]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/rx.c
Merge branch 'x86-ras-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 /*
36 * monitor mode reception
37 *
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
40 */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb,
43 unsigned int rtap_vendor_space)
44 {
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 __pskb_pull(skb, rtap_vendor_space);
57
58 return skb;
59 }
60
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 unsigned int rtap_vendor_space)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + rtap_vendor_space);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return true;
73
74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 return true;
76
77 if (ieee80211_is_ctl(hdr->frame_control) &&
78 !ieee80211_is_pspoll(hdr->frame_control) &&
79 !ieee80211_is_back_req(hdr->frame_control))
80 return true;
81
82 return false;
83 }
84
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 struct ieee80211_rx_status *status,
88 struct sk_buff *skb)
89 {
90 int len;
91
92 /* always present fields */
93 len = sizeof(struct ieee80211_radiotap_header) + 8;
94
95 /* allocate extra bitmaps */
96 if (status->chains)
97 len += 4 * hweight8(status->chains);
98
99 if (ieee80211_have_rx_timestamp(status)) {
100 len = ALIGN(len, 8);
101 len += 8;
102 }
103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 len += 1;
105
106 /* antenna field, if we don't have per-chain info */
107 if (!status->chains)
108 len += 1;
109
110 /* padding for RX_FLAGS if necessary */
111 len = ALIGN(len, 2);
112
113 if (status->flag & RX_FLAG_HT) /* HT info */
114 len += 3;
115
116 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 len = ALIGN(len, 4);
118 len += 8;
119 }
120
121 if (status->flag & RX_FLAG_VHT) {
122 len = ALIGN(len, 2);
123 len += 12;
124 }
125
126 if (status->chains) {
127 /* antenna and antenna signal fields */
128 len += 2 * hweight8(status->chains);
129 }
130
131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133
134 /* vendor presence bitmap */
135 len += 4;
136 /* alignment for fixed 6-byte vendor data header */
137 len = ALIGN(len, 2);
138 /* vendor data header */
139 len += 6;
140 if (WARN_ON(rtap->align == 0))
141 rtap->align = 1;
142 len = ALIGN(len, rtap->align);
143 len += rtap->len + rtap->pad;
144 }
145
146 return len;
147 }
148
149 /*
150 * ieee80211_add_rx_radiotap_header - add radiotap header
151 *
152 * add a radiotap header containing all the fields which the hardware provided.
153 */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 struct sk_buff *skb,
157 struct ieee80211_rate *rate,
158 int rtap_len, bool has_fcs)
159 {
160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 struct ieee80211_radiotap_header *rthdr;
162 unsigned char *pos;
163 __le32 *it_present;
164 u32 it_present_val;
165 u16 rx_flags = 0;
166 u16 channel_flags = 0;
167 int mpdulen, chain;
168 unsigned long chains = status->chains;
169 struct ieee80211_vendor_radiotap rtap = {};
170
171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 /* rtap.len and rtap.pad are undone immediately */
174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 }
176
177 mpdulen = skb->len;
178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 mpdulen += FCS_LEN;
180
181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 it_present = &rthdr->it_present;
184
185 /* radiotap header, set always present flags */
186 rthdr->it_len = cpu_to_le16(rtap_len);
187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190
191 if (!status->chains)
192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193
194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 it_present_val |=
196 BIT(IEEE80211_RADIOTAP_EXT) |
197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 put_unaligned_le32(it_present_val, it_present);
199 it_present++;
200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 }
203
204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 BIT(IEEE80211_RADIOTAP_EXT);
207 put_unaligned_le32(it_present_val, it_present);
208 it_present++;
209 it_present_val = rtap.present;
210 }
211
212 put_unaligned_le32(it_present_val, it_present);
213
214 pos = (void *)(it_present + 1);
215
216 /* the order of the following fields is important */
217
218 /* IEEE80211_RADIOTAP_TSFT */
219 if (ieee80211_have_rx_timestamp(status)) {
220 /* padding */
221 while ((pos - (u8 *)rthdr) & 7)
222 *pos++ = 0;
223 put_unaligned_le64(
224 ieee80211_calculate_rx_timestamp(local, status,
225 mpdulen, 0),
226 pos);
227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 pos += 8;
229 }
230
231 /* IEEE80211_RADIOTAP_FLAGS */
232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 *pos |= IEEE80211_RADIOTAP_F_FCS;
234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 if (status->flag & RX_FLAG_SHORTPRE)
237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 pos++;
239
240 /* IEEE80211_RADIOTAP_RATE */
241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 /*
243 * Without rate information don't add it. If we have,
244 * MCS information is a separate field in radiotap,
245 * added below. The byte here is needed as padding
246 * for the channel though, so initialise it to 0.
247 */
248 *pos = 0;
249 } else {
250 int shift = 0;
251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 if (status->flag & RX_FLAG_10MHZ)
253 shift = 1;
254 else if (status->flag & RX_FLAG_5MHZ)
255 shift = 2;
256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 }
258 pos++;
259
260 /* IEEE80211_RADIOTAP_CHANNEL */
261 put_unaligned_le16(status->freq, pos);
262 pos += 2;
263 if (status->flag & RX_FLAG_10MHZ)
264 channel_flags |= IEEE80211_CHAN_HALF;
265 else if (status->flag & RX_FLAG_5MHZ)
266 channel_flags |= IEEE80211_CHAN_QUARTER;
267
268 if (status->band == IEEE80211_BAND_5GHZ)
269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 else if (rate)
275 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
276 else
277 channel_flags |= IEEE80211_CHAN_2GHZ;
278 put_unaligned_le16(channel_flags, pos);
279 pos += 2;
280
281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 *pos = status->signal;
285 rthdr->it_present |=
286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 pos++;
288 }
289
290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291
292 if (!status->chains) {
293 /* IEEE80211_RADIOTAP_ANTENNA */
294 *pos = status->antenna;
295 pos++;
296 }
297
298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299
300 /* IEEE80211_RADIOTAP_RX_FLAGS */
301 /* ensure 2 byte alignment for the 2 byte field as required */
302 if ((pos - (u8 *)rthdr) & 1)
303 *pos++ = 0;
304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 put_unaligned_le16(rx_flags, pos);
307 pos += 2;
308
309 if (status->flag & RX_FLAG_HT) {
310 unsigned int stbc;
311
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 *pos++ = local->hw.radiotap_mcs_details;
314 *pos = 0;
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 if (status->flag & RX_FLAG_40MHZ)
318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 if (status->flag & RX_FLAG_HT_GF)
320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 if (status->flag & RX_FLAG_LDPC)
322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 pos++;
326 *pos++ = status->rate_idx;
327 }
328
329 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 u16 flags = 0;
331
332 /* ensure 4 byte alignment */
333 while ((pos - (u8 *)rthdr) & 3)
334 pos++;
335 rthdr->it_present |=
336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 put_unaligned_le32(status->ampdu_reference, pos);
338 pos += 4;
339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 put_unaligned_le16(flags, pos);
352 pos += 2;
353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 *pos++ = status->ampdu_delimiter_crc;
355 else
356 *pos++ = 0;
357 *pos++ = 0;
358 }
359
360 if (status->flag & RX_FLAG_VHT) {
361 u16 known = local->hw.radiotap_vht_details;
362
363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 put_unaligned_le16(known, pos);
365 pos += 2;
366 /* flags */
367 if (status->flag & RX_FLAG_SHORT_GI)
368 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
369 /* in VHT, STBC is binary */
370 if (status->flag & RX_FLAG_STBC_MASK)
371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
372 if (status->vht_flag & RX_VHT_FLAG_BF)
373 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
374 pos++;
375 /* bandwidth */
376 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
377 *pos++ = 4;
378 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
379 *pos++ = 11;
380 else if (status->flag & RX_FLAG_40MHZ)
381 *pos++ = 1;
382 else /* 20 MHz */
383 *pos++ = 0;
384 /* MCS/NSS */
385 *pos = (status->rate_idx << 4) | status->vht_nss;
386 pos += 4;
387 /* coding field */
388 if (status->flag & RX_FLAG_LDPC)
389 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
390 pos++;
391 /* group ID */
392 pos++;
393 /* partial_aid */
394 pos += 2;
395 }
396
397 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
398 *pos++ = status->chain_signal[chain];
399 *pos++ = chain;
400 }
401
402 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
403 /* ensure 2 byte alignment for the vendor field as required */
404 if ((pos - (u8 *)rthdr) & 1)
405 *pos++ = 0;
406 *pos++ = rtap.oui[0];
407 *pos++ = rtap.oui[1];
408 *pos++ = rtap.oui[2];
409 *pos++ = rtap.subns;
410 put_unaligned_le16(rtap.len, pos);
411 pos += 2;
412 /* align the actual payload as requested */
413 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
414 *pos++ = 0;
415 /* data (and possible padding) already follows */
416 }
417 }
418
419 /*
420 * This function copies a received frame to all monitor interfaces and
421 * returns a cleaned-up SKB that no longer includes the FCS nor the
422 * radiotap header the driver might have added.
423 */
424 static struct sk_buff *
425 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
426 struct ieee80211_rate *rate)
427 {
428 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
429 struct ieee80211_sub_if_data *sdata;
430 int rt_hdrlen, needed_headroom;
431 struct sk_buff *skb, *skb2;
432 struct net_device *prev_dev = NULL;
433 int present_fcs_len = 0;
434 unsigned int rtap_vendor_space = 0;
435
436 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
437 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
438
439 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
440 }
441
442 /*
443 * First, we may need to make a copy of the skb because
444 * (1) we need to modify it for radiotap (if not present), and
445 * (2) the other RX handlers will modify the skb we got.
446 *
447 * We don't need to, of course, if we aren't going to return
448 * the SKB because it has a bad FCS/PLCP checksum.
449 */
450
451 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
452 present_fcs_len = FCS_LEN;
453
454 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
455 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
456 dev_kfree_skb(origskb);
457 return NULL;
458 }
459
460 if (!local->monitors) {
461 if (should_drop_frame(origskb, present_fcs_len,
462 rtap_vendor_space)) {
463 dev_kfree_skb(origskb);
464 return NULL;
465 }
466
467 return remove_monitor_info(local, origskb, rtap_vendor_space);
468 }
469
470 /* room for the radiotap header based on driver features */
471 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
472 needed_headroom = rt_hdrlen - rtap_vendor_space;
473
474 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
475 /* only need to expand headroom if necessary */
476 skb = origskb;
477 origskb = NULL;
478
479 /*
480 * This shouldn't trigger often because most devices have an
481 * RX header they pull before we get here, and that should
482 * be big enough for our radiotap information. We should
483 * probably export the length to drivers so that we can have
484 * them allocate enough headroom to start with.
485 */
486 if (skb_headroom(skb) < needed_headroom &&
487 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
488 dev_kfree_skb(skb);
489 return NULL;
490 }
491 } else {
492 /*
493 * Need to make a copy and possibly remove radiotap header
494 * and FCS from the original.
495 */
496 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
497
498 origskb = remove_monitor_info(local, origskb,
499 rtap_vendor_space);
500
501 if (!skb)
502 return origskb;
503 }
504
505 /* prepend radiotap information */
506 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
507
508 skb_reset_mac_header(skb);
509 skb->ip_summed = CHECKSUM_UNNECESSARY;
510 skb->pkt_type = PACKET_OTHERHOST;
511 skb->protocol = htons(ETH_P_802_2);
512
513 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
514 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
515 continue;
516
517 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
518 continue;
519
520 if (!ieee80211_sdata_running(sdata))
521 continue;
522
523 if (prev_dev) {
524 skb2 = skb_clone(skb, GFP_ATOMIC);
525 if (skb2) {
526 skb2->dev = prev_dev;
527 netif_receive_skb(skb2);
528 }
529 }
530
531 prev_dev = sdata->dev;
532 sdata->dev->stats.rx_packets++;
533 sdata->dev->stats.rx_bytes += skb->len;
534 }
535
536 if (prev_dev) {
537 skb->dev = prev_dev;
538 netif_receive_skb(skb);
539 } else
540 dev_kfree_skb(skb);
541
542 return origskb;
543 }
544
545 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
546 {
547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
548 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
549 int tid, seqno_idx, security_idx;
550
551 /* does the frame have a qos control field? */
552 if (ieee80211_is_data_qos(hdr->frame_control)) {
553 u8 *qc = ieee80211_get_qos_ctl(hdr);
554 /* frame has qos control */
555 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
556 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
557 status->rx_flags |= IEEE80211_RX_AMSDU;
558
559 seqno_idx = tid;
560 security_idx = tid;
561 } else {
562 /*
563 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
564 *
565 * Sequence numbers for management frames, QoS data
566 * frames with a broadcast/multicast address in the
567 * Address 1 field, and all non-QoS data frames sent
568 * by QoS STAs are assigned using an additional single
569 * modulo-4096 counter, [...]
570 *
571 * We also use that counter for non-QoS STAs.
572 */
573 seqno_idx = IEEE80211_NUM_TIDS;
574 security_idx = 0;
575 if (ieee80211_is_mgmt(hdr->frame_control))
576 security_idx = IEEE80211_NUM_TIDS;
577 tid = 0;
578 }
579
580 rx->seqno_idx = seqno_idx;
581 rx->security_idx = security_idx;
582 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
583 * For now, set skb->priority to 0 for other cases. */
584 rx->skb->priority = (tid > 7) ? 0 : tid;
585 }
586
587 /**
588 * DOC: Packet alignment
589 *
590 * Drivers always need to pass packets that are aligned to two-byte boundaries
591 * to the stack.
592 *
593 * Additionally, should, if possible, align the payload data in a way that
594 * guarantees that the contained IP header is aligned to a four-byte
595 * boundary. In the case of regular frames, this simply means aligning the
596 * payload to a four-byte boundary (because either the IP header is directly
597 * contained, or IV/RFC1042 headers that have a length divisible by four are
598 * in front of it). If the payload data is not properly aligned and the
599 * architecture doesn't support efficient unaligned operations, mac80211
600 * will align the data.
601 *
602 * With A-MSDU frames, however, the payload data address must yield two modulo
603 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
604 * push the IP header further back to a multiple of four again. Thankfully, the
605 * specs were sane enough this time around to require padding each A-MSDU
606 * subframe to a length that is a multiple of four.
607 *
608 * Padding like Atheros hardware adds which is between the 802.11 header and
609 * the payload is not supported, the driver is required to move the 802.11
610 * header to be directly in front of the payload in that case.
611 */
612 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
613 {
614 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
615 WARN_ONCE((unsigned long)rx->skb->data & 1,
616 "unaligned packet at 0x%p\n", rx->skb->data);
617 #endif
618 }
619
620
621 /* rx handlers */
622
623 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
624 {
625 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
626
627 if (is_multicast_ether_addr(hdr->addr1))
628 return 0;
629
630 return ieee80211_is_robust_mgmt_frame(skb);
631 }
632
633
634 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
635 {
636 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
637
638 if (!is_multicast_ether_addr(hdr->addr1))
639 return 0;
640
641 return ieee80211_is_robust_mgmt_frame(skb);
642 }
643
644
645 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
646 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
647 {
648 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
649 struct ieee80211_mmie *mmie;
650 struct ieee80211_mmie_16 *mmie16;
651
652 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
653 return -1;
654
655 if (!ieee80211_is_robust_mgmt_frame(skb))
656 return -1; /* not a robust management frame */
657
658 mmie = (struct ieee80211_mmie *)
659 (skb->data + skb->len - sizeof(*mmie));
660 if (mmie->element_id == WLAN_EID_MMIE &&
661 mmie->length == sizeof(*mmie) - 2)
662 return le16_to_cpu(mmie->key_id);
663
664 mmie16 = (struct ieee80211_mmie_16 *)
665 (skb->data + skb->len - sizeof(*mmie16));
666 if (skb->len >= 24 + sizeof(*mmie16) &&
667 mmie16->element_id == WLAN_EID_MMIE &&
668 mmie16->length == sizeof(*mmie16) - 2)
669 return le16_to_cpu(mmie16->key_id);
670
671 return -1;
672 }
673
674 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
675 struct sk_buff *skb)
676 {
677 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
678 __le16 fc;
679 int hdrlen;
680 u8 keyid;
681
682 fc = hdr->frame_control;
683 hdrlen = ieee80211_hdrlen(fc);
684
685 if (skb->len < hdrlen + cs->hdr_len)
686 return -EINVAL;
687
688 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
689 keyid &= cs->key_idx_mask;
690 keyid >>= cs->key_idx_shift;
691
692 return keyid;
693 }
694
695 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
696 {
697 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
698 char *dev_addr = rx->sdata->vif.addr;
699
700 if (ieee80211_is_data(hdr->frame_control)) {
701 if (is_multicast_ether_addr(hdr->addr1)) {
702 if (ieee80211_has_tods(hdr->frame_control) ||
703 !ieee80211_has_fromds(hdr->frame_control))
704 return RX_DROP_MONITOR;
705 if (ether_addr_equal(hdr->addr3, dev_addr))
706 return RX_DROP_MONITOR;
707 } else {
708 if (!ieee80211_has_a4(hdr->frame_control))
709 return RX_DROP_MONITOR;
710 if (ether_addr_equal(hdr->addr4, dev_addr))
711 return RX_DROP_MONITOR;
712 }
713 }
714
715 /* If there is not an established peer link and this is not a peer link
716 * establisment frame, beacon or probe, drop the frame.
717 */
718
719 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
720 struct ieee80211_mgmt *mgmt;
721
722 if (!ieee80211_is_mgmt(hdr->frame_control))
723 return RX_DROP_MONITOR;
724
725 if (ieee80211_is_action(hdr->frame_control)) {
726 u8 category;
727
728 /* make sure category field is present */
729 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
730 return RX_DROP_MONITOR;
731
732 mgmt = (struct ieee80211_mgmt *)hdr;
733 category = mgmt->u.action.category;
734 if (category != WLAN_CATEGORY_MESH_ACTION &&
735 category != WLAN_CATEGORY_SELF_PROTECTED)
736 return RX_DROP_MONITOR;
737 return RX_CONTINUE;
738 }
739
740 if (ieee80211_is_probe_req(hdr->frame_control) ||
741 ieee80211_is_probe_resp(hdr->frame_control) ||
742 ieee80211_is_beacon(hdr->frame_control) ||
743 ieee80211_is_auth(hdr->frame_control))
744 return RX_CONTINUE;
745
746 return RX_DROP_MONITOR;
747 }
748
749 return RX_CONTINUE;
750 }
751
752 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
753 struct tid_ampdu_rx *tid_agg_rx,
754 int index,
755 struct sk_buff_head *frames)
756 {
757 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
758 struct sk_buff *skb;
759 struct ieee80211_rx_status *status;
760
761 lockdep_assert_held(&tid_agg_rx->reorder_lock);
762
763 if (skb_queue_empty(skb_list))
764 goto no_frame;
765
766 if (!ieee80211_rx_reorder_ready(skb_list)) {
767 __skb_queue_purge(skb_list);
768 goto no_frame;
769 }
770
771 /* release frames from the reorder ring buffer */
772 tid_agg_rx->stored_mpdu_num--;
773 while ((skb = __skb_dequeue(skb_list))) {
774 status = IEEE80211_SKB_RXCB(skb);
775 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
776 __skb_queue_tail(frames, skb);
777 }
778
779 no_frame:
780 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
781 }
782
783 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
784 struct tid_ampdu_rx *tid_agg_rx,
785 u16 head_seq_num,
786 struct sk_buff_head *frames)
787 {
788 int index;
789
790 lockdep_assert_held(&tid_agg_rx->reorder_lock);
791
792 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 }
797 }
798
799 /*
800 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
801 * the skb was added to the buffer longer than this time ago, the earlier
802 * frames that have not yet been received are assumed to be lost and the skb
803 * can be released for processing. This may also release other skb's from the
804 * reorder buffer if there are no additional gaps between the frames.
805 *
806 * Callers must hold tid_agg_rx->reorder_lock.
807 */
808 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
809
810 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
811 struct tid_ampdu_rx *tid_agg_rx,
812 struct sk_buff_head *frames)
813 {
814 int index, i, j;
815
816 lockdep_assert_held(&tid_agg_rx->reorder_lock);
817
818 /* release the buffer until next missing frame */
819 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
820 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
821 tid_agg_rx->stored_mpdu_num) {
822 /*
823 * No buffers ready to be released, but check whether any
824 * frames in the reorder buffer have timed out.
825 */
826 int skipped = 1;
827 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
828 j = (j + 1) % tid_agg_rx->buf_size) {
829 if (!ieee80211_rx_reorder_ready(
830 &tid_agg_rx->reorder_buf[j])) {
831 skipped++;
832 continue;
833 }
834 if (skipped &&
835 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
836 HT_RX_REORDER_BUF_TIMEOUT))
837 goto set_release_timer;
838
839 /* don't leave incomplete A-MSDUs around */
840 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
841 i = (i + 1) % tid_agg_rx->buf_size)
842 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
843
844 ht_dbg_ratelimited(sdata,
845 "release an RX reorder frame due to timeout on earlier frames\n");
846 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
847 frames);
848
849 /*
850 * Increment the head seq# also for the skipped slots.
851 */
852 tid_agg_rx->head_seq_num =
853 (tid_agg_rx->head_seq_num +
854 skipped) & IEEE80211_SN_MASK;
855 skipped = 0;
856 }
857 } else while (ieee80211_rx_reorder_ready(
858 &tid_agg_rx->reorder_buf[index])) {
859 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
860 frames);
861 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
862 }
863
864 if (tid_agg_rx->stored_mpdu_num) {
865 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
866
867 for (; j != (index - 1) % tid_agg_rx->buf_size;
868 j = (j + 1) % tid_agg_rx->buf_size) {
869 if (ieee80211_rx_reorder_ready(
870 &tid_agg_rx->reorder_buf[j]))
871 break;
872 }
873
874 set_release_timer:
875
876 if (!tid_agg_rx->removed)
877 mod_timer(&tid_agg_rx->reorder_timer,
878 tid_agg_rx->reorder_time[j] + 1 +
879 HT_RX_REORDER_BUF_TIMEOUT);
880 } else {
881 del_timer(&tid_agg_rx->reorder_timer);
882 }
883 }
884
885 /*
886 * As this function belongs to the RX path it must be under
887 * rcu_read_lock protection. It returns false if the frame
888 * can be processed immediately, true if it was consumed.
889 */
890 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
891 struct tid_ampdu_rx *tid_agg_rx,
892 struct sk_buff *skb,
893 struct sk_buff_head *frames)
894 {
895 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
896 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
897 u16 sc = le16_to_cpu(hdr->seq_ctrl);
898 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
899 u16 head_seq_num, buf_size;
900 int index;
901 bool ret = true;
902
903 spin_lock(&tid_agg_rx->reorder_lock);
904
905 /*
906 * Offloaded BA sessions have no known starting sequence number so pick
907 * one from first Rxed frame for this tid after BA was started.
908 */
909 if (unlikely(tid_agg_rx->auto_seq)) {
910 tid_agg_rx->auto_seq = false;
911 tid_agg_rx->ssn = mpdu_seq_num;
912 tid_agg_rx->head_seq_num = mpdu_seq_num;
913 }
914
915 buf_size = tid_agg_rx->buf_size;
916 head_seq_num = tid_agg_rx->head_seq_num;
917
918 /* frame with out of date sequence number */
919 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
920 dev_kfree_skb(skb);
921 goto out;
922 }
923
924 /*
925 * If frame the sequence number exceeds our buffering window
926 * size release some previous frames to make room for this one.
927 */
928 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
929 head_seq_num = ieee80211_sn_inc(
930 ieee80211_sn_sub(mpdu_seq_num, buf_size));
931 /* release stored frames up to new head to stack */
932 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
933 head_seq_num, frames);
934 }
935
936 /* Now the new frame is always in the range of the reordering buffer */
937
938 index = mpdu_seq_num % tid_agg_rx->buf_size;
939
940 /* check if we already stored this frame */
941 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
942 dev_kfree_skb(skb);
943 goto out;
944 }
945
946 /*
947 * If the current MPDU is in the right order and nothing else
948 * is stored we can process it directly, no need to buffer it.
949 * If it is first but there's something stored, we may be able
950 * to release frames after this one.
951 */
952 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
953 tid_agg_rx->stored_mpdu_num == 0) {
954 if (!(status->flag & RX_FLAG_AMSDU_MORE))
955 tid_agg_rx->head_seq_num =
956 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
957 ret = false;
958 goto out;
959 }
960
961 /* put the frame in the reordering buffer */
962 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
963 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
964 tid_agg_rx->reorder_time[index] = jiffies;
965 tid_agg_rx->stored_mpdu_num++;
966 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
967 }
968
969 out:
970 spin_unlock(&tid_agg_rx->reorder_lock);
971 return ret;
972 }
973
974 /*
975 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
976 * true if the MPDU was buffered, false if it should be processed.
977 */
978 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
979 struct sk_buff_head *frames)
980 {
981 struct sk_buff *skb = rx->skb;
982 struct ieee80211_local *local = rx->local;
983 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
984 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
985 struct sta_info *sta = rx->sta;
986 struct tid_ampdu_rx *tid_agg_rx;
987 u16 sc;
988 u8 tid, ack_policy;
989
990 if (!ieee80211_is_data_qos(hdr->frame_control) ||
991 is_multicast_ether_addr(hdr->addr1))
992 goto dont_reorder;
993
994 /*
995 * filter the QoS data rx stream according to
996 * STA/TID and check if this STA/TID is on aggregation
997 */
998
999 if (!sta)
1000 goto dont_reorder;
1001
1002 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1003 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1004 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1005
1006 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1007 if (!tid_agg_rx)
1008 goto dont_reorder;
1009
1010 /* qos null data frames are excluded */
1011 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1012 goto dont_reorder;
1013
1014 /* not part of a BA session */
1015 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1016 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1017 goto dont_reorder;
1018
1019 /* not actually part of this BA session */
1020 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1021 goto dont_reorder;
1022
1023 /* new, potentially un-ordered, ampdu frame - process it */
1024
1025 /* reset session timer */
1026 if (tid_agg_rx->timeout)
1027 tid_agg_rx->last_rx = jiffies;
1028
1029 /* if this mpdu is fragmented - terminate rx aggregation session */
1030 sc = le16_to_cpu(hdr->seq_ctrl);
1031 if (sc & IEEE80211_SCTL_FRAG) {
1032 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1033 skb_queue_tail(&rx->sdata->skb_queue, skb);
1034 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1035 return;
1036 }
1037
1038 /*
1039 * No locking needed -- we will only ever process one
1040 * RX packet at a time, and thus own tid_agg_rx. All
1041 * other code manipulating it needs to (and does) make
1042 * sure that we cannot get to it any more before doing
1043 * anything with it.
1044 */
1045 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1046 frames))
1047 return;
1048
1049 dont_reorder:
1050 __skb_queue_tail(frames, skb);
1051 }
1052
1053 static ieee80211_rx_result debug_noinline
1054 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1055 {
1056 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1057 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1058
1059 /*
1060 * Drop duplicate 802.11 retransmissions
1061 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1062 */
1063
1064 if (rx->skb->len < 24)
1065 return RX_CONTINUE;
1066
1067 if (ieee80211_is_ctl(hdr->frame_control) ||
1068 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1069 is_multicast_ether_addr(hdr->addr1))
1070 return RX_CONTINUE;
1071
1072 if (rx->sta) {
1073 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1074 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1075 hdr->seq_ctrl)) {
1076 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1077 rx->local->dot11FrameDuplicateCount++;
1078 rx->sta->num_duplicates++;
1079 }
1080 return RX_DROP_UNUSABLE;
1081 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1082 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1083 }
1084 }
1085
1086 return RX_CONTINUE;
1087 }
1088
1089 static ieee80211_rx_result debug_noinline
1090 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1091 {
1092 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1093
1094 if (unlikely(rx->skb->len < 16)) {
1095 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1096 return RX_DROP_MONITOR;
1097 }
1098
1099 /* Drop disallowed frame classes based on STA auth/assoc state;
1100 * IEEE 802.11, Chap 5.5.
1101 *
1102 * mac80211 filters only based on association state, i.e. it drops
1103 * Class 3 frames from not associated stations. hostapd sends
1104 * deauth/disassoc frames when needed. In addition, hostapd is
1105 * responsible for filtering on both auth and assoc states.
1106 */
1107
1108 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1109 return ieee80211_rx_mesh_check(rx);
1110
1111 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1112 ieee80211_is_pspoll(hdr->frame_control)) &&
1113 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1114 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1115 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1116 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1117 /*
1118 * accept port control frames from the AP even when it's not
1119 * yet marked ASSOC to prevent a race where we don't set the
1120 * assoc bit quickly enough before it sends the first frame
1121 */
1122 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1123 ieee80211_is_data_present(hdr->frame_control)) {
1124 unsigned int hdrlen;
1125 __be16 ethertype;
1126
1127 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1128
1129 if (rx->skb->len < hdrlen + 8)
1130 return RX_DROP_MONITOR;
1131
1132 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1133 if (ethertype == rx->sdata->control_port_protocol)
1134 return RX_CONTINUE;
1135 }
1136
1137 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1138 cfg80211_rx_spurious_frame(rx->sdata->dev,
1139 hdr->addr2,
1140 GFP_ATOMIC))
1141 return RX_DROP_UNUSABLE;
1142
1143 return RX_DROP_MONITOR;
1144 }
1145
1146 return RX_CONTINUE;
1147 }
1148
1149
1150 static ieee80211_rx_result debug_noinline
1151 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1152 {
1153 struct ieee80211_local *local;
1154 struct ieee80211_hdr *hdr;
1155 struct sk_buff *skb;
1156
1157 local = rx->local;
1158 skb = rx->skb;
1159 hdr = (struct ieee80211_hdr *) skb->data;
1160
1161 if (!local->pspolling)
1162 return RX_CONTINUE;
1163
1164 if (!ieee80211_has_fromds(hdr->frame_control))
1165 /* this is not from AP */
1166 return RX_CONTINUE;
1167
1168 if (!ieee80211_is_data(hdr->frame_control))
1169 return RX_CONTINUE;
1170
1171 if (!ieee80211_has_moredata(hdr->frame_control)) {
1172 /* AP has no more frames buffered for us */
1173 local->pspolling = false;
1174 return RX_CONTINUE;
1175 }
1176
1177 /* more data bit is set, let's request a new frame from the AP */
1178 ieee80211_send_pspoll(local, rx->sdata);
1179
1180 return RX_CONTINUE;
1181 }
1182
1183 static void sta_ps_start(struct sta_info *sta)
1184 {
1185 struct ieee80211_sub_if_data *sdata = sta->sdata;
1186 struct ieee80211_local *local = sdata->local;
1187 struct ps_data *ps;
1188
1189 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1190 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1191 ps = &sdata->bss->ps;
1192 else
1193 return;
1194
1195 atomic_inc(&ps->num_sta_ps);
1196 set_sta_flag(sta, WLAN_STA_PS_STA);
1197 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1198 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1199 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1200 sta->sta.addr, sta->sta.aid);
1201 }
1202
1203 static void sta_ps_end(struct sta_info *sta)
1204 {
1205 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1206 sta->sta.addr, sta->sta.aid);
1207
1208 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1209 /*
1210 * Clear the flag only if the other one is still set
1211 * so that the TX path won't start TX'ing new frames
1212 * directly ... In the case that the driver flag isn't
1213 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1214 */
1215 clear_sta_flag(sta, WLAN_STA_PS_STA);
1216 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1217 sta->sta.addr, sta->sta.aid);
1218 return;
1219 }
1220
1221 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1222 clear_sta_flag(sta, WLAN_STA_PS_STA);
1223 ieee80211_sta_ps_deliver_wakeup(sta);
1224 }
1225
1226 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1227 {
1228 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1229 bool in_ps;
1230
1231 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1232
1233 /* Don't let the same PS state be set twice */
1234 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1235 if ((start && in_ps) || (!start && !in_ps))
1236 return -EINVAL;
1237
1238 if (start)
1239 sta_ps_start(sta_inf);
1240 else
1241 sta_ps_end(sta_inf);
1242
1243 return 0;
1244 }
1245 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1246
1247 static ieee80211_rx_result debug_noinline
1248 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1249 {
1250 struct ieee80211_sub_if_data *sdata = rx->sdata;
1251 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1252 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1253 int tid, ac;
1254
1255 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1256 return RX_CONTINUE;
1257
1258 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1259 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1260 return RX_CONTINUE;
1261
1262 /*
1263 * The device handles station powersave, so don't do anything about
1264 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1265 * it to mac80211 since they're handled.)
1266 */
1267 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1268 return RX_CONTINUE;
1269
1270 /*
1271 * Don't do anything if the station isn't already asleep. In
1272 * the uAPSD case, the station will probably be marked asleep,
1273 * in the PS-Poll case the station must be confused ...
1274 */
1275 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1276 return RX_CONTINUE;
1277
1278 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1279 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1280 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1281 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1282 else
1283 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1284 }
1285
1286 /* Free PS Poll skb here instead of returning RX_DROP that would
1287 * count as an dropped frame. */
1288 dev_kfree_skb(rx->skb);
1289
1290 return RX_QUEUED;
1291 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1292 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1293 ieee80211_has_pm(hdr->frame_control) &&
1294 (ieee80211_is_data_qos(hdr->frame_control) ||
1295 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1296 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1297 ac = ieee802_1d_to_ac[tid & 7];
1298
1299 /*
1300 * If this AC is not trigger-enabled do nothing.
1301 *
1302 * NB: This could/should check a separate bitmap of trigger-
1303 * enabled queues, but for now we only implement uAPSD w/o
1304 * TSPEC changes to the ACs, so they're always the same.
1305 */
1306 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1307 return RX_CONTINUE;
1308
1309 /* if we are in a service period, do nothing */
1310 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1311 return RX_CONTINUE;
1312
1313 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1314 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1315 else
1316 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1317 }
1318
1319 return RX_CONTINUE;
1320 }
1321
1322 static ieee80211_rx_result debug_noinline
1323 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1324 {
1325 struct sta_info *sta = rx->sta;
1326 struct sk_buff *skb = rx->skb;
1327 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1328 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1329 int i;
1330
1331 if (!sta)
1332 return RX_CONTINUE;
1333
1334 /*
1335 * Update last_rx only for IBSS packets which are for the current
1336 * BSSID and for station already AUTHORIZED to avoid keeping the
1337 * current IBSS network alive in cases where other STAs start
1338 * using different BSSID. This will also give the station another
1339 * chance to restart the authentication/authorization in case
1340 * something went wrong the first time.
1341 */
1342 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1343 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1344 NL80211_IFTYPE_ADHOC);
1345 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1346 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1347 sta->last_rx = jiffies;
1348 if (ieee80211_is_data(hdr->frame_control) &&
1349 !is_multicast_ether_addr(hdr->addr1)) {
1350 sta->last_rx_rate_idx = status->rate_idx;
1351 sta->last_rx_rate_flag = status->flag;
1352 sta->last_rx_rate_vht_flag = status->vht_flag;
1353 sta->last_rx_rate_vht_nss = status->vht_nss;
1354 }
1355 }
1356 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1357 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1358 NL80211_IFTYPE_OCB);
1359 /* OCB uses wild-card BSSID */
1360 if (is_broadcast_ether_addr(bssid))
1361 sta->last_rx = jiffies;
1362 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1363 /*
1364 * Mesh beacons will update last_rx when if they are found to
1365 * match the current local configuration when processed.
1366 */
1367 sta->last_rx = jiffies;
1368 if (ieee80211_is_data(hdr->frame_control)) {
1369 sta->last_rx_rate_idx = status->rate_idx;
1370 sta->last_rx_rate_flag = status->flag;
1371 sta->last_rx_rate_vht_flag = status->vht_flag;
1372 sta->last_rx_rate_vht_nss = status->vht_nss;
1373 }
1374 }
1375
1376 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1377 return RX_CONTINUE;
1378
1379 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1380 ieee80211_sta_rx_notify(rx->sdata, hdr);
1381
1382 sta->rx_fragments++;
1383 sta->rx_bytes += rx->skb->len;
1384 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1385 sta->last_signal = status->signal;
1386 ewma_add(&sta->avg_signal, -status->signal);
1387 }
1388
1389 if (status->chains) {
1390 sta->chains = status->chains;
1391 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1392 int signal = status->chain_signal[i];
1393
1394 if (!(status->chains & BIT(i)))
1395 continue;
1396
1397 sta->chain_signal_last[i] = signal;
1398 ewma_add(&sta->chain_signal_avg[i], -signal);
1399 }
1400 }
1401
1402 /*
1403 * Change STA power saving mode only at the end of a frame
1404 * exchange sequence.
1405 */
1406 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1407 !ieee80211_has_morefrags(hdr->frame_control) &&
1408 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1409 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1410 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1411 /* PM bit is only checked in frames where it isn't reserved,
1412 * in AP mode it's reserved in non-bufferable management frames
1413 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1414 */
1415 (!ieee80211_is_mgmt(hdr->frame_control) ||
1416 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1417 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1418 if (!ieee80211_has_pm(hdr->frame_control))
1419 sta_ps_end(sta);
1420 } else {
1421 if (ieee80211_has_pm(hdr->frame_control))
1422 sta_ps_start(sta);
1423 }
1424 }
1425
1426 /* mesh power save support */
1427 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1428 ieee80211_mps_rx_h_sta_process(sta, hdr);
1429
1430 /*
1431 * Drop (qos-)data::nullfunc frames silently, since they
1432 * are used only to control station power saving mode.
1433 */
1434 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1435 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1436 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1437
1438 /*
1439 * If we receive a 4-addr nullfunc frame from a STA
1440 * that was not moved to a 4-addr STA vlan yet send
1441 * the event to userspace and for older hostapd drop
1442 * the frame to the monitor interface.
1443 */
1444 if (ieee80211_has_a4(hdr->frame_control) &&
1445 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1446 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1447 !rx->sdata->u.vlan.sta))) {
1448 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1449 cfg80211_rx_unexpected_4addr_frame(
1450 rx->sdata->dev, sta->sta.addr,
1451 GFP_ATOMIC);
1452 return RX_DROP_MONITOR;
1453 }
1454 /*
1455 * Update counter and free packet here to avoid
1456 * counting this as a dropped packed.
1457 */
1458 sta->rx_packets++;
1459 dev_kfree_skb(rx->skb);
1460 return RX_QUEUED;
1461 }
1462
1463 return RX_CONTINUE;
1464 } /* ieee80211_rx_h_sta_process */
1465
1466 static ieee80211_rx_result debug_noinline
1467 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1468 {
1469 struct sk_buff *skb = rx->skb;
1470 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1471 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1472 int keyidx;
1473 int hdrlen;
1474 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1475 struct ieee80211_key *sta_ptk = NULL;
1476 int mmie_keyidx = -1;
1477 __le16 fc;
1478 const struct ieee80211_cipher_scheme *cs = NULL;
1479
1480 /*
1481 * Key selection 101
1482 *
1483 * There are four types of keys:
1484 * - GTK (group keys)
1485 * - IGTK (group keys for management frames)
1486 * - PTK (pairwise keys)
1487 * - STK (station-to-station pairwise keys)
1488 *
1489 * When selecting a key, we have to distinguish between multicast
1490 * (including broadcast) and unicast frames, the latter can only
1491 * use PTKs and STKs while the former always use GTKs and IGTKs.
1492 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1493 * unicast frames can also use key indices like GTKs. Hence, if we
1494 * don't have a PTK/STK we check the key index for a WEP key.
1495 *
1496 * Note that in a regular BSS, multicast frames are sent by the
1497 * AP only, associated stations unicast the frame to the AP first
1498 * which then multicasts it on their behalf.
1499 *
1500 * There is also a slight problem in IBSS mode: GTKs are negotiated
1501 * with each station, that is something we don't currently handle.
1502 * The spec seems to expect that one negotiates the same key with
1503 * every station but there's no such requirement; VLANs could be
1504 * possible.
1505 */
1506
1507 /*
1508 * No point in finding a key and decrypting if the frame is neither
1509 * addressed to us nor a multicast frame.
1510 */
1511 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1512 return RX_CONTINUE;
1513
1514 /* start without a key */
1515 rx->key = NULL;
1516 fc = hdr->frame_control;
1517
1518 if (rx->sta) {
1519 int keyid = rx->sta->ptk_idx;
1520
1521 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1522 cs = rx->sta->cipher_scheme;
1523 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1524 if (unlikely(keyid < 0))
1525 return RX_DROP_UNUSABLE;
1526 }
1527 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1528 }
1529
1530 if (!ieee80211_has_protected(fc))
1531 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1532
1533 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1534 rx->key = sta_ptk;
1535 if ((status->flag & RX_FLAG_DECRYPTED) &&
1536 (status->flag & RX_FLAG_IV_STRIPPED))
1537 return RX_CONTINUE;
1538 /* Skip decryption if the frame is not protected. */
1539 if (!ieee80211_has_protected(fc))
1540 return RX_CONTINUE;
1541 } else if (mmie_keyidx >= 0) {
1542 /* Broadcast/multicast robust management frame / BIP */
1543 if ((status->flag & RX_FLAG_DECRYPTED) &&
1544 (status->flag & RX_FLAG_IV_STRIPPED))
1545 return RX_CONTINUE;
1546
1547 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1548 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1549 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1550 if (rx->sta)
1551 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1552 if (!rx->key)
1553 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1554 } else if (!ieee80211_has_protected(fc)) {
1555 /*
1556 * The frame was not protected, so skip decryption. However, we
1557 * need to set rx->key if there is a key that could have been
1558 * used so that the frame may be dropped if encryption would
1559 * have been expected.
1560 */
1561 struct ieee80211_key *key = NULL;
1562 struct ieee80211_sub_if_data *sdata = rx->sdata;
1563 int i;
1564
1565 if (ieee80211_is_mgmt(fc) &&
1566 is_multicast_ether_addr(hdr->addr1) &&
1567 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1568 rx->key = key;
1569 else {
1570 if (rx->sta) {
1571 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1572 key = rcu_dereference(rx->sta->gtk[i]);
1573 if (key)
1574 break;
1575 }
1576 }
1577 if (!key) {
1578 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1579 key = rcu_dereference(sdata->keys[i]);
1580 if (key)
1581 break;
1582 }
1583 }
1584 if (key)
1585 rx->key = key;
1586 }
1587 return RX_CONTINUE;
1588 } else {
1589 u8 keyid;
1590
1591 /*
1592 * The device doesn't give us the IV so we won't be
1593 * able to look up the key. That's ok though, we
1594 * don't need to decrypt the frame, we just won't
1595 * be able to keep statistics accurate.
1596 * Except for key threshold notifications, should
1597 * we somehow allow the driver to tell us which key
1598 * the hardware used if this flag is set?
1599 */
1600 if ((status->flag & RX_FLAG_DECRYPTED) &&
1601 (status->flag & RX_FLAG_IV_STRIPPED))
1602 return RX_CONTINUE;
1603
1604 hdrlen = ieee80211_hdrlen(fc);
1605
1606 if (cs) {
1607 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1608
1609 if (unlikely(keyidx < 0))
1610 return RX_DROP_UNUSABLE;
1611 } else {
1612 if (rx->skb->len < 8 + hdrlen)
1613 return RX_DROP_UNUSABLE; /* TODO: count this? */
1614 /*
1615 * no need to call ieee80211_wep_get_keyidx,
1616 * it verifies a bunch of things we've done already
1617 */
1618 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1619 keyidx = keyid >> 6;
1620 }
1621
1622 /* check per-station GTK first, if multicast packet */
1623 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1624 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1625
1626 /* if not found, try default key */
1627 if (!rx->key) {
1628 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1629
1630 /*
1631 * RSNA-protected unicast frames should always be
1632 * sent with pairwise or station-to-station keys,
1633 * but for WEP we allow using a key index as well.
1634 */
1635 if (rx->key &&
1636 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1637 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1638 !is_multicast_ether_addr(hdr->addr1))
1639 rx->key = NULL;
1640 }
1641 }
1642
1643 if (rx->key) {
1644 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1645 return RX_DROP_MONITOR;
1646
1647 rx->key->tx_rx_count++;
1648 /* TODO: add threshold stuff again */
1649 } else {
1650 return RX_DROP_MONITOR;
1651 }
1652
1653 switch (rx->key->conf.cipher) {
1654 case WLAN_CIPHER_SUITE_WEP40:
1655 case WLAN_CIPHER_SUITE_WEP104:
1656 result = ieee80211_crypto_wep_decrypt(rx);
1657 break;
1658 case WLAN_CIPHER_SUITE_TKIP:
1659 result = ieee80211_crypto_tkip_decrypt(rx);
1660 break;
1661 case WLAN_CIPHER_SUITE_CCMP:
1662 result = ieee80211_crypto_ccmp_decrypt(
1663 rx, IEEE80211_CCMP_MIC_LEN);
1664 break;
1665 case WLAN_CIPHER_SUITE_CCMP_256:
1666 result = ieee80211_crypto_ccmp_decrypt(
1667 rx, IEEE80211_CCMP_256_MIC_LEN);
1668 break;
1669 case WLAN_CIPHER_SUITE_AES_CMAC:
1670 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1671 break;
1672 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1673 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1674 break;
1675 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1676 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1677 result = ieee80211_crypto_aes_gmac_decrypt(rx);
1678 break;
1679 case WLAN_CIPHER_SUITE_GCMP:
1680 case WLAN_CIPHER_SUITE_GCMP_256:
1681 result = ieee80211_crypto_gcmp_decrypt(rx);
1682 break;
1683 default:
1684 result = ieee80211_crypto_hw_decrypt(rx);
1685 }
1686
1687 /* the hdr variable is invalid after the decrypt handlers */
1688
1689 /* either the frame has been decrypted or will be dropped */
1690 status->flag |= RX_FLAG_DECRYPTED;
1691
1692 return result;
1693 }
1694
1695 static inline struct ieee80211_fragment_entry *
1696 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1697 unsigned int frag, unsigned int seq, int rx_queue,
1698 struct sk_buff **skb)
1699 {
1700 struct ieee80211_fragment_entry *entry;
1701
1702 entry = &sdata->fragments[sdata->fragment_next++];
1703 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1704 sdata->fragment_next = 0;
1705
1706 if (!skb_queue_empty(&entry->skb_list))
1707 __skb_queue_purge(&entry->skb_list);
1708
1709 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1710 *skb = NULL;
1711 entry->first_frag_time = jiffies;
1712 entry->seq = seq;
1713 entry->rx_queue = rx_queue;
1714 entry->last_frag = frag;
1715 entry->ccmp = 0;
1716 entry->extra_len = 0;
1717
1718 return entry;
1719 }
1720
1721 static inline struct ieee80211_fragment_entry *
1722 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1723 unsigned int frag, unsigned int seq,
1724 int rx_queue, struct ieee80211_hdr *hdr)
1725 {
1726 struct ieee80211_fragment_entry *entry;
1727 int i, idx;
1728
1729 idx = sdata->fragment_next;
1730 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1731 struct ieee80211_hdr *f_hdr;
1732
1733 idx--;
1734 if (idx < 0)
1735 idx = IEEE80211_FRAGMENT_MAX - 1;
1736
1737 entry = &sdata->fragments[idx];
1738 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1739 entry->rx_queue != rx_queue ||
1740 entry->last_frag + 1 != frag)
1741 continue;
1742
1743 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1744
1745 /*
1746 * Check ftype and addresses are equal, else check next fragment
1747 */
1748 if (((hdr->frame_control ^ f_hdr->frame_control) &
1749 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1750 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1751 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1752 continue;
1753
1754 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1755 __skb_queue_purge(&entry->skb_list);
1756 continue;
1757 }
1758 return entry;
1759 }
1760
1761 return NULL;
1762 }
1763
1764 static ieee80211_rx_result debug_noinline
1765 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1766 {
1767 struct ieee80211_hdr *hdr;
1768 u16 sc;
1769 __le16 fc;
1770 unsigned int frag, seq;
1771 struct ieee80211_fragment_entry *entry;
1772 struct sk_buff *skb;
1773 struct ieee80211_rx_status *status;
1774
1775 hdr = (struct ieee80211_hdr *)rx->skb->data;
1776 fc = hdr->frame_control;
1777
1778 if (ieee80211_is_ctl(fc))
1779 return RX_CONTINUE;
1780
1781 sc = le16_to_cpu(hdr->seq_ctrl);
1782 frag = sc & IEEE80211_SCTL_FRAG;
1783
1784 if (is_multicast_ether_addr(hdr->addr1)) {
1785 rx->local->dot11MulticastReceivedFrameCount++;
1786 goto out_no_led;
1787 }
1788
1789 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1790 goto out;
1791
1792 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1793
1794 if (skb_linearize(rx->skb))
1795 return RX_DROP_UNUSABLE;
1796
1797 /*
1798 * skb_linearize() might change the skb->data and
1799 * previously cached variables (in this case, hdr) need to
1800 * be refreshed with the new data.
1801 */
1802 hdr = (struct ieee80211_hdr *)rx->skb->data;
1803 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1804
1805 if (frag == 0) {
1806 /* This is the first fragment of a new frame. */
1807 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1808 rx->seqno_idx, &(rx->skb));
1809 if (rx->key &&
1810 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1811 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256) &&
1812 ieee80211_has_protected(fc)) {
1813 int queue = rx->security_idx;
1814 /* Store CCMP PN so that we can verify that the next
1815 * fragment has a sequential PN value. */
1816 entry->ccmp = 1;
1817 memcpy(entry->last_pn,
1818 rx->key->u.ccmp.rx_pn[queue],
1819 IEEE80211_CCMP_PN_LEN);
1820 }
1821 return RX_QUEUED;
1822 }
1823
1824 /* This is a fragment for a frame that should already be pending in
1825 * fragment cache. Add this fragment to the end of the pending entry.
1826 */
1827 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1828 rx->seqno_idx, hdr);
1829 if (!entry) {
1830 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1831 return RX_DROP_MONITOR;
1832 }
1833
1834 /* Verify that MPDUs within one MSDU have sequential PN values.
1835 * (IEEE 802.11i, 8.3.3.4.5) */
1836 if (entry->ccmp) {
1837 int i;
1838 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1839 int queue;
1840 if (!rx->key ||
1841 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1842 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256))
1843 return RX_DROP_UNUSABLE;
1844 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1845 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1846 pn[i]++;
1847 if (pn[i])
1848 break;
1849 }
1850 queue = rx->security_idx;
1851 rpn = rx->key->u.ccmp.rx_pn[queue];
1852 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1853 return RX_DROP_UNUSABLE;
1854 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1855 }
1856
1857 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1858 __skb_queue_tail(&entry->skb_list, rx->skb);
1859 entry->last_frag = frag;
1860 entry->extra_len += rx->skb->len;
1861 if (ieee80211_has_morefrags(fc)) {
1862 rx->skb = NULL;
1863 return RX_QUEUED;
1864 }
1865
1866 rx->skb = __skb_dequeue(&entry->skb_list);
1867 if (skb_tailroom(rx->skb) < entry->extra_len) {
1868 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1869 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1870 GFP_ATOMIC))) {
1871 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1872 __skb_queue_purge(&entry->skb_list);
1873 return RX_DROP_UNUSABLE;
1874 }
1875 }
1876 while ((skb = __skb_dequeue(&entry->skb_list))) {
1877 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1878 dev_kfree_skb(skb);
1879 }
1880
1881 /* Complete frame has been reassembled - process it now */
1882 status = IEEE80211_SKB_RXCB(rx->skb);
1883 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1884
1885 out:
1886 ieee80211_led_rx(rx->local);
1887 out_no_led:
1888 if (rx->sta)
1889 rx->sta->rx_packets++;
1890 return RX_CONTINUE;
1891 }
1892
1893 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1894 {
1895 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1896 return -EACCES;
1897
1898 return 0;
1899 }
1900
1901 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1902 {
1903 struct sk_buff *skb = rx->skb;
1904 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1905
1906 /*
1907 * Pass through unencrypted frames if the hardware has
1908 * decrypted them already.
1909 */
1910 if (status->flag & RX_FLAG_DECRYPTED)
1911 return 0;
1912
1913 /* Drop unencrypted frames if key is set. */
1914 if (unlikely(!ieee80211_has_protected(fc) &&
1915 !ieee80211_is_nullfunc(fc) &&
1916 ieee80211_is_data(fc) &&
1917 (rx->key || rx->sdata->drop_unencrypted)))
1918 return -EACCES;
1919
1920 return 0;
1921 }
1922
1923 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1924 {
1925 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1926 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1927 __le16 fc = hdr->frame_control;
1928
1929 /*
1930 * Pass through unencrypted frames if the hardware has
1931 * decrypted them already.
1932 */
1933 if (status->flag & RX_FLAG_DECRYPTED)
1934 return 0;
1935
1936 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1937 if (unlikely(!ieee80211_has_protected(fc) &&
1938 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1939 rx->key)) {
1940 if (ieee80211_is_deauth(fc) ||
1941 ieee80211_is_disassoc(fc))
1942 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1943 rx->skb->data,
1944 rx->skb->len);
1945 return -EACCES;
1946 }
1947 /* BIP does not use Protected field, so need to check MMIE */
1948 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1949 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1950 if (ieee80211_is_deauth(fc) ||
1951 ieee80211_is_disassoc(fc))
1952 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1953 rx->skb->data,
1954 rx->skb->len);
1955 return -EACCES;
1956 }
1957 /*
1958 * When using MFP, Action frames are not allowed prior to
1959 * having configured keys.
1960 */
1961 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1962 ieee80211_is_robust_mgmt_frame(rx->skb)))
1963 return -EACCES;
1964 }
1965
1966 return 0;
1967 }
1968
1969 static int
1970 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1971 {
1972 struct ieee80211_sub_if_data *sdata = rx->sdata;
1973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1974 bool check_port_control = false;
1975 struct ethhdr *ehdr;
1976 int ret;
1977
1978 *port_control = false;
1979 if (ieee80211_has_a4(hdr->frame_control) &&
1980 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1981 return -1;
1982
1983 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1984 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1985
1986 if (!sdata->u.mgd.use_4addr)
1987 return -1;
1988 else
1989 check_port_control = true;
1990 }
1991
1992 if (is_multicast_ether_addr(hdr->addr1) &&
1993 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1994 return -1;
1995
1996 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1997 if (ret < 0)
1998 return ret;
1999
2000 ehdr = (struct ethhdr *) rx->skb->data;
2001 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2002 *port_control = true;
2003 else if (check_port_control)
2004 return -1;
2005
2006 return 0;
2007 }
2008
2009 /*
2010 * requires that rx->skb is a frame with ethernet header
2011 */
2012 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2013 {
2014 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2015 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2016 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2017
2018 /*
2019 * Allow EAPOL frames to us/the PAE group address regardless
2020 * of whether the frame was encrypted or not.
2021 */
2022 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2023 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2024 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2025 return true;
2026
2027 if (ieee80211_802_1x_port_control(rx) ||
2028 ieee80211_drop_unencrypted(rx, fc))
2029 return false;
2030
2031 return true;
2032 }
2033
2034 /*
2035 * requires that rx->skb is a frame with ethernet header
2036 */
2037 static void
2038 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2039 {
2040 struct ieee80211_sub_if_data *sdata = rx->sdata;
2041 struct net_device *dev = sdata->dev;
2042 struct sk_buff *skb, *xmit_skb;
2043 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2044 struct sta_info *dsta;
2045 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2046
2047 skb = rx->skb;
2048 xmit_skb = NULL;
2049
2050 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2051 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2052 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2053 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2054 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2055 if (is_multicast_ether_addr(ehdr->h_dest)) {
2056 /*
2057 * send multicast frames both to higher layers in
2058 * local net stack and back to the wireless medium
2059 */
2060 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2061 if (!xmit_skb)
2062 net_info_ratelimited("%s: failed to clone multicast frame\n",
2063 dev->name);
2064 } else {
2065 dsta = sta_info_get(sdata, skb->data);
2066 if (dsta) {
2067 /*
2068 * The destination station is associated to
2069 * this AP (in this VLAN), so send the frame
2070 * directly to it and do not pass it to local
2071 * net stack.
2072 */
2073 xmit_skb = skb;
2074 skb = NULL;
2075 }
2076 }
2077 }
2078
2079 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2080 if (skb) {
2081 /* 'align' will only take the values 0 or 2 here since all
2082 * frames are required to be aligned to 2-byte boundaries
2083 * when being passed to mac80211; the code here works just
2084 * as well if that isn't true, but mac80211 assumes it can
2085 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2086 */
2087 int align;
2088
2089 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2090 if (align) {
2091 if (WARN_ON(skb_headroom(skb) < 3)) {
2092 dev_kfree_skb(skb);
2093 skb = NULL;
2094 } else {
2095 u8 *data = skb->data;
2096 size_t len = skb_headlen(skb);
2097 skb->data -= align;
2098 memmove(skb->data, data, len);
2099 skb_set_tail_pointer(skb, len);
2100 }
2101 }
2102 }
2103 #endif
2104
2105 if (skb) {
2106 /* deliver to local stack */
2107 skb->protocol = eth_type_trans(skb, dev);
2108 memset(skb->cb, 0, sizeof(skb->cb));
2109 if (rx->local->napi)
2110 napi_gro_receive(rx->local->napi, skb);
2111 else
2112 netif_receive_skb(skb);
2113 }
2114
2115 if (xmit_skb) {
2116 /*
2117 * Send to wireless media and increase priority by 256 to
2118 * keep the received priority instead of reclassifying
2119 * the frame (see cfg80211_classify8021d).
2120 */
2121 xmit_skb->priority += 256;
2122 xmit_skb->protocol = htons(ETH_P_802_3);
2123 skb_reset_network_header(xmit_skb);
2124 skb_reset_mac_header(xmit_skb);
2125 dev_queue_xmit(xmit_skb);
2126 }
2127 }
2128
2129 static ieee80211_rx_result debug_noinline
2130 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2131 {
2132 struct net_device *dev = rx->sdata->dev;
2133 struct sk_buff *skb = rx->skb;
2134 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2135 __le16 fc = hdr->frame_control;
2136 struct sk_buff_head frame_list;
2137 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2138
2139 if (unlikely(!ieee80211_is_data(fc)))
2140 return RX_CONTINUE;
2141
2142 if (unlikely(!ieee80211_is_data_present(fc)))
2143 return RX_DROP_MONITOR;
2144
2145 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2146 return RX_CONTINUE;
2147
2148 if (ieee80211_has_a4(hdr->frame_control) &&
2149 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2150 !rx->sdata->u.vlan.sta)
2151 return RX_DROP_UNUSABLE;
2152
2153 if (is_multicast_ether_addr(hdr->addr1) &&
2154 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2155 rx->sdata->u.vlan.sta) ||
2156 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2157 rx->sdata->u.mgd.use_4addr)))
2158 return RX_DROP_UNUSABLE;
2159
2160 skb->dev = dev;
2161 __skb_queue_head_init(&frame_list);
2162
2163 if (skb_linearize(skb))
2164 return RX_DROP_UNUSABLE;
2165
2166 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2167 rx->sdata->vif.type,
2168 rx->local->hw.extra_tx_headroom, true);
2169
2170 while (!skb_queue_empty(&frame_list)) {
2171 rx->skb = __skb_dequeue(&frame_list);
2172
2173 if (!ieee80211_frame_allowed(rx, fc)) {
2174 dev_kfree_skb(rx->skb);
2175 continue;
2176 }
2177 dev->stats.rx_packets++;
2178 dev->stats.rx_bytes += rx->skb->len;
2179
2180 ieee80211_deliver_skb(rx);
2181 }
2182
2183 return RX_QUEUED;
2184 }
2185
2186 #ifdef CONFIG_MAC80211_MESH
2187 static ieee80211_rx_result
2188 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2189 {
2190 struct ieee80211_hdr *fwd_hdr, *hdr;
2191 struct ieee80211_tx_info *info;
2192 struct ieee80211s_hdr *mesh_hdr;
2193 struct sk_buff *skb = rx->skb, *fwd_skb;
2194 struct ieee80211_local *local = rx->local;
2195 struct ieee80211_sub_if_data *sdata = rx->sdata;
2196 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2197 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2198 u16 q, hdrlen;
2199
2200 hdr = (struct ieee80211_hdr *) skb->data;
2201 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2202
2203 /* make sure fixed part of mesh header is there, also checks skb len */
2204 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2205 return RX_DROP_MONITOR;
2206
2207 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2208
2209 /* make sure full mesh header is there, also checks skb len */
2210 if (!pskb_may_pull(rx->skb,
2211 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2212 return RX_DROP_MONITOR;
2213
2214 /* reload pointers */
2215 hdr = (struct ieee80211_hdr *) skb->data;
2216 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2217
2218 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2219 return RX_DROP_MONITOR;
2220
2221 /* frame is in RMC, don't forward */
2222 if (ieee80211_is_data(hdr->frame_control) &&
2223 is_multicast_ether_addr(hdr->addr1) &&
2224 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2225 return RX_DROP_MONITOR;
2226
2227 if (!ieee80211_is_data(hdr->frame_control) ||
2228 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2229 return RX_CONTINUE;
2230
2231 if (!mesh_hdr->ttl)
2232 return RX_DROP_MONITOR;
2233
2234 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2235 struct mesh_path *mppath;
2236 char *proxied_addr;
2237 char *mpp_addr;
2238
2239 if (is_multicast_ether_addr(hdr->addr1)) {
2240 mpp_addr = hdr->addr3;
2241 proxied_addr = mesh_hdr->eaddr1;
2242 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2243 /* has_a4 already checked in ieee80211_rx_mesh_check */
2244 mpp_addr = hdr->addr4;
2245 proxied_addr = mesh_hdr->eaddr2;
2246 } else {
2247 return RX_DROP_MONITOR;
2248 }
2249
2250 rcu_read_lock();
2251 mppath = mpp_path_lookup(sdata, proxied_addr);
2252 if (!mppath) {
2253 mpp_path_add(sdata, proxied_addr, mpp_addr);
2254 } else {
2255 spin_lock_bh(&mppath->state_lock);
2256 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2257 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2258 spin_unlock_bh(&mppath->state_lock);
2259 }
2260 rcu_read_unlock();
2261 }
2262
2263 /* Frame has reached destination. Don't forward */
2264 if (!is_multicast_ether_addr(hdr->addr1) &&
2265 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2266 return RX_CONTINUE;
2267
2268 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2269 if (ieee80211_queue_stopped(&local->hw, q)) {
2270 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2271 return RX_DROP_MONITOR;
2272 }
2273 skb_set_queue_mapping(skb, q);
2274
2275 if (!--mesh_hdr->ttl) {
2276 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2277 goto out;
2278 }
2279
2280 if (!ifmsh->mshcfg.dot11MeshForwarding)
2281 goto out;
2282
2283 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2284 if (!fwd_skb) {
2285 net_info_ratelimited("%s: failed to clone mesh frame\n",
2286 sdata->name);
2287 goto out;
2288 }
2289
2290 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2291 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2292 info = IEEE80211_SKB_CB(fwd_skb);
2293 memset(info, 0, sizeof(*info));
2294 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2295 info->control.vif = &rx->sdata->vif;
2296 info->control.jiffies = jiffies;
2297 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2298 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2299 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2300 /* update power mode indication when forwarding */
2301 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2302 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2303 /* mesh power mode flags updated in mesh_nexthop_lookup */
2304 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2305 } else {
2306 /* unable to resolve next hop */
2307 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2308 fwd_hdr->addr3, 0,
2309 WLAN_REASON_MESH_PATH_NOFORWARD,
2310 fwd_hdr->addr2);
2311 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2312 kfree_skb(fwd_skb);
2313 return RX_DROP_MONITOR;
2314 }
2315
2316 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2317 ieee80211_add_pending_skb(local, fwd_skb);
2318 out:
2319 if (is_multicast_ether_addr(hdr->addr1) ||
2320 sdata->dev->flags & IFF_PROMISC)
2321 return RX_CONTINUE;
2322 else
2323 return RX_DROP_MONITOR;
2324 }
2325 #endif
2326
2327 static ieee80211_rx_result debug_noinline
2328 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2329 {
2330 struct ieee80211_sub_if_data *sdata = rx->sdata;
2331 struct ieee80211_local *local = rx->local;
2332 struct net_device *dev = sdata->dev;
2333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2334 __le16 fc = hdr->frame_control;
2335 bool port_control;
2336 int err;
2337
2338 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2339 return RX_CONTINUE;
2340
2341 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2342 return RX_DROP_MONITOR;
2343
2344 if (rx->sta) {
2345 /* The seqno index has the same property as needed
2346 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2347 * for non-QoS-data frames. Here we know it's a data
2348 * frame, so count MSDUs.
2349 */
2350 rx->sta->rx_msdu[rx->seqno_idx]++;
2351 }
2352
2353 /*
2354 * Send unexpected-4addr-frame event to hostapd. For older versions,
2355 * also drop the frame to cooked monitor interfaces.
2356 */
2357 if (ieee80211_has_a4(hdr->frame_control) &&
2358 sdata->vif.type == NL80211_IFTYPE_AP) {
2359 if (rx->sta &&
2360 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2361 cfg80211_rx_unexpected_4addr_frame(
2362 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2363 return RX_DROP_MONITOR;
2364 }
2365
2366 err = __ieee80211_data_to_8023(rx, &port_control);
2367 if (unlikely(err))
2368 return RX_DROP_UNUSABLE;
2369
2370 if (!ieee80211_frame_allowed(rx, fc))
2371 return RX_DROP_MONITOR;
2372
2373 /* directly handle TDLS channel switch requests/responses */
2374 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2375 cpu_to_be16(ETH_P_TDLS))) {
2376 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2377
2378 if (pskb_may_pull(rx->skb,
2379 offsetof(struct ieee80211_tdls_data, u)) &&
2380 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2381 tf->category == WLAN_CATEGORY_TDLS &&
2382 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2383 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2384 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW;
2385 skb_queue_tail(&sdata->skb_queue, rx->skb);
2386 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2387 if (rx->sta)
2388 rx->sta->rx_packets++;
2389
2390 return RX_QUEUED;
2391 }
2392 }
2393
2394 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2395 unlikely(port_control) && sdata->bss) {
2396 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2397 u.ap);
2398 dev = sdata->dev;
2399 rx->sdata = sdata;
2400 }
2401
2402 rx->skb->dev = dev;
2403
2404 dev->stats.rx_packets++;
2405 dev->stats.rx_bytes += rx->skb->len;
2406
2407 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2408 !is_multicast_ether_addr(
2409 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2410 (!local->scanning &&
2411 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2412 mod_timer(&local->dynamic_ps_timer, jiffies +
2413 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2414 }
2415
2416 ieee80211_deliver_skb(rx);
2417
2418 return RX_QUEUED;
2419 }
2420
2421 static ieee80211_rx_result debug_noinline
2422 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2423 {
2424 struct sk_buff *skb = rx->skb;
2425 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2426 struct tid_ampdu_rx *tid_agg_rx;
2427 u16 start_seq_num;
2428 u16 tid;
2429
2430 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2431 return RX_CONTINUE;
2432
2433 if (ieee80211_is_back_req(bar->frame_control)) {
2434 struct {
2435 __le16 control, start_seq_num;
2436 } __packed bar_data;
2437
2438 if (!rx->sta)
2439 return RX_DROP_MONITOR;
2440
2441 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2442 &bar_data, sizeof(bar_data)))
2443 return RX_DROP_MONITOR;
2444
2445 tid = le16_to_cpu(bar_data.control) >> 12;
2446
2447 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2448 if (!tid_agg_rx)
2449 return RX_DROP_MONITOR;
2450
2451 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2452
2453 /* reset session timer */
2454 if (tid_agg_rx->timeout)
2455 mod_timer(&tid_agg_rx->session_timer,
2456 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2457
2458 spin_lock(&tid_agg_rx->reorder_lock);
2459 /* release stored frames up to start of BAR */
2460 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2461 start_seq_num, frames);
2462 spin_unlock(&tid_agg_rx->reorder_lock);
2463
2464 kfree_skb(skb);
2465 return RX_QUEUED;
2466 }
2467
2468 /*
2469 * After this point, we only want management frames,
2470 * so we can drop all remaining control frames to
2471 * cooked monitor interfaces.
2472 */
2473 return RX_DROP_MONITOR;
2474 }
2475
2476 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2477 struct ieee80211_mgmt *mgmt,
2478 size_t len)
2479 {
2480 struct ieee80211_local *local = sdata->local;
2481 struct sk_buff *skb;
2482 struct ieee80211_mgmt *resp;
2483
2484 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2485 /* Not to own unicast address */
2486 return;
2487 }
2488
2489 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2490 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2491 /* Not from the current AP or not associated yet. */
2492 return;
2493 }
2494
2495 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2496 /* Too short SA Query request frame */
2497 return;
2498 }
2499
2500 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2501 if (skb == NULL)
2502 return;
2503
2504 skb_reserve(skb, local->hw.extra_tx_headroom);
2505 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2506 memset(resp, 0, 24);
2507 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2508 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2509 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2510 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2511 IEEE80211_STYPE_ACTION);
2512 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2513 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2514 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2515 memcpy(resp->u.action.u.sa_query.trans_id,
2516 mgmt->u.action.u.sa_query.trans_id,
2517 WLAN_SA_QUERY_TR_ID_LEN);
2518
2519 ieee80211_tx_skb(sdata, skb);
2520 }
2521
2522 static ieee80211_rx_result debug_noinline
2523 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2524 {
2525 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2526 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2527
2528 /*
2529 * From here on, look only at management frames.
2530 * Data and control frames are already handled,
2531 * and unknown (reserved) frames are useless.
2532 */
2533 if (rx->skb->len < 24)
2534 return RX_DROP_MONITOR;
2535
2536 if (!ieee80211_is_mgmt(mgmt->frame_control))
2537 return RX_DROP_MONITOR;
2538
2539 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2540 ieee80211_is_beacon(mgmt->frame_control) &&
2541 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2542 int sig = 0;
2543
2544 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2545 sig = status->signal;
2546
2547 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2548 rx->skb->data, rx->skb->len,
2549 status->freq, sig);
2550 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2551 }
2552
2553 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2554 return RX_DROP_MONITOR;
2555
2556 if (ieee80211_drop_unencrypted_mgmt(rx))
2557 return RX_DROP_UNUSABLE;
2558
2559 return RX_CONTINUE;
2560 }
2561
2562 static ieee80211_rx_result debug_noinline
2563 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2564 {
2565 struct ieee80211_local *local = rx->local;
2566 struct ieee80211_sub_if_data *sdata = rx->sdata;
2567 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2568 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2569 int len = rx->skb->len;
2570
2571 if (!ieee80211_is_action(mgmt->frame_control))
2572 return RX_CONTINUE;
2573
2574 /* drop too small frames */
2575 if (len < IEEE80211_MIN_ACTION_SIZE)
2576 return RX_DROP_UNUSABLE;
2577
2578 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2579 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2580 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2581 return RX_DROP_UNUSABLE;
2582
2583 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2584 return RX_DROP_UNUSABLE;
2585
2586 switch (mgmt->u.action.category) {
2587 case WLAN_CATEGORY_HT:
2588 /* reject HT action frames from stations not supporting HT */
2589 if (!rx->sta->sta.ht_cap.ht_supported)
2590 goto invalid;
2591
2592 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2593 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2594 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2595 sdata->vif.type != NL80211_IFTYPE_AP &&
2596 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2597 break;
2598
2599 /* verify action & smps_control/chanwidth are present */
2600 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2601 goto invalid;
2602
2603 switch (mgmt->u.action.u.ht_smps.action) {
2604 case WLAN_HT_ACTION_SMPS: {
2605 struct ieee80211_supported_band *sband;
2606 enum ieee80211_smps_mode smps_mode;
2607
2608 /* convert to HT capability */
2609 switch (mgmt->u.action.u.ht_smps.smps_control) {
2610 case WLAN_HT_SMPS_CONTROL_DISABLED:
2611 smps_mode = IEEE80211_SMPS_OFF;
2612 break;
2613 case WLAN_HT_SMPS_CONTROL_STATIC:
2614 smps_mode = IEEE80211_SMPS_STATIC;
2615 break;
2616 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2617 smps_mode = IEEE80211_SMPS_DYNAMIC;
2618 break;
2619 default:
2620 goto invalid;
2621 }
2622
2623 /* if no change do nothing */
2624 if (rx->sta->sta.smps_mode == smps_mode)
2625 goto handled;
2626 rx->sta->sta.smps_mode = smps_mode;
2627
2628 sband = rx->local->hw.wiphy->bands[status->band];
2629
2630 rate_control_rate_update(local, sband, rx->sta,
2631 IEEE80211_RC_SMPS_CHANGED);
2632 goto handled;
2633 }
2634 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2635 struct ieee80211_supported_band *sband;
2636 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2637 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2638
2639 /* If it doesn't support 40 MHz it can't change ... */
2640 if (!(rx->sta->sta.ht_cap.cap &
2641 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2642 goto handled;
2643
2644 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2645 max_bw = IEEE80211_STA_RX_BW_20;
2646 else
2647 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2648
2649 /* set cur_max_bandwidth and recalc sta bw */
2650 rx->sta->cur_max_bandwidth = max_bw;
2651 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2652
2653 if (rx->sta->sta.bandwidth == new_bw)
2654 goto handled;
2655
2656 rx->sta->sta.bandwidth = new_bw;
2657 sband = rx->local->hw.wiphy->bands[status->band];
2658
2659 rate_control_rate_update(local, sband, rx->sta,
2660 IEEE80211_RC_BW_CHANGED);
2661 goto handled;
2662 }
2663 default:
2664 goto invalid;
2665 }
2666
2667 break;
2668 case WLAN_CATEGORY_PUBLIC:
2669 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2670 goto invalid;
2671 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2672 break;
2673 if (!rx->sta)
2674 break;
2675 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2676 break;
2677 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2678 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2679 break;
2680 if (len < offsetof(struct ieee80211_mgmt,
2681 u.action.u.ext_chan_switch.variable))
2682 goto invalid;
2683 goto queue;
2684 case WLAN_CATEGORY_VHT:
2685 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2686 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2687 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2688 sdata->vif.type != NL80211_IFTYPE_AP &&
2689 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2690 break;
2691
2692 /* verify action code is present */
2693 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2694 goto invalid;
2695
2696 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2697 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2698 u8 opmode;
2699
2700 /* verify opmode is present */
2701 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2702 goto invalid;
2703
2704 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2705
2706 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2707 opmode, status->band,
2708 false);
2709 goto handled;
2710 }
2711 default:
2712 break;
2713 }
2714 break;
2715 case WLAN_CATEGORY_BACK:
2716 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2717 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2718 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2719 sdata->vif.type != NL80211_IFTYPE_AP &&
2720 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2721 break;
2722
2723 /* verify action_code is present */
2724 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2725 break;
2726
2727 switch (mgmt->u.action.u.addba_req.action_code) {
2728 case WLAN_ACTION_ADDBA_REQ:
2729 if (len < (IEEE80211_MIN_ACTION_SIZE +
2730 sizeof(mgmt->u.action.u.addba_req)))
2731 goto invalid;
2732 break;
2733 case WLAN_ACTION_ADDBA_RESP:
2734 if (len < (IEEE80211_MIN_ACTION_SIZE +
2735 sizeof(mgmt->u.action.u.addba_resp)))
2736 goto invalid;
2737 break;
2738 case WLAN_ACTION_DELBA:
2739 if (len < (IEEE80211_MIN_ACTION_SIZE +
2740 sizeof(mgmt->u.action.u.delba)))
2741 goto invalid;
2742 break;
2743 default:
2744 goto invalid;
2745 }
2746
2747 goto queue;
2748 case WLAN_CATEGORY_SPECTRUM_MGMT:
2749 /* verify action_code is present */
2750 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2751 break;
2752
2753 switch (mgmt->u.action.u.measurement.action_code) {
2754 case WLAN_ACTION_SPCT_MSR_REQ:
2755 if (status->band != IEEE80211_BAND_5GHZ)
2756 break;
2757
2758 if (len < (IEEE80211_MIN_ACTION_SIZE +
2759 sizeof(mgmt->u.action.u.measurement)))
2760 break;
2761
2762 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2763 break;
2764
2765 ieee80211_process_measurement_req(sdata, mgmt, len);
2766 goto handled;
2767 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2768 u8 *bssid;
2769 if (len < (IEEE80211_MIN_ACTION_SIZE +
2770 sizeof(mgmt->u.action.u.chan_switch)))
2771 break;
2772
2773 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2774 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2775 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2776 break;
2777
2778 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2779 bssid = sdata->u.mgd.bssid;
2780 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2781 bssid = sdata->u.ibss.bssid;
2782 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2783 bssid = mgmt->sa;
2784 else
2785 break;
2786
2787 if (!ether_addr_equal(mgmt->bssid, bssid))
2788 break;
2789
2790 goto queue;
2791 }
2792 }
2793 break;
2794 case WLAN_CATEGORY_SA_QUERY:
2795 if (len < (IEEE80211_MIN_ACTION_SIZE +
2796 sizeof(mgmt->u.action.u.sa_query)))
2797 break;
2798
2799 switch (mgmt->u.action.u.sa_query.action) {
2800 case WLAN_ACTION_SA_QUERY_REQUEST:
2801 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2802 break;
2803 ieee80211_process_sa_query_req(sdata, mgmt, len);
2804 goto handled;
2805 }
2806 break;
2807 case WLAN_CATEGORY_SELF_PROTECTED:
2808 if (len < (IEEE80211_MIN_ACTION_SIZE +
2809 sizeof(mgmt->u.action.u.self_prot.action_code)))
2810 break;
2811
2812 switch (mgmt->u.action.u.self_prot.action_code) {
2813 case WLAN_SP_MESH_PEERING_OPEN:
2814 case WLAN_SP_MESH_PEERING_CLOSE:
2815 case WLAN_SP_MESH_PEERING_CONFIRM:
2816 if (!ieee80211_vif_is_mesh(&sdata->vif))
2817 goto invalid;
2818 if (sdata->u.mesh.user_mpm)
2819 /* userspace handles this frame */
2820 break;
2821 goto queue;
2822 case WLAN_SP_MGK_INFORM:
2823 case WLAN_SP_MGK_ACK:
2824 if (!ieee80211_vif_is_mesh(&sdata->vif))
2825 goto invalid;
2826 break;
2827 }
2828 break;
2829 case WLAN_CATEGORY_MESH_ACTION:
2830 if (len < (IEEE80211_MIN_ACTION_SIZE +
2831 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2832 break;
2833
2834 if (!ieee80211_vif_is_mesh(&sdata->vif))
2835 break;
2836 if (mesh_action_is_path_sel(mgmt) &&
2837 !mesh_path_sel_is_hwmp(sdata))
2838 break;
2839 goto queue;
2840 }
2841
2842 return RX_CONTINUE;
2843
2844 invalid:
2845 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2846 /* will return in the next handlers */
2847 return RX_CONTINUE;
2848
2849 handled:
2850 if (rx->sta)
2851 rx->sta->rx_packets++;
2852 dev_kfree_skb(rx->skb);
2853 return RX_QUEUED;
2854
2855 queue:
2856 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2857 skb_queue_tail(&sdata->skb_queue, rx->skb);
2858 ieee80211_queue_work(&local->hw, &sdata->work);
2859 if (rx->sta)
2860 rx->sta->rx_packets++;
2861 return RX_QUEUED;
2862 }
2863
2864 static ieee80211_rx_result debug_noinline
2865 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2866 {
2867 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2868 int sig = 0;
2869
2870 /* skip known-bad action frames and return them in the next handler */
2871 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2872 return RX_CONTINUE;
2873
2874 /*
2875 * Getting here means the kernel doesn't know how to handle
2876 * it, but maybe userspace does ... include returned frames
2877 * so userspace can register for those to know whether ones
2878 * it transmitted were processed or returned.
2879 */
2880
2881 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2882 sig = status->signal;
2883
2884 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2885 rx->skb->data, rx->skb->len, 0)) {
2886 if (rx->sta)
2887 rx->sta->rx_packets++;
2888 dev_kfree_skb(rx->skb);
2889 return RX_QUEUED;
2890 }
2891
2892 return RX_CONTINUE;
2893 }
2894
2895 static ieee80211_rx_result debug_noinline
2896 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2897 {
2898 struct ieee80211_local *local = rx->local;
2899 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2900 struct sk_buff *nskb;
2901 struct ieee80211_sub_if_data *sdata = rx->sdata;
2902 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2903
2904 if (!ieee80211_is_action(mgmt->frame_control))
2905 return RX_CONTINUE;
2906
2907 /*
2908 * For AP mode, hostapd is responsible for handling any action
2909 * frames that we didn't handle, including returning unknown
2910 * ones. For all other modes we will return them to the sender,
2911 * setting the 0x80 bit in the action category, as required by
2912 * 802.11-2012 9.24.4.
2913 * Newer versions of hostapd shall also use the management frame
2914 * registration mechanisms, but older ones still use cooked
2915 * monitor interfaces so push all frames there.
2916 */
2917 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2918 (sdata->vif.type == NL80211_IFTYPE_AP ||
2919 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2920 return RX_DROP_MONITOR;
2921
2922 if (is_multicast_ether_addr(mgmt->da))
2923 return RX_DROP_MONITOR;
2924
2925 /* do not return rejected action frames */
2926 if (mgmt->u.action.category & 0x80)
2927 return RX_DROP_UNUSABLE;
2928
2929 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2930 GFP_ATOMIC);
2931 if (nskb) {
2932 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2933
2934 nmgmt->u.action.category |= 0x80;
2935 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2936 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2937
2938 memset(nskb->cb, 0, sizeof(nskb->cb));
2939
2940 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2941 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2942
2943 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2944 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2945 IEEE80211_TX_CTL_NO_CCK_RATE;
2946 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2947 info->hw_queue =
2948 local->hw.offchannel_tx_hw_queue;
2949 }
2950
2951 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2952 status->band);
2953 }
2954 dev_kfree_skb(rx->skb);
2955 return RX_QUEUED;
2956 }
2957
2958 static ieee80211_rx_result debug_noinline
2959 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2960 {
2961 struct ieee80211_sub_if_data *sdata = rx->sdata;
2962 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2963 __le16 stype;
2964
2965 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2966
2967 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2968 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2969 sdata->vif.type != NL80211_IFTYPE_OCB &&
2970 sdata->vif.type != NL80211_IFTYPE_STATION)
2971 return RX_DROP_MONITOR;
2972
2973 switch (stype) {
2974 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2975 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2976 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2977 /* process for all: mesh, mlme, ibss */
2978 break;
2979 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2980 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2981 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2982 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2983 if (is_multicast_ether_addr(mgmt->da) &&
2984 !is_broadcast_ether_addr(mgmt->da))
2985 return RX_DROP_MONITOR;
2986
2987 /* process only for station */
2988 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2989 return RX_DROP_MONITOR;
2990 break;
2991 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2992 /* process only for ibss and mesh */
2993 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2994 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2995 return RX_DROP_MONITOR;
2996 break;
2997 default:
2998 return RX_DROP_MONITOR;
2999 }
3000
3001 /* queue up frame and kick off work to process it */
3002 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3003 skb_queue_tail(&sdata->skb_queue, rx->skb);
3004 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3005 if (rx->sta)
3006 rx->sta->rx_packets++;
3007
3008 return RX_QUEUED;
3009 }
3010
3011 /* TODO: use IEEE80211_RX_FRAGMENTED */
3012 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3013 struct ieee80211_rate *rate)
3014 {
3015 struct ieee80211_sub_if_data *sdata;
3016 struct ieee80211_local *local = rx->local;
3017 struct sk_buff *skb = rx->skb, *skb2;
3018 struct net_device *prev_dev = NULL;
3019 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3020 int needed_headroom;
3021
3022 /*
3023 * If cooked monitor has been processed already, then
3024 * don't do it again. If not, set the flag.
3025 */
3026 if (rx->flags & IEEE80211_RX_CMNTR)
3027 goto out_free_skb;
3028 rx->flags |= IEEE80211_RX_CMNTR;
3029
3030 /* If there are no cooked monitor interfaces, just free the SKB */
3031 if (!local->cooked_mntrs)
3032 goto out_free_skb;
3033
3034 /* vendor data is long removed here */
3035 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3036 /* room for the radiotap header based on driver features */
3037 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3038
3039 if (skb_headroom(skb) < needed_headroom &&
3040 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3041 goto out_free_skb;
3042
3043 /* prepend radiotap information */
3044 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3045 false);
3046
3047 skb_set_mac_header(skb, 0);
3048 skb->ip_summed = CHECKSUM_UNNECESSARY;
3049 skb->pkt_type = PACKET_OTHERHOST;
3050 skb->protocol = htons(ETH_P_802_2);
3051
3052 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3053 if (!ieee80211_sdata_running(sdata))
3054 continue;
3055
3056 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3057 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3058 continue;
3059
3060 if (prev_dev) {
3061 skb2 = skb_clone(skb, GFP_ATOMIC);
3062 if (skb2) {
3063 skb2->dev = prev_dev;
3064 netif_receive_skb(skb2);
3065 }
3066 }
3067
3068 prev_dev = sdata->dev;
3069 sdata->dev->stats.rx_packets++;
3070 sdata->dev->stats.rx_bytes += skb->len;
3071 }
3072
3073 if (prev_dev) {
3074 skb->dev = prev_dev;
3075 netif_receive_skb(skb);
3076 return;
3077 }
3078
3079 out_free_skb:
3080 dev_kfree_skb(skb);
3081 }
3082
3083 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3084 ieee80211_rx_result res)
3085 {
3086 switch (res) {
3087 case RX_DROP_MONITOR:
3088 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3089 if (rx->sta)
3090 rx->sta->rx_dropped++;
3091 /* fall through */
3092 case RX_CONTINUE: {
3093 struct ieee80211_rate *rate = NULL;
3094 struct ieee80211_supported_band *sband;
3095 struct ieee80211_rx_status *status;
3096
3097 status = IEEE80211_SKB_RXCB((rx->skb));
3098
3099 sband = rx->local->hw.wiphy->bands[status->band];
3100 if (!(status->flag & RX_FLAG_HT) &&
3101 !(status->flag & RX_FLAG_VHT))
3102 rate = &sband->bitrates[status->rate_idx];
3103
3104 ieee80211_rx_cooked_monitor(rx, rate);
3105 break;
3106 }
3107 case RX_DROP_UNUSABLE:
3108 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3109 if (rx->sta)
3110 rx->sta->rx_dropped++;
3111 dev_kfree_skb(rx->skb);
3112 break;
3113 case RX_QUEUED:
3114 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3115 break;
3116 }
3117 }
3118
3119 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3120 struct sk_buff_head *frames)
3121 {
3122 ieee80211_rx_result res = RX_DROP_MONITOR;
3123 struct sk_buff *skb;
3124
3125 #define CALL_RXH(rxh) \
3126 do { \
3127 res = rxh(rx); \
3128 if (res != RX_CONTINUE) \
3129 goto rxh_next; \
3130 } while (0);
3131
3132 spin_lock_bh(&rx->local->rx_path_lock);
3133
3134 while ((skb = __skb_dequeue(frames))) {
3135 /*
3136 * all the other fields are valid across frames
3137 * that belong to an aMPDU since they are on the
3138 * same TID from the same station
3139 */
3140 rx->skb = skb;
3141
3142 CALL_RXH(ieee80211_rx_h_check_more_data)
3143 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3144 CALL_RXH(ieee80211_rx_h_sta_process)
3145 CALL_RXH(ieee80211_rx_h_decrypt)
3146 CALL_RXH(ieee80211_rx_h_defragment)
3147 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3148 /* must be after MMIC verify so header is counted in MPDU mic */
3149 #ifdef CONFIG_MAC80211_MESH
3150 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3151 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3152 #endif
3153 CALL_RXH(ieee80211_rx_h_amsdu)
3154 CALL_RXH(ieee80211_rx_h_data)
3155
3156 /* special treatment -- needs the queue */
3157 res = ieee80211_rx_h_ctrl(rx, frames);
3158 if (res != RX_CONTINUE)
3159 goto rxh_next;
3160
3161 CALL_RXH(ieee80211_rx_h_mgmt_check)
3162 CALL_RXH(ieee80211_rx_h_action)
3163 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3164 CALL_RXH(ieee80211_rx_h_action_return)
3165 CALL_RXH(ieee80211_rx_h_mgmt)
3166
3167 rxh_next:
3168 ieee80211_rx_handlers_result(rx, res);
3169
3170 #undef CALL_RXH
3171 }
3172
3173 spin_unlock_bh(&rx->local->rx_path_lock);
3174 }
3175
3176 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3177 {
3178 struct sk_buff_head reorder_release;
3179 ieee80211_rx_result res = RX_DROP_MONITOR;
3180
3181 __skb_queue_head_init(&reorder_release);
3182
3183 #define CALL_RXH(rxh) \
3184 do { \
3185 res = rxh(rx); \
3186 if (res != RX_CONTINUE) \
3187 goto rxh_next; \
3188 } while (0);
3189
3190 CALL_RXH(ieee80211_rx_h_check_dup)
3191 CALL_RXH(ieee80211_rx_h_check)
3192
3193 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3194
3195 ieee80211_rx_handlers(rx, &reorder_release);
3196 return;
3197
3198 rxh_next:
3199 ieee80211_rx_handlers_result(rx, res);
3200
3201 #undef CALL_RXH
3202 }
3203
3204 /*
3205 * This function makes calls into the RX path, therefore
3206 * it has to be invoked under RCU read lock.
3207 */
3208 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3209 {
3210 struct sk_buff_head frames;
3211 struct ieee80211_rx_data rx = {
3212 .sta = sta,
3213 .sdata = sta->sdata,
3214 .local = sta->local,
3215 /* This is OK -- must be QoS data frame */
3216 .security_idx = tid,
3217 .seqno_idx = tid,
3218 .flags = 0,
3219 };
3220 struct tid_ampdu_rx *tid_agg_rx;
3221
3222 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3223 if (!tid_agg_rx)
3224 return;
3225
3226 __skb_queue_head_init(&frames);
3227
3228 spin_lock(&tid_agg_rx->reorder_lock);
3229 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3230 spin_unlock(&tid_agg_rx->reorder_lock);
3231
3232 ieee80211_rx_handlers(&rx, &frames);
3233 }
3234
3235 /* main receive path */
3236
3237 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3238 struct ieee80211_hdr *hdr)
3239 {
3240 struct ieee80211_sub_if_data *sdata = rx->sdata;
3241 struct sk_buff *skb = rx->skb;
3242 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3243 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3244 int multicast = is_multicast_ether_addr(hdr->addr1);
3245
3246 switch (sdata->vif.type) {
3247 case NL80211_IFTYPE_STATION:
3248 if (!bssid && !sdata->u.mgd.use_4addr)
3249 return false;
3250 if (!multicast &&
3251 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3252 if (!(sdata->dev->flags & IFF_PROMISC) ||
3253 sdata->u.mgd.use_4addr)
3254 return false;
3255 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3256 }
3257 break;
3258 case NL80211_IFTYPE_ADHOC:
3259 if (!bssid)
3260 return false;
3261 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3262 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3263 return false;
3264 if (ieee80211_is_beacon(hdr->frame_control)) {
3265 return true;
3266 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3267 return false;
3268 } else if (!multicast &&
3269 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3270 if (!(sdata->dev->flags & IFF_PROMISC))
3271 return false;
3272 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3273 } else if (!rx->sta) {
3274 int rate_idx;
3275 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3276 rate_idx = 0; /* TODO: HT/VHT rates */
3277 else
3278 rate_idx = status->rate_idx;
3279 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3280 BIT(rate_idx));
3281 }
3282 break;
3283 case NL80211_IFTYPE_OCB:
3284 if (!bssid)
3285 return false;
3286 if (ieee80211_is_beacon(hdr->frame_control)) {
3287 return false;
3288 } else if (!is_broadcast_ether_addr(bssid)) {
3289 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3290 return false;
3291 } else if (!multicast &&
3292 !ether_addr_equal(sdata->dev->dev_addr,
3293 hdr->addr1)) {
3294 /* if we are in promisc mode we also accept
3295 * packets not destined for us
3296 */
3297 if (!(sdata->dev->flags & IFF_PROMISC))
3298 return false;
3299 rx->flags &= ~IEEE80211_RX_RA_MATCH;
3300 } else if (!rx->sta) {
3301 int rate_idx;
3302 if (status->flag & RX_FLAG_HT)
3303 rate_idx = 0; /* TODO: HT rates */
3304 else
3305 rate_idx = status->rate_idx;
3306 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3307 BIT(rate_idx));
3308 }
3309 break;
3310 case NL80211_IFTYPE_MESH_POINT:
3311 if (!multicast &&
3312 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3313 if (!(sdata->dev->flags & IFF_PROMISC))
3314 return false;
3315
3316 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3317 }
3318 break;
3319 case NL80211_IFTYPE_AP_VLAN:
3320 case NL80211_IFTYPE_AP:
3321 if (!bssid) {
3322 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3323 return false;
3324 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3325 /*
3326 * Accept public action frames even when the
3327 * BSSID doesn't match, this is used for P2P
3328 * and location updates. Note that mac80211
3329 * itself never looks at these frames.
3330 */
3331 if (!multicast &&
3332 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3333 return false;
3334 if (ieee80211_is_public_action(hdr, skb->len))
3335 return true;
3336 if (!ieee80211_is_beacon(hdr->frame_control))
3337 return false;
3338 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3339 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3340 /* ignore data frames to TDLS-peers */
3341 if (ieee80211_is_data(hdr->frame_control))
3342 return false;
3343 /* ignore action frames to TDLS-peers */
3344 if (ieee80211_is_action(hdr->frame_control) &&
3345 !ether_addr_equal(bssid, hdr->addr1))
3346 return false;
3347 }
3348 break;
3349 case NL80211_IFTYPE_WDS:
3350 if (bssid || !ieee80211_is_data(hdr->frame_control))
3351 return false;
3352 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3353 return false;
3354 break;
3355 case NL80211_IFTYPE_P2P_DEVICE:
3356 if (!ieee80211_is_public_action(hdr, skb->len) &&
3357 !ieee80211_is_probe_req(hdr->frame_control) &&
3358 !ieee80211_is_probe_resp(hdr->frame_control) &&
3359 !ieee80211_is_beacon(hdr->frame_control))
3360 return false;
3361 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3362 !multicast)
3363 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3364 break;
3365 default:
3366 /* should never get here */
3367 WARN_ON_ONCE(1);
3368 break;
3369 }
3370
3371 return true;
3372 }
3373
3374 /*
3375 * This function returns whether or not the SKB
3376 * was destined for RX processing or not, which,
3377 * if consume is true, is equivalent to whether
3378 * or not the skb was consumed.
3379 */
3380 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3381 struct sk_buff *skb, bool consume)
3382 {
3383 struct ieee80211_local *local = rx->local;
3384 struct ieee80211_sub_if_data *sdata = rx->sdata;
3385 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3386 struct ieee80211_hdr *hdr = (void *)skb->data;
3387
3388 rx->skb = skb;
3389 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3390
3391 if (!prepare_for_handlers(rx, hdr))
3392 return false;
3393
3394 if (!consume) {
3395 skb = skb_copy(skb, GFP_ATOMIC);
3396 if (!skb) {
3397 if (net_ratelimit())
3398 wiphy_debug(local->hw.wiphy,
3399 "failed to copy skb for %s\n",
3400 sdata->name);
3401 return true;
3402 }
3403
3404 rx->skb = skb;
3405 }
3406
3407 ieee80211_invoke_rx_handlers(rx);
3408 return true;
3409 }
3410
3411 /*
3412 * This is the actual Rx frames handler. as it belongs to Rx path it must
3413 * be called with rcu_read_lock protection.
3414 */
3415 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3416 struct sk_buff *skb)
3417 {
3418 struct ieee80211_local *local = hw_to_local(hw);
3419 struct ieee80211_sub_if_data *sdata;
3420 struct ieee80211_hdr *hdr;
3421 __le16 fc;
3422 struct ieee80211_rx_data rx;
3423 struct ieee80211_sub_if_data *prev;
3424 struct sta_info *sta, *tmp, *prev_sta;
3425 int err = 0;
3426
3427 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3428 memset(&rx, 0, sizeof(rx));
3429 rx.skb = skb;
3430 rx.local = local;
3431
3432 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3433 local->dot11ReceivedFragmentCount++;
3434
3435 if (ieee80211_is_mgmt(fc)) {
3436 /* drop frame if too short for header */
3437 if (skb->len < ieee80211_hdrlen(fc))
3438 err = -ENOBUFS;
3439 else
3440 err = skb_linearize(skb);
3441 } else {
3442 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3443 }
3444
3445 if (err) {
3446 dev_kfree_skb(skb);
3447 return;
3448 }
3449
3450 hdr = (struct ieee80211_hdr *)skb->data;
3451 ieee80211_parse_qos(&rx);
3452 ieee80211_verify_alignment(&rx);
3453
3454 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3455 ieee80211_is_beacon(hdr->frame_control)))
3456 ieee80211_scan_rx(local, skb);
3457
3458 if (ieee80211_is_data(fc)) {
3459 prev_sta = NULL;
3460
3461 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3462 if (!prev_sta) {
3463 prev_sta = sta;
3464 continue;
3465 }
3466
3467 rx.sta = prev_sta;
3468 rx.sdata = prev_sta->sdata;
3469 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3470
3471 prev_sta = sta;
3472 }
3473
3474 if (prev_sta) {
3475 rx.sta = prev_sta;
3476 rx.sdata = prev_sta->sdata;
3477
3478 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3479 return;
3480 goto out;
3481 }
3482 }
3483
3484 prev = NULL;
3485
3486 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3487 if (!ieee80211_sdata_running(sdata))
3488 continue;
3489
3490 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3491 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3492 continue;
3493
3494 /*
3495 * frame is destined for this interface, but if it's
3496 * not also for the previous one we handle that after
3497 * the loop to avoid copying the SKB once too much
3498 */
3499
3500 if (!prev) {
3501 prev = sdata;
3502 continue;
3503 }
3504
3505 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3506 rx.sdata = prev;
3507 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3508
3509 prev = sdata;
3510 }
3511
3512 if (prev) {
3513 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3514 rx.sdata = prev;
3515
3516 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3517 return;
3518 }
3519
3520 out:
3521 dev_kfree_skb(skb);
3522 }
3523
3524 /*
3525 * This is the receive path handler. It is called by a low level driver when an
3526 * 802.11 MPDU is received from the hardware.
3527 */
3528 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3529 {
3530 struct ieee80211_local *local = hw_to_local(hw);
3531 struct ieee80211_rate *rate = NULL;
3532 struct ieee80211_supported_band *sband;
3533 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3534
3535 WARN_ON_ONCE(softirq_count() == 0);
3536
3537 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3538 goto drop;
3539
3540 sband = local->hw.wiphy->bands[status->band];
3541 if (WARN_ON(!sband))
3542 goto drop;
3543
3544 /*
3545 * If we're suspending, it is possible although not too likely
3546 * that we'd be receiving frames after having already partially
3547 * quiesced the stack. We can't process such frames then since
3548 * that might, for example, cause stations to be added or other
3549 * driver callbacks be invoked.
3550 */
3551 if (unlikely(local->quiescing || local->suspended))
3552 goto drop;
3553
3554 /* We might be during a HW reconfig, prevent Rx for the same reason */
3555 if (unlikely(local->in_reconfig))
3556 goto drop;
3557
3558 /*
3559 * The same happens when we're not even started,
3560 * but that's worth a warning.
3561 */
3562 if (WARN_ON(!local->started))
3563 goto drop;
3564
3565 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3566 /*
3567 * Validate the rate, unless a PLCP error means that
3568 * we probably can't have a valid rate here anyway.
3569 */
3570
3571 if (status->flag & RX_FLAG_HT) {
3572 /*
3573 * rate_idx is MCS index, which can be [0-76]
3574 * as documented on:
3575 *
3576 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3577 *
3578 * Anything else would be some sort of driver or
3579 * hardware error. The driver should catch hardware
3580 * errors.
3581 */
3582 if (WARN(status->rate_idx > 76,
3583 "Rate marked as an HT rate but passed "
3584 "status->rate_idx is not "
3585 "an MCS index [0-76]: %d (0x%02x)\n",
3586 status->rate_idx,
3587 status->rate_idx))
3588 goto drop;
3589 } else if (status->flag & RX_FLAG_VHT) {
3590 if (WARN_ONCE(status->rate_idx > 9 ||
3591 !status->vht_nss ||
3592 status->vht_nss > 8,
3593 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3594 status->rate_idx, status->vht_nss))
3595 goto drop;
3596 } else {
3597 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3598 goto drop;
3599 rate = &sband->bitrates[status->rate_idx];
3600 }
3601 }
3602
3603 status->rx_flags = 0;
3604
3605 /*
3606 * key references and virtual interfaces are protected using RCU
3607 * and this requires that we are in a read-side RCU section during
3608 * receive processing
3609 */
3610 rcu_read_lock();
3611
3612 /*
3613 * Frames with failed FCS/PLCP checksum are not returned,
3614 * all other frames are returned without radiotap header
3615 * if it was previously present.
3616 * Also, frames with less than 16 bytes are dropped.
3617 */
3618 skb = ieee80211_rx_monitor(local, skb, rate);
3619 if (!skb) {
3620 rcu_read_unlock();
3621 return;
3622 }
3623
3624 ieee80211_tpt_led_trig_rx(local,
3625 ((struct ieee80211_hdr *)skb->data)->frame_control,
3626 skb->len);
3627 __ieee80211_rx_handle_packet(hw, skb);
3628
3629 rcu_read_unlock();
3630
3631 return;
3632 drop:
3633 kfree_skb(skb);
3634 }
3635 EXPORT_SYMBOL(ieee80211_rx);
3636
3637 /* This is a version of the rx handler that can be called from hard irq
3638 * context. Post the skb on the queue and schedule the tasklet */
3639 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3640 {
3641 struct ieee80211_local *local = hw_to_local(hw);
3642
3643 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3644
3645 skb->pkt_type = IEEE80211_RX_MSG;
3646 skb_queue_tail(&local->skb_queue, skb);
3647 tasklet_schedule(&local->tasklet);
3648 }
3649 EXPORT_SYMBOL(ieee80211_rx_irqsafe);