]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/rx.c
Merge branch 'x86-boot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 /*
36 * monitor mode reception
37 *
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
40 */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb)
43 {
44 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
45 if (likely(skb->len > FCS_LEN))
46 __pskb_trim(skb, skb->len - FCS_LEN);
47 else {
48 /* driver bug */
49 WARN_ON(1);
50 dev_kfree_skb(skb);
51 return NULL;
52 }
53 }
54
55 return skb;
56 }
57
58 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
59 {
60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 struct ieee80211_hdr *hdr = (void *)skb->data;
62
63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
64 RX_FLAG_FAILED_PLCP_CRC |
65 RX_FLAG_AMPDU_IS_ZEROLEN))
66 return true;
67
68 if (unlikely(skb->len < 16 + present_fcs_len))
69 return true;
70
71 if (ieee80211_is_ctl(hdr->frame_control) &&
72 !ieee80211_is_pspoll(hdr->frame_control) &&
73 !ieee80211_is_back_req(hdr->frame_control))
74 return true;
75
76 return false;
77 }
78
79 static int
80 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
81 struct ieee80211_rx_status *status)
82 {
83 int len;
84
85 /* always present fields */
86 len = sizeof(struct ieee80211_radiotap_header) + 8;
87
88 /* allocate extra bitmaps */
89 if (status->chains)
90 len += 4 * hweight8(status->chains);
91
92 if (ieee80211_have_rx_timestamp(status)) {
93 len = ALIGN(len, 8);
94 len += 8;
95 }
96 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
97 len += 1;
98
99 /* antenna field, if we don't have per-chain info */
100 if (!status->chains)
101 len += 1;
102
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
105
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
108
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
112 }
113
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
117 }
118
119 if (status->chains) {
120 /* antenna and antenna signal fields */
121 len += 2 * hweight8(status->chains);
122 }
123
124 return len;
125 }
126
127 /*
128 * ieee80211_add_rx_radiotap_header - add radiotap header
129 *
130 * add a radiotap header containing all the fields which the hardware provided.
131 */
132 static void
133 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
134 struct sk_buff *skb,
135 struct ieee80211_rate *rate,
136 int rtap_len, bool has_fcs)
137 {
138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
139 struct ieee80211_radiotap_header *rthdr;
140 unsigned char *pos;
141 __le32 *it_present;
142 u32 it_present_val;
143 u16 rx_flags = 0;
144 u16 channel_flags = 0;
145 int mpdulen, chain;
146 unsigned long chains = status->chains;
147
148 mpdulen = skb->len;
149 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
150 mpdulen += FCS_LEN;
151
152 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
153 memset(rthdr, 0, rtap_len);
154 it_present = &rthdr->it_present;
155
156 /* radiotap header, set always present flags */
157 rthdr->it_len = cpu_to_le16(rtap_len);
158 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
159 BIT(IEEE80211_RADIOTAP_CHANNEL) |
160 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
161
162 if (!status->chains)
163 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
164
165 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
166 it_present_val |=
167 BIT(IEEE80211_RADIOTAP_EXT) |
168 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
169 put_unaligned_le32(it_present_val, it_present);
170 it_present++;
171 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
172 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
173 }
174
175 put_unaligned_le32(it_present_val, it_present);
176
177 pos = (void *)(it_present + 1);
178
179 /* the order of the following fields is important */
180
181 /* IEEE80211_RADIOTAP_TSFT */
182 if (ieee80211_have_rx_timestamp(status)) {
183 /* padding */
184 while ((pos - (u8 *)rthdr) & 7)
185 *pos++ = 0;
186 put_unaligned_le64(
187 ieee80211_calculate_rx_timestamp(local, status,
188 mpdulen, 0),
189 pos);
190 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
191 pos += 8;
192 }
193
194 /* IEEE80211_RADIOTAP_FLAGS */
195 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
196 *pos |= IEEE80211_RADIOTAP_F_FCS;
197 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
198 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
199 if (status->flag & RX_FLAG_SHORTPRE)
200 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
201 pos++;
202
203 /* IEEE80211_RADIOTAP_RATE */
204 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
205 /*
206 * Without rate information don't add it. If we have,
207 * MCS information is a separate field in radiotap,
208 * added below. The byte here is needed as padding
209 * for the channel though, so initialise it to 0.
210 */
211 *pos = 0;
212 } else {
213 int shift = 0;
214 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
215 if (status->flag & RX_FLAG_10MHZ)
216 shift = 1;
217 else if (status->flag & RX_FLAG_5MHZ)
218 shift = 2;
219 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
220 }
221 pos++;
222
223 /* IEEE80211_RADIOTAP_CHANNEL */
224 put_unaligned_le16(status->freq, pos);
225 pos += 2;
226 if (status->flag & RX_FLAG_10MHZ)
227 channel_flags |= IEEE80211_CHAN_HALF;
228 else if (status->flag & RX_FLAG_5MHZ)
229 channel_flags |= IEEE80211_CHAN_QUARTER;
230
231 if (status->band == IEEE80211_BAND_5GHZ)
232 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
233 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
234 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
235 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
236 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
237 else if (rate)
238 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
239 else
240 channel_flags |= IEEE80211_CHAN_2GHZ;
241 put_unaligned_le16(channel_flags, pos);
242 pos += 2;
243
244 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
245 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
246 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
247 *pos = status->signal;
248 rthdr->it_present |=
249 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
250 pos++;
251 }
252
253 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
254
255 if (!status->chains) {
256 /* IEEE80211_RADIOTAP_ANTENNA */
257 *pos = status->antenna;
258 pos++;
259 }
260
261 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
262
263 /* IEEE80211_RADIOTAP_RX_FLAGS */
264 /* ensure 2 byte alignment for the 2 byte field as required */
265 if ((pos - (u8 *)rthdr) & 1)
266 *pos++ = 0;
267 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
268 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
269 put_unaligned_le16(rx_flags, pos);
270 pos += 2;
271
272 if (status->flag & RX_FLAG_HT) {
273 unsigned int stbc;
274
275 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
276 *pos++ = local->hw.radiotap_mcs_details;
277 *pos = 0;
278 if (status->flag & RX_FLAG_SHORT_GI)
279 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
280 if (status->flag & RX_FLAG_40MHZ)
281 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
282 if (status->flag & RX_FLAG_HT_GF)
283 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
284 if (status->flag & RX_FLAG_LDPC)
285 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
286 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
287 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
288 pos++;
289 *pos++ = status->rate_idx;
290 }
291
292 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
293 u16 flags = 0;
294
295 /* ensure 4 byte alignment */
296 while ((pos - (u8 *)rthdr) & 3)
297 pos++;
298 rthdr->it_present |=
299 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
300 put_unaligned_le32(status->ampdu_reference, pos);
301 pos += 4;
302 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
303 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
304 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
305 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
306 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
307 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
308 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
309 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
310 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
311 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
312 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
313 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
314 put_unaligned_le16(flags, pos);
315 pos += 2;
316 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
317 *pos++ = status->ampdu_delimiter_crc;
318 else
319 *pos++ = 0;
320 *pos++ = 0;
321 }
322
323 if (status->flag & RX_FLAG_VHT) {
324 u16 known = local->hw.radiotap_vht_details;
325
326 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
327 /* known field - how to handle 80+80? */
328 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
329 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
330 put_unaligned_le16(known, pos);
331 pos += 2;
332 /* flags */
333 if (status->flag & RX_FLAG_SHORT_GI)
334 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
335 /* in VHT, STBC is binary */
336 if (status->flag & RX_FLAG_STBC_MASK)
337 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
338 if (status->vht_flag & RX_VHT_FLAG_BF)
339 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
340 pos++;
341 /* bandwidth */
342 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
343 *pos++ = 4;
344 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
345 *pos++ = 0; /* marked not known above */
346 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
347 *pos++ = 11;
348 else if (status->flag & RX_FLAG_40MHZ)
349 *pos++ = 1;
350 else /* 20 MHz */
351 *pos++ = 0;
352 /* MCS/NSS */
353 *pos = (status->rate_idx << 4) | status->vht_nss;
354 pos += 4;
355 /* coding field */
356 if (status->flag & RX_FLAG_LDPC)
357 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
358 pos++;
359 /* group ID */
360 pos++;
361 /* partial_aid */
362 pos += 2;
363 }
364
365 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
366 *pos++ = status->chain_signal[chain];
367 *pos++ = chain;
368 }
369 }
370
371 /*
372 * This function copies a received frame to all monitor interfaces and
373 * returns a cleaned-up SKB that no longer includes the FCS nor the
374 * radiotap header the driver might have added.
375 */
376 static struct sk_buff *
377 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
378 struct ieee80211_rate *rate)
379 {
380 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
381 struct ieee80211_sub_if_data *sdata;
382 int needed_headroom;
383 struct sk_buff *skb, *skb2;
384 struct net_device *prev_dev = NULL;
385 int present_fcs_len = 0;
386
387 /*
388 * First, we may need to make a copy of the skb because
389 * (1) we need to modify it for radiotap (if not present), and
390 * (2) the other RX handlers will modify the skb we got.
391 *
392 * We don't need to, of course, if we aren't going to return
393 * the SKB because it has a bad FCS/PLCP checksum.
394 */
395
396 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
397 present_fcs_len = FCS_LEN;
398
399 /* ensure hdr->frame_control is in skb head */
400 if (!pskb_may_pull(origskb, 2)) {
401 dev_kfree_skb(origskb);
402 return NULL;
403 }
404
405 if (!local->monitors) {
406 if (should_drop_frame(origskb, present_fcs_len)) {
407 dev_kfree_skb(origskb);
408 return NULL;
409 }
410
411 return remove_monitor_info(local, origskb);
412 }
413
414 /* room for the radiotap header based on driver features */
415 needed_headroom = ieee80211_rx_radiotap_space(local, status);
416
417 if (should_drop_frame(origskb, present_fcs_len)) {
418 /* only need to expand headroom if necessary */
419 skb = origskb;
420 origskb = NULL;
421
422 /*
423 * This shouldn't trigger often because most devices have an
424 * RX header they pull before we get here, and that should
425 * be big enough for our radiotap information. We should
426 * probably export the length to drivers so that we can have
427 * them allocate enough headroom to start with.
428 */
429 if (skb_headroom(skb) < needed_headroom &&
430 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
431 dev_kfree_skb(skb);
432 return NULL;
433 }
434 } else {
435 /*
436 * Need to make a copy and possibly remove radiotap header
437 * and FCS from the original.
438 */
439 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
440
441 origskb = remove_monitor_info(local, origskb);
442
443 if (!skb)
444 return origskb;
445 }
446
447 /* prepend radiotap information */
448 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
449 true);
450
451 skb_reset_mac_header(skb);
452 skb->ip_summed = CHECKSUM_UNNECESSARY;
453 skb->pkt_type = PACKET_OTHERHOST;
454 skb->protocol = htons(ETH_P_802_2);
455
456 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
457 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
458 continue;
459
460 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
461 continue;
462
463 if (!ieee80211_sdata_running(sdata))
464 continue;
465
466 if (prev_dev) {
467 skb2 = skb_clone(skb, GFP_ATOMIC);
468 if (skb2) {
469 skb2->dev = prev_dev;
470 netif_receive_skb(skb2);
471 }
472 }
473
474 prev_dev = sdata->dev;
475 sdata->dev->stats.rx_packets++;
476 sdata->dev->stats.rx_bytes += skb->len;
477 }
478
479 if (prev_dev) {
480 skb->dev = prev_dev;
481 netif_receive_skb(skb);
482 } else
483 dev_kfree_skb(skb);
484
485 return origskb;
486 }
487
488 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
489 {
490 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
492 int tid, seqno_idx, security_idx;
493
494 /* does the frame have a qos control field? */
495 if (ieee80211_is_data_qos(hdr->frame_control)) {
496 u8 *qc = ieee80211_get_qos_ctl(hdr);
497 /* frame has qos control */
498 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
499 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
500 status->rx_flags |= IEEE80211_RX_AMSDU;
501
502 seqno_idx = tid;
503 security_idx = tid;
504 } else {
505 /*
506 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
507 *
508 * Sequence numbers for management frames, QoS data
509 * frames with a broadcast/multicast address in the
510 * Address 1 field, and all non-QoS data frames sent
511 * by QoS STAs are assigned using an additional single
512 * modulo-4096 counter, [...]
513 *
514 * We also use that counter for non-QoS STAs.
515 */
516 seqno_idx = IEEE80211_NUM_TIDS;
517 security_idx = 0;
518 if (ieee80211_is_mgmt(hdr->frame_control))
519 security_idx = IEEE80211_NUM_TIDS;
520 tid = 0;
521 }
522
523 rx->seqno_idx = seqno_idx;
524 rx->security_idx = security_idx;
525 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
526 * For now, set skb->priority to 0 for other cases. */
527 rx->skb->priority = (tid > 7) ? 0 : tid;
528 }
529
530 /**
531 * DOC: Packet alignment
532 *
533 * Drivers always need to pass packets that are aligned to two-byte boundaries
534 * to the stack.
535 *
536 * Additionally, should, if possible, align the payload data in a way that
537 * guarantees that the contained IP header is aligned to a four-byte
538 * boundary. In the case of regular frames, this simply means aligning the
539 * payload to a four-byte boundary (because either the IP header is directly
540 * contained, or IV/RFC1042 headers that have a length divisible by four are
541 * in front of it). If the payload data is not properly aligned and the
542 * architecture doesn't support efficient unaligned operations, mac80211
543 * will align the data.
544 *
545 * With A-MSDU frames, however, the payload data address must yield two modulo
546 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
547 * push the IP header further back to a multiple of four again. Thankfully, the
548 * specs were sane enough this time around to require padding each A-MSDU
549 * subframe to a length that is a multiple of four.
550 *
551 * Padding like Atheros hardware adds which is between the 802.11 header and
552 * the payload is not supported, the driver is required to move the 802.11
553 * header to be directly in front of the payload in that case.
554 */
555 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
556 {
557 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
558 WARN_ONCE((unsigned long)rx->skb->data & 1,
559 "unaligned packet at 0x%p\n", rx->skb->data);
560 #endif
561 }
562
563
564 /* rx handlers */
565
566 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
567 {
568 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
569
570 if (is_multicast_ether_addr(hdr->addr1))
571 return 0;
572
573 return ieee80211_is_robust_mgmt_frame(skb);
574 }
575
576
577 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
578 {
579 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
580
581 if (!is_multicast_ether_addr(hdr->addr1))
582 return 0;
583
584 return ieee80211_is_robust_mgmt_frame(skb);
585 }
586
587
588 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
589 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
590 {
591 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
592 struct ieee80211_mmie *mmie;
593
594 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
595 return -1;
596
597 if (!ieee80211_is_robust_mgmt_frame(skb))
598 return -1; /* not a robust management frame */
599
600 mmie = (struct ieee80211_mmie *)
601 (skb->data + skb->len - sizeof(*mmie));
602 if (mmie->element_id != WLAN_EID_MMIE ||
603 mmie->length != sizeof(*mmie) - 2)
604 return -1;
605
606 return le16_to_cpu(mmie->key_id);
607 }
608
609 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
610 struct sk_buff *skb)
611 {
612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
613 __le16 fc;
614 int hdrlen;
615 u8 keyid;
616
617 fc = hdr->frame_control;
618 hdrlen = ieee80211_hdrlen(fc);
619
620 if (skb->len < hdrlen + cs->hdr_len)
621 return -EINVAL;
622
623 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
624 keyid &= cs->key_idx_mask;
625 keyid >>= cs->key_idx_shift;
626
627 return keyid;
628 }
629
630 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
631 {
632 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
633 char *dev_addr = rx->sdata->vif.addr;
634
635 if (ieee80211_is_data(hdr->frame_control)) {
636 if (is_multicast_ether_addr(hdr->addr1)) {
637 if (ieee80211_has_tods(hdr->frame_control) ||
638 !ieee80211_has_fromds(hdr->frame_control))
639 return RX_DROP_MONITOR;
640 if (ether_addr_equal(hdr->addr3, dev_addr))
641 return RX_DROP_MONITOR;
642 } else {
643 if (!ieee80211_has_a4(hdr->frame_control))
644 return RX_DROP_MONITOR;
645 if (ether_addr_equal(hdr->addr4, dev_addr))
646 return RX_DROP_MONITOR;
647 }
648 }
649
650 /* If there is not an established peer link and this is not a peer link
651 * establisment frame, beacon or probe, drop the frame.
652 */
653
654 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
655 struct ieee80211_mgmt *mgmt;
656
657 if (!ieee80211_is_mgmt(hdr->frame_control))
658 return RX_DROP_MONITOR;
659
660 if (ieee80211_is_action(hdr->frame_control)) {
661 u8 category;
662
663 /* make sure category field is present */
664 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
665 return RX_DROP_MONITOR;
666
667 mgmt = (struct ieee80211_mgmt *)hdr;
668 category = mgmt->u.action.category;
669 if (category != WLAN_CATEGORY_MESH_ACTION &&
670 category != WLAN_CATEGORY_SELF_PROTECTED)
671 return RX_DROP_MONITOR;
672 return RX_CONTINUE;
673 }
674
675 if (ieee80211_is_probe_req(hdr->frame_control) ||
676 ieee80211_is_probe_resp(hdr->frame_control) ||
677 ieee80211_is_beacon(hdr->frame_control) ||
678 ieee80211_is_auth(hdr->frame_control))
679 return RX_CONTINUE;
680
681 return RX_DROP_MONITOR;
682 }
683
684 return RX_CONTINUE;
685 }
686
687 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
688 struct tid_ampdu_rx *tid_agg_rx,
689 int index,
690 struct sk_buff_head *frames)
691 {
692 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
693 struct sk_buff *skb;
694 struct ieee80211_rx_status *status;
695
696 lockdep_assert_held(&tid_agg_rx->reorder_lock);
697
698 if (skb_queue_empty(skb_list))
699 goto no_frame;
700
701 if (!ieee80211_rx_reorder_ready(skb_list)) {
702 __skb_queue_purge(skb_list);
703 goto no_frame;
704 }
705
706 /* release frames from the reorder ring buffer */
707 tid_agg_rx->stored_mpdu_num--;
708 while ((skb = __skb_dequeue(skb_list))) {
709 status = IEEE80211_SKB_RXCB(skb);
710 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
711 __skb_queue_tail(frames, skb);
712 }
713
714 no_frame:
715 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
716 }
717
718 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
719 struct tid_ampdu_rx *tid_agg_rx,
720 u16 head_seq_num,
721 struct sk_buff_head *frames)
722 {
723 int index;
724
725 lockdep_assert_held(&tid_agg_rx->reorder_lock);
726
727 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
728 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
729 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
730 frames);
731 }
732 }
733
734 /*
735 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
736 * the skb was added to the buffer longer than this time ago, the earlier
737 * frames that have not yet been received are assumed to be lost and the skb
738 * can be released for processing. This may also release other skb's from the
739 * reorder buffer if there are no additional gaps between the frames.
740 *
741 * Callers must hold tid_agg_rx->reorder_lock.
742 */
743 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
744
745 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
746 struct tid_ampdu_rx *tid_agg_rx,
747 struct sk_buff_head *frames)
748 {
749 int index, i, j;
750
751 lockdep_assert_held(&tid_agg_rx->reorder_lock);
752
753 /* release the buffer until next missing frame */
754 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
755 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
756 tid_agg_rx->stored_mpdu_num) {
757 /*
758 * No buffers ready to be released, but check whether any
759 * frames in the reorder buffer have timed out.
760 */
761 int skipped = 1;
762 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
763 j = (j + 1) % tid_agg_rx->buf_size) {
764 if (!ieee80211_rx_reorder_ready(
765 &tid_agg_rx->reorder_buf[j])) {
766 skipped++;
767 continue;
768 }
769 if (skipped &&
770 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
771 HT_RX_REORDER_BUF_TIMEOUT))
772 goto set_release_timer;
773
774 /* don't leave incomplete A-MSDUs around */
775 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
776 i = (i + 1) % tid_agg_rx->buf_size)
777 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
778
779 ht_dbg_ratelimited(sdata,
780 "release an RX reorder frame due to timeout on earlier frames\n");
781 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
782 frames);
783
784 /*
785 * Increment the head seq# also for the skipped slots.
786 */
787 tid_agg_rx->head_seq_num =
788 (tid_agg_rx->head_seq_num +
789 skipped) & IEEE80211_SN_MASK;
790 skipped = 0;
791 }
792 } else while (ieee80211_rx_reorder_ready(
793 &tid_agg_rx->reorder_buf[index])) {
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
797 }
798
799 if (tid_agg_rx->stored_mpdu_num) {
800 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
801
802 for (; j != (index - 1) % tid_agg_rx->buf_size;
803 j = (j + 1) % tid_agg_rx->buf_size) {
804 if (ieee80211_rx_reorder_ready(
805 &tid_agg_rx->reorder_buf[j]))
806 break;
807 }
808
809 set_release_timer:
810
811 mod_timer(&tid_agg_rx->reorder_timer,
812 tid_agg_rx->reorder_time[j] + 1 +
813 HT_RX_REORDER_BUF_TIMEOUT);
814 } else {
815 del_timer(&tid_agg_rx->reorder_timer);
816 }
817 }
818
819 /*
820 * As this function belongs to the RX path it must be under
821 * rcu_read_lock protection. It returns false if the frame
822 * can be processed immediately, true if it was consumed.
823 */
824 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
825 struct tid_ampdu_rx *tid_agg_rx,
826 struct sk_buff *skb,
827 struct sk_buff_head *frames)
828 {
829 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
830 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
831 u16 sc = le16_to_cpu(hdr->seq_ctrl);
832 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
833 u16 head_seq_num, buf_size;
834 int index;
835 bool ret = true;
836
837 spin_lock(&tid_agg_rx->reorder_lock);
838
839 /*
840 * Offloaded BA sessions have no known starting sequence number so pick
841 * one from first Rxed frame for this tid after BA was started.
842 */
843 if (unlikely(tid_agg_rx->auto_seq)) {
844 tid_agg_rx->auto_seq = false;
845 tid_agg_rx->ssn = mpdu_seq_num;
846 tid_agg_rx->head_seq_num = mpdu_seq_num;
847 }
848
849 buf_size = tid_agg_rx->buf_size;
850 head_seq_num = tid_agg_rx->head_seq_num;
851
852 /* frame with out of date sequence number */
853 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
854 dev_kfree_skb(skb);
855 goto out;
856 }
857
858 /*
859 * If frame the sequence number exceeds our buffering window
860 * size release some previous frames to make room for this one.
861 */
862 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
863 head_seq_num = ieee80211_sn_inc(
864 ieee80211_sn_sub(mpdu_seq_num, buf_size));
865 /* release stored frames up to new head to stack */
866 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
867 head_seq_num, frames);
868 }
869
870 /* Now the new frame is always in the range of the reordering buffer */
871
872 index = mpdu_seq_num % tid_agg_rx->buf_size;
873
874 /* check if we already stored this frame */
875 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
876 dev_kfree_skb(skb);
877 goto out;
878 }
879
880 /*
881 * If the current MPDU is in the right order and nothing else
882 * is stored we can process it directly, no need to buffer it.
883 * If it is first but there's something stored, we may be able
884 * to release frames after this one.
885 */
886 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
887 tid_agg_rx->stored_mpdu_num == 0) {
888 if (!(status->flag & RX_FLAG_AMSDU_MORE))
889 tid_agg_rx->head_seq_num =
890 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
891 ret = false;
892 goto out;
893 }
894
895 /* put the frame in the reordering buffer */
896 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
897 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
898 tid_agg_rx->reorder_time[index] = jiffies;
899 tid_agg_rx->stored_mpdu_num++;
900 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
901 }
902
903 out:
904 spin_unlock(&tid_agg_rx->reorder_lock);
905 return ret;
906 }
907
908 /*
909 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
910 * true if the MPDU was buffered, false if it should be processed.
911 */
912 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
913 struct sk_buff_head *frames)
914 {
915 struct sk_buff *skb = rx->skb;
916 struct ieee80211_local *local = rx->local;
917 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
918 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
919 struct sta_info *sta = rx->sta;
920 struct tid_ampdu_rx *tid_agg_rx;
921 u16 sc;
922 u8 tid, ack_policy;
923
924 if (!ieee80211_is_data_qos(hdr->frame_control) ||
925 is_multicast_ether_addr(hdr->addr1))
926 goto dont_reorder;
927
928 /*
929 * filter the QoS data rx stream according to
930 * STA/TID and check if this STA/TID is on aggregation
931 */
932
933 if (!sta)
934 goto dont_reorder;
935
936 ack_policy = *ieee80211_get_qos_ctl(hdr) &
937 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
938 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
939
940 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
941 if (!tid_agg_rx)
942 goto dont_reorder;
943
944 /* qos null data frames are excluded */
945 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
946 goto dont_reorder;
947
948 /* not part of a BA session */
949 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
950 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
951 goto dont_reorder;
952
953 /* not actually part of this BA session */
954 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
955 goto dont_reorder;
956
957 /* new, potentially un-ordered, ampdu frame - process it */
958
959 /* reset session timer */
960 if (tid_agg_rx->timeout)
961 tid_agg_rx->last_rx = jiffies;
962
963 /* if this mpdu is fragmented - terminate rx aggregation session */
964 sc = le16_to_cpu(hdr->seq_ctrl);
965 if (sc & IEEE80211_SCTL_FRAG) {
966 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
967 skb_queue_tail(&rx->sdata->skb_queue, skb);
968 ieee80211_queue_work(&local->hw, &rx->sdata->work);
969 return;
970 }
971
972 /*
973 * No locking needed -- we will only ever process one
974 * RX packet at a time, and thus own tid_agg_rx. All
975 * other code manipulating it needs to (and does) make
976 * sure that we cannot get to it any more before doing
977 * anything with it.
978 */
979 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
980 frames))
981 return;
982
983 dont_reorder:
984 __skb_queue_tail(frames, skb);
985 }
986
987 static ieee80211_rx_result debug_noinline
988 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
989 {
990 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
991 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
992
993 /*
994 * Drop duplicate 802.11 retransmissions
995 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
996 */
997 if (rx->skb->len >= 24 && rx->sta &&
998 !ieee80211_is_ctl(hdr->frame_control) &&
999 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
1000 !is_multicast_ether_addr(hdr->addr1)) {
1001 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1002 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1003 hdr->seq_ctrl)) {
1004 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1005 rx->local->dot11FrameDuplicateCount++;
1006 rx->sta->num_duplicates++;
1007 }
1008 return RX_DROP_UNUSABLE;
1009 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1010 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1011 }
1012 }
1013
1014 if (unlikely(rx->skb->len < 16)) {
1015 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1016 return RX_DROP_MONITOR;
1017 }
1018
1019 /* Drop disallowed frame classes based on STA auth/assoc state;
1020 * IEEE 802.11, Chap 5.5.
1021 *
1022 * mac80211 filters only based on association state, i.e. it drops
1023 * Class 3 frames from not associated stations. hostapd sends
1024 * deauth/disassoc frames when needed. In addition, hostapd is
1025 * responsible for filtering on both auth and assoc states.
1026 */
1027
1028 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1029 return ieee80211_rx_mesh_check(rx);
1030
1031 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1032 ieee80211_is_pspoll(hdr->frame_control)) &&
1033 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1034 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1035 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1036 /*
1037 * accept port control frames from the AP even when it's not
1038 * yet marked ASSOC to prevent a race where we don't set the
1039 * assoc bit quickly enough before it sends the first frame
1040 */
1041 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1042 ieee80211_is_data_present(hdr->frame_control)) {
1043 unsigned int hdrlen;
1044 __be16 ethertype;
1045
1046 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1047
1048 if (rx->skb->len < hdrlen + 8)
1049 return RX_DROP_MONITOR;
1050
1051 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1052 if (ethertype == rx->sdata->control_port_protocol)
1053 return RX_CONTINUE;
1054 }
1055
1056 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1057 cfg80211_rx_spurious_frame(rx->sdata->dev,
1058 hdr->addr2,
1059 GFP_ATOMIC))
1060 return RX_DROP_UNUSABLE;
1061
1062 return RX_DROP_MONITOR;
1063 }
1064
1065 return RX_CONTINUE;
1066 }
1067
1068
1069 static ieee80211_rx_result debug_noinline
1070 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1071 {
1072 struct ieee80211_local *local;
1073 struct ieee80211_hdr *hdr;
1074 struct sk_buff *skb;
1075
1076 local = rx->local;
1077 skb = rx->skb;
1078 hdr = (struct ieee80211_hdr *) skb->data;
1079
1080 if (!local->pspolling)
1081 return RX_CONTINUE;
1082
1083 if (!ieee80211_has_fromds(hdr->frame_control))
1084 /* this is not from AP */
1085 return RX_CONTINUE;
1086
1087 if (!ieee80211_is_data(hdr->frame_control))
1088 return RX_CONTINUE;
1089
1090 if (!ieee80211_has_moredata(hdr->frame_control)) {
1091 /* AP has no more frames buffered for us */
1092 local->pspolling = false;
1093 return RX_CONTINUE;
1094 }
1095
1096 /* more data bit is set, let's request a new frame from the AP */
1097 ieee80211_send_pspoll(local, rx->sdata);
1098
1099 return RX_CONTINUE;
1100 }
1101
1102 static void sta_ps_start(struct sta_info *sta)
1103 {
1104 struct ieee80211_sub_if_data *sdata = sta->sdata;
1105 struct ieee80211_local *local = sdata->local;
1106 struct ps_data *ps;
1107
1108 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1109 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1110 ps = &sdata->bss->ps;
1111 else
1112 return;
1113
1114 atomic_inc(&ps->num_sta_ps);
1115 set_sta_flag(sta, WLAN_STA_PS_STA);
1116 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1117 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1118 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1119 sta->sta.addr, sta->sta.aid);
1120 }
1121
1122 static void sta_ps_end(struct sta_info *sta)
1123 {
1124 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1125 sta->sta.addr, sta->sta.aid);
1126
1127 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1128 /*
1129 * Clear the flag only if the other one is still set
1130 * so that the TX path won't start TX'ing new frames
1131 * directly ... In the case that the driver flag isn't
1132 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1133 */
1134 clear_sta_flag(sta, WLAN_STA_PS_STA);
1135 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1136 sta->sta.addr, sta->sta.aid);
1137 return;
1138 }
1139
1140 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1141 clear_sta_flag(sta, WLAN_STA_PS_STA);
1142 ieee80211_sta_ps_deliver_wakeup(sta);
1143 }
1144
1145 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1146 {
1147 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1148 bool in_ps;
1149
1150 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1151
1152 /* Don't let the same PS state be set twice */
1153 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1154 if ((start && in_ps) || (!start && !in_ps))
1155 return -EINVAL;
1156
1157 if (start)
1158 sta_ps_start(sta_inf);
1159 else
1160 sta_ps_end(sta_inf);
1161
1162 return 0;
1163 }
1164 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1165
1166 static ieee80211_rx_result debug_noinline
1167 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1168 {
1169 struct ieee80211_sub_if_data *sdata = rx->sdata;
1170 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1171 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1172 int tid, ac;
1173
1174 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1175 return RX_CONTINUE;
1176
1177 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1178 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1179 return RX_CONTINUE;
1180
1181 /*
1182 * The device handles station powersave, so don't do anything about
1183 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1184 * it to mac80211 since they're handled.)
1185 */
1186 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1187 return RX_CONTINUE;
1188
1189 /*
1190 * Don't do anything if the station isn't already asleep. In
1191 * the uAPSD case, the station will probably be marked asleep,
1192 * in the PS-Poll case the station must be confused ...
1193 */
1194 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1195 return RX_CONTINUE;
1196
1197 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1198 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1199 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1200 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1201 else
1202 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1203 }
1204
1205 /* Free PS Poll skb here instead of returning RX_DROP that would
1206 * count as an dropped frame. */
1207 dev_kfree_skb(rx->skb);
1208
1209 return RX_QUEUED;
1210 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1211 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1212 ieee80211_has_pm(hdr->frame_control) &&
1213 (ieee80211_is_data_qos(hdr->frame_control) ||
1214 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1215 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1216 ac = ieee802_1d_to_ac[tid & 7];
1217
1218 /*
1219 * If this AC is not trigger-enabled do nothing.
1220 *
1221 * NB: This could/should check a separate bitmap of trigger-
1222 * enabled queues, but for now we only implement uAPSD w/o
1223 * TSPEC changes to the ACs, so they're always the same.
1224 */
1225 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1226 return RX_CONTINUE;
1227
1228 /* if we are in a service period, do nothing */
1229 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1230 return RX_CONTINUE;
1231
1232 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1233 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1234 else
1235 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1236 }
1237
1238 return RX_CONTINUE;
1239 }
1240
1241 static ieee80211_rx_result debug_noinline
1242 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1243 {
1244 struct sta_info *sta = rx->sta;
1245 struct sk_buff *skb = rx->skb;
1246 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1247 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1248 int i;
1249
1250 if (!sta)
1251 return RX_CONTINUE;
1252
1253 /*
1254 * Update last_rx only for IBSS packets which are for the current
1255 * BSSID and for station already AUTHORIZED to avoid keeping the
1256 * current IBSS network alive in cases where other STAs start
1257 * using different BSSID. This will also give the station another
1258 * chance to restart the authentication/authorization in case
1259 * something went wrong the first time.
1260 */
1261 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1262 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1263 NL80211_IFTYPE_ADHOC);
1264 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1265 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1266 sta->last_rx = jiffies;
1267 if (ieee80211_is_data(hdr->frame_control) &&
1268 !is_multicast_ether_addr(hdr->addr1)) {
1269 sta->last_rx_rate_idx = status->rate_idx;
1270 sta->last_rx_rate_flag = status->flag;
1271 sta->last_rx_rate_vht_flag = status->vht_flag;
1272 sta->last_rx_rate_vht_nss = status->vht_nss;
1273 }
1274 }
1275 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1276 /*
1277 * Mesh beacons will update last_rx when if they are found to
1278 * match the current local configuration when processed.
1279 */
1280 sta->last_rx = jiffies;
1281 if (ieee80211_is_data(hdr->frame_control)) {
1282 sta->last_rx_rate_idx = status->rate_idx;
1283 sta->last_rx_rate_flag = status->flag;
1284 sta->last_rx_rate_vht_flag = status->vht_flag;
1285 sta->last_rx_rate_vht_nss = status->vht_nss;
1286 }
1287 }
1288
1289 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1290 return RX_CONTINUE;
1291
1292 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1293 ieee80211_sta_rx_notify(rx->sdata, hdr);
1294
1295 sta->rx_fragments++;
1296 sta->rx_bytes += rx->skb->len;
1297 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1298 sta->last_signal = status->signal;
1299 ewma_add(&sta->avg_signal, -status->signal);
1300 }
1301
1302 if (status->chains) {
1303 sta->chains = status->chains;
1304 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1305 int signal = status->chain_signal[i];
1306
1307 if (!(status->chains & BIT(i)))
1308 continue;
1309
1310 sta->chain_signal_last[i] = signal;
1311 ewma_add(&sta->chain_signal_avg[i], -signal);
1312 }
1313 }
1314
1315 /*
1316 * Change STA power saving mode only at the end of a frame
1317 * exchange sequence.
1318 */
1319 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1320 !ieee80211_has_morefrags(hdr->frame_control) &&
1321 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1322 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1323 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1324 /* PM bit is only checked in frames where it isn't reserved,
1325 * in AP mode it's reserved in non-bufferable management frames
1326 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1327 */
1328 (!ieee80211_is_mgmt(hdr->frame_control) ||
1329 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1330 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1331 if (!ieee80211_has_pm(hdr->frame_control))
1332 sta_ps_end(sta);
1333 } else {
1334 if (ieee80211_has_pm(hdr->frame_control))
1335 sta_ps_start(sta);
1336 }
1337 }
1338
1339 /* mesh power save support */
1340 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1341 ieee80211_mps_rx_h_sta_process(sta, hdr);
1342
1343 /*
1344 * Drop (qos-)data::nullfunc frames silently, since they
1345 * are used only to control station power saving mode.
1346 */
1347 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1348 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1349 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1350
1351 /*
1352 * If we receive a 4-addr nullfunc frame from a STA
1353 * that was not moved to a 4-addr STA vlan yet send
1354 * the event to userspace and for older hostapd drop
1355 * the frame to the monitor interface.
1356 */
1357 if (ieee80211_has_a4(hdr->frame_control) &&
1358 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1359 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1360 !rx->sdata->u.vlan.sta))) {
1361 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1362 cfg80211_rx_unexpected_4addr_frame(
1363 rx->sdata->dev, sta->sta.addr,
1364 GFP_ATOMIC);
1365 return RX_DROP_MONITOR;
1366 }
1367 /*
1368 * Update counter and free packet here to avoid
1369 * counting this as a dropped packed.
1370 */
1371 sta->rx_packets++;
1372 dev_kfree_skb(rx->skb);
1373 return RX_QUEUED;
1374 }
1375
1376 return RX_CONTINUE;
1377 } /* ieee80211_rx_h_sta_process */
1378
1379 static ieee80211_rx_result debug_noinline
1380 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1381 {
1382 struct sk_buff *skb = rx->skb;
1383 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1384 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1385 int keyidx;
1386 int hdrlen;
1387 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1388 struct ieee80211_key *sta_ptk = NULL;
1389 int mmie_keyidx = -1;
1390 __le16 fc;
1391 const struct ieee80211_cipher_scheme *cs = NULL;
1392
1393 /*
1394 * Key selection 101
1395 *
1396 * There are four types of keys:
1397 * - GTK (group keys)
1398 * - IGTK (group keys for management frames)
1399 * - PTK (pairwise keys)
1400 * - STK (station-to-station pairwise keys)
1401 *
1402 * When selecting a key, we have to distinguish between multicast
1403 * (including broadcast) and unicast frames, the latter can only
1404 * use PTKs and STKs while the former always use GTKs and IGTKs.
1405 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1406 * unicast frames can also use key indices like GTKs. Hence, if we
1407 * don't have a PTK/STK we check the key index for a WEP key.
1408 *
1409 * Note that in a regular BSS, multicast frames are sent by the
1410 * AP only, associated stations unicast the frame to the AP first
1411 * which then multicasts it on their behalf.
1412 *
1413 * There is also a slight problem in IBSS mode: GTKs are negotiated
1414 * with each station, that is something we don't currently handle.
1415 * The spec seems to expect that one negotiates the same key with
1416 * every station but there's no such requirement; VLANs could be
1417 * possible.
1418 */
1419
1420 /*
1421 * No point in finding a key and decrypting if the frame is neither
1422 * addressed to us nor a multicast frame.
1423 */
1424 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1425 return RX_CONTINUE;
1426
1427 /* start without a key */
1428 rx->key = NULL;
1429 fc = hdr->frame_control;
1430
1431 if (rx->sta) {
1432 int keyid = rx->sta->ptk_idx;
1433
1434 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1435 cs = rx->sta->cipher_scheme;
1436 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1437 if (unlikely(keyid < 0))
1438 return RX_DROP_UNUSABLE;
1439 }
1440 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1441 }
1442
1443 if (!ieee80211_has_protected(fc))
1444 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1445
1446 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1447 rx->key = sta_ptk;
1448 if ((status->flag & RX_FLAG_DECRYPTED) &&
1449 (status->flag & RX_FLAG_IV_STRIPPED))
1450 return RX_CONTINUE;
1451 /* Skip decryption if the frame is not protected. */
1452 if (!ieee80211_has_protected(fc))
1453 return RX_CONTINUE;
1454 } else if (mmie_keyidx >= 0) {
1455 /* Broadcast/multicast robust management frame / BIP */
1456 if ((status->flag & RX_FLAG_DECRYPTED) &&
1457 (status->flag & RX_FLAG_IV_STRIPPED))
1458 return RX_CONTINUE;
1459
1460 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1461 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1462 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1463 if (rx->sta)
1464 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1465 if (!rx->key)
1466 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1467 } else if (!ieee80211_has_protected(fc)) {
1468 /*
1469 * The frame was not protected, so skip decryption. However, we
1470 * need to set rx->key if there is a key that could have been
1471 * used so that the frame may be dropped if encryption would
1472 * have been expected.
1473 */
1474 struct ieee80211_key *key = NULL;
1475 struct ieee80211_sub_if_data *sdata = rx->sdata;
1476 int i;
1477
1478 if (ieee80211_is_mgmt(fc) &&
1479 is_multicast_ether_addr(hdr->addr1) &&
1480 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1481 rx->key = key;
1482 else {
1483 if (rx->sta) {
1484 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1485 key = rcu_dereference(rx->sta->gtk[i]);
1486 if (key)
1487 break;
1488 }
1489 }
1490 if (!key) {
1491 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1492 key = rcu_dereference(sdata->keys[i]);
1493 if (key)
1494 break;
1495 }
1496 }
1497 if (key)
1498 rx->key = key;
1499 }
1500 return RX_CONTINUE;
1501 } else {
1502 u8 keyid;
1503
1504 /*
1505 * The device doesn't give us the IV so we won't be
1506 * able to look up the key. That's ok though, we
1507 * don't need to decrypt the frame, we just won't
1508 * be able to keep statistics accurate.
1509 * Except for key threshold notifications, should
1510 * we somehow allow the driver to tell us which key
1511 * the hardware used if this flag is set?
1512 */
1513 if ((status->flag & RX_FLAG_DECRYPTED) &&
1514 (status->flag & RX_FLAG_IV_STRIPPED))
1515 return RX_CONTINUE;
1516
1517 hdrlen = ieee80211_hdrlen(fc);
1518
1519 if (cs) {
1520 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1521
1522 if (unlikely(keyidx < 0))
1523 return RX_DROP_UNUSABLE;
1524 } else {
1525 if (rx->skb->len < 8 + hdrlen)
1526 return RX_DROP_UNUSABLE; /* TODO: count this? */
1527 /*
1528 * no need to call ieee80211_wep_get_keyidx,
1529 * it verifies a bunch of things we've done already
1530 */
1531 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1532 keyidx = keyid >> 6;
1533 }
1534
1535 /* check per-station GTK first, if multicast packet */
1536 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1537 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1538
1539 /* if not found, try default key */
1540 if (!rx->key) {
1541 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1542
1543 /*
1544 * RSNA-protected unicast frames should always be
1545 * sent with pairwise or station-to-station keys,
1546 * but for WEP we allow using a key index as well.
1547 */
1548 if (rx->key &&
1549 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1550 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1551 !is_multicast_ether_addr(hdr->addr1))
1552 rx->key = NULL;
1553 }
1554 }
1555
1556 if (rx->key) {
1557 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1558 return RX_DROP_MONITOR;
1559
1560 rx->key->tx_rx_count++;
1561 /* TODO: add threshold stuff again */
1562 } else {
1563 return RX_DROP_MONITOR;
1564 }
1565
1566 switch (rx->key->conf.cipher) {
1567 case WLAN_CIPHER_SUITE_WEP40:
1568 case WLAN_CIPHER_SUITE_WEP104:
1569 result = ieee80211_crypto_wep_decrypt(rx);
1570 break;
1571 case WLAN_CIPHER_SUITE_TKIP:
1572 result = ieee80211_crypto_tkip_decrypt(rx);
1573 break;
1574 case WLAN_CIPHER_SUITE_CCMP:
1575 result = ieee80211_crypto_ccmp_decrypt(rx);
1576 break;
1577 case WLAN_CIPHER_SUITE_AES_CMAC:
1578 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1579 break;
1580 default:
1581 result = ieee80211_crypto_hw_decrypt(rx);
1582 }
1583
1584 /* the hdr variable is invalid after the decrypt handlers */
1585
1586 /* either the frame has been decrypted or will be dropped */
1587 status->flag |= RX_FLAG_DECRYPTED;
1588
1589 return result;
1590 }
1591
1592 static inline struct ieee80211_fragment_entry *
1593 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1594 unsigned int frag, unsigned int seq, int rx_queue,
1595 struct sk_buff **skb)
1596 {
1597 struct ieee80211_fragment_entry *entry;
1598
1599 entry = &sdata->fragments[sdata->fragment_next++];
1600 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1601 sdata->fragment_next = 0;
1602
1603 if (!skb_queue_empty(&entry->skb_list))
1604 __skb_queue_purge(&entry->skb_list);
1605
1606 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1607 *skb = NULL;
1608 entry->first_frag_time = jiffies;
1609 entry->seq = seq;
1610 entry->rx_queue = rx_queue;
1611 entry->last_frag = frag;
1612 entry->ccmp = 0;
1613 entry->extra_len = 0;
1614
1615 return entry;
1616 }
1617
1618 static inline struct ieee80211_fragment_entry *
1619 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1620 unsigned int frag, unsigned int seq,
1621 int rx_queue, struct ieee80211_hdr *hdr)
1622 {
1623 struct ieee80211_fragment_entry *entry;
1624 int i, idx;
1625
1626 idx = sdata->fragment_next;
1627 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1628 struct ieee80211_hdr *f_hdr;
1629
1630 idx--;
1631 if (idx < 0)
1632 idx = IEEE80211_FRAGMENT_MAX - 1;
1633
1634 entry = &sdata->fragments[idx];
1635 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1636 entry->rx_queue != rx_queue ||
1637 entry->last_frag + 1 != frag)
1638 continue;
1639
1640 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1641
1642 /*
1643 * Check ftype and addresses are equal, else check next fragment
1644 */
1645 if (((hdr->frame_control ^ f_hdr->frame_control) &
1646 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1647 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1648 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1649 continue;
1650
1651 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1652 __skb_queue_purge(&entry->skb_list);
1653 continue;
1654 }
1655 return entry;
1656 }
1657
1658 return NULL;
1659 }
1660
1661 static ieee80211_rx_result debug_noinline
1662 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1663 {
1664 struct ieee80211_hdr *hdr;
1665 u16 sc;
1666 __le16 fc;
1667 unsigned int frag, seq;
1668 struct ieee80211_fragment_entry *entry;
1669 struct sk_buff *skb;
1670 struct ieee80211_rx_status *status;
1671
1672 hdr = (struct ieee80211_hdr *)rx->skb->data;
1673 fc = hdr->frame_control;
1674
1675 if (ieee80211_is_ctl(fc))
1676 return RX_CONTINUE;
1677
1678 sc = le16_to_cpu(hdr->seq_ctrl);
1679 frag = sc & IEEE80211_SCTL_FRAG;
1680
1681 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1682 is_multicast_ether_addr(hdr->addr1))) {
1683 /* not fragmented */
1684 goto out;
1685 }
1686 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1687
1688 if (skb_linearize(rx->skb))
1689 return RX_DROP_UNUSABLE;
1690
1691 /*
1692 * skb_linearize() might change the skb->data and
1693 * previously cached variables (in this case, hdr) need to
1694 * be refreshed with the new data.
1695 */
1696 hdr = (struct ieee80211_hdr *)rx->skb->data;
1697 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1698
1699 if (frag == 0) {
1700 /* This is the first fragment of a new frame. */
1701 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1702 rx->seqno_idx, &(rx->skb));
1703 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1704 ieee80211_has_protected(fc)) {
1705 int queue = rx->security_idx;
1706 /* Store CCMP PN so that we can verify that the next
1707 * fragment has a sequential PN value. */
1708 entry->ccmp = 1;
1709 memcpy(entry->last_pn,
1710 rx->key->u.ccmp.rx_pn[queue],
1711 IEEE80211_CCMP_PN_LEN);
1712 }
1713 return RX_QUEUED;
1714 }
1715
1716 /* This is a fragment for a frame that should already be pending in
1717 * fragment cache. Add this fragment to the end of the pending entry.
1718 */
1719 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1720 rx->seqno_idx, hdr);
1721 if (!entry) {
1722 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1723 return RX_DROP_MONITOR;
1724 }
1725
1726 /* Verify that MPDUs within one MSDU have sequential PN values.
1727 * (IEEE 802.11i, 8.3.3.4.5) */
1728 if (entry->ccmp) {
1729 int i;
1730 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1731 int queue;
1732 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1733 return RX_DROP_UNUSABLE;
1734 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1735 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1736 pn[i]++;
1737 if (pn[i])
1738 break;
1739 }
1740 queue = rx->security_idx;
1741 rpn = rx->key->u.ccmp.rx_pn[queue];
1742 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1743 return RX_DROP_UNUSABLE;
1744 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1745 }
1746
1747 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1748 __skb_queue_tail(&entry->skb_list, rx->skb);
1749 entry->last_frag = frag;
1750 entry->extra_len += rx->skb->len;
1751 if (ieee80211_has_morefrags(fc)) {
1752 rx->skb = NULL;
1753 return RX_QUEUED;
1754 }
1755
1756 rx->skb = __skb_dequeue(&entry->skb_list);
1757 if (skb_tailroom(rx->skb) < entry->extra_len) {
1758 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1759 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1760 GFP_ATOMIC))) {
1761 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1762 __skb_queue_purge(&entry->skb_list);
1763 return RX_DROP_UNUSABLE;
1764 }
1765 }
1766 while ((skb = __skb_dequeue(&entry->skb_list))) {
1767 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1768 dev_kfree_skb(skb);
1769 }
1770
1771 /* Complete frame has been reassembled - process it now */
1772 status = IEEE80211_SKB_RXCB(rx->skb);
1773 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1774
1775 out:
1776 if (rx->sta)
1777 rx->sta->rx_packets++;
1778 if (is_multicast_ether_addr(hdr->addr1))
1779 rx->local->dot11MulticastReceivedFrameCount++;
1780 else
1781 ieee80211_led_rx(rx->local);
1782 return RX_CONTINUE;
1783 }
1784
1785 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1786 {
1787 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1788 return -EACCES;
1789
1790 return 0;
1791 }
1792
1793 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1794 {
1795 struct sk_buff *skb = rx->skb;
1796 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1797
1798 /*
1799 * Pass through unencrypted frames if the hardware has
1800 * decrypted them already.
1801 */
1802 if (status->flag & RX_FLAG_DECRYPTED)
1803 return 0;
1804
1805 /* Drop unencrypted frames if key is set. */
1806 if (unlikely(!ieee80211_has_protected(fc) &&
1807 !ieee80211_is_nullfunc(fc) &&
1808 ieee80211_is_data(fc) &&
1809 (rx->key || rx->sdata->drop_unencrypted)))
1810 return -EACCES;
1811
1812 return 0;
1813 }
1814
1815 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1816 {
1817 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1818 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1819 __le16 fc = hdr->frame_control;
1820
1821 /*
1822 * Pass through unencrypted frames if the hardware has
1823 * decrypted them already.
1824 */
1825 if (status->flag & RX_FLAG_DECRYPTED)
1826 return 0;
1827
1828 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1829 if (unlikely(!ieee80211_has_protected(fc) &&
1830 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1831 rx->key)) {
1832 if (ieee80211_is_deauth(fc) ||
1833 ieee80211_is_disassoc(fc))
1834 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1835 rx->skb->data,
1836 rx->skb->len);
1837 return -EACCES;
1838 }
1839 /* BIP does not use Protected field, so need to check MMIE */
1840 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1841 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1842 if (ieee80211_is_deauth(fc) ||
1843 ieee80211_is_disassoc(fc))
1844 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1845 rx->skb->data,
1846 rx->skb->len);
1847 return -EACCES;
1848 }
1849 /*
1850 * When using MFP, Action frames are not allowed prior to
1851 * having configured keys.
1852 */
1853 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1854 ieee80211_is_robust_mgmt_frame(rx->skb)))
1855 return -EACCES;
1856 }
1857
1858 return 0;
1859 }
1860
1861 static int
1862 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1863 {
1864 struct ieee80211_sub_if_data *sdata = rx->sdata;
1865 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1866 bool check_port_control = false;
1867 struct ethhdr *ehdr;
1868 int ret;
1869
1870 *port_control = false;
1871 if (ieee80211_has_a4(hdr->frame_control) &&
1872 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1873 return -1;
1874
1875 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1876 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1877
1878 if (!sdata->u.mgd.use_4addr)
1879 return -1;
1880 else
1881 check_port_control = true;
1882 }
1883
1884 if (is_multicast_ether_addr(hdr->addr1) &&
1885 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1886 return -1;
1887
1888 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1889 if (ret < 0)
1890 return ret;
1891
1892 ehdr = (struct ethhdr *) rx->skb->data;
1893 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1894 *port_control = true;
1895 else if (check_port_control)
1896 return -1;
1897
1898 return 0;
1899 }
1900
1901 /*
1902 * requires that rx->skb is a frame with ethernet header
1903 */
1904 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1905 {
1906 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1907 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1908 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1909
1910 /*
1911 * Allow EAPOL frames to us/the PAE group address regardless
1912 * of whether the frame was encrypted or not.
1913 */
1914 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1915 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1916 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1917 return true;
1918
1919 if (ieee80211_802_1x_port_control(rx) ||
1920 ieee80211_drop_unencrypted(rx, fc))
1921 return false;
1922
1923 return true;
1924 }
1925
1926 /*
1927 * requires that rx->skb is a frame with ethernet header
1928 */
1929 static void
1930 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1931 {
1932 struct ieee80211_sub_if_data *sdata = rx->sdata;
1933 struct net_device *dev = sdata->dev;
1934 struct sk_buff *skb, *xmit_skb;
1935 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1936 struct sta_info *dsta;
1937 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1938
1939 skb = rx->skb;
1940 xmit_skb = NULL;
1941
1942 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1943 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1944 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1945 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1946 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1947 if (is_multicast_ether_addr(ehdr->h_dest)) {
1948 /*
1949 * send multicast frames both to higher layers in
1950 * local net stack and back to the wireless medium
1951 */
1952 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1953 if (!xmit_skb)
1954 net_info_ratelimited("%s: failed to clone multicast frame\n",
1955 dev->name);
1956 } else {
1957 dsta = sta_info_get(sdata, skb->data);
1958 if (dsta) {
1959 /*
1960 * The destination station is associated to
1961 * this AP (in this VLAN), so send the frame
1962 * directly to it and do not pass it to local
1963 * net stack.
1964 */
1965 xmit_skb = skb;
1966 skb = NULL;
1967 }
1968 }
1969 }
1970
1971 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1972 if (skb) {
1973 /* 'align' will only take the values 0 or 2 here since all
1974 * frames are required to be aligned to 2-byte boundaries
1975 * when being passed to mac80211; the code here works just
1976 * as well if that isn't true, but mac80211 assumes it can
1977 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1978 */
1979 int align;
1980
1981 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1982 if (align) {
1983 if (WARN_ON(skb_headroom(skb) < 3)) {
1984 dev_kfree_skb(skb);
1985 skb = NULL;
1986 } else {
1987 u8 *data = skb->data;
1988 size_t len = skb_headlen(skb);
1989 skb->data -= align;
1990 memmove(skb->data, data, len);
1991 skb_set_tail_pointer(skb, len);
1992 }
1993 }
1994 }
1995 #endif
1996
1997 if (skb) {
1998 /* deliver to local stack */
1999 skb->protocol = eth_type_trans(skb, dev);
2000 memset(skb->cb, 0, sizeof(skb->cb));
2001 if (rx->local->napi)
2002 napi_gro_receive(rx->local->napi, skb);
2003 else
2004 netif_receive_skb(skb);
2005 }
2006
2007 if (xmit_skb) {
2008 /*
2009 * Send to wireless media and increase priority by 256 to
2010 * keep the received priority instead of reclassifying
2011 * the frame (see cfg80211_classify8021d).
2012 */
2013 xmit_skb->priority += 256;
2014 xmit_skb->protocol = htons(ETH_P_802_3);
2015 skb_reset_network_header(xmit_skb);
2016 skb_reset_mac_header(xmit_skb);
2017 dev_queue_xmit(xmit_skb);
2018 }
2019 }
2020
2021 static ieee80211_rx_result debug_noinline
2022 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2023 {
2024 struct net_device *dev = rx->sdata->dev;
2025 struct sk_buff *skb = rx->skb;
2026 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2027 __le16 fc = hdr->frame_control;
2028 struct sk_buff_head frame_list;
2029 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2030
2031 if (unlikely(!ieee80211_is_data(fc)))
2032 return RX_CONTINUE;
2033
2034 if (unlikely(!ieee80211_is_data_present(fc)))
2035 return RX_DROP_MONITOR;
2036
2037 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2038 return RX_CONTINUE;
2039
2040 if (ieee80211_has_a4(hdr->frame_control) &&
2041 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2042 !rx->sdata->u.vlan.sta)
2043 return RX_DROP_UNUSABLE;
2044
2045 if (is_multicast_ether_addr(hdr->addr1) &&
2046 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2047 rx->sdata->u.vlan.sta) ||
2048 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2049 rx->sdata->u.mgd.use_4addr)))
2050 return RX_DROP_UNUSABLE;
2051
2052 skb->dev = dev;
2053 __skb_queue_head_init(&frame_list);
2054
2055 if (skb_linearize(skb))
2056 return RX_DROP_UNUSABLE;
2057
2058 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2059 rx->sdata->vif.type,
2060 rx->local->hw.extra_tx_headroom, true);
2061
2062 while (!skb_queue_empty(&frame_list)) {
2063 rx->skb = __skb_dequeue(&frame_list);
2064
2065 if (!ieee80211_frame_allowed(rx, fc)) {
2066 dev_kfree_skb(rx->skb);
2067 continue;
2068 }
2069 dev->stats.rx_packets++;
2070 dev->stats.rx_bytes += rx->skb->len;
2071
2072 ieee80211_deliver_skb(rx);
2073 }
2074
2075 return RX_QUEUED;
2076 }
2077
2078 #ifdef CONFIG_MAC80211_MESH
2079 static ieee80211_rx_result
2080 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2081 {
2082 struct ieee80211_hdr *fwd_hdr, *hdr;
2083 struct ieee80211_tx_info *info;
2084 struct ieee80211s_hdr *mesh_hdr;
2085 struct sk_buff *skb = rx->skb, *fwd_skb;
2086 struct ieee80211_local *local = rx->local;
2087 struct ieee80211_sub_if_data *sdata = rx->sdata;
2088 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2089 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2090 u16 q, hdrlen;
2091
2092 hdr = (struct ieee80211_hdr *) skb->data;
2093 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2094
2095 /* make sure fixed part of mesh header is there, also checks skb len */
2096 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2097 return RX_DROP_MONITOR;
2098
2099 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2100
2101 /* make sure full mesh header is there, also checks skb len */
2102 if (!pskb_may_pull(rx->skb,
2103 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2104 return RX_DROP_MONITOR;
2105
2106 /* reload pointers */
2107 hdr = (struct ieee80211_hdr *) skb->data;
2108 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2109
2110 /* frame is in RMC, don't forward */
2111 if (ieee80211_is_data(hdr->frame_control) &&
2112 is_multicast_ether_addr(hdr->addr1) &&
2113 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2114 return RX_DROP_MONITOR;
2115
2116 if (!ieee80211_is_data(hdr->frame_control) ||
2117 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2118 return RX_CONTINUE;
2119
2120 if (!mesh_hdr->ttl)
2121 return RX_DROP_MONITOR;
2122
2123 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2124 struct mesh_path *mppath;
2125 char *proxied_addr;
2126 char *mpp_addr;
2127
2128 if (is_multicast_ether_addr(hdr->addr1)) {
2129 mpp_addr = hdr->addr3;
2130 proxied_addr = mesh_hdr->eaddr1;
2131 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2132 /* has_a4 already checked in ieee80211_rx_mesh_check */
2133 mpp_addr = hdr->addr4;
2134 proxied_addr = mesh_hdr->eaddr2;
2135 } else {
2136 return RX_DROP_MONITOR;
2137 }
2138
2139 rcu_read_lock();
2140 mppath = mpp_path_lookup(sdata, proxied_addr);
2141 if (!mppath) {
2142 mpp_path_add(sdata, proxied_addr, mpp_addr);
2143 } else {
2144 spin_lock_bh(&mppath->state_lock);
2145 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2146 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2147 spin_unlock_bh(&mppath->state_lock);
2148 }
2149 rcu_read_unlock();
2150 }
2151
2152 /* Frame has reached destination. Don't forward */
2153 if (!is_multicast_ether_addr(hdr->addr1) &&
2154 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2155 return RX_CONTINUE;
2156
2157 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2158 if (ieee80211_queue_stopped(&local->hw, q)) {
2159 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2160 return RX_DROP_MONITOR;
2161 }
2162 skb_set_queue_mapping(skb, q);
2163
2164 if (!--mesh_hdr->ttl) {
2165 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2166 goto out;
2167 }
2168
2169 if (!ifmsh->mshcfg.dot11MeshForwarding)
2170 goto out;
2171
2172 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2173 if (!fwd_skb) {
2174 net_info_ratelimited("%s: failed to clone mesh frame\n",
2175 sdata->name);
2176 goto out;
2177 }
2178
2179 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2180 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2181 info = IEEE80211_SKB_CB(fwd_skb);
2182 memset(info, 0, sizeof(*info));
2183 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2184 info->control.vif = &rx->sdata->vif;
2185 info->control.jiffies = jiffies;
2186 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2187 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2188 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2189 /* update power mode indication when forwarding */
2190 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2191 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2192 /* mesh power mode flags updated in mesh_nexthop_lookup */
2193 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2194 } else {
2195 /* unable to resolve next hop */
2196 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2197 fwd_hdr->addr3, 0,
2198 WLAN_REASON_MESH_PATH_NOFORWARD,
2199 fwd_hdr->addr2);
2200 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2201 kfree_skb(fwd_skb);
2202 return RX_DROP_MONITOR;
2203 }
2204
2205 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2206 ieee80211_add_pending_skb(local, fwd_skb);
2207 out:
2208 if (is_multicast_ether_addr(hdr->addr1) ||
2209 sdata->dev->flags & IFF_PROMISC)
2210 return RX_CONTINUE;
2211 else
2212 return RX_DROP_MONITOR;
2213 }
2214 #endif
2215
2216 static ieee80211_rx_result debug_noinline
2217 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2218 {
2219 struct ieee80211_sub_if_data *sdata = rx->sdata;
2220 struct ieee80211_local *local = rx->local;
2221 struct net_device *dev = sdata->dev;
2222 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2223 __le16 fc = hdr->frame_control;
2224 bool port_control;
2225 int err;
2226
2227 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2228 return RX_CONTINUE;
2229
2230 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2231 return RX_DROP_MONITOR;
2232
2233 /*
2234 * Send unexpected-4addr-frame event to hostapd. For older versions,
2235 * also drop the frame to cooked monitor interfaces.
2236 */
2237 if (ieee80211_has_a4(hdr->frame_control) &&
2238 sdata->vif.type == NL80211_IFTYPE_AP) {
2239 if (rx->sta &&
2240 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2241 cfg80211_rx_unexpected_4addr_frame(
2242 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2243 return RX_DROP_MONITOR;
2244 }
2245
2246 err = __ieee80211_data_to_8023(rx, &port_control);
2247 if (unlikely(err))
2248 return RX_DROP_UNUSABLE;
2249
2250 if (!ieee80211_frame_allowed(rx, fc))
2251 return RX_DROP_MONITOR;
2252
2253 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2254 unlikely(port_control) && sdata->bss) {
2255 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2256 u.ap);
2257 dev = sdata->dev;
2258 rx->sdata = sdata;
2259 }
2260
2261 rx->skb->dev = dev;
2262
2263 dev->stats.rx_packets++;
2264 dev->stats.rx_bytes += rx->skb->len;
2265
2266 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2267 !is_multicast_ether_addr(
2268 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2269 (!local->scanning &&
2270 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2271 mod_timer(&local->dynamic_ps_timer, jiffies +
2272 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2273 }
2274
2275 ieee80211_deliver_skb(rx);
2276
2277 return RX_QUEUED;
2278 }
2279
2280 static ieee80211_rx_result debug_noinline
2281 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2282 {
2283 struct sk_buff *skb = rx->skb;
2284 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2285 struct tid_ampdu_rx *tid_agg_rx;
2286 u16 start_seq_num;
2287 u16 tid;
2288
2289 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2290 return RX_CONTINUE;
2291
2292 if (ieee80211_is_back_req(bar->frame_control)) {
2293 struct {
2294 __le16 control, start_seq_num;
2295 } __packed bar_data;
2296
2297 if (!rx->sta)
2298 return RX_DROP_MONITOR;
2299
2300 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2301 &bar_data, sizeof(bar_data)))
2302 return RX_DROP_MONITOR;
2303
2304 tid = le16_to_cpu(bar_data.control) >> 12;
2305
2306 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2307 if (!tid_agg_rx)
2308 return RX_DROP_MONITOR;
2309
2310 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2311
2312 /* reset session timer */
2313 if (tid_agg_rx->timeout)
2314 mod_timer(&tid_agg_rx->session_timer,
2315 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2316
2317 spin_lock(&tid_agg_rx->reorder_lock);
2318 /* release stored frames up to start of BAR */
2319 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2320 start_seq_num, frames);
2321 spin_unlock(&tid_agg_rx->reorder_lock);
2322
2323 kfree_skb(skb);
2324 return RX_QUEUED;
2325 }
2326
2327 /*
2328 * After this point, we only want management frames,
2329 * so we can drop all remaining control frames to
2330 * cooked monitor interfaces.
2331 */
2332 return RX_DROP_MONITOR;
2333 }
2334
2335 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2336 struct ieee80211_mgmt *mgmt,
2337 size_t len)
2338 {
2339 struct ieee80211_local *local = sdata->local;
2340 struct sk_buff *skb;
2341 struct ieee80211_mgmt *resp;
2342
2343 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2344 /* Not to own unicast address */
2345 return;
2346 }
2347
2348 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2349 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2350 /* Not from the current AP or not associated yet. */
2351 return;
2352 }
2353
2354 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2355 /* Too short SA Query request frame */
2356 return;
2357 }
2358
2359 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2360 if (skb == NULL)
2361 return;
2362
2363 skb_reserve(skb, local->hw.extra_tx_headroom);
2364 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2365 memset(resp, 0, 24);
2366 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2367 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2368 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2369 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2370 IEEE80211_STYPE_ACTION);
2371 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2372 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2373 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2374 memcpy(resp->u.action.u.sa_query.trans_id,
2375 mgmt->u.action.u.sa_query.trans_id,
2376 WLAN_SA_QUERY_TR_ID_LEN);
2377
2378 ieee80211_tx_skb(sdata, skb);
2379 }
2380
2381 static ieee80211_rx_result debug_noinline
2382 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2383 {
2384 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2385 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2386
2387 /*
2388 * From here on, look only at management frames.
2389 * Data and control frames are already handled,
2390 * and unknown (reserved) frames are useless.
2391 */
2392 if (rx->skb->len < 24)
2393 return RX_DROP_MONITOR;
2394
2395 if (!ieee80211_is_mgmt(mgmt->frame_control))
2396 return RX_DROP_MONITOR;
2397
2398 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2399 ieee80211_is_beacon(mgmt->frame_control) &&
2400 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2401 int sig = 0;
2402
2403 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2404 sig = status->signal;
2405
2406 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2407 rx->skb->data, rx->skb->len,
2408 status->freq, sig);
2409 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2410 }
2411
2412 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2413 return RX_DROP_MONITOR;
2414
2415 if (ieee80211_drop_unencrypted_mgmt(rx))
2416 return RX_DROP_UNUSABLE;
2417
2418 return RX_CONTINUE;
2419 }
2420
2421 static ieee80211_rx_result debug_noinline
2422 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2423 {
2424 struct ieee80211_local *local = rx->local;
2425 struct ieee80211_sub_if_data *sdata = rx->sdata;
2426 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2427 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2428 int len = rx->skb->len;
2429
2430 if (!ieee80211_is_action(mgmt->frame_control))
2431 return RX_CONTINUE;
2432
2433 /* drop too small frames */
2434 if (len < IEEE80211_MIN_ACTION_SIZE)
2435 return RX_DROP_UNUSABLE;
2436
2437 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2438 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2439 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2440 return RX_DROP_UNUSABLE;
2441
2442 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2443 return RX_DROP_UNUSABLE;
2444
2445 switch (mgmt->u.action.category) {
2446 case WLAN_CATEGORY_HT:
2447 /* reject HT action frames from stations not supporting HT */
2448 if (!rx->sta->sta.ht_cap.ht_supported)
2449 goto invalid;
2450
2451 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2452 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2453 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2454 sdata->vif.type != NL80211_IFTYPE_AP &&
2455 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2456 break;
2457
2458 /* verify action & smps_control/chanwidth are present */
2459 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2460 goto invalid;
2461
2462 switch (mgmt->u.action.u.ht_smps.action) {
2463 case WLAN_HT_ACTION_SMPS: {
2464 struct ieee80211_supported_band *sband;
2465 enum ieee80211_smps_mode smps_mode;
2466
2467 /* convert to HT capability */
2468 switch (mgmt->u.action.u.ht_smps.smps_control) {
2469 case WLAN_HT_SMPS_CONTROL_DISABLED:
2470 smps_mode = IEEE80211_SMPS_OFF;
2471 break;
2472 case WLAN_HT_SMPS_CONTROL_STATIC:
2473 smps_mode = IEEE80211_SMPS_STATIC;
2474 break;
2475 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2476 smps_mode = IEEE80211_SMPS_DYNAMIC;
2477 break;
2478 default:
2479 goto invalid;
2480 }
2481
2482 /* if no change do nothing */
2483 if (rx->sta->sta.smps_mode == smps_mode)
2484 goto handled;
2485 rx->sta->sta.smps_mode = smps_mode;
2486
2487 sband = rx->local->hw.wiphy->bands[status->band];
2488
2489 rate_control_rate_update(local, sband, rx->sta,
2490 IEEE80211_RC_SMPS_CHANGED);
2491 goto handled;
2492 }
2493 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2494 struct ieee80211_supported_band *sband;
2495 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2496 enum ieee80211_sta_rx_bandwidth new_bw;
2497
2498 /* If it doesn't support 40 MHz it can't change ... */
2499 if (!(rx->sta->sta.ht_cap.cap &
2500 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2501 goto handled;
2502
2503 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2504 new_bw = IEEE80211_STA_RX_BW_20;
2505 else
2506 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2507
2508 if (rx->sta->sta.bandwidth == new_bw)
2509 goto handled;
2510
2511 sband = rx->local->hw.wiphy->bands[status->band];
2512
2513 rate_control_rate_update(local, sband, rx->sta,
2514 IEEE80211_RC_BW_CHANGED);
2515 goto handled;
2516 }
2517 default:
2518 goto invalid;
2519 }
2520
2521 break;
2522 case WLAN_CATEGORY_PUBLIC:
2523 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2524 goto invalid;
2525 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2526 break;
2527 if (!rx->sta)
2528 break;
2529 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2530 break;
2531 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2532 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2533 break;
2534 if (len < offsetof(struct ieee80211_mgmt,
2535 u.action.u.ext_chan_switch.variable))
2536 goto invalid;
2537 goto queue;
2538 case WLAN_CATEGORY_VHT:
2539 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2540 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2541 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2542 sdata->vif.type != NL80211_IFTYPE_AP &&
2543 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2544 break;
2545
2546 /* verify action code is present */
2547 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2548 goto invalid;
2549
2550 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2551 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2552 u8 opmode;
2553
2554 /* verify opmode is present */
2555 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2556 goto invalid;
2557
2558 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2559
2560 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2561 opmode, status->band,
2562 false);
2563 goto handled;
2564 }
2565 default:
2566 break;
2567 }
2568 break;
2569 case WLAN_CATEGORY_BACK:
2570 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2571 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2572 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2573 sdata->vif.type != NL80211_IFTYPE_AP &&
2574 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2575 break;
2576
2577 /* verify action_code is present */
2578 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2579 break;
2580
2581 switch (mgmt->u.action.u.addba_req.action_code) {
2582 case WLAN_ACTION_ADDBA_REQ:
2583 if (len < (IEEE80211_MIN_ACTION_SIZE +
2584 sizeof(mgmt->u.action.u.addba_req)))
2585 goto invalid;
2586 break;
2587 case WLAN_ACTION_ADDBA_RESP:
2588 if (len < (IEEE80211_MIN_ACTION_SIZE +
2589 sizeof(mgmt->u.action.u.addba_resp)))
2590 goto invalid;
2591 break;
2592 case WLAN_ACTION_DELBA:
2593 if (len < (IEEE80211_MIN_ACTION_SIZE +
2594 sizeof(mgmt->u.action.u.delba)))
2595 goto invalid;
2596 break;
2597 default:
2598 goto invalid;
2599 }
2600
2601 goto queue;
2602 case WLAN_CATEGORY_SPECTRUM_MGMT:
2603 /* verify action_code is present */
2604 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2605 break;
2606
2607 switch (mgmt->u.action.u.measurement.action_code) {
2608 case WLAN_ACTION_SPCT_MSR_REQ:
2609 if (status->band != IEEE80211_BAND_5GHZ)
2610 break;
2611
2612 if (len < (IEEE80211_MIN_ACTION_SIZE +
2613 sizeof(mgmt->u.action.u.measurement)))
2614 break;
2615
2616 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2617 break;
2618
2619 ieee80211_process_measurement_req(sdata, mgmt, len);
2620 goto handled;
2621 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2622 u8 *bssid;
2623 if (len < (IEEE80211_MIN_ACTION_SIZE +
2624 sizeof(mgmt->u.action.u.chan_switch)))
2625 break;
2626
2627 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2628 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2629 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2630 break;
2631
2632 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2633 bssid = sdata->u.mgd.bssid;
2634 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2635 bssid = sdata->u.ibss.bssid;
2636 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2637 bssid = mgmt->sa;
2638 else
2639 break;
2640
2641 if (!ether_addr_equal(mgmt->bssid, bssid))
2642 break;
2643
2644 goto queue;
2645 }
2646 }
2647 break;
2648 case WLAN_CATEGORY_SA_QUERY:
2649 if (len < (IEEE80211_MIN_ACTION_SIZE +
2650 sizeof(mgmt->u.action.u.sa_query)))
2651 break;
2652
2653 switch (mgmt->u.action.u.sa_query.action) {
2654 case WLAN_ACTION_SA_QUERY_REQUEST:
2655 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2656 break;
2657 ieee80211_process_sa_query_req(sdata, mgmt, len);
2658 goto handled;
2659 }
2660 break;
2661 case WLAN_CATEGORY_SELF_PROTECTED:
2662 if (len < (IEEE80211_MIN_ACTION_SIZE +
2663 sizeof(mgmt->u.action.u.self_prot.action_code)))
2664 break;
2665
2666 switch (mgmt->u.action.u.self_prot.action_code) {
2667 case WLAN_SP_MESH_PEERING_OPEN:
2668 case WLAN_SP_MESH_PEERING_CLOSE:
2669 case WLAN_SP_MESH_PEERING_CONFIRM:
2670 if (!ieee80211_vif_is_mesh(&sdata->vif))
2671 goto invalid;
2672 if (sdata->u.mesh.user_mpm)
2673 /* userspace handles this frame */
2674 break;
2675 goto queue;
2676 case WLAN_SP_MGK_INFORM:
2677 case WLAN_SP_MGK_ACK:
2678 if (!ieee80211_vif_is_mesh(&sdata->vif))
2679 goto invalid;
2680 break;
2681 }
2682 break;
2683 case WLAN_CATEGORY_MESH_ACTION:
2684 if (len < (IEEE80211_MIN_ACTION_SIZE +
2685 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2686 break;
2687
2688 if (!ieee80211_vif_is_mesh(&sdata->vif))
2689 break;
2690 if (mesh_action_is_path_sel(mgmt) &&
2691 !mesh_path_sel_is_hwmp(sdata))
2692 break;
2693 goto queue;
2694 }
2695
2696 return RX_CONTINUE;
2697
2698 invalid:
2699 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2700 /* will return in the next handlers */
2701 return RX_CONTINUE;
2702
2703 handled:
2704 if (rx->sta)
2705 rx->sta->rx_packets++;
2706 dev_kfree_skb(rx->skb);
2707 return RX_QUEUED;
2708
2709 queue:
2710 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2711 skb_queue_tail(&sdata->skb_queue, rx->skb);
2712 ieee80211_queue_work(&local->hw, &sdata->work);
2713 if (rx->sta)
2714 rx->sta->rx_packets++;
2715 return RX_QUEUED;
2716 }
2717
2718 static ieee80211_rx_result debug_noinline
2719 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2720 {
2721 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2722 int sig = 0;
2723
2724 /* skip known-bad action frames and return them in the next handler */
2725 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2726 return RX_CONTINUE;
2727
2728 /*
2729 * Getting here means the kernel doesn't know how to handle
2730 * it, but maybe userspace does ... include returned frames
2731 * so userspace can register for those to know whether ones
2732 * it transmitted were processed or returned.
2733 */
2734
2735 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2736 sig = status->signal;
2737
2738 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2739 rx->skb->data, rx->skb->len, 0)) {
2740 if (rx->sta)
2741 rx->sta->rx_packets++;
2742 dev_kfree_skb(rx->skb);
2743 return RX_QUEUED;
2744 }
2745
2746 return RX_CONTINUE;
2747 }
2748
2749 static ieee80211_rx_result debug_noinline
2750 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2751 {
2752 struct ieee80211_local *local = rx->local;
2753 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2754 struct sk_buff *nskb;
2755 struct ieee80211_sub_if_data *sdata = rx->sdata;
2756 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2757
2758 if (!ieee80211_is_action(mgmt->frame_control))
2759 return RX_CONTINUE;
2760
2761 /*
2762 * For AP mode, hostapd is responsible for handling any action
2763 * frames that we didn't handle, including returning unknown
2764 * ones. For all other modes we will return them to the sender,
2765 * setting the 0x80 bit in the action category, as required by
2766 * 802.11-2012 9.24.4.
2767 * Newer versions of hostapd shall also use the management frame
2768 * registration mechanisms, but older ones still use cooked
2769 * monitor interfaces so push all frames there.
2770 */
2771 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2772 (sdata->vif.type == NL80211_IFTYPE_AP ||
2773 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2774 return RX_DROP_MONITOR;
2775
2776 if (is_multicast_ether_addr(mgmt->da))
2777 return RX_DROP_MONITOR;
2778
2779 /* do not return rejected action frames */
2780 if (mgmt->u.action.category & 0x80)
2781 return RX_DROP_UNUSABLE;
2782
2783 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2784 GFP_ATOMIC);
2785 if (nskb) {
2786 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2787
2788 nmgmt->u.action.category |= 0x80;
2789 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2790 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2791
2792 memset(nskb->cb, 0, sizeof(nskb->cb));
2793
2794 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2795 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2796
2797 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2798 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2799 IEEE80211_TX_CTL_NO_CCK_RATE;
2800 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2801 info->hw_queue =
2802 local->hw.offchannel_tx_hw_queue;
2803 }
2804
2805 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2806 status->band);
2807 }
2808 dev_kfree_skb(rx->skb);
2809 return RX_QUEUED;
2810 }
2811
2812 static ieee80211_rx_result debug_noinline
2813 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2814 {
2815 struct ieee80211_sub_if_data *sdata = rx->sdata;
2816 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2817 __le16 stype;
2818
2819 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2820
2821 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2822 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2823 sdata->vif.type != NL80211_IFTYPE_STATION)
2824 return RX_DROP_MONITOR;
2825
2826 switch (stype) {
2827 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2828 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2829 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2830 /* process for all: mesh, mlme, ibss */
2831 break;
2832 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2833 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2834 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2835 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2836 if (is_multicast_ether_addr(mgmt->da) &&
2837 !is_broadcast_ether_addr(mgmt->da))
2838 return RX_DROP_MONITOR;
2839
2840 /* process only for station */
2841 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2842 return RX_DROP_MONITOR;
2843 break;
2844 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2845 /* process only for ibss and mesh */
2846 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2847 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2848 return RX_DROP_MONITOR;
2849 break;
2850 default:
2851 return RX_DROP_MONITOR;
2852 }
2853
2854 /* queue up frame and kick off work to process it */
2855 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2856 skb_queue_tail(&sdata->skb_queue, rx->skb);
2857 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2858 if (rx->sta)
2859 rx->sta->rx_packets++;
2860
2861 return RX_QUEUED;
2862 }
2863
2864 /* TODO: use IEEE80211_RX_FRAGMENTED */
2865 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2866 struct ieee80211_rate *rate)
2867 {
2868 struct ieee80211_sub_if_data *sdata;
2869 struct ieee80211_local *local = rx->local;
2870 struct sk_buff *skb = rx->skb, *skb2;
2871 struct net_device *prev_dev = NULL;
2872 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2873 int needed_headroom;
2874
2875 /*
2876 * If cooked monitor has been processed already, then
2877 * don't do it again. If not, set the flag.
2878 */
2879 if (rx->flags & IEEE80211_RX_CMNTR)
2880 goto out_free_skb;
2881 rx->flags |= IEEE80211_RX_CMNTR;
2882
2883 /* If there are no cooked monitor interfaces, just free the SKB */
2884 if (!local->cooked_mntrs)
2885 goto out_free_skb;
2886
2887 /* room for the radiotap header based on driver features */
2888 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2889
2890 if (skb_headroom(skb) < needed_headroom &&
2891 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2892 goto out_free_skb;
2893
2894 /* prepend radiotap information */
2895 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2896 false);
2897
2898 skb_set_mac_header(skb, 0);
2899 skb->ip_summed = CHECKSUM_UNNECESSARY;
2900 skb->pkt_type = PACKET_OTHERHOST;
2901 skb->protocol = htons(ETH_P_802_2);
2902
2903 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2904 if (!ieee80211_sdata_running(sdata))
2905 continue;
2906
2907 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2908 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2909 continue;
2910
2911 if (prev_dev) {
2912 skb2 = skb_clone(skb, GFP_ATOMIC);
2913 if (skb2) {
2914 skb2->dev = prev_dev;
2915 netif_receive_skb(skb2);
2916 }
2917 }
2918
2919 prev_dev = sdata->dev;
2920 sdata->dev->stats.rx_packets++;
2921 sdata->dev->stats.rx_bytes += skb->len;
2922 }
2923
2924 if (prev_dev) {
2925 skb->dev = prev_dev;
2926 netif_receive_skb(skb);
2927 return;
2928 }
2929
2930 out_free_skb:
2931 dev_kfree_skb(skb);
2932 }
2933
2934 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2935 ieee80211_rx_result res)
2936 {
2937 switch (res) {
2938 case RX_DROP_MONITOR:
2939 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2940 if (rx->sta)
2941 rx->sta->rx_dropped++;
2942 /* fall through */
2943 case RX_CONTINUE: {
2944 struct ieee80211_rate *rate = NULL;
2945 struct ieee80211_supported_band *sband;
2946 struct ieee80211_rx_status *status;
2947
2948 status = IEEE80211_SKB_RXCB((rx->skb));
2949
2950 sband = rx->local->hw.wiphy->bands[status->band];
2951 if (!(status->flag & RX_FLAG_HT) &&
2952 !(status->flag & RX_FLAG_VHT))
2953 rate = &sband->bitrates[status->rate_idx];
2954
2955 ieee80211_rx_cooked_monitor(rx, rate);
2956 break;
2957 }
2958 case RX_DROP_UNUSABLE:
2959 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2960 if (rx->sta)
2961 rx->sta->rx_dropped++;
2962 dev_kfree_skb(rx->skb);
2963 break;
2964 case RX_QUEUED:
2965 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2966 break;
2967 }
2968 }
2969
2970 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2971 struct sk_buff_head *frames)
2972 {
2973 ieee80211_rx_result res = RX_DROP_MONITOR;
2974 struct sk_buff *skb;
2975
2976 #define CALL_RXH(rxh) \
2977 do { \
2978 res = rxh(rx); \
2979 if (res != RX_CONTINUE) \
2980 goto rxh_next; \
2981 } while (0);
2982
2983 spin_lock_bh(&rx->local->rx_path_lock);
2984
2985 while ((skb = __skb_dequeue(frames))) {
2986 /*
2987 * all the other fields are valid across frames
2988 * that belong to an aMPDU since they are on the
2989 * same TID from the same station
2990 */
2991 rx->skb = skb;
2992
2993 CALL_RXH(ieee80211_rx_h_check_more_data)
2994 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2995 CALL_RXH(ieee80211_rx_h_sta_process)
2996 CALL_RXH(ieee80211_rx_h_decrypt)
2997 CALL_RXH(ieee80211_rx_h_defragment)
2998 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2999 /* must be after MMIC verify so header is counted in MPDU mic */
3000 #ifdef CONFIG_MAC80211_MESH
3001 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3002 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3003 #endif
3004 CALL_RXH(ieee80211_rx_h_amsdu)
3005 CALL_RXH(ieee80211_rx_h_data)
3006
3007 /* special treatment -- needs the queue */
3008 res = ieee80211_rx_h_ctrl(rx, frames);
3009 if (res != RX_CONTINUE)
3010 goto rxh_next;
3011
3012 CALL_RXH(ieee80211_rx_h_mgmt_check)
3013 CALL_RXH(ieee80211_rx_h_action)
3014 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3015 CALL_RXH(ieee80211_rx_h_action_return)
3016 CALL_RXH(ieee80211_rx_h_mgmt)
3017
3018 rxh_next:
3019 ieee80211_rx_handlers_result(rx, res);
3020
3021 #undef CALL_RXH
3022 }
3023
3024 spin_unlock_bh(&rx->local->rx_path_lock);
3025 }
3026
3027 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3028 {
3029 struct sk_buff_head reorder_release;
3030 ieee80211_rx_result res = RX_DROP_MONITOR;
3031
3032 __skb_queue_head_init(&reorder_release);
3033
3034 #define CALL_RXH(rxh) \
3035 do { \
3036 res = rxh(rx); \
3037 if (res != RX_CONTINUE) \
3038 goto rxh_next; \
3039 } while (0);
3040
3041 CALL_RXH(ieee80211_rx_h_check)
3042
3043 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3044
3045 ieee80211_rx_handlers(rx, &reorder_release);
3046 return;
3047
3048 rxh_next:
3049 ieee80211_rx_handlers_result(rx, res);
3050
3051 #undef CALL_RXH
3052 }
3053
3054 /*
3055 * This function makes calls into the RX path, therefore
3056 * it has to be invoked under RCU read lock.
3057 */
3058 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3059 {
3060 struct sk_buff_head frames;
3061 struct ieee80211_rx_data rx = {
3062 .sta = sta,
3063 .sdata = sta->sdata,
3064 .local = sta->local,
3065 /* This is OK -- must be QoS data frame */
3066 .security_idx = tid,
3067 .seqno_idx = tid,
3068 .flags = 0,
3069 };
3070 struct tid_ampdu_rx *tid_agg_rx;
3071
3072 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3073 if (!tid_agg_rx)
3074 return;
3075
3076 __skb_queue_head_init(&frames);
3077
3078 spin_lock(&tid_agg_rx->reorder_lock);
3079 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3080 spin_unlock(&tid_agg_rx->reorder_lock);
3081
3082 ieee80211_rx_handlers(&rx, &frames);
3083 }
3084
3085 /* main receive path */
3086
3087 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3088 struct ieee80211_hdr *hdr)
3089 {
3090 struct ieee80211_sub_if_data *sdata = rx->sdata;
3091 struct sk_buff *skb = rx->skb;
3092 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3093 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3094 int multicast = is_multicast_ether_addr(hdr->addr1);
3095
3096 switch (sdata->vif.type) {
3097 case NL80211_IFTYPE_STATION:
3098 if (!bssid && !sdata->u.mgd.use_4addr)
3099 return false;
3100 if (!multicast &&
3101 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3102 if (!(sdata->dev->flags & IFF_PROMISC) ||
3103 sdata->u.mgd.use_4addr)
3104 return false;
3105 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3106 }
3107 break;
3108 case NL80211_IFTYPE_ADHOC:
3109 if (!bssid)
3110 return false;
3111 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3112 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3113 return false;
3114 if (ieee80211_is_beacon(hdr->frame_control)) {
3115 return true;
3116 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3117 return false;
3118 } else if (!multicast &&
3119 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3120 if (!(sdata->dev->flags & IFF_PROMISC))
3121 return false;
3122 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3123 } else if (!rx->sta) {
3124 int rate_idx;
3125 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3126 rate_idx = 0; /* TODO: HT/VHT rates */
3127 else
3128 rate_idx = status->rate_idx;
3129 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3130 BIT(rate_idx));
3131 }
3132 break;
3133 case NL80211_IFTYPE_MESH_POINT:
3134 if (!multicast &&
3135 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3136 if (!(sdata->dev->flags & IFF_PROMISC))
3137 return false;
3138
3139 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3140 }
3141 break;
3142 case NL80211_IFTYPE_AP_VLAN:
3143 case NL80211_IFTYPE_AP:
3144 if (!bssid) {
3145 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3146 return false;
3147 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3148 /*
3149 * Accept public action frames even when the
3150 * BSSID doesn't match, this is used for P2P
3151 * and location updates. Note that mac80211
3152 * itself never looks at these frames.
3153 */
3154 if (!multicast &&
3155 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3156 return false;
3157 if (ieee80211_is_public_action(hdr, skb->len))
3158 return true;
3159 if (!ieee80211_is_beacon(hdr->frame_control))
3160 return false;
3161 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3162 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3163 /* ignore data frames to TDLS-peers */
3164 if (ieee80211_is_data(hdr->frame_control))
3165 return false;
3166 /* ignore action frames to TDLS-peers */
3167 if (ieee80211_is_action(hdr->frame_control) &&
3168 !ether_addr_equal(bssid, hdr->addr1))
3169 return false;
3170 }
3171 break;
3172 case NL80211_IFTYPE_WDS:
3173 if (bssid || !ieee80211_is_data(hdr->frame_control))
3174 return false;
3175 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3176 return false;
3177 break;
3178 case NL80211_IFTYPE_P2P_DEVICE:
3179 if (!ieee80211_is_public_action(hdr, skb->len) &&
3180 !ieee80211_is_probe_req(hdr->frame_control) &&
3181 !ieee80211_is_probe_resp(hdr->frame_control) &&
3182 !ieee80211_is_beacon(hdr->frame_control))
3183 return false;
3184 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3185 !multicast)
3186 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3187 break;
3188 default:
3189 /* should never get here */
3190 WARN_ON_ONCE(1);
3191 break;
3192 }
3193
3194 return true;
3195 }
3196
3197 /*
3198 * This function returns whether or not the SKB
3199 * was destined for RX processing or not, which,
3200 * if consume is true, is equivalent to whether
3201 * or not the skb was consumed.
3202 */
3203 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3204 struct sk_buff *skb, bool consume)
3205 {
3206 struct ieee80211_local *local = rx->local;
3207 struct ieee80211_sub_if_data *sdata = rx->sdata;
3208 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3209 struct ieee80211_hdr *hdr = (void *)skb->data;
3210
3211 rx->skb = skb;
3212 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3213
3214 if (!prepare_for_handlers(rx, hdr))
3215 return false;
3216
3217 if (!consume) {
3218 skb = skb_copy(skb, GFP_ATOMIC);
3219 if (!skb) {
3220 if (net_ratelimit())
3221 wiphy_debug(local->hw.wiphy,
3222 "failed to copy skb for %s\n",
3223 sdata->name);
3224 return true;
3225 }
3226
3227 rx->skb = skb;
3228 }
3229
3230 ieee80211_invoke_rx_handlers(rx);
3231 return true;
3232 }
3233
3234 /*
3235 * This is the actual Rx frames handler. as it belongs to Rx path it must
3236 * be called with rcu_read_lock protection.
3237 */
3238 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3239 struct sk_buff *skb)
3240 {
3241 struct ieee80211_local *local = hw_to_local(hw);
3242 struct ieee80211_sub_if_data *sdata;
3243 struct ieee80211_hdr *hdr;
3244 __le16 fc;
3245 struct ieee80211_rx_data rx;
3246 struct ieee80211_sub_if_data *prev;
3247 struct sta_info *sta, *tmp, *prev_sta;
3248 int err = 0;
3249
3250 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3251 memset(&rx, 0, sizeof(rx));
3252 rx.skb = skb;
3253 rx.local = local;
3254
3255 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3256 local->dot11ReceivedFragmentCount++;
3257
3258 if (ieee80211_is_mgmt(fc)) {
3259 /* drop frame if too short for header */
3260 if (skb->len < ieee80211_hdrlen(fc))
3261 err = -ENOBUFS;
3262 else
3263 err = skb_linearize(skb);
3264 } else {
3265 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3266 }
3267
3268 if (err) {
3269 dev_kfree_skb(skb);
3270 return;
3271 }
3272
3273 hdr = (struct ieee80211_hdr *)skb->data;
3274 ieee80211_parse_qos(&rx);
3275 ieee80211_verify_alignment(&rx);
3276
3277 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3278 ieee80211_is_beacon(hdr->frame_control)))
3279 ieee80211_scan_rx(local, skb);
3280
3281 if (ieee80211_is_data(fc)) {
3282 prev_sta = NULL;
3283
3284 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3285 if (!prev_sta) {
3286 prev_sta = sta;
3287 continue;
3288 }
3289
3290 rx.sta = prev_sta;
3291 rx.sdata = prev_sta->sdata;
3292 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3293
3294 prev_sta = sta;
3295 }
3296
3297 if (prev_sta) {
3298 rx.sta = prev_sta;
3299 rx.sdata = prev_sta->sdata;
3300
3301 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3302 return;
3303 goto out;
3304 }
3305 }
3306
3307 prev = NULL;
3308
3309 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3310 if (!ieee80211_sdata_running(sdata))
3311 continue;
3312
3313 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3314 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3315 continue;
3316
3317 /*
3318 * frame is destined for this interface, but if it's
3319 * not also for the previous one we handle that after
3320 * the loop to avoid copying the SKB once too much
3321 */
3322
3323 if (!prev) {
3324 prev = sdata;
3325 continue;
3326 }
3327
3328 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3329 rx.sdata = prev;
3330 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3331
3332 prev = sdata;
3333 }
3334
3335 if (prev) {
3336 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3337 rx.sdata = prev;
3338
3339 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3340 return;
3341 }
3342
3343 out:
3344 dev_kfree_skb(skb);
3345 }
3346
3347 /*
3348 * This is the receive path handler. It is called by a low level driver when an
3349 * 802.11 MPDU is received from the hardware.
3350 */
3351 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3352 {
3353 struct ieee80211_local *local = hw_to_local(hw);
3354 struct ieee80211_rate *rate = NULL;
3355 struct ieee80211_supported_band *sband;
3356 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3357
3358 WARN_ON_ONCE(softirq_count() == 0);
3359
3360 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3361 goto drop;
3362
3363 sband = local->hw.wiphy->bands[status->band];
3364 if (WARN_ON(!sband))
3365 goto drop;
3366
3367 /*
3368 * If we're suspending, it is possible although not too likely
3369 * that we'd be receiving frames after having already partially
3370 * quiesced the stack. We can't process such frames then since
3371 * that might, for example, cause stations to be added or other
3372 * driver callbacks be invoked.
3373 */
3374 if (unlikely(local->quiescing || local->suspended))
3375 goto drop;
3376
3377 /* We might be during a HW reconfig, prevent Rx for the same reason */
3378 if (unlikely(local->in_reconfig))
3379 goto drop;
3380
3381 /*
3382 * The same happens when we're not even started,
3383 * but that's worth a warning.
3384 */
3385 if (WARN_ON(!local->started))
3386 goto drop;
3387
3388 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3389 /*
3390 * Validate the rate, unless a PLCP error means that
3391 * we probably can't have a valid rate here anyway.
3392 */
3393
3394 if (status->flag & RX_FLAG_HT) {
3395 /*
3396 * rate_idx is MCS index, which can be [0-76]
3397 * as documented on:
3398 *
3399 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3400 *
3401 * Anything else would be some sort of driver or
3402 * hardware error. The driver should catch hardware
3403 * errors.
3404 */
3405 if (WARN(status->rate_idx > 76,
3406 "Rate marked as an HT rate but passed "
3407 "status->rate_idx is not "
3408 "an MCS index [0-76]: %d (0x%02x)\n",
3409 status->rate_idx,
3410 status->rate_idx))
3411 goto drop;
3412 } else if (status->flag & RX_FLAG_VHT) {
3413 if (WARN_ONCE(status->rate_idx > 9 ||
3414 !status->vht_nss ||
3415 status->vht_nss > 8,
3416 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3417 status->rate_idx, status->vht_nss))
3418 goto drop;
3419 } else {
3420 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3421 goto drop;
3422 rate = &sband->bitrates[status->rate_idx];
3423 }
3424 }
3425
3426 status->rx_flags = 0;
3427
3428 /*
3429 * key references and virtual interfaces are protected using RCU
3430 * and this requires that we are in a read-side RCU section during
3431 * receive processing
3432 */
3433 rcu_read_lock();
3434
3435 /*
3436 * Frames with failed FCS/PLCP checksum are not returned,
3437 * all other frames are returned without radiotap header
3438 * if it was previously present.
3439 * Also, frames with less than 16 bytes are dropped.
3440 */
3441 skb = ieee80211_rx_monitor(local, skb, rate);
3442 if (!skb) {
3443 rcu_read_unlock();
3444 return;
3445 }
3446
3447 ieee80211_tpt_led_trig_rx(local,
3448 ((struct ieee80211_hdr *)skb->data)->frame_control,
3449 skb->len);
3450 __ieee80211_rx_handle_packet(hw, skb);
3451
3452 rcu_read_unlock();
3453
3454 return;
3455 drop:
3456 kfree_skb(skb);
3457 }
3458 EXPORT_SYMBOL(ieee80211_rx);
3459
3460 /* This is a version of the rx handler that can be called from hard irq
3461 * context. Post the skb on the queue and schedule the tasklet */
3462 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3463 {
3464 struct ieee80211_local *local = hw_to_local(hw);
3465
3466 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3467
3468 skb->pkt_type = IEEE80211_RX_MSG;
3469 skb_queue_tail(&local->skb_queue, skb);
3470 tasklet_schedule(&local->tasklet);
3471 }
3472 EXPORT_SYMBOL(ieee80211_rx_irqsafe);