]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/rx.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 skb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
85 len += 1;
86
87 if (len & 1) /* padding for RX_FLAGS if necessary */
88 len++;
89
90 return len;
91 }
92
93 /*
94 * ieee80211_add_rx_radiotap_header - add radiotap header
95 *
96 * add a radiotap header containing all the fields which the hardware provided.
97 */
98 static void
99 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
100 struct sk_buff *skb,
101 struct ieee80211_rate *rate,
102 int rtap_len)
103 {
104 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
105 struct ieee80211_radiotap_header *rthdr;
106 unsigned char *pos;
107 u16 rx_flags = 0;
108
109 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
110 memset(rthdr, 0, rtap_len);
111
112 /* radiotap header, set always present flags */
113 rthdr->it_present =
114 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
115 (1 << IEEE80211_RADIOTAP_CHANNEL) |
116 (1 << IEEE80211_RADIOTAP_ANTENNA) |
117 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
118 rthdr->it_len = cpu_to_le16(rtap_len);
119
120 pos = (unsigned char *)(rthdr+1);
121
122 /* the order of the following fields is important */
123
124 /* IEEE80211_RADIOTAP_TSFT */
125 if (status->flag & RX_FLAG_TSFT) {
126 put_unaligned_le64(status->mactime, pos);
127 rthdr->it_present |=
128 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
129 pos += 8;
130 }
131
132 /* IEEE80211_RADIOTAP_FLAGS */
133 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
134 *pos |= IEEE80211_RADIOTAP_F_FCS;
135 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
136 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
137 if (status->flag & RX_FLAG_SHORTPRE)
138 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
139 pos++;
140
141 /* IEEE80211_RADIOTAP_RATE */
142 if (status->flag & RX_FLAG_HT) {
143 /*
144 * TODO: add following information into radiotap header once
145 * suitable fields are defined for it:
146 * - MCS index (status->rate_idx)
147 * - HT40 (status->flag & RX_FLAG_40MHZ)
148 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
149 */
150 *pos = 0;
151 } else {
152 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
153 *pos = rate->bitrate / 5;
154 }
155 pos++;
156
157 /* IEEE80211_RADIOTAP_CHANNEL */
158 put_unaligned_le16(status->freq, pos);
159 pos += 2;
160 if (status->band == IEEE80211_BAND_5GHZ)
161 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
162 pos);
163 else if (status->flag & RX_FLAG_HT)
164 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
165 pos);
166 else if (rate->flags & IEEE80211_RATE_ERP_G)
167 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
168 pos);
169 else
170 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
171 pos);
172 pos += 2;
173
174 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
175 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
176 *pos = status->signal;
177 rthdr->it_present |=
178 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
179 pos++;
180 }
181
182 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
183 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
184 *pos = status->noise;
185 rthdr->it_present |=
186 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
187 pos++;
188 }
189
190 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
191
192 /* IEEE80211_RADIOTAP_ANTENNA */
193 *pos = status->antenna;
194 pos++;
195
196 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
197
198 /* IEEE80211_RADIOTAP_RX_FLAGS */
199 /* ensure 2 byte alignment for the 2 byte field as required */
200 if ((pos - (u8 *)rthdr) & 1)
201 pos++;
202 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
203 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
204 put_unaligned_le16(rx_flags, pos);
205 pos += 2;
206 }
207
208 /*
209 * This function copies a received frame to all monitor interfaces and
210 * returns a cleaned-up SKB that no longer includes the FCS nor the
211 * radiotap header the driver might have added.
212 */
213 static struct sk_buff *
214 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
215 struct ieee80211_rate *rate)
216 {
217 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
218 struct ieee80211_sub_if_data *sdata;
219 int needed_headroom = 0;
220 struct sk_buff *skb, *skb2;
221 struct net_device *prev_dev = NULL;
222 int present_fcs_len = 0;
223
224 /*
225 * First, we may need to make a copy of the skb because
226 * (1) we need to modify it for radiotap (if not present), and
227 * (2) the other RX handlers will modify the skb we got.
228 *
229 * We don't need to, of course, if we aren't going to return
230 * the SKB because it has a bad FCS/PLCP checksum.
231 */
232
233 /* room for the radiotap header based on driver features */
234 needed_headroom = ieee80211_rx_radiotap_len(local, status);
235
236 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
237 present_fcs_len = FCS_LEN;
238
239 if (!local->monitors) {
240 if (should_drop_frame(origskb, present_fcs_len)) {
241 dev_kfree_skb(origskb);
242 return NULL;
243 }
244
245 return remove_monitor_info(local, origskb);
246 }
247
248 if (should_drop_frame(origskb, present_fcs_len)) {
249 /* only need to expand headroom if necessary */
250 skb = origskb;
251 origskb = NULL;
252
253 /*
254 * This shouldn't trigger often because most devices have an
255 * RX header they pull before we get here, and that should
256 * be big enough for our radiotap information. We should
257 * probably export the length to drivers so that we can have
258 * them allocate enough headroom to start with.
259 */
260 if (skb_headroom(skb) < needed_headroom &&
261 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
262 dev_kfree_skb(skb);
263 return NULL;
264 }
265 } else {
266 /*
267 * Need to make a copy and possibly remove radiotap header
268 * and FCS from the original.
269 */
270 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
271
272 origskb = remove_monitor_info(local, origskb);
273
274 if (!skb)
275 return origskb;
276 }
277
278 /* prepend radiotap information */
279 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
280
281 skb_reset_mac_header(skb);
282 skb->ip_summed = CHECKSUM_UNNECESSARY;
283 skb->pkt_type = PACKET_OTHERHOST;
284 skb->protocol = htons(ETH_P_802_2);
285
286 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
287 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
288 continue;
289
290 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
291 continue;
292
293 if (!ieee80211_sdata_running(sdata))
294 continue;
295
296 if (prev_dev) {
297 skb2 = skb_clone(skb, GFP_ATOMIC);
298 if (skb2) {
299 skb2->dev = prev_dev;
300 netif_rx(skb2);
301 }
302 }
303
304 prev_dev = sdata->dev;
305 sdata->dev->stats.rx_packets++;
306 sdata->dev->stats.rx_bytes += skb->len;
307 }
308
309 if (prev_dev) {
310 skb->dev = prev_dev;
311 netif_rx(skb);
312 } else
313 dev_kfree_skb(skb);
314
315 return origskb;
316 }
317
318
319 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
320 {
321 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
322 int tid;
323
324 /* does the frame have a qos control field? */
325 if (ieee80211_is_data_qos(hdr->frame_control)) {
326 u8 *qc = ieee80211_get_qos_ctl(hdr);
327 /* frame has qos control */
328 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
329 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
330 rx->flags |= IEEE80211_RX_AMSDU;
331 else
332 rx->flags &= ~IEEE80211_RX_AMSDU;
333 } else {
334 /*
335 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
336 *
337 * Sequence numbers for management frames, QoS data
338 * frames with a broadcast/multicast address in the
339 * Address 1 field, and all non-QoS data frames sent
340 * by QoS STAs are assigned using an additional single
341 * modulo-4096 counter, [...]
342 *
343 * We also use that counter for non-QoS STAs.
344 */
345 tid = NUM_RX_DATA_QUEUES - 1;
346 }
347
348 rx->queue = tid;
349 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
350 * For now, set skb->priority to 0 for other cases. */
351 rx->skb->priority = (tid > 7) ? 0 : tid;
352 }
353
354 /**
355 * DOC: Packet alignment
356 *
357 * Drivers always need to pass packets that are aligned to two-byte boundaries
358 * to the stack.
359 *
360 * Additionally, should, if possible, align the payload data in a way that
361 * guarantees that the contained IP header is aligned to a four-byte
362 * boundary. In the case of regular frames, this simply means aligning the
363 * payload to a four-byte boundary (because either the IP header is directly
364 * contained, or IV/RFC1042 headers that have a length divisible by four are
365 * in front of it). If the payload data is not properly aligned and the
366 * architecture doesn't support efficient unaligned operations, mac80211
367 * will align the data.
368 *
369 * With A-MSDU frames, however, the payload data address must yield two modulo
370 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
371 * push the IP header further back to a multiple of four again. Thankfully, the
372 * specs were sane enough this time around to require padding each A-MSDU
373 * subframe to a length that is a multiple of four.
374 *
375 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
376 * the payload is not supported, the driver is required to move the 802.11
377 * header to be directly in front of the payload in that case.
378 */
379 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
380 {
381 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
382 WARN_ONCE((unsigned long)rx->skb->data & 1,
383 "unaligned packet at 0x%p\n", rx->skb->data);
384 #endif
385 }
386
387
388 /* rx handlers */
389
390 static ieee80211_rx_result debug_noinline
391 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
392 {
393 struct ieee80211_local *local = rx->local;
394 struct sk_buff *skb = rx->skb;
395
396 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
397 return ieee80211_scan_rx(rx->sdata, skb);
398
399 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
400 (rx->flags & IEEE80211_RX_IN_SCAN))) {
401 /* drop all the other packets during a software scan anyway */
402 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
403 dev_kfree_skb(skb);
404 return RX_QUEUED;
405 }
406
407 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
408 /* scanning finished during invoking of handlers */
409 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
410 return RX_DROP_UNUSABLE;
411 }
412
413 return RX_CONTINUE;
414 }
415
416
417 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
418 {
419 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
420
421 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
422 return 0;
423
424 return ieee80211_is_robust_mgmt_frame(hdr);
425 }
426
427
428 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
429 {
430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
431
432 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
433 return 0;
434
435 return ieee80211_is_robust_mgmt_frame(hdr);
436 }
437
438
439 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
440 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
441 {
442 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
443 struct ieee80211_mmie *mmie;
444
445 if (skb->len < 24 + sizeof(*mmie) ||
446 !is_multicast_ether_addr(hdr->da))
447 return -1;
448
449 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
450 return -1; /* not a robust management frame */
451
452 mmie = (struct ieee80211_mmie *)
453 (skb->data + skb->len - sizeof(*mmie));
454 if (mmie->element_id != WLAN_EID_MMIE ||
455 mmie->length != sizeof(*mmie) - 2)
456 return -1;
457
458 return le16_to_cpu(mmie->key_id);
459 }
460
461
462 static ieee80211_rx_result
463 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
464 {
465 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
466 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
467 char *dev_addr = rx->sdata->vif.addr;
468
469 if (ieee80211_is_data(hdr->frame_control)) {
470 if (is_multicast_ether_addr(hdr->addr1)) {
471 if (ieee80211_has_tods(hdr->frame_control) ||
472 !ieee80211_has_fromds(hdr->frame_control))
473 return RX_DROP_MONITOR;
474 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
475 return RX_DROP_MONITOR;
476 } else {
477 if (!ieee80211_has_a4(hdr->frame_control))
478 return RX_DROP_MONITOR;
479 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
480 return RX_DROP_MONITOR;
481 }
482 }
483
484 /* If there is not an established peer link and this is not a peer link
485 * establisment frame, beacon or probe, drop the frame.
486 */
487
488 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
489 struct ieee80211_mgmt *mgmt;
490
491 if (!ieee80211_is_mgmt(hdr->frame_control))
492 return RX_DROP_MONITOR;
493
494 if (ieee80211_is_action(hdr->frame_control)) {
495 mgmt = (struct ieee80211_mgmt *)hdr;
496 if (mgmt->u.action.category != MESH_PLINK_CATEGORY)
497 return RX_DROP_MONITOR;
498 return RX_CONTINUE;
499 }
500
501 if (ieee80211_is_probe_req(hdr->frame_control) ||
502 ieee80211_is_probe_resp(hdr->frame_control) ||
503 ieee80211_is_beacon(hdr->frame_control))
504 return RX_CONTINUE;
505
506 return RX_DROP_MONITOR;
507
508 }
509
510 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
511
512 if (ieee80211_is_data(hdr->frame_control) &&
513 is_multicast_ether_addr(hdr->addr1) &&
514 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
515 return RX_DROP_MONITOR;
516 #undef msh_h_get
517
518 return RX_CONTINUE;
519 }
520
521 #define SEQ_MODULO 0x1000
522 #define SEQ_MASK 0xfff
523
524 static inline int seq_less(u16 sq1, u16 sq2)
525 {
526 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
527 }
528
529 static inline u16 seq_inc(u16 sq)
530 {
531 return (sq + 1) & SEQ_MASK;
532 }
533
534 static inline u16 seq_sub(u16 sq1, u16 sq2)
535 {
536 return (sq1 - sq2) & SEQ_MASK;
537 }
538
539
540 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
541 struct tid_ampdu_rx *tid_agg_rx,
542 int index,
543 struct sk_buff_head *frames)
544 {
545 struct ieee80211_supported_band *sband;
546 struct ieee80211_rate *rate = NULL;
547 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
548 struct ieee80211_rx_status *status;
549
550 if (!skb)
551 goto no_frame;
552
553 status = IEEE80211_SKB_RXCB(skb);
554
555 /* release the reordered frames to stack */
556 sband = hw->wiphy->bands[status->band];
557 if (!(status->flag & RX_FLAG_HT))
558 rate = &sband->bitrates[status->rate_idx];
559 tid_agg_rx->stored_mpdu_num--;
560 tid_agg_rx->reorder_buf[index] = NULL;
561 __skb_queue_tail(frames, skb);
562
563 no_frame:
564 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
565 }
566
567 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
568 struct tid_ampdu_rx *tid_agg_rx,
569 u16 head_seq_num,
570 struct sk_buff_head *frames)
571 {
572 int index;
573
574 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
575 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
576 tid_agg_rx->buf_size;
577 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
578 }
579 }
580
581 /*
582 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
583 * the skb was added to the buffer longer than this time ago, the earlier
584 * frames that have not yet been received are assumed to be lost and the skb
585 * can be released for processing. This may also release other skb's from the
586 * reorder buffer if there are no additional gaps between the frames.
587 */
588 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
589
590 /*
591 * As this function belongs to the RX path it must be under
592 * rcu_read_lock protection. It returns false if the frame
593 * can be processed immediately, true if it was consumed.
594 */
595 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
596 struct tid_ampdu_rx *tid_agg_rx,
597 struct sk_buff *skb,
598 struct sk_buff_head *frames)
599 {
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
601 u16 sc = le16_to_cpu(hdr->seq_ctrl);
602 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
603 u16 head_seq_num, buf_size;
604 int index;
605
606 buf_size = tid_agg_rx->buf_size;
607 head_seq_num = tid_agg_rx->head_seq_num;
608
609 /* frame with out of date sequence number */
610 if (seq_less(mpdu_seq_num, head_seq_num)) {
611 dev_kfree_skb(skb);
612 return true;
613 }
614
615 /*
616 * If frame the sequence number exceeds our buffering window
617 * size release some previous frames to make room for this one.
618 */
619 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
620 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
621 /* release stored frames up to new head to stack */
622 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
623 frames);
624 }
625
626 /* Now the new frame is always in the range of the reordering buffer */
627
628 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
629
630 /* check if we already stored this frame */
631 if (tid_agg_rx->reorder_buf[index]) {
632 dev_kfree_skb(skb);
633 return true;
634 }
635
636 /*
637 * If the current MPDU is in the right order and nothing else
638 * is stored we can process it directly, no need to buffer it.
639 */
640 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
641 tid_agg_rx->stored_mpdu_num == 0) {
642 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
643 return false;
644 }
645
646 /* put the frame in the reordering buffer */
647 tid_agg_rx->reorder_buf[index] = skb;
648 tid_agg_rx->reorder_time[index] = jiffies;
649 tid_agg_rx->stored_mpdu_num++;
650 /* release the buffer until next missing frame */
651 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
652 tid_agg_rx->buf_size;
653 if (!tid_agg_rx->reorder_buf[index] &&
654 tid_agg_rx->stored_mpdu_num > 1) {
655 /*
656 * No buffers ready to be released, but check whether any
657 * frames in the reorder buffer have timed out.
658 */
659 int j;
660 int skipped = 1;
661 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
662 j = (j + 1) % tid_agg_rx->buf_size) {
663 if (!tid_agg_rx->reorder_buf[j]) {
664 skipped++;
665 continue;
666 }
667 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
668 HT_RX_REORDER_BUF_TIMEOUT))
669 break;
670
671 #ifdef CONFIG_MAC80211_HT_DEBUG
672 if (net_ratelimit())
673 printk(KERN_DEBUG "%s: release an RX reorder "
674 "frame due to timeout on earlier "
675 "frames\n",
676 wiphy_name(hw->wiphy));
677 #endif
678 ieee80211_release_reorder_frame(hw, tid_agg_rx,
679 j, frames);
680
681 /*
682 * Increment the head seq# also for the skipped slots.
683 */
684 tid_agg_rx->head_seq_num =
685 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
686 skipped = 0;
687 }
688 } else while (tid_agg_rx->reorder_buf[index]) {
689 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
690 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
691 tid_agg_rx->buf_size;
692 }
693
694 return true;
695 }
696
697 /*
698 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
699 * true if the MPDU was buffered, false if it should be processed.
700 */
701 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
702 struct sk_buff_head *frames)
703 {
704 struct sk_buff *skb = rx->skb;
705 struct ieee80211_local *local = rx->local;
706 struct ieee80211_hw *hw = &local->hw;
707 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
708 struct sta_info *sta = rx->sta;
709 struct tid_ampdu_rx *tid_agg_rx;
710 u16 sc;
711 int tid;
712
713 if (!ieee80211_is_data_qos(hdr->frame_control))
714 goto dont_reorder;
715
716 /*
717 * filter the QoS data rx stream according to
718 * STA/TID and check if this STA/TID is on aggregation
719 */
720
721 if (!sta)
722 goto dont_reorder;
723
724 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
725
726 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
727 goto dont_reorder;
728
729 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
730
731 /* qos null data frames are excluded */
732 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
733 goto dont_reorder;
734
735 /* new, potentially un-ordered, ampdu frame - process it */
736
737 /* reset session timer */
738 if (tid_agg_rx->timeout)
739 mod_timer(&tid_agg_rx->session_timer,
740 TU_TO_EXP_TIME(tid_agg_rx->timeout));
741
742 /* if this mpdu is fragmented - terminate rx aggregation session */
743 sc = le16_to_cpu(hdr->seq_ctrl);
744 if (sc & IEEE80211_SCTL_FRAG) {
745 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr,
746 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
747 dev_kfree_skb(skb);
748 return;
749 }
750
751 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
752 return;
753
754 dont_reorder:
755 __skb_queue_tail(frames, skb);
756 }
757
758 static ieee80211_rx_result debug_noinline
759 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
760 {
761 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
762
763 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
764 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
765 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
766 rx->sta->last_seq_ctrl[rx->queue] ==
767 hdr->seq_ctrl)) {
768 if (rx->flags & IEEE80211_RX_RA_MATCH) {
769 rx->local->dot11FrameDuplicateCount++;
770 rx->sta->num_duplicates++;
771 }
772 return RX_DROP_MONITOR;
773 } else
774 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
775 }
776
777 if (unlikely(rx->skb->len < 16)) {
778 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
779 return RX_DROP_MONITOR;
780 }
781
782 /* Drop disallowed frame classes based on STA auth/assoc state;
783 * IEEE 802.11, Chap 5.5.
784 *
785 * mac80211 filters only based on association state, i.e. it drops
786 * Class 3 frames from not associated stations. hostapd sends
787 * deauth/disassoc frames when needed. In addition, hostapd is
788 * responsible for filtering on both auth and assoc states.
789 */
790
791 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
792 return ieee80211_rx_mesh_check(rx);
793
794 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
795 ieee80211_is_pspoll(hdr->frame_control)) &&
796 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
797 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
798 if ((!ieee80211_has_fromds(hdr->frame_control) &&
799 !ieee80211_has_tods(hdr->frame_control) &&
800 ieee80211_is_data(hdr->frame_control)) ||
801 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
802 /* Drop IBSS frames and frames for other hosts
803 * silently. */
804 return RX_DROP_MONITOR;
805 }
806
807 return RX_DROP_MONITOR;
808 }
809
810 return RX_CONTINUE;
811 }
812
813
814 static ieee80211_rx_result debug_noinline
815 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
816 {
817 struct sk_buff *skb = rx->skb;
818 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
819 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
820 int keyidx;
821 int hdrlen;
822 ieee80211_rx_result result = RX_DROP_UNUSABLE;
823 struct ieee80211_key *stakey = NULL;
824 int mmie_keyidx = -1;
825
826 /*
827 * Key selection 101
828 *
829 * There are four types of keys:
830 * - GTK (group keys)
831 * - IGTK (group keys for management frames)
832 * - PTK (pairwise keys)
833 * - STK (station-to-station pairwise keys)
834 *
835 * When selecting a key, we have to distinguish between multicast
836 * (including broadcast) and unicast frames, the latter can only
837 * use PTKs and STKs while the former always use GTKs and IGTKs.
838 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
839 * unicast frames can also use key indices like GTKs. Hence, if we
840 * don't have a PTK/STK we check the key index for a WEP key.
841 *
842 * Note that in a regular BSS, multicast frames are sent by the
843 * AP only, associated stations unicast the frame to the AP first
844 * which then multicasts it on their behalf.
845 *
846 * There is also a slight problem in IBSS mode: GTKs are negotiated
847 * with each station, that is something we don't currently handle.
848 * The spec seems to expect that one negotiates the same key with
849 * every station but there's no such requirement; VLANs could be
850 * possible.
851 */
852
853 /*
854 * No point in finding a key and decrypting if the frame is neither
855 * addressed to us nor a multicast frame.
856 */
857 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
858 return RX_CONTINUE;
859
860 /* start without a key */
861 rx->key = NULL;
862
863 if (rx->sta)
864 stakey = rcu_dereference(rx->sta->key);
865
866 if (!ieee80211_has_protected(hdr->frame_control))
867 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
868
869 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
870 rx->key = stakey;
871 /* Skip decryption if the frame is not protected. */
872 if (!ieee80211_has_protected(hdr->frame_control))
873 return RX_CONTINUE;
874 } else if (mmie_keyidx >= 0) {
875 /* Broadcast/multicast robust management frame / BIP */
876 if ((status->flag & RX_FLAG_DECRYPTED) &&
877 (status->flag & RX_FLAG_IV_STRIPPED))
878 return RX_CONTINUE;
879
880 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
881 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
882 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
883 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
884 } else if (!ieee80211_has_protected(hdr->frame_control)) {
885 /*
886 * The frame was not protected, so skip decryption. However, we
887 * need to set rx->key if there is a key that could have been
888 * used so that the frame may be dropped if encryption would
889 * have been expected.
890 */
891 struct ieee80211_key *key = NULL;
892 if (ieee80211_is_mgmt(hdr->frame_control) &&
893 is_multicast_ether_addr(hdr->addr1) &&
894 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
895 rx->key = key;
896 else if ((key = rcu_dereference(rx->sdata->default_key)))
897 rx->key = key;
898 return RX_CONTINUE;
899 } else {
900 /*
901 * The device doesn't give us the IV so we won't be
902 * able to look up the key. That's ok though, we
903 * don't need to decrypt the frame, we just won't
904 * be able to keep statistics accurate.
905 * Except for key threshold notifications, should
906 * we somehow allow the driver to tell us which key
907 * the hardware used if this flag is set?
908 */
909 if ((status->flag & RX_FLAG_DECRYPTED) &&
910 (status->flag & RX_FLAG_IV_STRIPPED))
911 return RX_CONTINUE;
912
913 hdrlen = ieee80211_hdrlen(hdr->frame_control);
914
915 if (rx->skb->len < 8 + hdrlen)
916 return RX_DROP_UNUSABLE; /* TODO: count this? */
917
918 /*
919 * no need to call ieee80211_wep_get_keyidx,
920 * it verifies a bunch of things we've done already
921 */
922 keyidx = rx->skb->data[hdrlen + 3] >> 6;
923
924 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
925
926 /*
927 * RSNA-protected unicast frames should always be sent with
928 * pairwise or station-to-station keys, but for WEP we allow
929 * using a key index as well.
930 */
931 if (rx->key && rx->key->conf.alg != ALG_WEP &&
932 !is_multicast_ether_addr(hdr->addr1))
933 rx->key = NULL;
934 }
935
936 if (rx->key) {
937 rx->key->tx_rx_count++;
938 /* TODO: add threshold stuff again */
939 } else {
940 return RX_DROP_MONITOR;
941 }
942
943 /* Check for weak IVs if possible */
944 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
945 ieee80211_is_data(hdr->frame_control) &&
946 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
947 !(status->flag & RX_FLAG_DECRYPTED)) &&
948 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
949 rx->sta->wep_weak_iv_count++;
950
951 switch (rx->key->conf.alg) {
952 case ALG_WEP:
953 result = ieee80211_crypto_wep_decrypt(rx);
954 break;
955 case ALG_TKIP:
956 result = ieee80211_crypto_tkip_decrypt(rx);
957 break;
958 case ALG_CCMP:
959 result = ieee80211_crypto_ccmp_decrypt(rx);
960 break;
961 case ALG_AES_CMAC:
962 result = ieee80211_crypto_aes_cmac_decrypt(rx);
963 break;
964 }
965
966 /* either the frame has been decrypted or will be dropped */
967 status->flag |= RX_FLAG_DECRYPTED;
968
969 return result;
970 }
971
972 static ieee80211_rx_result debug_noinline
973 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
974 {
975 struct ieee80211_local *local;
976 struct ieee80211_hdr *hdr;
977 struct sk_buff *skb;
978
979 local = rx->local;
980 skb = rx->skb;
981 hdr = (struct ieee80211_hdr *) skb->data;
982
983 if (!local->pspolling)
984 return RX_CONTINUE;
985
986 if (!ieee80211_has_fromds(hdr->frame_control))
987 /* this is not from AP */
988 return RX_CONTINUE;
989
990 if (!ieee80211_is_data(hdr->frame_control))
991 return RX_CONTINUE;
992
993 if (!ieee80211_has_moredata(hdr->frame_control)) {
994 /* AP has no more frames buffered for us */
995 local->pspolling = false;
996 return RX_CONTINUE;
997 }
998
999 /* more data bit is set, let's request a new frame from the AP */
1000 ieee80211_send_pspoll(local, rx->sdata);
1001
1002 return RX_CONTINUE;
1003 }
1004
1005 static void ap_sta_ps_start(struct sta_info *sta)
1006 {
1007 struct ieee80211_sub_if_data *sdata = sta->sdata;
1008 struct ieee80211_local *local = sdata->local;
1009
1010 atomic_inc(&sdata->bss->num_sta_ps);
1011 set_sta_flags(sta, WLAN_STA_PS_STA);
1012 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1013 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1014 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1015 sdata->name, sta->sta.addr, sta->sta.aid);
1016 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1017 }
1018
1019 static void ap_sta_ps_end(struct sta_info *sta)
1020 {
1021 struct ieee80211_sub_if_data *sdata = sta->sdata;
1022
1023 atomic_dec(&sdata->bss->num_sta_ps);
1024
1025 clear_sta_flags(sta, WLAN_STA_PS_STA);
1026
1027 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1028 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1029 sdata->name, sta->sta.addr, sta->sta.aid);
1030 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1031
1032 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1033 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1034 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1035 sdata->name, sta->sta.addr, sta->sta.aid);
1036 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1037 return;
1038 }
1039
1040 ieee80211_sta_ps_deliver_wakeup(sta);
1041 }
1042
1043 static ieee80211_rx_result debug_noinline
1044 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1045 {
1046 struct sta_info *sta = rx->sta;
1047 struct sk_buff *skb = rx->skb;
1048 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1049 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1050
1051 if (!sta)
1052 return RX_CONTINUE;
1053
1054 /*
1055 * Update last_rx only for IBSS packets which are for the current
1056 * BSSID to avoid keeping the current IBSS network alive in cases
1057 * where other STAs start using different BSSID.
1058 */
1059 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1060 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1061 NL80211_IFTYPE_ADHOC);
1062 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1063 sta->last_rx = jiffies;
1064 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1065 /*
1066 * Mesh beacons will update last_rx when if they are found to
1067 * match the current local configuration when processed.
1068 */
1069 sta->last_rx = jiffies;
1070 }
1071
1072 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1073 return RX_CONTINUE;
1074
1075 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1076 ieee80211_sta_rx_notify(rx->sdata, hdr);
1077
1078 sta->rx_fragments++;
1079 sta->rx_bytes += rx->skb->len;
1080 sta->last_signal = status->signal;
1081 sta->last_noise = status->noise;
1082
1083 /*
1084 * Change STA power saving mode only at the end of a frame
1085 * exchange sequence.
1086 */
1087 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1088 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1089 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1090 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1091 /*
1092 * Ignore doze->wake transitions that are
1093 * indicated by non-data frames, the standard
1094 * is unclear here, but for example going to
1095 * PS mode and then scanning would cause a
1096 * doze->wake transition for the probe request,
1097 * and that is clearly undesirable.
1098 */
1099 if (ieee80211_is_data(hdr->frame_control) &&
1100 !ieee80211_has_pm(hdr->frame_control))
1101 ap_sta_ps_end(sta);
1102 } else {
1103 if (ieee80211_has_pm(hdr->frame_control))
1104 ap_sta_ps_start(sta);
1105 }
1106 }
1107
1108 /*
1109 * Drop (qos-)data::nullfunc frames silently, since they
1110 * are used only to control station power saving mode.
1111 */
1112 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1113 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1114 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1115
1116 /*
1117 * If we receive a 4-addr nullfunc frame from a STA
1118 * that was not moved to a 4-addr STA vlan yet, drop
1119 * the frame to the monitor interface, to make sure
1120 * that hostapd sees it
1121 */
1122 if (ieee80211_has_a4(hdr->frame_control) &&
1123 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1124 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1125 !rx->sdata->u.vlan.sta)))
1126 return RX_DROP_MONITOR;
1127 /*
1128 * Update counter and free packet here to avoid
1129 * counting this as a dropped packed.
1130 */
1131 sta->rx_packets++;
1132 dev_kfree_skb(rx->skb);
1133 return RX_QUEUED;
1134 }
1135
1136 return RX_CONTINUE;
1137 } /* ieee80211_rx_h_sta_process */
1138
1139 static inline struct ieee80211_fragment_entry *
1140 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1141 unsigned int frag, unsigned int seq, int rx_queue,
1142 struct sk_buff **skb)
1143 {
1144 struct ieee80211_fragment_entry *entry;
1145 int idx;
1146
1147 idx = sdata->fragment_next;
1148 entry = &sdata->fragments[sdata->fragment_next++];
1149 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1150 sdata->fragment_next = 0;
1151
1152 if (!skb_queue_empty(&entry->skb_list)) {
1153 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1154 struct ieee80211_hdr *hdr =
1155 (struct ieee80211_hdr *) entry->skb_list.next->data;
1156 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1157 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1158 "addr1=%pM addr2=%pM\n",
1159 sdata->name, idx,
1160 jiffies - entry->first_frag_time, entry->seq,
1161 entry->last_frag, hdr->addr1, hdr->addr2);
1162 #endif
1163 __skb_queue_purge(&entry->skb_list);
1164 }
1165
1166 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1167 *skb = NULL;
1168 entry->first_frag_time = jiffies;
1169 entry->seq = seq;
1170 entry->rx_queue = rx_queue;
1171 entry->last_frag = frag;
1172 entry->ccmp = 0;
1173 entry->extra_len = 0;
1174
1175 return entry;
1176 }
1177
1178 static inline struct ieee80211_fragment_entry *
1179 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1180 unsigned int frag, unsigned int seq,
1181 int rx_queue, struct ieee80211_hdr *hdr)
1182 {
1183 struct ieee80211_fragment_entry *entry;
1184 int i, idx;
1185
1186 idx = sdata->fragment_next;
1187 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1188 struct ieee80211_hdr *f_hdr;
1189
1190 idx--;
1191 if (idx < 0)
1192 idx = IEEE80211_FRAGMENT_MAX - 1;
1193
1194 entry = &sdata->fragments[idx];
1195 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1196 entry->rx_queue != rx_queue ||
1197 entry->last_frag + 1 != frag)
1198 continue;
1199
1200 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1201
1202 /*
1203 * Check ftype and addresses are equal, else check next fragment
1204 */
1205 if (((hdr->frame_control ^ f_hdr->frame_control) &
1206 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1207 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1208 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1209 continue;
1210
1211 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1212 __skb_queue_purge(&entry->skb_list);
1213 continue;
1214 }
1215 return entry;
1216 }
1217
1218 return NULL;
1219 }
1220
1221 static ieee80211_rx_result debug_noinline
1222 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1223 {
1224 struct ieee80211_hdr *hdr;
1225 u16 sc;
1226 __le16 fc;
1227 unsigned int frag, seq;
1228 struct ieee80211_fragment_entry *entry;
1229 struct sk_buff *skb;
1230
1231 hdr = (struct ieee80211_hdr *)rx->skb->data;
1232 fc = hdr->frame_control;
1233 sc = le16_to_cpu(hdr->seq_ctrl);
1234 frag = sc & IEEE80211_SCTL_FRAG;
1235
1236 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1237 (rx->skb)->len < 24 ||
1238 is_multicast_ether_addr(hdr->addr1))) {
1239 /* not fragmented */
1240 goto out;
1241 }
1242 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1243
1244 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1245
1246 if (frag == 0) {
1247 /* This is the first fragment of a new frame. */
1248 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1249 rx->queue, &(rx->skb));
1250 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1251 ieee80211_has_protected(fc)) {
1252 /* Store CCMP PN so that we can verify that the next
1253 * fragment has a sequential PN value. */
1254 entry->ccmp = 1;
1255 memcpy(entry->last_pn,
1256 rx->key->u.ccmp.rx_pn[rx->queue],
1257 CCMP_PN_LEN);
1258 }
1259 return RX_QUEUED;
1260 }
1261
1262 /* This is a fragment for a frame that should already be pending in
1263 * fragment cache. Add this fragment to the end of the pending entry.
1264 */
1265 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1266 if (!entry) {
1267 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1268 return RX_DROP_MONITOR;
1269 }
1270
1271 /* Verify that MPDUs within one MSDU have sequential PN values.
1272 * (IEEE 802.11i, 8.3.3.4.5) */
1273 if (entry->ccmp) {
1274 int i;
1275 u8 pn[CCMP_PN_LEN], *rpn;
1276 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1277 return RX_DROP_UNUSABLE;
1278 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1279 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1280 pn[i]++;
1281 if (pn[i])
1282 break;
1283 }
1284 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1285 if (memcmp(pn, rpn, CCMP_PN_LEN))
1286 return RX_DROP_UNUSABLE;
1287 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1288 }
1289
1290 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1291 __skb_queue_tail(&entry->skb_list, rx->skb);
1292 entry->last_frag = frag;
1293 entry->extra_len += rx->skb->len;
1294 if (ieee80211_has_morefrags(fc)) {
1295 rx->skb = NULL;
1296 return RX_QUEUED;
1297 }
1298
1299 rx->skb = __skb_dequeue(&entry->skb_list);
1300 if (skb_tailroom(rx->skb) < entry->extra_len) {
1301 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1302 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1303 GFP_ATOMIC))) {
1304 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1305 __skb_queue_purge(&entry->skb_list);
1306 return RX_DROP_UNUSABLE;
1307 }
1308 }
1309 while ((skb = __skb_dequeue(&entry->skb_list))) {
1310 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1311 dev_kfree_skb(skb);
1312 }
1313
1314 /* Complete frame has been reassembled - process it now */
1315 rx->flags |= IEEE80211_RX_FRAGMENTED;
1316
1317 out:
1318 if (rx->sta)
1319 rx->sta->rx_packets++;
1320 if (is_multicast_ether_addr(hdr->addr1))
1321 rx->local->dot11MulticastReceivedFrameCount++;
1322 else
1323 ieee80211_led_rx(rx->local);
1324 return RX_CONTINUE;
1325 }
1326
1327 static ieee80211_rx_result debug_noinline
1328 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1329 {
1330 struct ieee80211_sub_if_data *sdata = rx->sdata;
1331 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1332
1333 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1334 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1335 return RX_CONTINUE;
1336
1337 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1338 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1339 return RX_DROP_UNUSABLE;
1340
1341 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1342 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1343 else
1344 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1345
1346 /* Free PS Poll skb here instead of returning RX_DROP that would
1347 * count as an dropped frame. */
1348 dev_kfree_skb(rx->skb);
1349
1350 return RX_QUEUED;
1351 }
1352
1353 static ieee80211_rx_result debug_noinline
1354 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1355 {
1356 u8 *data = rx->skb->data;
1357 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1358
1359 if (!ieee80211_is_data_qos(hdr->frame_control))
1360 return RX_CONTINUE;
1361
1362 /* remove the qos control field, update frame type and meta-data */
1363 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1364 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1365 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1366 /* change frame type to non QOS */
1367 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1368
1369 return RX_CONTINUE;
1370 }
1371
1372 static int
1373 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1374 {
1375 if (unlikely(!rx->sta ||
1376 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1377 return -EACCES;
1378
1379 return 0;
1380 }
1381
1382 static int
1383 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1384 {
1385 struct sk_buff *skb = rx->skb;
1386 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1387
1388 /*
1389 * Pass through unencrypted frames if the hardware has
1390 * decrypted them already.
1391 */
1392 if (status->flag & RX_FLAG_DECRYPTED)
1393 return 0;
1394
1395 /* Drop unencrypted frames if key is set. */
1396 if (unlikely(!ieee80211_has_protected(fc) &&
1397 !ieee80211_is_nullfunc(fc) &&
1398 ieee80211_is_data(fc) &&
1399 (rx->key || rx->sdata->drop_unencrypted)))
1400 return -EACCES;
1401
1402 return 0;
1403 }
1404
1405 static int
1406 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1407 {
1408 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1409 __le16 fc = hdr->frame_control;
1410 int res;
1411
1412 res = ieee80211_drop_unencrypted(rx, fc);
1413 if (unlikely(res))
1414 return res;
1415
1416 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1417 if (unlikely(ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1418 rx->key))
1419 return -EACCES;
1420 /* BIP does not use Protected field, so need to check MMIE */
1421 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1422 ieee80211_get_mmie_keyidx(rx->skb) < 0 &&
1423 rx->key))
1424 return -EACCES;
1425 /*
1426 * When using MFP, Action frames are not allowed prior to
1427 * having configured keys.
1428 */
1429 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1430 ieee80211_is_robust_mgmt_frame(
1431 (struct ieee80211_hdr *) rx->skb->data)))
1432 return -EACCES;
1433 }
1434
1435 return 0;
1436 }
1437
1438 static int
1439 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1440 {
1441 struct ieee80211_sub_if_data *sdata = rx->sdata;
1442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1443
1444 if (ieee80211_has_a4(hdr->frame_control) &&
1445 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1446 return -1;
1447
1448 if (is_multicast_ether_addr(hdr->addr1) &&
1449 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1450 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1451 return -1;
1452
1453 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1454 }
1455
1456 /*
1457 * requires that rx->skb is a frame with ethernet header
1458 */
1459 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1460 {
1461 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1462 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1463 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1464
1465 /*
1466 * Allow EAPOL frames to us/the PAE group address regardless
1467 * of whether the frame was encrypted or not.
1468 */
1469 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1470 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1471 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1472 return true;
1473
1474 if (ieee80211_802_1x_port_control(rx) ||
1475 ieee80211_drop_unencrypted(rx, fc))
1476 return false;
1477
1478 return true;
1479 }
1480
1481 /*
1482 * requires that rx->skb is a frame with ethernet header
1483 */
1484 static void
1485 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1486 {
1487 struct ieee80211_sub_if_data *sdata = rx->sdata;
1488 struct net_device *dev = sdata->dev;
1489 struct sk_buff *skb, *xmit_skb;
1490 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1491 struct sta_info *dsta;
1492
1493 skb = rx->skb;
1494 xmit_skb = NULL;
1495
1496 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1497 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1498 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1499 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1500 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1501 if (is_multicast_ether_addr(ehdr->h_dest)) {
1502 /*
1503 * send multicast frames both to higher layers in
1504 * local net stack and back to the wireless medium
1505 */
1506 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1507 if (!xmit_skb && net_ratelimit())
1508 printk(KERN_DEBUG "%s: failed to clone "
1509 "multicast frame\n", dev->name);
1510 } else {
1511 dsta = sta_info_get(sdata, skb->data);
1512 if (dsta) {
1513 /*
1514 * The destination station is associated to
1515 * this AP (in this VLAN), so send the frame
1516 * directly to it and do not pass it to local
1517 * net stack.
1518 */
1519 xmit_skb = skb;
1520 skb = NULL;
1521 }
1522 }
1523 }
1524
1525 if (skb) {
1526 int align __maybe_unused;
1527
1528 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1529 /*
1530 * 'align' will only take the values 0 or 2 here
1531 * since all frames are required to be aligned
1532 * to 2-byte boundaries when being passed to
1533 * mac80211. That also explains the __skb_push()
1534 * below.
1535 */
1536 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1537 if (align) {
1538 if (WARN_ON(skb_headroom(skb) < 3)) {
1539 dev_kfree_skb(skb);
1540 skb = NULL;
1541 } else {
1542 u8 *data = skb->data;
1543 size_t len = skb_headlen(skb);
1544 skb->data -= align;
1545 memmove(skb->data, data, len);
1546 skb_set_tail_pointer(skb, len);
1547 }
1548 }
1549 #endif
1550
1551 if (skb) {
1552 /* deliver to local stack */
1553 skb->protocol = eth_type_trans(skb, dev);
1554 memset(skb->cb, 0, sizeof(skb->cb));
1555 netif_rx(skb);
1556 }
1557 }
1558
1559 if (xmit_skb) {
1560 /* send to wireless media */
1561 xmit_skb->protocol = htons(ETH_P_802_3);
1562 skb_reset_network_header(xmit_skb);
1563 skb_reset_mac_header(xmit_skb);
1564 dev_queue_xmit(xmit_skb);
1565 }
1566 }
1567
1568 static ieee80211_rx_result debug_noinline
1569 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1570 {
1571 struct net_device *dev = rx->sdata->dev;
1572 struct sk_buff *skb = rx->skb;
1573 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1574 __le16 fc = hdr->frame_control;
1575 struct sk_buff_head frame_list;
1576
1577 if (unlikely(!ieee80211_is_data(fc)))
1578 return RX_CONTINUE;
1579
1580 if (unlikely(!ieee80211_is_data_present(fc)))
1581 return RX_DROP_MONITOR;
1582
1583 if (!(rx->flags & IEEE80211_RX_AMSDU))
1584 return RX_CONTINUE;
1585
1586 if (ieee80211_has_a4(hdr->frame_control) &&
1587 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1588 !rx->sdata->u.vlan.sta)
1589 return RX_DROP_UNUSABLE;
1590
1591 if (is_multicast_ether_addr(hdr->addr1) &&
1592 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1593 rx->sdata->u.vlan.sta) ||
1594 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1595 rx->sdata->u.mgd.use_4addr)))
1596 return RX_DROP_UNUSABLE;
1597
1598 skb->dev = dev;
1599 __skb_queue_head_init(&frame_list);
1600
1601 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1602 rx->sdata->vif.type,
1603 rx->local->hw.extra_tx_headroom);
1604
1605 while (!skb_queue_empty(&frame_list)) {
1606 rx->skb = __skb_dequeue(&frame_list);
1607
1608 if (!ieee80211_frame_allowed(rx, fc)) {
1609 dev_kfree_skb(rx->skb);
1610 continue;
1611 }
1612 dev->stats.rx_packets++;
1613 dev->stats.rx_bytes += rx->skb->len;
1614
1615 ieee80211_deliver_skb(rx);
1616 }
1617
1618 return RX_QUEUED;
1619 }
1620
1621 #ifdef CONFIG_MAC80211_MESH
1622 static ieee80211_rx_result
1623 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1624 {
1625 struct ieee80211_hdr *hdr;
1626 struct ieee80211s_hdr *mesh_hdr;
1627 unsigned int hdrlen;
1628 struct sk_buff *skb = rx->skb, *fwd_skb;
1629 struct ieee80211_local *local = rx->local;
1630 struct ieee80211_sub_if_data *sdata = rx->sdata;
1631
1632 hdr = (struct ieee80211_hdr *) skb->data;
1633 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1634 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1635
1636 if (!ieee80211_is_data(hdr->frame_control))
1637 return RX_CONTINUE;
1638
1639 if (!mesh_hdr->ttl)
1640 /* illegal frame */
1641 return RX_DROP_MONITOR;
1642
1643 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1644 struct mesh_path *mppath;
1645 char *proxied_addr;
1646 char *mpp_addr;
1647
1648 if (is_multicast_ether_addr(hdr->addr1)) {
1649 mpp_addr = hdr->addr3;
1650 proxied_addr = mesh_hdr->eaddr1;
1651 } else {
1652 mpp_addr = hdr->addr4;
1653 proxied_addr = mesh_hdr->eaddr2;
1654 }
1655
1656 rcu_read_lock();
1657 mppath = mpp_path_lookup(proxied_addr, sdata);
1658 if (!mppath) {
1659 mpp_path_add(proxied_addr, mpp_addr, sdata);
1660 } else {
1661 spin_lock_bh(&mppath->state_lock);
1662 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1663 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1664 spin_unlock_bh(&mppath->state_lock);
1665 }
1666 rcu_read_unlock();
1667 }
1668
1669 /* Frame has reached destination. Don't forward */
1670 if (!is_multicast_ether_addr(hdr->addr1) &&
1671 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1672 return RX_CONTINUE;
1673
1674 mesh_hdr->ttl--;
1675
1676 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1677 if (!mesh_hdr->ttl)
1678 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1679 dropped_frames_ttl);
1680 else {
1681 struct ieee80211_hdr *fwd_hdr;
1682 struct ieee80211_tx_info *info;
1683
1684 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1685
1686 if (!fwd_skb && net_ratelimit())
1687 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1688 sdata->name);
1689
1690 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1691 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1692 info = IEEE80211_SKB_CB(fwd_skb);
1693 memset(info, 0, sizeof(*info));
1694 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1695 info->control.vif = &rx->sdata->vif;
1696 skb_set_queue_mapping(skb,
1697 ieee80211_select_queue(rx->sdata, fwd_skb));
1698 ieee80211_set_qos_hdr(local, skb);
1699 if (is_multicast_ether_addr(fwd_hdr->addr1))
1700 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1701 fwded_mcast);
1702 else {
1703 int err;
1704 /*
1705 * Save TA to addr1 to send TA a path error if a
1706 * suitable next hop is not found
1707 */
1708 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1709 ETH_ALEN);
1710 err = mesh_nexthop_lookup(fwd_skb, sdata);
1711 /* Failed to immediately resolve next hop:
1712 * fwded frame was dropped or will be added
1713 * later to the pending skb queue. */
1714 if (err)
1715 return RX_DROP_MONITOR;
1716
1717 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1718 fwded_unicast);
1719 }
1720 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1721 fwded_frames);
1722 ieee80211_add_pending_skb(local, fwd_skb);
1723 }
1724 }
1725
1726 if (is_multicast_ether_addr(hdr->addr1) ||
1727 sdata->dev->flags & IFF_PROMISC)
1728 return RX_CONTINUE;
1729 else
1730 return RX_DROP_MONITOR;
1731 }
1732 #endif
1733
1734 static ieee80211_rx_result debug_noinline
1735 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1736 {
1737 struct ieee80211_sub_if_data *sdata = rx->sdata;
1738 struct ieee80211_local *local = rx->local;
1739 struct net_device *dev = sdata->dev;
1740 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1741 __le16 fc = hdr->frame_control;
1742 int err;
1743
1744 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1745 return RX_CONTINUE;
1746
1747 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1748 return RX_DROP_MONITOR;
1749
1750 /*
1751 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1752 * that a 4-addr station can be detected and moved into a separate VLAN
1753 */
1754 if (ieee80211_has_a4(hdr->frame_control) &&
1755 sdata->vif.type == NL80211_IFTYPE_AP)
1756 return RX_DROP_MONITOR;
1757
1758 err = __ieee80211_data_to_8023(rx);
1759 if (unlikely(err))
1760 return RX_DROP_UNUSABLE;
1761
1762 if (!ieee80211_frame_allowed(rx, fc))
1763 return RX_DROP_MONITOR;
1764
1765 rx->skb->dev = dev;
1766
1767 dev->stats.rx_packets++;
1768 dev->stats.rx_bytes += rx->skb->len;
1769
1770 if (ieee80211_is_data(hdr->frame_control) &&
1771 !is_multicast_ether_addr(hdr->addr1) &&
1772 local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1773 mod_timer(&local->dynamic_ps_timer, jiffies +
1774 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1775 }
1776
1777 ieee80211_deliver_skb(rx);
1778
1779 return RX_QUEUED;
1780 }
1781
1782 static ieee80211_rx_result debug_noinline
1783 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1784 {
1785 struct ieee80211_local *local = rx->local;
1786 struct ieee80211_hw *hw = &local->hw;
1787 struct sk_buff *skb = rx->skb;
1788 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1789 struct tid_ampdu_rx *tid_agg_rx;
1790 u16 start_seq_num;
1791 u16 tid;
1792
1793 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1794 return RX_CONTINUE;
1795
1796 if (ieee80211_is_back_req(bar->frame_control)) {
1797 if (!rx->sta)
1798 return RX_DROP_MONITOR;
1799 tid = le16_to_cpu(bar->control) >> 12;
1800 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1801 != HT_AGG_STATE_OPERATIONAL)
1802 return RX_DROP_MONITOR;
1803 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1804
1805 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1806
1807 /* reset session timer */
1808 if (tid_agg_rx->timeout)
1809 mod_timer(&tid_agg_rx->session_timer,
1810 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1811
1812 /* release stored frames up to start of BAR */
1813 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1814 frames);
1815 kfree_skb(skb);
1816 return RX_QUEUED;
1817 }
1818
1819 return RX_CONTINUE;
1820 }
1821
1822 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1823 struct ieee80211_mgmt *mgmt,
1824 size_t len)
1825 {
1826 struct ieee80211_local *local = sdata->local;
1827 struct sk_buff *skb;
1828 struct ieee80211_mgmt *resp;
1829
1830 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1831 /* Not to own unicast address */
1832 return;
1833 }
1834
1835 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1836 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1837 /* Not from the current AP or not associated yet. */
1838 return;
1839 }
1840
1841 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1842 /* Too short SA Query request frame */
1843 return;
1844 }
1845
1846 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1847 if (skb == NULL)
1848 return;
1849
1850 skb_reserve(skb, local->hw.extra_tx_headroom);
1851 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1852 memset(resp, 0, 24);
1853 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1854 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1855 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1856 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1857 IEEE80211_STYPE_ACTION);
1858 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1859 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1860 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1861 memcpy(resp->u.action.u.sa_query.trans_id,
1862 mgmt->u.action.u.sa_query.trans_id,
1863 WLAN_SA_QUERY_TR_ID_LEN);
1864
1865 ieee80211_tx_skb(sdata, skb);
1866 }
1867
1868 static ieee80211_rx_result debug_noinline
1869 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1870 {
1871 struct ieee80211_local *local = rx->local;
1872 struct ieee80211_sub_if_data *sdata = rx->sdata;
1873 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1874 struct sk_buff *nskb;
1875 struct ieee80211_rx_status *status;
1876 int len = rx->skb->len;
1877
1878 if (!ieee80211_is_action(mgmt->frame_control))
1879 return RX_CONTINUE;
1880
1881 /* drop too small frames */
1882 if (len < IEEE80211_MIN_ACTION_SIZE)
1883 return RX_DROP_UNUSABLE;
1884
1885 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
1886 return RX_DROP_UNUSABLE;
1887
1888 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1889 return RX_DROP_UNUSABLE;
1890
1891 if (ieee80211_drop_unencrypted_mgmt(rx))
1892 return RX_DROP_UNUSABLE;
1893
1894 switch (mgmt->u.action.category) {
1895 case WLAN_CATEGORY_BACK:
1896 /*
1897 * The aggregation code is not prepared to handle
1898 * anything but STA/AP due to the BSSID handling;
1899 * IBSS could work in the code but isn't supported
1900 * by drivers or the standard.
1901 */
1902 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1903 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1904 sdata->vif.type != NL80211_IFTYPE_AP)
1905 break;
1906
1907 /* verify action_code is present */
1908 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1909 break;
1910
1911 switch (mgmt->u.action.u.addba_req.action_code) {
1912 case WLAN_ACTION_ADDBA_REQ:
1913 if (len < (IEEE80211_MIN_ACTION_SIZE +
1914 sizeof(mgmt->u.action.u.addba_req)))
1915 return RX_DROP_MONITOR;
1916 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1917 goto handled;
1918 case WLAN_ACTION_ADDBA_RESP:
1919 if (len < (IEEE80211_MIN_ACTION_SIZE +
1920 sizeof(mgmt->u.action.u.addba_resp)))
1921 break;
1922 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1923 goto handled;
1924 case WLAN_ACTION_DELBA:
1925 if (len < (IEEE80211_MIN_ACTION_SIZE +
1926 sizeof(mgmt->u.action.u.delba)))
1927 break;
1928 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1929 goto handled;
1930 }
1931 break;
1932 case WLAN_CATEGORY_SPECTRUM_MGMT:
1933 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1934 break;
1935
1936 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1937 break;
1938
1939 /* verify action_code is present */
1940 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1941 break;
1942
1943 switch (mgmt->u.action.u.measurement.action_code) {
1944 case WLAN_ACTION_SPCT_MSR_REQ:
1945 if (len < (IEEE80211_MIN_ACTION_SIZE +
1946 sizeof(mgmt->u.action.u.measurement)))
1947 break;
1948 ieee80211_process_measurement_req(sdata, mgmt, len);
1949 goto handled;
1950 case WLAN_ACTION_SPCT_CHL_SWITCH:
1951 if (len < (IEEE80211_MIN_ACTION_SIZE +
1952 sizeof(mgmt->u.action.u.chan_switch)))
1953 break;
1954
1955 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1956 break;
1957
1958 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
1959 break;
1960
1961 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1962 }
1963 break;
1964 case WLAN_CATEGORY_SA_QUERY:
1965 if (len < (IEEE80211_MIN_ACTION_SIZE +
1966 sizeof(mgmt->u.action.u.sa_query)))
1967 break;
1968
1969 switch (mgmt->u.action.u.sa_query.action) {
1970 case WLAN_ACTION_SA_QUERY_REQUEST:
1971 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1972 break;
1973 ieee80211_process_sa_query_req(sdata, mgmt, len);
1974 goto handled;
1975 }
1976 break;
1977 }
1978
1979 /*
1980 * For AP mode, hostapd is responsible for handling any action
1981 * frames that we didn't handle, including returning unknown
1982 * ones. For all other modes we will return them to the sender,
1983 * setting the 0x80 bit in the action category, as required by
1984 * 802.11-2007 7.3.1.11.
1985 */
1986 if (sdata->vif.type == NL80211_IFTYPE_AP ||
1987 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1988 return RX_DROP_MONITOR;
1989
1990 /*
1991 * Getting here means the kernel doesn't know how to handle
1992 * it, but maybe userspace does ... include returned frames
1993 * so userspace can register for those to know whether ones
1994 * it transmitted were processed or returned.
1995 */
1996 status = IEEE80211_SKB_RXCB(rx->skb);
1997
1998 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1999 cfg80211_rx_action(rx->sdata->dev, status->freq,
2000 rx->skb->data, rx->skb->len,
2001 GFP_ATOMIC))
2002 goto handled;
2003
2004 /* do not return rejected action frames */
2005 if (mgmt->u.action.category & 0x80)
2006 return RX_DROP_UNUSABLE;
2007
2008 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2009 GFP_ATOMIC);
2010 if (nskb) {
2011 struct ieee80211_mgmt *mgmt = (void *)nskb->data;
2012
2013 mgmt->u.action.category |= 0x80;
2014 memcpy(mgmt->da, mgmt->sa, ETH_ALEN);
2015 memcpy(mgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2016
2017 memset(nskb->cb, 0, sizeof(nskb->cb));
2018
2019 ieee80211_tx_skb(rx->sdata, nskb);
2020 }
2021
2022 handled:
2023 if (rx->sta)
2024 rx->sta->rx_packets++;
2025 dev_kfree_skb(rx->skb);
2026 return RX_QUEUED;
2027 }
2028
2029 static ieee80211_rx_result debug_noinline
2030 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2031 {
2032 struct ieee80211_sub_if_data *sdata = rx->sdata;
2033 ieee80211_rx_result rxs;
2034
2035 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
2036 return RX_DROP_MONITOR;
2037
2038 if (ieee80211_drop_unencrypted_mgmt(rx))
2039 return RX_DROP_UNUSABLE;
2040
2041 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2042 if (rxs != RX_CONTINUE)
2043 return rxs;
2044
2045 if (ieee80211_vif_is_mesh(&sdata->vif))
2046 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2047
2048 if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2049 return ieee80211_ibss_rx_mgmt(sdata, rx->skb);
2050
2051 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2052 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
2053
2054 return RX_DROP_MONITOR;
2055 }
2056
2057 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2058 struct ieee80211_rx_data *rx)
2059 {
2060 int keyidx;
2061 unsigned int hdrlen;
2062
2063 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2064 if (rx->skb->len >= hdrlen + 4)
2065 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2066 else
2067 keyidx = -1;
2068
2069 if (!rx->sta) {
2070 /*
2071 * Some hardware seem to generate incorrect Michael MIC
2072 * reports; ignore them to avoid triggering countermeasures.
2073 */
2074 return;
2075 }
2076
2077 if (!ieee80211_has_protected(hdr->frame_control))
2078 return;
2079
2080 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2081 /*
2082 * APs with pairwise keys should never receive Michael MIC
2083 * errors for non-zero keyidx because these are reserved for
2084 * group keys and only the AP is sending real multicast
2085 * frames in the BSS.
2086 */
2087 return;
2088 }
2089
2090 if (!ieee80211_is_data(hdr->frame_control) &&
2091 !ieee80211_is_auth(hdr->frame_control))
2092 return;
2093
2094 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2095 GFP_ATOMIC);
2096 }
2097
2098 /* TODO: use IEEE80211_RX_FRAGMENTED */
2099 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2100 struct ieee80211_rate *rate)
2101 {
2102 struct ieee80211_sub_if_data *sdata;
2103 struct ieee80211_local *local = rx->local;
2104 struct ieee80211_rtap_hdr {
2105 struct ieee80211_radiotap_header hdr;
2106 u8 flags;
2107 u8 rate_or_pad;
2108 __le16 chan_freq;
2109 __le16 chan_flags;
2110 } __attribute__ ((packed)) *rthdr;
2111 struct sk_buff *skb = rx->skb, *skb2;
2112 struct net_device *prev_dev = NULL;
2113 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2114
2115 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2116 goto out_free_skb;
2117
2118 if (skb_headroom(skb) < sizeof(*rthdr) &&
2119 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2120 goto out_free_skb;
2121
2122 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2123 memset(rthdr, 0, sizeof(*rthdr));
2124 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2125 rthdr->hdr.it_present =
2126 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2127 (1 << IEEE80211_RADIOTAP_CHANNEL));
2128
2129 if (rate) {
2130 rthdr->rate_or_pad = rate->bitrate / 5;
2131 rthdr->hdr.it_present |=
2132 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2133 }
2134 rthdr->chan_freq = cpu_to_le16(status->freq);
2135
2136 if (status->band == IEEE80211_BAND_5GHZ)
2137 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2138 IEEE80211_CHAN_5GHZ);
2139 else
2140 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2141 IEEE80211_CHAN_2GHZ);
2142
2143 skb_set_mac_header(skb, 0);
2144 skb->ip_summed = CHECKSUM_UNNECESSARY;
2145 skb->pkt_type = PACKET_OTHERHOST;
2146 skb->protocol = htons(ETH_P_802_2);
2147
2148 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2149 if (!ieee80211_sdata_running(sdata))
2150 continue;
2151
2152 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2153 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2154 continue;
2155
2156 if (prev_dev) {
2157 skb2 = skb_clone(skb, GFP_ATOMIC);
2158 if (skb2) {
2159 skb2->dev = prev_dev;
2160 netif_rx(skb2);
2161 }
2162 }
2163
2164 prev_dev = sdata->dev;
2165 sdata->dev->stats.rx_packets++;
2166 sdata->dev->stats.rx_bytes += skb->len;
2167 }
2168
2169 if (prev_dev) {
2170 skb->dev = prev_dev;
2171 netif_rx(skb);
2172 skb = NULL;
2173 } else
2174 goto out_free_skb;
2175
2176 status->flag |= RX_FLAG_INTERNAL_CMTR;
2177 return;
2178
2179 out_free_skb:
2180 dev_kfree_skb(skb);
2181 }
2182
2183
2184 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2185 struct ieee80211_rx_data *rx,
2186 struct sk_buff *skb,
2187 struct ieee80211_rate *rate)
2188 {
2189 struct sk_buff_head reorder_release;
2190 ieee80211_rx_result res = RX_DROP_MONITOR;
2191
2192 __skb_queue_head_init(&reorder_release);
2193
2194 rx->skb = skb;
2195 rx->sdata = sdata;
2196
2197 #define CALL_RXH(rxh) \
2198 do { \
2199 res = rxh(rx); \
2200 if (res != RX_CONTINUE) \
2201 goto rxh_next; \
2202 } while (0);
2203
2204 /*
2205 * NB: the rxh_next label works even if we jump
2206 * to it from here because then the list will
2207 * be empty, which is a trivial check
2208 */
2209 CALL_RXH(ieee80211_rx_h_passive_scan)
2210 CALL_RXH(ieee80211_rx_h_check)
2211
2212 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2213
2214 while ((skb = __skb_dequeue(&reorder_release))) {
2215 /*
2216 * all the other fields are valid across frames
2217 * that belong to an aMPDU since they are on the
2218 * same TID from the same station
2219 */
2220 rx->skb = skb;
2221
2222 CALL_RXH(ieee80211_rx_h_decrypt)
2223 CALL_RXH(ieee80211_rx_h_check_more_data)
2224 CALL_RXH(ieee80211_rx_h_sta_process)
2225 CALL_RXH(ieee80211_rx_h_defragment)
2226 CALL_RXH(ieee80211_rx_h_ps_poll)
2227 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2228 /* must be after MMIC verify so header is counted in MPDU mic */
2229 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2230 CALL_RXH(ieee80211_rx_h_amsdu)
2231 #ifdef CONFIG_MAC80211_MESH
2232 if (ieee80211_vif_is_mesh(&sdata->vif))
2233 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2234 #endif
2235 CALL_RXH(ieee80211_rx_h_data)
2236
2237 /* special treatment -- needs the queue */
2238 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2239 if (res != RX_CONTINUE)
2240 goto rxh_next;
2241
2242 CALL_RXH(ieee80211_rx_h_action)
2243 CALL_RXH(ieee80211_rx_h_mgmt)
2244
2245 #undef CALL_RXH
2246
2247 rxh_next:
2248 switch (res) {
2249 case RX_DROP_MONITOR:
2250 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2251 if (rx->sta)
2252 rx->sta->rx_dropped++;
2253 /* fall through */
2254 case RX_CONTINUE:
2255 ieee80211_rx_cooked_monitor(rx, rate);
2256 break;
2257 case RX_DROP_UNUSABLE:
2258 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2259 if (rx->sta)
2260 rx->sta->rx_dropped++;
2261 dev_kfree_skb(rx->skb);
2262 break;
2263 case RX_QUEUED:
2264 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2265 break;
2266 }
2267 }
2268 }
2269
2270 /* main receive path */
2271
2272 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2273 struct ieee80211_rx_data *rx,
2274 struct ieee80211_hdr *hdr)
2275 {
2276 struct sk_buff *skb = rx->skb;
2277 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2278 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2279 int multicast = is_multicast_ether_addr(hdr->addr1);
2280
2281 switch (sdata->vif.type) {
2282 case NL80211_IFTYPE_STATION:
2283 if (!bssid && !sdata->u.mgd.use_4addr)
2284 return 0;
2285 if (!multicast &&
2286 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2287 if (!(sdata->dev->flags & IFF_PROMISC))
2288 return 0;
2289 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2290 }
2291 break;
2292 case NL80211_IFTYPE_ADHOC:
2293 if (!bssid)
2294 return 0;
2295 if (ieee80211_is_beacon(hdr->frame_control)) {
2296 return 1;
2297 }
2298 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2299 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2300 return 0;
2301 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2302 } else if (!multicast &&
2303 compare_ether_addr(sdata->vif.addr,
2304 hdr->addr1) != 0) {
2305 if (!(sdata->dev->flags & IFF_PROMISC))
2306 return 0;
2307 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2308 } else if (!rx->sta) {
2309 int rate_idx;
2310 if (status->flag & RX_FLAG_HT)
2311 rate_idx = 0; /* TODO: HT rates */
2312 else
2313 rate_idx = status->rate_idx;
2314 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2315 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2316 }
2317 break;
2318 case NL80211_IFTYPE_MESH_POINT:
2319 if (!multicast &&
2320 compare_ether_addr(sdata->vif.addr,
2321 hdr->addr1) != 0) {
2322 if (!(sdata->dev->flags & IFF_PROMISC))
2323 return 0;
2324
2325 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2326 }
2327 break;
2328 case NL80211_IFTYPE_AP_VLAN:
2329 case NL80211_IFTYPE_AP:
2330 if (!bssid) {
2331 if (compare_ether_addr(sdata->vif.addr,
2332 hdr->addr1))
2333 return 0;
2334 } else if (!ieee80211_bssid_match(bssid,
2335 sdata->vif.addr)) {
2336 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2337 return 0;
2338 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2339 }
2340 break;
2341 case NL80211_IFTYPE_WDS:
2342 if (bssid || !ieee80211_is_data(hdr->frame_control))
2343 return 0;
2344 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2345 return 0;
2346 break;
2347 case NL80211_IFTYPE_MONITOR:
2348 case NL80211_IFTYPE_UNSPECIFIED:
2349 case __NL80211_IFTYPE_AFTER_LAST:
2350 /* should never get here */
2351 WARN_ON(1);
2352 break;
2353 }
2354
2355 return 1;
2356 }
2357
2358 /*
2359 * This is the actual Rx frames handler. as it blongs to Rx path it must
2360 * be called with rcu_read_lock protection.
2361 */
2362 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2363 struct sk_buff *skb,
2364 struct ieee80211_rate *rate)
2365 {
2366 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2367 struct ieee80211_local *local = hw_to_local(hw);
2368 struct ieee80211_sub_if_data *sdata;
2369 struct ieee80211_hdr *hdr;
2370 struct ieee80211_rx_data rx;
2371 int prepares;
2372 struct ieee80211_sub_if_data *prev = NULL;
2373 struct sk_buff *skb_new;
2374 struct sta_info *sta, *tmp;
2375 bool found_sta = false;
2376
2377 hdr = (struct ieee80211_hdr *)skb->data;
2378 memset(&rx, 0, sizeof(rx));
2379 rx.skb = skb;
2380 rx.local = local;
2381
2382 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control))
2383 local->dot11ReceivedFragmentCount++;
2384
2385 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2386 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2387 rx.flags |= IEEE80211_RX_IN_SCAN;
2388
2389 ieee80211_parse_qos(&rx);
2390 ieee80211_verify_alignment(&rx);
2391
2392 if (ieee80211_is_data(hdr->frame_control)) {
2393 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2394 rx.sta = sta;
2395 found_sta = true;
2396 rx.sdata = sta->sdata;
2397
2398 rx.flags |= IEEE80211_RX_RA_MATCH;
2399 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2400 if (prepares) {
2401 if (status->flag & RX_FLAG_MMIC_ERROR) {
2402 if (rx.flags & IEEE80211_RX_RA_MATCH)
2403 ieee80211_rx_michael_mic_report(hdr, &rx);
2404 } else
2405 prev = rx.sdata;
2406 }
2407 }
2408 }
2409 if (!found_sta) {
2410 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2411 if (!ieee80211_sdata_running(sdata))
2412 continue;
2413
2414 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2415 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2416 continue;
2417
2418 /*
2419 * frame is destined for this interface, but if it's
2420 * not also for the previous one we handle that after
2421 * the loop to avoid copying the SKB once too much
2422 */
2423
2424 if (!prev) {
2425 prev = sdata;
2426 continue;
2427 }
2428
2429 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2430
2431 rx.flags |= IEEE80211_RX_RA_MATCH;
2432 prepares = prepare_for_handlers(prev, &rx, hdr);
2433
2434 if (!prepares)
2435 goto next;
2436
2437 if (status->flag & RX_FLAG_MMIC_ERROR) {
2438 rx.sdata = prev;
2439 if (rx.flags & IEEE80211_RX_RA_MATCH)
2440 ieee80211_rx_michael_mic_report(hdr,
2441 &rx);
2442 goto next;
2443 }
2444
2445 /*
2446 * frame was destined for the previous interface
2447 * so invoke RX handlers for it
2448 */
2449
2450 skb_new = skb_copy(skb, GFP_ATOMIC);
2451 if (!skb_new) {
2452 if (net_ratelimit())
2453 printk(KERN_DEBUG "%s: failed to copy "
2454 "multicast frame for %s\n",
2455 wiphy_name(local->hw.wiphy),
2456 prev->name);
2457 goto next;
2458 }
2459 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2460 next:
2461 prev = sdata;
2462 }
2463
2464 if (prev) {
2465 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2466
2467 rx.flags |= IEEE80211_RX_RA_MATCH;
2468 prepares = prepare_for_handlers(prev, &rx, hdr);
2469
2470 if (!prepares)
2471 prev = NULL;
2472 }
2473 }
2474 if (prev)
2475 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2476 else
2477 dev_kfree_skb(skb);
2478 }
2479
2480 /*
2481 * This is the receive path handler. It is called by a low level driver when an
2482 * 802.11 MPDU is received from the hardware.
2483 */
2484 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2485 {
2486 struct ieee80211_local *local = hw_to_local(hw);
2487 struct ieee80211_rate *rate = NULL;
2488 struct ieee80211_supported_band *sband;
2489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2490
2491 WARN_ON_ONCE(softirq_count() == 0);
2492
2493 if (WARN_ON(status->band < 0 ||
2494 status->band >= IEEE80211_NUM_BANDS))
2495 goto drop;
2496
2497 sband = local->hw.wiphy->bands[status->band];
2498 if (WARN_ON(!sband))
2499 goto drop;
2500
2501 /*
2502 * If we're suspending, it is possible although not too likely
2503 * that we'd be receiving frames after having already partially
2504 * quiesced the stack. We can't process such frames then since
2505 * that might, for example, cause stations to be added or other
2506 * driver callbacks be invoked.
2507 */
2508 if (unlikely(local->quiescing || local->suspended))
2509 goto drop;
2510
2511 /*
2512 * The same happens when we're not even started,
2513 * but that's worth a warning.
2514 */
2515 if (WARN_ON(!local->started))
2516 goto drop;
2517
2518 if (status->flag & RX_FLAG_HT) {
2519 /*
2520 * rate_idx is MCS index, which can be [0-76] as documented on:
2521 *
2522 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2523 *
2524 * Anything else would be some sort of driver or hardware error.
2525 * The driver should catch hardware errors.
2526 */
2527 if (WARN((status->rate_idx < 0 ||
2528 status->rate_idx > 76),
2529 "Rate marked as an HT rate but passed "
2530 "status->rate_idx is not "
2531 "an MCS index [0-76]: %d (0x%02x)\n",
2532 status->rate_idx,
2533 status->rate_idx))
2534 goto drop;
2535 } else {
2536 if (WARN_ON(status->rate_idx < 0 ||
2537 status->rate_idx >= sband->n_bitrates))
2538 goto drop;
2539 rate = &sband->bitrates[status->rate_idx];
2540 }
2541
2542 /*
2543 * key references and virtual interfaces are protected using RCU
2544 * and this requires that we are in a read-side RCU section during
2545 * receive processing
2546 */
2547 rcu_read_lock();
2548
2549 /*
2550 * Frames with failed FCS/PLCP checksum are not returned,
2551 * all other frames are returned without radiotap header
2552 * if it was previously present.
2553 * Also, frames with less than 16 bytes are dropped.
2554 */
2555 skb = ieee80211_rx_monitor(local, skb, rate);
2556 if (!skb) {
2557 rcu_read_unlock();
2558 return;
2559 }
2560
2561 __ieee80211_rx_handle_packet(hw, skb, rate);
2562
2563 rcu_read_unlock();
2564
2565 return;
2566 drop:
2567 kfree_skb(skb);
2568 }
2569 EXPORT_SYMBOL(ieee80211_rx);
2570
2571 /* This is a version of the rx handler that can be called from hard irq
2572 * context. Post the skb on the queue and schedule the tasklet */
2573 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2574 {
2575 struct ieee80211_local *local = hw_to_local(hw);
2576
2577 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2578
2579 skb->pkt_type = IEEE80211_RX_MSG;
2580 skb_queue_tail(&local->skb_queue, skb);
2581 tasklet_schedule(&local->tasklet);
2582 }
2583 EXPORT_SYMBOL(ieee80211_rx_irqsafe);