len);
2542 }
2543 }
2544 }
2545 #endif
2546
2547 if (skb) {
2548 skb->protocol = eth_type_trans(skb, dev);
2549 ieee80211_deliver_skb_to_local_stack(skb, rx);
2550 }
2551
2552 if (xmit_skb) {
2553 /*
2554 * Send to wireless media and increase priority by 256 to
2555 * keep the received priority instead of reclassifying
2556 * the frame (see cfg80211_classify8021d).
2557 */
2558 xmit_skb->priority += 256;
2559 xmit_skb->protocol = htons(ETH_P_802_3);
2560 skb_reset_network_header(xmit_skb);
2561 skb_reset_mac_header(xmit_skb);
2562 dev_queue_xmit(xmit_skb);
2563 }
2564 }
2565
2566 static ieee80211_rx_result debug_noinline
2567 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2568 {
2569 struct net_device *dev = rx->sdata->dev;
2570 struct sk_buff *skb = rx->skb;
2571 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2572 __le16 fc = hdr->frame_control;
2573 struct sk_buff_head frame_list;
2574 struct ethhdr ethhdr;
2575 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2576
2577 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2578 check_da = NULL;
2579 check_sa = NULL;
2580 } else switch (rx->sdata->vif.type) {
2581 case NL80211_IFTYPE_AP:
2582 case NL80211_IFTYPE_AP_VLAN:
2583 check_da = NULL;
2584 break;
2585 case NL80211_IFTYPE_STATION:
2586 if (!rx->sta ||
2587 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2588 check_sa = NULL;
2589 break;
2590 case NL80211_IFTYPE_MESH_POINT:
2591 check_sa = NULL;
2592 break;
2593 default:
2594 break;
2595 }
2596
2597 skb->dev = dev;
2598 __skb_queue_head_init(&frame_list);
2599
2600 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2601 rx->sdata->vif.addr,
2602 rx->sdata->vif.type,
2603 data_offset))
2604 return RX_DROP_UNUSABLE;
2605
2606 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2607 rx->sdata->vif.type,
2608 rx->local->hw.extra_tx_headroom,
2609 check_da, check_sa);
2610
2611 while (!skb_queue_empty(&frame_list)) {
2612 rx->skb = __skb_dequeue(&frame_list);
2613
2614 if (!ieee80211_frame_allowed(rx, fc)) {
2615 dev_kfree_skb(rx->skb);
2616 continue;
2617 }
2618
2619 ieee80211_deliver_skb(rx);
2620 }
2621
2622 return RX_QUEUED;
2623 }
2624
2625 static ieee80211_rx_result debug_noinline
2626 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2627 {
2628 struct sk_buff *skb = rx->skb;
2629 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2631 __le16 fc = hdr->frame_control;
2632
2633 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2634 return RX_CONTINUE;
2635
2636 if (unlikely(!ieee80211_is_data(fc)))
2637 return RX_CONTINUE;
2638
2639 if (unlikely(!ieee80211_is_data_present(fc)))
2640 return RX_DROP_MONITOR;
2641
2642 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2643 switch (rx->sdata->vif.type) {
2644 case NL80211_IFTYPE_AP_VLAN:
2645 if (!rx->sdata->u.vlan.sta)
2646 return RX_DROP_UNUSABLE;
2647 break;
2648 case NL80211_IFTYPE_STATION:
2649 if (!rx->sdata->u.mgd.use_4addr)
2650 return RX_DROP_UNUSABLE;
2651 break;
2652 default:
2653 return RX_DROP_UNUSABLE;
2654 }
2655 }
2656
2657 if (is_multicast_ether_addr(hdr->addr1))
2658 return RX_DROP_UNUSABLE;
2659
2660 return __ieee80211_rx_h_amsdu(rx, 0);
2661 }
2662
2663 #ifdef CONFIG_MAC80211_MESH
2664 static ieee80211_rx_result
2665 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2666 {
2667 struct ieee80211_hdr *fwd_hdr, *hdr;
2668 struct ieee80211_tx_info *info;
2669 struct ieee80211s_hdr *mesh_hdr;
2670 struct sk_buff *skb = rx->skb, *fwd_skb;
2671 struct ieee80211_local *local = rx->local;
2672 struct ieee80211_sub_if_data *sdata = rx->sdata;
2673 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2674 u16 ac, q, hdrlen;
2675 int tailroom = 0;
2676
2677 hdr = (struct ieee80211_hdr *) skb->data;
2678 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2679
2680 /* make sure fixed part of mesh header is there, also checks skb len */
2681 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2682 return RX_DROP_MONITOR;
2683
2684 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2685
2686 /* make sure full mesh header is there, also checks skb len */
2687 if (!pskb_may_pull(rx->skb,
2688 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2689 return RX_DROP_MONITOR;
2690
2691 /* reload pointers */
2692 hdr = (struct ieee80211_hdr *) skb->data;
2693 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2694
2695 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2696 return RX_DROP_MONITOR;
2697
2698 /* frame is in RMC, don't forward */
2699 if (ieee80211_is_data(hdr->frame_control) &&
2700 is_multicast_ether_addr(hdr->addr1) &&
2701 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2702 return RX_DROP_MONITOR;
2703
2704 if (!ieee80211_is_data(hdr->frame_control))
2705 return RX_CONTINUE;
2706
2707 if (!mesh_hdr->ttl)
2708 return RX_DROP_MONITOR;
2709
2710 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2711 struct mesh_path *mppath;
2712 char *proxied_addr;
2713 char *mpp_addr;
2714
2715 if (is_multicast_ether_addr(hdr->addr1)) {
2716 mpp_addr = hdr->addr3;
2717 proxied_addr = mesh_hdr->eaddr1;
2718 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2719 MESH_FLAGS_AE_A5_A6) {
2720 /* has_a4 already checked in ieee80211_rx_mesh_check */
2721 mpp_addr = hdr->addr4;
2722 proxied_addr = mesh_hdr->eaddr2;
2723 } else {
2724 return RX_DROP_MONITOR;
2725 }
2726
2727 rcu_read_lock();
2728 mppath = mpp_path_lookup(sdata, proxied_addr);
2729 if (!mppath) {
2730 mpp_path_add(sdata, proxied_addr, mpp_addr);
2731 } else {
2732 spin_lock_bh(&mppath->state_lock);
2733 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2734 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2735 mppath->exp_time = jiffies;
2736 spin_unlock_bh(&mppath->state_lock);
2737 }
2738 rcu_read_unlock();
2739 }
2740
2741 /* Frame has reached destination. Don't forward */
2742 if (!is_multicast_ether_addr(hdr->addr1) &&
2743 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2744 return RX_CONTINUE;
2745
2746 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2747 q = sdata->vif.hw_queue[ac];
2748 if (ieee80211_queue_stopped(&local->hw, q)) {
2749 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2750 return RX_DROP_MONITOR;
2751 }
2752 skb_set_queue_mapping(skb, q);
2753
2754 if (!--mesh_hdr->ttl) {
2755 if (!is_multicast_ether_addr(hdr->addr1))
2756 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh,
2757 dropped_frames_ttl);
2758 goto out;
2759 }
2760
2761 if (!ifmsh->mshcfg.dot11MeshForwarding)
2762 goto out;
2763
2764 if (sdata->crypto_tx_tailroom_needed_cnt)
2765 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2766
2767 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2768 sdata->encrypt_headroom,
2769 tailroom, GFP_ATOMIC);
2770 if (!fwd_skb)
2771 goto out;
2772
2773 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2774 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2775 info = IEEE80211_SKB_CB(fwd_skb);
2776 memset(info, 0, sizeof(*info));
2777 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2778 info->control.vif = &rx->sdata->vif;
2779 info->control.jiffies = jiffies;
2780 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2781 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2782 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2783 /* update power mode indication when forwarding */
2784 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2785 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2786 /* mesh power mode flags updated in mesh_nexthop_lookup */
2787 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2788 } else {
2789 /* unable to resolve next hop */
2790 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2791 fwd_hdr->addr3, 0,
2792 WLAN_REASON_MESH_PATH_NOFORWARD,
2793 fwd_hdr->addr2);
2794 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2795 kfree_skb(fwd_skb);
2796 return RX_DROP_MONITOR;
2797 }
2798
2799 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2800 ieee80211_add_pending_skb(local, fwd_skb);
2801 out:
2802 if (is_multicast_ether_addr(hdr->addr1))
2803 return RX_CONTINUE;
2804 return RX_DROP_MONITOR;
2805 }
2806 #endif
2807
2808 static ieee80211_rx_result debug_noinline
2809 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2810 {
2811 struct ieee80211_sub_if_data *sdata = rx->sdata;
2812 struct ieee80211_local *local = rx->local;
2813 struct net_device *dev = sdata->dev;
2814 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2815 __le16 fc = hdr->frame_control;
2816 bool port_control;
2817 int err;
2818
2819 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2820 return RX_CONTINUE;
2821
2822 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2823 return RX_DROP_MONITOR;
2824
2825 /*
2826 * Send unexpected-4addr-frame event to hostapd. For older versions,
2827 * also drop the frame to cooked monitor interfaces.
2828 */
2829 if (ieee80211_has_a4(hdr->frame_control) &&
2830 sdata->vif.type == NL80211_IFTYPE_AP) {
2831 if (rx->sta &&
2832 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2833 cfg80211_rx_unexpected_4addr_frame(
2834 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2835 return RX_DROP_MONITOR;
2836 }
2837
2838 err = __ieee80211_data_to_8023(rx, &port_control);
2839 if (unlikely(err))
2840 return RX_DROP_UNUSABLE;
2841
2842 if (!ieee80211_frame_allowed(rx, fc))
2843 return RX_DROP_MONITOR;
2844
2845 /* directly handle TDLS channel switch requests/responses */
2846 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2847 cpu_to_be16(ETH_P_TDLS))) {
2848 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2849
2850 if (pskb_may_pull(rx->skb,
2851 offsetof(struct ieee80211_tdls_data, u)) &&
2852 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2853 tf->category == WLAN_CATEGORY_TDLS &&
2854 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2855 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2856 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2857 schedule_work(&local->tdls_chsw_work);
2858 if (rx->sta)
2859 rx->sta->rx_stats.packets++;
2860
2861 return RX_QUEUED;
2862 }
2863 }
2864
2865 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2866 unlikely(port_control) && sdata->bss) {
2867 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2868 u.ap);
2869 dev = sdata->dev;
2870 rx->sdata = sdata;
2871 }
2872
2873 rx->skb->dev = dev;
2874
2875 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2876 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2877 !is_multicast_ether_addr(
2878 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2879 (!local->scanning &&
2880 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2881 mod_timer(&local->dynamic_ps_timer, jiffies +
2882 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2883
2884 ieee80211_deliver_skb(rx);
2885
2886 return RX_QUEUED;
2887 }
2888
2889 static ieee80211_rx_result debug_noinline
2890 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2891 {
2892 struct sk_buff *skb = rx->skb;
2893 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2894 struct tid_ampdu_rx *tid_agg_rx;
2895 u16 start_seq_num;
2896 u16 tid;
2897
2898 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2899 return RX_CONTINUE;
2900
2901 if (ieee80211_is_back_req(bar->frame_control)) {
2902 struct {
2903 __le16 control, start_seq_num;
2904 } __packed bar_data;
2905 struct ieee80211_event event = {
2906 .type = BAR_RX_EVENT,
2907 };
2908
2909 if (!rx->sta)
2910 return RX_DROP_MONITOR;
2911
2912 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2913 &bar_data, sizeof(bar_data)))
2914 return RX_DROP_MONITOR;
2915
2916 tid = le16_to_cpu(bar_data.control) >> 12;
2917
2918 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2919 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2920 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2921 WLAN_BACK_RECIPIENT,
2922 WLAN_REASON_QSTA_REQUIRE_SETUP);
2923
2924 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2925 if (!tid_agg_rx)
2926 return RX_DROP_MONITOR;
2927
2928 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2929 event.u.ba.tid = tid;
2930 event.u.ba.ssn = start_seq_num;
2931 event.u.ba.sta = &rx->sta->sta;
2932
2933 /* reset session timer */
2934 if (tid_agg_rx->timeout)
2935 mod_timer(&tid_agg_rx->session_timer,
2936 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2937
2938 spin_lock(&tid_agg_rx->reorder_lock);
2939 /* release stored frames up to start of BAR */
2940 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2941 start_seq_num, frames);
2942 spin_unlock(&tid_agg_rx->reorder_lock);
2943
2944 drv_event_callback(rx->local, rx->sdata, &event);
2945
2946 kfree_skb(skb);
2947 return RX_QUEUED;
2948 }
2949
2950 /*
2951 * After this point, we only want management frames,
2952 * so we can drop all remaining control frames to
2953 * cooked monitor interfaces.
2954 */
2955 return RX_DROP_MONITOR;
2956 }
2957
2958 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2959 struct ieee80211_mgmt *mgmt,
2960 size_t len)
2961 {
2962 struct ieee80211_local *local = sdata->local;
2963 struct sk_buff *skb;
2964 struct ieee80211_mgmt *resp;
2965
2966 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2967 /* Not to own unicast address */
2968 return;
2969 }
2970
2971 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2972 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2973 /* Not from the current AP or not associated yet. */
2974 return;
2975 }
2976
2977 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2978 /* Too short SA Query request frame */
2979 return;
2980 }
2981
2982 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2983 if (skb == NULL)
2984 return;
2985
2986 skb_reserve(skb, local->hw.extra_tx_headroom);
2987 resp = skb_put_zero(skb, 24);
2988 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2989 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2990 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2991 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2992 IEEE80211_STYPE_ACTION);
2993 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2994 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2995 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2996 memcpy(resp->u.action.u.sa_query.trans_id,
2997 mgmt->u.action.u.sa_query.trans_id,
2998 WLAN_SA_QUERY_TR_ID_LEN);
2999
3000 ieee80211_tx_skb(sdata, skb);
3001 }
3002
3003 static ieee80211_rx_result debug_noinline
3004 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3005 {
3006 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3007 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3008
3009 /*
3010 * From here on, look only at management frames.
3011 * Data and control frames are already handled,
3012 * and unknown (reserved) frames are useless.
3013 */
3014 if (rx->skb->len < 24)
3015 return RX_DROP_MONITOR;
3016
3017 if (!ieee80211_is_mgmt(mgmt->frame_control))
3018 return RX_DROP_MONITOR;
3019
3020 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3021 ieee80211_is_beacon(mgmt->frame_control) &&
3022 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3023 int sig = 0;
3024
3025 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3026 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3027 sig = status->signal;
3028
3029 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
3030 rx->skb->data, rx->skb->len,
3031 status->freq, sig);
3032 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3033 }
3034
3035 if (ieee80211_drop_unencrypted_mgmt(rx))
3036 return RX_DROP_UNUSABLE;
3037
3038 return RX_CONTINUE;
3039 }
3040
3041 static ieee80211_rx_result debug_noinline
3042 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3043 {
3044 struct ieee80211_local *local = rx->local;
3045 struct ieee80211_sub_if_data *sdata = rx->sdata;
3046 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3047 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3048 int len = rx->skb->len;
3049
3050 if (!ieee80211_is_action(mgmt->frame_control))
3051 return RX_CONTINUE;
3052
3053 /* drop too small frames */
3054 if (len < IEEE80211_MIN_ACTION_SIZE)
3055 return RX_DROP_UNUSABLE;
3056
3057 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3058 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3059 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3060 return RX_DROP_UNUSABLE;
3061
3062 switch (mgmt->u.action.category) {
3063 case WLAN_CATEGORY_HT:
3064 /* reject HT action frames from stations not supporting HT */
3065 if (!rx->sta->sta.ht_cap.ht_supported)
3066 goto invalid;
3067
3068 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3069 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3070 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3071 sdata->vif.type != NL80211_IFTYPE_AP &&
3072 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3073 break;
3074
3075 /* verify action & smps_control/chanwidth are present */
3076 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3077 goto invalid;
3078
3079 switch (mgmt->u.action.u.ht_smps.action) {
3080 case WLAN_HT_ACTION_SMPS: {
3081 struct ieee80211_supported_band *sband;
3082 enum ieee80211_smps_mode smps_mode;
3083 struct sta_opmode_info sta_opmode = {};
3084
3085 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3086 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3087 goto handled;
3088
3089 /* convert to HT capability */
3090 switch (mgmt->u.action.u.ht_smps.smps_control) {
3091 case WLAN_HT_SMPS_CONTROL_DISABLED:
3092 smps_mode = IEEE80211_SMPS_OFF;
3093 break;
3094 case WLAN_HT_SMPS_CONTROL_STATIC:
3095 smps_mode = IEEE80211_SMPS_STATIC;
3096 break;
3097 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3098 smps_mode = IEEE80211_SMPS_DYNAMIC;
3099 break;
3100 default:
3101 goto invalid;
3102 }
3103
3104 /* if no change do nothing */
3105 if (rx->sta->sta.smps_mode == smps_mode)
3106 goto handled;
3107 rx->sta->sta.smps_mode = smps_mode;
3108 sta_opmode.smps_mode =
3109 ieee80211_smps_mode_to_smps_mode(smps_mode);
3110 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3111
3112 sband = rx->local->hw.wiphy->bands[status->band];
3113
3114 rate_control_rate_update(local, sband, rx->sta,
3115 IEEE80211_RC_SMPS_CHANGED);
3116 cfg80211_sta_opmode_change_notify(sdata->dev,
3117 rx->sta->addr,
3118 &sta_opmode,
3119 GFP_ATOMIC);
3120 goto handled;
3121 }
3122 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3123 struct ieee80211_supported_band *sband;
3124 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3125 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3126 struct sta_opmode_info sta_opmode = {};
3127
3128 /* If it doesn't support 40 MHz it can't change ... */
3129 if (!(rx->sta->sta.ht_cap.cap &
3130 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3131 goto handled;
3132
3133 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3134 max_bw = IEEE80211_STA_RX_BW_20;
3135 else
3136 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3137
3138 /* set cur_max_bandwidth and recalc sta bw */
3139 rx->sta->cur_max_bandwidth = max_bw;
3140 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3141
3142 if (rx->sta->sta.bandwidth == new_bw)
3143 goto handled;
3144
3145 rx->sta->sta.bandwidth = new_bw;
3146 sband = rx->local->hw.wiphy->bands[status->band];
3147 sta_opmode.bw =
3148 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3149 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3150
3151 rate_control_rate_update(local, sband, rx->sta,
3152 IEEE80211_RC_BW_CHANGED);
3153 cfg80211_sta_opmode_change_notify(sdata->dev,
3154 rx->sta->addr,
3155 &sta_opmode,
3156 GFP_ATOMIC);
3157 goto handled;
3158 }
3159 default:
3160 goto invalid;
3161 }
3162
3163 break;
3164 case WLAN_CATEGORY_PUBLIC:
3165 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3166 goto invalid;
3167 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3168 break;
3169 if (!rx->sta)
3170 break;
3171 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3172 break;
3173 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3174 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3175 break;
3176 if (len < offsetof(struct ieee80211_mgmt,
3177 u.action.u.ext_chan_switch.variable))
3178 goto invalid;
3179 goto queue;
3180 case WLAN_CATEGORY_VHT:
3181 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3182 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3183 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3184 sdata->vif.type != NL80211_IFTYPE_AP &&
3185 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3186 break;
3187
3188 /* verify action code is present */
3189 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3190 goto invalid;
3191
3192 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3193 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3194 /* verify opmode is present */
3195 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3196 goto invalid;
3197 goto queue;
3198 }
3199 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3200 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3201 goto invalid;
3202 goto queue;
3203 }
3204 default:
3205 break;
3206 }
3207 break;
3208 case WLAN_CATEGORY_BACK:
3209 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3210 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3211 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3212 sdata->vif.type != NL80211_IFTYPE_AP &&
3213 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3214 break;
3215
3216 /* verify action_code is present */
3217 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3218 break;
3219
3220 switch (mgmt->u.action.u.addba_req.action_code) {
3221 case WLAN_ACTION_ADDBA_REQ:
3222 if (len < (IEEE80211_MIN_ACTION_SIZE +
3223 sizeof(mgmt->u.action.u.addba_req)))
3224 goto invalid;
3225 break;
3226 case WLAN_ACTION_ADDBA_RESP:
3227 if (len < (IEEE80211_MIN_ACTION_SIZE +
3228 sizeof(mgmt->u.action.u.addba_resp)))
3229 goto invalid;
3230 break;
3231 case WLAN_ACTION_DELBA:
3232 if (len < (IEEE80211_MIN_ACTION_SIZE +
3233 sizeof(mgmt->u.action.u.delba)))
3234 goto invalid;
3235 break;
3236 default:
3237 goto invalid;
3238 }
3239
3240 goto queue;
3241 case WLAN_CATEGORY_SPECTRUM_MGMT:
3242 /* verify action_code is present */
3243 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3244 break;
3245
3246 switch (mgmt->u.action.u.measurement.action_code) {
3247 case WLAN_ACTION_SPCT_MSR_REQ:
3248 if (status->band != NL80211_BAND_5GHZ)
3249 break;
3250
3251 if (len < (IEEE80211_MIN_ACTION_SIZE +
3252 sizeof(mgmt->u.action.u.measurement)))
3253 break;
3254
3255 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3256 break;
3257
3258 ieee80211_process_measurement_req(sdata, mgmt, len);
3259 goto handled;
3260 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3261 u8 *bssid;
3262 if (len < (IEEE80211_MIN_ACTION_SIZE +
3263 sizeof(mgmt->u.action.u.chan_switch)))
3264 break;
3265
3266 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3267 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3268 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3269 break;
3270
3271 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3272 bssid = sdata->u.mgd.bssid;
3273 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3274 bssid = sdata->u.ibss.bssid;
3275 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3276 bssid = mgmt->sa;
3277 else
3278 break;
3279
3280 if (!ether_addr_equal(mgmt->bssid, bssid))
3281 break;
3282
3283 goto queue;
3284 }
3285 }
3286 break;
3287 case WLAN_CATEGORY_SA_QUERY:
3288 if (len < (IEEE80211_MIN_ACTION_SIZE +
3289 sizeof(mgmt->u.action.u.sa_query)))
3290 break;
3291
3292 switch (mgmt->u.action.u.sa_query.action) {
3293 case WLAN_ACTION_SA_QUERY_REQUEST:
3294 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3295 break;
3296 ieee80211_process_sa_query_req(sdata, mgmt, len);
3297 goto handled;
3298 }
3299 break;
3300 case WLAN_CATEGORY_SELF_PROTECTED:
3301 if (len < (IEEE80211_MIN_ACTION_SIZE +
3302 sizeof(mgmt->u.action.u.self_prot.action_code)))
3303 break;
3304
3305 switch (mgmt->u.action.u.self_prot.action_code) {
3306 case WLAN_SP_MESH_PEERING_OPEN:
3307 case WLAN_SP_MESH_PEERING_CLOSE:
3308 case WLAN_SP_MESH_PEERING_CONFIRM:
3309 if (!ieee80211_vif_is_mesh(&sdata->vif))
3310 goto invalid;
3311 if (sdata->u.mesh.user_mpm)
3312 /* userspace handles this frame */
3313 break;
3314 goto queue;
3315 case WLAN_SP_MGK_INFORM:
3316 case WLAN_SP_MGK_ACK:
3317 if (!ieee80211_vif_is_mesh(&sdata->vif))
3318 goto invalid;
3319 break;
3320 }
3321 break;
3322 case WLAN_CATEGORY_MESH_ACTION:
3323 if (len < (IEEE80211_MIN_ACTION_SIZE +
3324 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3325 break;
3326
3327 if (!ieee80211_vif_is_mesh(&sdata->vif))
3328 break;
3329 if (mesh_action_is_path_sel(mgmt) &&
3330 !mesh_path_sel_is_hwmp(sdata))
3331 break;
3332 goto queue;
3333 }
3334
3335 return RX_CONTINUE;
3336
3337 invalid:
3338 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3339 /* will return in the next handlers */
3340 return RX_CONTINUE;
3341
3342 handled:
3343 if (rx->sta)
3344 rx->sta->rx_stats.packets++;
3345 dev_kfree_skb(rx->skb);
3346 return RX_QUEUED;
3347
3348 queue:
3349 skb_queue_tail(&sdata->skb_queue, rx->skb);
3350 ieee80211_queue_work(&local->hw, &sdata->work);
3351 if (rx->sta)
3352 rx->sta->rx_stats.packets++;
3353 return RX_QUEUED;
3354 }
3355
3356 static ieee80211_rx_result debug_noinline
3357 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3358 {
3359 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3360 int sig = 0;
3361
3362 /* skip known-bad action frames and return them in the next handler */
3363 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3364 return RX_CONTINUE;
3365
3366 /*
3367 * Getting here means the kernel doesn't know how to handle
3368 * it, but maybe userspace does ... include returned frames
3369 * so userspace can register for those to know whether ones
3370 * it transmitted were processed or returned.
3371 */
3372
3373 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3374 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3375 sig = status->signal;
3376
3377 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3378 rx->skb->data, rx->skb->len, 0)) {
3379 if (rx->sta)
3380 rx->sta->rx_stats.packets++;
3381 dev_kfree_skb(rx->skb);
3382 return RX_QUEUED;
3383 }
3384
3385 return RX_CONTINUE;
3386 }
3387
3388 static ieee80211_rx_result debug_noinline
3389 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3390 {
3391 struct ieee80211_local *local = rx->local;
3392 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3393 struct sk_buff *nskb;
3394 struct ieee80211_sub_if_data *sdata = rx->sdata;
3395 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3396
3397 if (!ieee80211_is_action(mgmt->frame_control))
3398 return RX_CONTINUE;
3399
3400 /*
3401 * For AP mode, hostapd is responsible for handling any action
3402 * frames that we didn't handle, including returning unknown
3403 * ones. For all other modes we will return them to the sender,
3404 * setting the 0x80 bit in the action category, as required by
3405 * 802.11-2012 9.24.4.
3406 * Newer versions of hostapd shall also use the management frame
3407 * registration mechanisms, but older ones still use cooked
3408 * monitor interfaces so push all frames there.
3409 */
3410 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3411 (sdata->vif.type == NL80211_IFTYPE_AP ||
3412 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3413 return RX_DROP_MONITOR;
3414
3415 if (is_multicast_ether_addr(mgmt->da))
3416 return RX_DROP_MONITOR;
3417
3418 /* do not return rejected action frames */
3419 if (mgmt->u.action.category & 0x80)
3420 return RX_DROP_UNUSABLE;
3421
3422 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3423 GFP_ATOMIC);
3424 if (nskb) {
3425 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3426
3427 nmgmt->u.action.category |= 0x80;
3428 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3429 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3430
3431 memset(nskb->cb, 0, sizeof(nskb->cb));
3432
3433 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3434 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3435
3436 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3437 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3438 IEEE80211_TX_CTL_NO_CCK_RATE;
3439 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3440 info->hw_queue =
3441 local->hw.offchannel_tx_hw_queue;
3442 }
3443
3444 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3445 status->band, 0);
3446 }
3447 dev_kfree_skb(rx->skb);
3448 return RX_QUEUED;
3449 }
3450
3451 static ieee80211_rx_result debug_noinline
3452 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3453 {
3454 struct ieee80211_sub_if_data *sdata = rx->sdata;
3455 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3456 __le16 stype;
3457
3458 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3459
3460 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3461 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3462 sdata->vif.type != NL80211_IFTYPE_OCB &&
3463 sdata->vif.type != NL80211_IFTYPE_STATION)
3464 return RX_DROP_MONITOR;
3465
3466 switch (stype) {
3467 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3468 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3469 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3470 /* process for all: mesh, mlme, ibss */
3471 break;
3472 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3473 if (is_multicast_ether_addr(mgmt->da) &&
3474 !is_broadcast_ether_addr(mgmt->da))
3475 return RX_DROP_MONITOR;
3476
3477 /* process only for station/IBSS */
3478 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3479 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3480 return RX_DROP_MONITOR;
3481 break;
3482 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3483 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3484 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3485 if (is_multicast_ether_addr(mgmt->da) &&
3486 !is_broadcast_ether_addr(mgmt->da))
3487 return RX_DROP_MONITOR;
3488
3489 /* process only for station */
3490 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3491 return RX_DROP_MONITOR;
3492 break;
3493 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3494 /* process only for ibss and mesh */
3495 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3496 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3497 return RX_DROP_MONITOR;
3498 break;
3499 default:
3500 return RX_DROP_MONITOR;
3501 }
3502
3503 /* queue up frame and kick off work to process it */
3504 skb_queue_tail(&sdata->skb_queue, rx->skb);
3505 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3506 if (rx->sta)
3507 rx->sta->rx_stats.packets++;
3508
3509 return RX_QUEUED;
3510 }
3511
3512 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3513 struct ieee80211_rate *rate)
3514 {
3515 struct ieee80211_sub_if_data *sdata;
3516 struct ieee80211_local *local = rx->local;
3517 struct sk_buff *skb = rx->skb, *skb2;
3518 struct net_device *prev_dev = NULL;
3519 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3520 int needed_headroom;
3521
3522 /*
3523 * If cooked monitor has been processed already, then
3524 * don't do it again. If not, set the flag.
3525 */
3526 if (rx->flags & IEEE80211_RX_CMNTR)
3527 goto out_free_skb;
3528 rx->flags |= IEEE80211_RX_CMNTR;
3529
3530 /* If there are no cooked monitor interfaces, just free the SKB */
3531 if (!local->cooked_mntrs)
3532 goto out_free_skb;
3533
3534 /* vendor data is long removed here */
3535 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3536 /* room for the radiotap header based on driver features */
3537 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3538
3539 if (skb_headroom(skb) < needed_headroom &&
3540 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3541 goto out_free_skb;
3542
3543 /* prepend radiotap information */
3544 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3545 false);
3546
3547 skb_reset_mac_header(skb);
3548 skb->ip_summed = CHECKSUM_UNNECESSARY;
3549 skb->pkt_type = PACKET_OTHERHOST;
3550 skb->protocol = htons(ETH_P_802_2);
3551
3552 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3553 if (!ieee80211_sdata_running(sdata))
3554 continue;
3555
3556 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3557 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3558 continue;
3559
3560 if (prev_dev) {
3561 skb2 = skb_clone(skb, GFP_ATOMIC);
3562 if (skb2) {
3563 skb2->dev = prev_dev;
3564 netif_receive_skb(skb2);
3565 }
3566 }
3567
3568 prev_dev = sdata->dev;
3569 ieee80211_rx_stats(sdata->dev, skb->len);
3570 }
3571
3572 if (prev_dev) {
3573 skb->dev = prev_dev;
3574 netif_receive_skb(skb);
3575 return;
3576 }
3577
3578 out_free_skb:
3579 dev_kfree_skb(skb);
3580 }
3581
3582 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3583 ieee80211_rx_result res)
3584 {
3585 switch (res) {
3586 case RX_DROP_MONITOR:
3587 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3588 if (rx->sta)
3589 rx->sta->rx_stats.dropped++;
3590 /* fall through */
3591 case RX_CONTINUE: {
3592 struct ieee80211_rate *rate = NULL;
3593 struct ieee80211_supported_band *sband;
3594 struct ieee80211_rx_status *status;
3595
3596 status = IEEE80211_SKB_RXCB((rx->skb));
3597
3598 sband = rx->local->hw.wiphy->bands[status->band];
3599 if (status->encoding == RX_ENC_LEGACY)
3600 rate = &sband->bitrates[status->rate_idx];
3601
3602 ieee80211_rx_cooked_monitor(rx, rate);
3603 break;
3604 }
3605 case RX_DROP_UNUSABLE:
3606 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3607 if (rx->sta)
3608 rx->sta->rx_stats.dropped++;
3609 dev_kfree_skb(rx->skb);
3610 break;
3611 case RX_QUEUED:
3612 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3613 break;
3614 }
3615 }
3616
3617 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3618 struct sk_buff_head *frames)
3619 {
3620 ieee80211_rx_result res = RX_DROP_MONITOR;
3621 struct sk_buff *skb;
3622
3623 #define CALL_RXH(rxh) \
3624 do { \
3625 res = rxh(rx); \
3626 if (res != RX_CONTINUE) \
3627 goto rxh_next; \
3628 } while (0)
3629
3630 /* Lock here to avoid hitting all of the data used in the RX
3631 * path (e.g. key data, station data, ...) concurrently when
3632 * a frame is released from the reorder buffer due to timeout
3633 * from the timer, potentially concurrently with RX from the
3634 * driver.
3635 */
3636 spin_lock_bh(&rx->local->rx_path_lock);
3637
3638 while ((skb = __skb_dequeue(frames))) {
3639 /*
3640 * all the other fields are valid across frames
3641 * that belong to an aMPDU since they are on the
3642 * same TID from the same station
3643 */
3644 rx->skb = skb;
3645
3646 CALL_RXH(ieee80211_rx_h_check_more_data);
3647 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3648 CALL_RXH(ieee80211_rx_h_sta_process);
3649 CALL_RXH(ieee80211_rx_h_decrypt);
3650 CALL_RXH(ieee80211_rx_h_defragment);
3651 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3652 /* must be after MMIC verify so header is counted in MPDU mic */
3653 #ifdef CONFIG_MAC80211_MESH
3654 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3655 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3656 #endif
3657 CALL_RXH(ieee80211_rx_h_amsdu);
3658 CALL_RXH(ieee80211_rx_h_data);
3659
3660 /* special treatment -- needs the queue */
3661 res = ieee80211_rx_h_ctrl(rx, frames);
3662 if (res != RX_CONTINUE)
3663 goto rxh_next;
3664
3665 CALL_RXH(ieee80211_rx_h_mgmt_check);
3666 CALL_RXH(ieee80211_rx_h_action);
3667 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3668 CALL_RXH(ieee80211_rx_h_action_return);
3669 CALL_RXH(ieee80211_rx_h_mgmt);
3670
3671 rxh_next:
3672 ieee80211_rx_handlers_result(rx, res);
3673
3674 #undef CALL_RXH
3675 }
3676
3677 spin_unlock_bh(&rx->local->rx_path_lock);
3678 }
3679
3680 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3681 {
3682 struct sk_buff_head reorder_release;
3683 ieee80211_rx_result res = RX_DROP_MONITOR;
3684
3685 __skb_queue_head_init(&reorder_release);
3686
3687 #define CALL_RXH(rxh) \
3688 do { \
3689 res = rxh(rx); \
3690 if (res != RX_CONTINUE) \
3691 goto rxh_next; \
3692 } while (0)
3693
3694 CALL_RXH(ieee80211_rx_h_check_dup);
3695 CALL_RXH(ieee80211_rx_h_check);
3696
3697 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3698
3699 ieee80211_rx_handlers(rx, &reorder_release);
3700 return;
3701
3702 rxh_next:
3703 ieee80211_rx_handlers_result(rx, res);
3704
3705 #undef CALL_RXH
3706 }
3707
3708 /*
3709 * This function makes calls into the RX path, therefore
3710 * it has to be invoked under RCU read lock.
3711 */
3712 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3713 {
3714 struct sk_buff_head frames;
3715 struct ieee80211_rx_data rx = {
3716 .sta = sta,
3717 .sdata = sta->sdata,
3718 .local = sta->local,
3719 /* This is OK -- must be QoS data frame */
3720 .security_idx = tid,
3721 .seqno_idx = tid,
3722 .napi = NULL, /* must be NULL to not have races */
3723 };
3724 struct tid_ampdu_rx *tid_agg_rx;
3725
3726 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3727 if (!tid_agg_rx)
3728 return;
3729
3730 __skb_queue_head_init(&frames);
3731
3732 spin_lock(&tid_agg_rx->reorder_lock);
3733 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3734 spin_unlock(&tid_agg_rx->reorder_lock);
3735
3736 if (!skb_queue_empty(&frames)) {
3737 struct ieee80211_event event = {
3738 .type = BA_FRAME_TIMEOUT,
3739 .u.ba.tid = tid,
3740 .u.ba.sta = &sta->sta,
3741 };
3742 drv_event_callback(rx.local, rx.sdata, &event);
3743 }
3744
3745 ieee80211_rx_handlers(&rx, &frames);
3746 }
3747
3748 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3749 u16 ssn, u64 filtered,
3750 u16 received_mpdus)
3751 {
3752 struct sta_info *sta;
3753 struct tid_ampdu_rx *tid_agg_rx;
3754 struct sk_buff_head frames;
3755 struct ieee80211_rx_data rx = {
3756 /* This is OK -- must be QoS data frame */
3757 .security_idx = tid,
3758 .seqno_idx = tid,
3759 };
3760 int i, diff;
3761
3762 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3763 return;
3764
3765 __skb_queue_head_init(&frames);
3766
3767 sta = container_of(pubsta, struct sta_info, sta);
3768
3769 rx.sta = sta;
3770 rx.sdata = sta->sdata;
3771 rx.local = sta->local;
3772
3773 rcu_read_lock();
3774 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3775 if (!tid_agg_rx)
3776 goto out;
3777
3778 spin_lock_bh(&tid_agg_rx->reorder_lock);
3779
3780 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3781 int release;
3782
3783 /* release all frames in the reorder buffer */
3784 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3785 IEEE80211_SN_MODULO;
3786 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3787 release, &frames);
3788 /* update ssn to match received ssn */
3789 tid_agg_rx->head_seq_num = ssn;
3790 } else {
3791 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3792 &frames);
3793 }
3794
3795 /* handle the case that received ssn is behind the mac ssn.
3796 * it can be tid_agg_rx->buf_size behind and still be valid */
3797 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3798 if (diff >= tid_agg_rx->buf_size) {
3799 tid_agg_rx->reorder_buf_filtered = 0;
3800 goto release;
3801 }
3802 filtered = filtered >> diff;
3803 ssn += diff;
3804
3805 /* update bitmap */
3806 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3807 int index = (ssn + i) % tid_agg_rx->buf_size;
3808
3809 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3810 if (filtered & BIT_ULL(i))
3811 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3812 }
3813
3814 /* now process also frames that the filter marking released */
3815 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3816
3817 release:
3818 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3819
3820 ieee80211_rx_handlers(&rx, &frames);
3821
3822 out:
3823 rcu_read_unlock();
3824 }
3825 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3826
3827 /* main receive path */
3828
3829 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3830 {
3831 struct ieee80211_sub_if_data *sdata = rx->sdata;
3832 struct sk_buff *skb = rx->skb;
3833 struct ieee80211_hdr *hdr = (void *)skb->data;
3834 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3835 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3836 bool multicast = is_multicast_ether_addr(hdr->addr1);
3837
3838 switch (sdata->vif.type) {
3839 case NL80211_IFTYPE_STATION:
3840 if (!bssid && !sdata->u.mgd.use_4addr)
3841 return false;
3842 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
3843 return false;
3844 if (multicast)
3845 return true;
3846 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3847 case NL80211_IFTYPE_ADHOC:
3848 if (!bssid)
3849 return false;
3850 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3851 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3852 return false;
3853 if (ieee80211_is_beacon(hdr->frame_control))
3854 return true;
3855 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3856 return false;
3857 if (!multicast &&
3858 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3859 return false;
3860 if (!rx->sta) {
3861 int rate_idx;
3862 if (status->encoding != RX_ENC_LEGACY)
3863 rate_idx = 0; /* TODO: HT/VHT rates */
3864 else
3865 rate_idx = status->rate_idx;
3866 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3867 BIT(rate_idx));
3868 }
3869 return true;
3870 case NL80211_IFTYPE_OCB:
3871 if (!bssid)
3872 return false;
3873 if (!ieee80211_is_data_present(hdr->frame_control))
3874 return false;
3875 if (!is_broadcast_ether_addr(bssid))
3876 return false;
3877 if (!multicast &&
3878 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3879 return false;
3880 if (!rx->sta) {
3881 int rate_idx;
3882 if (status->encoding != RX_ENC_LEGACY)
3883 rate_idx = 0; /* TODO: HT rates */
3884 else
3885 rate_idx = status->rate_idx;
3886 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3887 BIT(rate_idx));
3888 }
3889 return true;
3890 case NL80211_IFTYPE_MESH_POINT:
3891 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3892 return false;
3893 if (multicast)
3894 return true;
3895 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3896 case NL80211_IFTYPE_AP_VLAN:
3897 case NL80211_IFTYPE_AP:
3898 if (!bssid)
3899 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3900
3901 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3902 /*
3903 * Accept public action frames even when the
3904 * BSSID doesn't match, this is used for P2P
3905 * and location updates. Note that mac80211
3906 * itself never looks at these frames.
3907 */
3908 if (!multicast &&
3909 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3910 return false;
3911 if (ieee80211_is_public_action(hdr, skb->len))
3912 return true;
3913 return ieee80211_is_beacon(hdr->frame_control);
3914 }
3915
3916 if (!ieee80211_has_tods(hdr->frame_control)) {
3917 /* ignore data frames to TDLS-peers */
3918 if (ieee80211_is_data(hdr->frame_control))
3919 return false;
3920 /* ignore action frames to TDLS-peers */
3921 if (ieee80211_is_action(hdr->frame_control) &&
3922 !is_broadcast_ether_addr(bssid) &&
3923 !ether_addr_equal(bssid, hdr->addr1))
3924 return false;
3925 }
3926
3927 /*
3928 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3929 * the BSSID - we've checked that already but may have accepted
3930 * the wildcard (ff:ff:ff:ff:ff:ff).
3931 *
3932 * It also says:
3933 * The BSSID of the Data frame is determined as follows:
3934 * a) If the STA is contained within an AP or is associated
3935 * with an AP, the BSSID is the address currently in use
3936 * by the STA contained in the AP.
3937 *
3938 * So we should not accept data frames with an address that's
3939 * multicast.
3940 *
3941 * Accepting it also opens a security problem because stations
3942 * could encrypt it with the GTK and inject traffic that way.
3943 */
3944 if (ieee80211_is_data(hdr->frame_control) && multicast)
3945 return false;
3946
3947 return true;
3948 case NL80211_IFTYPE_WDS:
3949 if (bssid || !ieee80211_is_data(hdr->frame_control))
3950 return false;
3951 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3952 case NL80211_IFTYPE_P2P_DEVICE:
3953 return ieee80211_is_public_action(hdr, skb->len) ||
3954 ieee80211_is_probe_req(hdr->frame_control) ||
3955 ieee80211_is_probe_resp(hdr->frame_control) ||
3956 ieee80211_is_beacon(hdr->frame_control);
3957 case NL80211_IFTYPE_NAN:
3958 /* Currently no frames on NAN interface are allowed */
3959 return false;
3960 default:
3961 break;
3962 }
3963
3964 WARN_ON_ONCE(1);
3965 return false;
3966 }
3967
3968 void ieee80211_check_fast_rx(struct sta_info *sta)
3969 {
3970 struct ieee80211_sub_if_data *sdata = sta->sdata;
3971 struct ieee80211_local *local = sdata->local;
3972 struct ieee80211_key *key;
3973 struct ieee80211_fast_rx fastrx = {
3974 .dev = sdata->dev,
3975 .vif_type = sdata->vif.type,
3976 .control_port_protocol = sdata->control_port_protocol,
3977 }, *old, *new = NULL;
3978 bool assign = false;
3979
3980 /* use sparse to check that we don't return without updating */
3981 __acquire(check_fast_rx);
3982
3983 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3984 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3985 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3986 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3987
3988 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3989
3990 /* fast-rx doesn't do reordering */
3991 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3992 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3993 goto clear;
3994
3995 switch (sdata->vif.type) {
3996 case NL80211_IFTYPE_STATION:
3997 if (sta->sta.tdls) {
3998 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3999 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4000 fastrx.expected_ds_bits = 0;
4001 } else {
4002 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
4003 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4004 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4005 fastrx.expected_ds_bits =
4006 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4007 }
4008
4009 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4010 fastrx.expected_ds_bits |=
4011 cpu_to_le16(IEEE80211_FCTL_TODS);
4012 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4013 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4014 }
4015
4016 if (!sdata->u.mgd.powersave)
4017 break;
4018
4019 /* software powersave is a huge mess, avoid all of it */
4020 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4021 goto clear;
4022 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4023 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4024 goto clear;
4025 break;
4026 case NL80211_IFTYPE_AP_VLAN:
4027 case NL80211_IFTYPE_AP:
4028 /* parallel-rx requires this, at least with calls to
4029 * ieee80211_sta_ps_transition()
4030 */
4031 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4032 goto clear;
4033 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4034 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4035 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4036
4037 fastrx.internal_forward =
4038 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4039 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4040 !sdata->u.vlan.sta);
4041
4042 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4043 sdata->u.vlan.sta) {
4044 fastrx.expected_ds_bits |=
4045 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4046 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4047 fastrx.internal_forward = 0;
4048 }
4049
4050 break;
4051 default:
4052 goto clear;
4053 }
4054
4055 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
4056 goto clear;
4057
4058 rcu_read_lock();
4059 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4060 if (key) {
4061 switch (key->conf.cipher) {
4062 case WLAN_CIPHER_SUITE_TKIP:
4063 /* we don't want to deal with MMIC in fast-rx */
4064 goto clear_rcu;
4065 case WLAN_CIPHER_SUITE_CCMP:
4066 case WLAN_CIPHER_SUITE_CCMP_256:
4067 case WLAN_CIPHER_SUITE_GCMP:
4068 case WLAN_CIPHER_SUITE_GCMP_256:
4069 break;
4070 default:
4071 /* We also don't want to deal with
4072 * WEP or cipher scheme.
4073 */
4074 goto clear_rcu;
4075 }
4076
4077 fastrx.key = true;
4078 fastrx.icv_len = key->conf.icv_len;
4079 }
4080
4081 assign = true;
4082 clear_rcu:
4083 rcu_read_unlock();
4084 clear:
4085 __release(check_fast_rx);
4086
4087 if (assign)
4088 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4089
4090 spin_lock_bh(&sta->lock);
4091 old = rcu_dereference_protected(sta->fast_rx, true);
4092 rcu_assign_pointer(sta->fast_rx, new);
4093 spin_unlock_bh(&sta->lock);
4094
4095 if (old)
4096 kfree_rcu(old, rcu_head);
4097 }
4098
4099 void ieee80211_clear_fast_rx(struct sta_info *sta)
4100 {
4101 struct ieee80211_fast_rx *old;
4102
4103 spin_lock_bh(&sta->lock);
4104 old = rcu_dereference_protected(sta->fast_rx, true);
4105 RCU_INIT_POINTER(sta->fast_rx, NULL);
4106 spin_unlock_bh(&sta->lock);
4107
4108 if (old)
4109 kfree_rcu(old, rcu_head);
4110 }
4111
4112 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4113 {
4114 struct ieee80211_local *local = sdata->local;
4115 struct sta_info *sta;
4116
4117 lockdep_assert_held(&local->sta_mtx);
4118
4119 list_for_each_entry_rcu(sta, &local->sta_list, list) {
4120 if (sdata != sta->sdata &&
4121 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4122 continue;
4123 ieee80211_check_fast_rx(sta);
4124 }
4125 }
4126
4127 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4128 {
4129 struct ieee80211_local *local = sdata->local;
4130
4131 mutex_lock(&local->sta_mtx);
4132 __ieee80211_check_fast_rx_iface(sdata);
4133 mutex_unlock(&local->sta_mtx);
4134 }
4135
4136 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4137 struct ieee80211_fast_rx *fast_rx)
4138 {
4139 struct sk_buff *skb = rx->skb;
4140 struct ieee80211_hdr *hdr = (void *)skb->data;
4141 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4142 struct sta_info *sta = rx->sta;
4143 int orig_len = skb->len;
4144 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4145 int snap_offs = hdrlen;
4146 struct {
4147 u8 snap[sizeof(rfc1042_header)];
4148 __be16 proto;
4149 } *payload __aligned(2);
4150 struct {
4151 u8 da[ETH_ALEN];
4152 u8 sa[ETH_ALEN];
4153 } addrs __aligned(2);
4154 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4155
4156 if (fast_rx->uses_rss)
4157 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4158
4159 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4160 * to a common data structure; drivers can implement that per queue
4161 * but we don't have that information in mac80211
4162 */
4163 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4164 return false;
4165
4166 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4167
4168 /* If using encryption, we also need to have:
4169 * - PN_VALIDATED: similar, but the implementation is tricky
4170 * - DECRYPTED: necessary for PN_VALIDATED
4171 */
4172 if (fast_rx->key &&
4173 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4174 return false;
4175
4176 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4177 return false;
4178
4179 if (unlikely(ieee80211_is_frag(hdr)))
4180 return false;
4181
4182 /* Since our interface address cannot be multicast, this
4183 * implicitly also rejects multicast frames without the
4184 * explicit check.
4185 *
4186 * We shouldn't get any *data* frames not addressed to us
4187 * (AP mode will accept multicast *management* frames), but
4188 * punting here will make it go through the full checks in
4189 * ieee80211_accept_frame().
4190 */
4191 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4192 return false;
4193
4194 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4195 IEEE80211_FCTL_TODS)) !=
4196 fast_rx->expected_ds_bits)
4197 return false;
4198
4199 /* assign the key to drop unencrypted frames (later)
4200 * and strip the IV/MIC if necessary
4201 */
4202 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4203 /* GCMP header length is the same */
4204 snap_offs += IEEE80211_CCMP_HDR_LEN;
4205 }
4206
4207 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4208 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4209 goto drop;
4210
4211 payload = (void *)(skb->data + snap_offs);
4212
4213 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4214 return false;
4215
4216 /* Don't handle these here since they require special code.
4217 * Accept AARP and IPX even though they should come with a
4218 * bridge-tunnel header - but if we get them this way then
4219 * there's little point in discarding them.
4220 */
4221 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4222 payload->proto == fast_rx->control_port_protocol))
4223 return false;
4224 }
4225
4226 /* after this point, don't punt to the slowpath! */
4227
4228 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4229 pskb_trim(skb, skb->len - fast_rx->icv_len))
4230 goto drop;
4231
4232 if (unlikely(fast_rx->sta_notify)) {
4233 ieee80211_sta_rx_notify(rx->sdata, hdr);
4234 fast_rx->sta_notify = false;
4235 }
4236
4237 /* statistics part of ieee80211_rx_h_sta_process() */
4238 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4239 stats->last_signal = status->signal;
4240 if (!fast_rx->uses_rss)
4241 ewma_signal_add(&sta->rx_stats_avg.signal,
4242 -status->signal);
4243 }
4244
4245 if (status->chains) {
4246 int i;
4247
4248 stats->chains = status->chains;
4249 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4250 int signal = status->chain_signal[i];
4251
4252 if (!(status->chains & BIT(i)))
4253 continue;
4254
4255 stats->chain_signal_last[i] = signal;
4256 if (!fast_rx->uses_rss)
4257 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4258 -signal);
4259 }
4260 }
4261 /* end of statistics */
4262
4263 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4264 goto drop;
4265
4266 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4267 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4268 RX_QUEUED)
4269 goto drop;
4270
4271 return true;
4272 }
4273
4274 stats->last_rx = jiffies;
4275 stats->last_rate = sta_stats_encode_rate(status);
4276
4277 stats->fragments++;
4278 stats->packets++;
4279
4280 /* do the header conversion - first grab the addresses */
4281 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4282 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4283 /* remove the SNAP but leave the ethertype */
4284 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4285 /* push the addresses in front */
4286 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4287
4288 skb->dev = fast_rx->dev;
4289
4290 ieee80211_rx_stats(fast_rx->dev, skb->len);
4291
4292 /* The seqno index has the same property as needed
4293 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4294 * for non-QoS-data frames. Here we know it's a data
4295 * frame, so count MSDUs.
4296 */
4297 u64_stats_update_begin(&stats->syncp);
4298 stats->msdu[rx->seqno_idx]++;
4299 stats->bytes += orig_len;
4300 u64_stats_update_end(&stats->syncp);
4301
4302 if (fast_rx->internal_forward) {
4303 struct sk_buff *xmit_skb = NULL;
4304 if (is_multicast_ether_addr(addrs.da)) {
4305 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4306 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4307 sta_info_get(rx->sdata, addrs.da)) {
4308 xmit_skb = skb;
4309 skb = NULL;
4310 }
4311
4312 if (xmit_skb) {
4313 /*
4314 * Send to wireless media and increase priority by 256
4315 * to keep the received priority instead of
4316 * reclassifying the frame (see cfg80211_classify8021d).
4317 */
4318 xmit_skb->priority += 256;
4319 xmit_skb->protocol = htons(ETH_P_802_3);
4320 skb_reset_network_header(xmit_skb);
4321 skb_reset_mac_header(xmit_skb);
4322 dev_queue_xmit(xmit_skb);
4323 }
4324
4325 if (!skb)
4326 return true;
4327 }
4328
4329 /* deliver to local stack */
4330 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4331 memset(skb->cb, 0, sizeof(skb->cb));
4332 if (rx->napi)
4333 napi_gro_receive(rx->napi, skb);
4334 else
4335 netif_receive_skb(skb);
4336
4337 return true;
4338 drop:
4339 dev_kfree_skb(skb);
4340 stats->dropped++;
4341 return true;
4342 }
4343
4344 /*
4345 * This function returns whether or not the SKB
4346 * was destined for RX processing or not, which,
4347 * if consume is true, is equivalent to whether
4348 * or not the skb was consumed.
4349 */
4350 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4351 struct sk_buff *skb, bool consume)
4352 {
4353 struct ieee80211_local *local = rx->local;
4354 struct ieee80211_sub_if_data *sdata = rx->sdata;
4355
4356 rx->skb = skb;
4357
4358 /* See if we can do fast-rx; if we have to copy we already lost,
4359 * so punt in that case. We should never have to deliver a data
4360 * frame to multiple interfaces anyway.
4361 *
4362 * We skip the ieee80211_accept_frame() call and do the necessary
4363 * checking inside ieee80211_invoke_fast_rx().
4364 */
4365 if (consume && rx->sta) {
4366 struct ieee80211_fast_rx *fast_rx;
4367
4368 fast_rx = rcu_dereference(rx->sta->fast_rx);
4369 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4370 return true;
4371 }
4372
4373 if (!ieee80211_accept_frame(rx))
4374 return false;
4375
4376 if (!consume) {
4377 skb = skb_copy(skb, GFP_ATOMIC);
4378 if (!skb) {
4379 if (net_ratelimit())
4380 wiphy_debug(local->hw.wiphy,
4381 "failed to copy skb for %s\n",
4382 sdata->name);
4383 return true;
4384 }
4385
4386 rx->skb = skb;
4387 }
4388
4389 ieee80211_invoke_rx_handlers(rx);
4390 return true;
4391 }
4392
4393 /*
4394 * This is the actual Rx frames handler. as it belongs to Rx path it must
4395 * be called with rcu_read_lock protection.
4396 */
4397 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4398 struct ieee80211_sta *pubsta,
4399 struct sk_buff *skb,
4400 struct napi_struct *napi)
4401 {
4402 struct ieee80211_local *local = hw_to_local(hw);
4403 struct ieee80211_sub_if_data *sdata;
4404 struct ieee80211_hdr *hdr;
4405 __le16 fc;
4406 struct ieee80211_rx_data rx;
4407 struct ieee80211_sub_if_data *prev;
4408 struct rhlist_head *tmp;
4409 int err = 0;
4410
4411 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4412 memset(&rx, 0, sizeof(rx));
4413 rx.skb = skb;
4414 rx.local = local;
4415 rx.napi = napi;
4416
4417 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4418 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4419
4420 if (ieee80211_is_mgmt(fc)) {
4421 /* drop frame if too short for header */
4422 if (skb->len < ieee80211_hdrlen(fc))
4423 err = -ENOBUFS;
4424 else
4425 err = skb_linearize(skb);
4426 } else {
4427 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4428 }
4429
4430 if (err) {
4431 dev_kfree_skb(skb);
4432 return;
4433 }
4434
4435 hdr = (struct ieee80211_hdr *)skb->data;
4436 ieee80211_parse_qos(&rx);
4437 ieee80211_verify_alignment(&rx);
4438
4439 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4440 ieee80211_is_beacon(hdr->frame_control)))
4441 ieee80211_scan_rx(local, skb);
4442
4443 if (ieee80211_is_data(fc)) {
4444 struct sta_info *sta, *prev_sta;
4445
4446 if (pubsta) {
4447 rx.sta = container_of(pubsta, struct sta_info, sta);
4448 rx.sdata = rx.sta->sdata;
4449 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4450 return;
4451 goto out;
4452 }
4453
4454 prev_sta = NULL;
4455
4456 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4457 if (!prev_sta) {
4458 prev_sta = sta;
4459 continue;
4460 }
4461
4462 rx.sta = prev_sta;
4463 rx.sdata = prev_sta->sdata;
4464 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4465
4466 prev_sta = sta;
4467 }
4468
4469 if (prev_sta) {
4470 rx.sta = prev_sta;
4471 rx.sdata = prev_sta->sdata;
4472
4473 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4474 return;
4475 goto out;
4476 }
4477 }
4478
4479 prev = NULL;
4480
4481 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4482 if (!ieee80211_sdata_running(sdata))
4483 continue;
4484
4485 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4486 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4487 continue;
4488
4489 /*
4490 * frame is destined for this interface, but if it's
4491 * not also for the previous one we handle that after
4492 * the loop to avoid copying the SKB once too much
4493 */
4494
4495 if (!prev) {
4496 prev = sdata;
4497 continue;
4498 }
4499
4500 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4501 rx.sdata = prev;
4502 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4503
4504 prev = sdata;
4505 }
4506
4507 if (prev) {
4508 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4509 rx.sdata = prev;
4510
4511 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4512 return;
4513 }
4514
4515 out:
4516 dev_kfree_skb(skb);
4517 }
4518
4519 /*
4520 * This is the receive path handler. It is called by a low level driver when an
4521 * 802.11 MPDU is received from the hardware.
4522 */
4523 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4524 struct sk_buff *skb, struct napi_struct *napi)
4525 {
4526 struct ieee80211_local *local = hw_to_local(hw);
4527 struct ieee80211_rate *rate = NULL;
4528 struct ieee80211_supported_band *sband;
4529 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4530
4531 WARN_ON_ONCE(softirq_count() == 0);
4532
4533 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4534 goto drop;
4535
4536 sband = local->hw.wiphy->bands[status->band];
4537 if (WARN_ON(!sband))
4538 goto drop;
4539
4540 /*
4541 * If we're suspending, it is possible although not too likely
4542 * that we'd be receiving frames after having already partially
4543 * quiesced the stack. We can't process such frames then since
4544 * that might, for example, cause stations to be added or other
4545 * driver callbacks be invoked.
4546 */
4547 if (unlikely(local->quiescing || local->suspended))
4548 goto drop;
4549
4550 /* We might be during a HW reconfig, prevent Rx for the same reason */
4551 if (unlikely(local->in_reconfig))
4552 goto drop;
4553
4554 /*
4555 * The same happens when we're not even started,
4556 * but that's worth a warning.
4557 */
4558 if (WARN_ON(!local->started))
4559 goto drop;
4560
4561 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4562 /*
4563 * Validate the rate, unless a PLCP error means that
4564 * we probably can't have a valid rate here anyway.
4565 */
4566
4567 switch (status->encoding) {
4568 case RX_ENC_HT:
4569 /*
4570 * rate_idx is MCS index, which can be [0-76]
4571 * as documented on:
4572 *
4573 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4574 *
4575 * Anything else would be some sort of driver or
4576 * hardware error. The driver should catch hardware
4577 * errors.
4578 */
4579 if (WARN(status->rate_idx > 76,
4580 "Rate marked as an HT rate but passed "
4581 "status->rate_idx is not "
4582 "an MCS index [0-76]: %d (0x%02x)\n",
4583 status->rate_idx,
4584 status->rate_idx))
4585 goto drop;
4586 break;
4587 case RX_ENC_VHT:
4588 if (WARN_ONCE(status->rate_idx > 9 ||
4589 !status->nss ||
4590 status->nss > 8,
4591 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4592 status->rate_idx, status->nss))
4593 goto drop;
4594 break;
4595 case RX_ENC_HE:
4596 if (WARN_ONCE(status->rate_idx > 11 ||
4597 !status->nss ||
4598 status->nss > 8,
4599 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4600 status->rate_idx, status->nss))
4601 goto drop;
4602 break;
4603 default:
4604 WARN_ON_ONCE(1);
4605 /* fall through */
4606 case RX_ENC_LEGACY:
4607 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4608 goto drop;
4609 rate = &sband->bitrates[status->rate_idx];
4610 }
4611 }
4612
4613 status->rx_flags = 0;
4614
4615 /*
4616 * key references and virtual interfaces are protected using RCU
4617 * and this requires that we are in a read-side RCU section during
4618 * receive processing
4619 */
4620 rcu_read_lock();
4621
4622 /*
4623 * Frames with failed FCS/PLCP checksum are not returned,
4624 * all other frames are returned without radiotap header
4625 * if it was previously present.
4626 * Also, frames with less than 16 bytes are dropped.
4627 */
4628 skb = ieee80211_rx_monitor(local, skb, rate);
4629 if (!skb) {
4630 rcu_read_unlock();
4631 return;
4632 }
4633
4634 ieee80211_tpt_led_trig_rx(local,
4635 ((struct ieee80211_hdr *)skb->data)->frame_control,
4636 skb->len);
4637
4638 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4639
4640 rcu_read_unlock();
4641
4642 return;
4643 drop:
4644 kfree_skb(skb);
4645 }
4646 EXPORT_SYMBOL(ieee80211_rx_napi);
4647
4648 /* This is a version of the rx handler that can be called from hard irq
4649 * context. Post the skb on the queue and schedule the tasklet */
4650 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4651 {
4652 struct ieee80211_local *local = hw_to_local(hw);
4653
4654 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4655
4656 skb->pkt_type = IEEE80211_RX_MSG;
4657 skb_queue_tail(&local->skb_queue, skb);
4658 tasklet_schedule(&local->tasklet);
4659 }
4660 EXPORT_SYMBOL(ieee80211_rx_irqsafe);