]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/rx.c
mac80211: add back support for radiotap vendor namespace data
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 /*
36 * monitor mode reception
37 *
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
40 */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb,
43 unsigned int rtap_vendor_space)
44 {
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 __pskb_pull(skb, rtap_vendor_space);
57
58 return skb;
59 }
60
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 unsigned int rtap_vendor_space)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + rtap_vendor_space);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return true;
73
74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 return true;
76
77 if (ieee80211_is_ctl(hdr->frame_control) &&
78 !ieee80211_is_pspoll(hdr->frame_control) &&
79 !ieee80211_is_back_req(hdr->frame_control))
80 return true;
81
82 return false;
83 }
84
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 struct ieee80211_rx_status *status,
88 struct sk_buff *skb)
89 {
90 int len;
91
92 /* always present fields */
93 len = sizeof(struct ieee80211_radiotap_header) + 8;
94
95 /* allocate extra bitmaps */
96 if (status->chains)
97 len += 4 * hweight8(status->chains);
98
99 if (ieee80211_have_rx_timestamp(status)) {
100 len = ALIGN(len, 8);
101 len += 8;
102 }
103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 len += 1;
105
106 /* antenna field, if we don't have per-chain info */
107 if (!status->chains)
108 len += 1;
109
110 /* padding for RX_FLAGS if necessary */
111 len = ALIGN(len, 2);
112
113 if (status->flag & RX_FLAG_HT) /* HT info */
114 len += 3;
115
116 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 len = ALIGN(len, 4);
118 len += 8;
119 }
120
121 if (status->flag & RX_FLAG_VHT) {
122 len = ALIGN(len, 2);
123 len += 12;
124 }
125
126 if (status->chains) {
127 /* antenna and antenna signal fields */
128 len += 2 * hweight8(status->chains);
129 }
130
131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133
134 /* vendor presence bitmap */
135 len += 4;
136 /* alignment for fixed 6-byte vendor data header */
137 len = ALIGN(len, 2);
138 /* vendor data header */
139 len += 6;
140 if (WARN_ON(rtap->align == 0))
141 rtap->align = 1;
142 len = ALIGN(len, rtap->align);
143 len += rtap->len + rtap->pad;
144 }
145
146 return len;
147 }
148
149 /*
150 * ieee80211_add_rx_radiotap_header - add radiotap header
151 *
152 * add a radiotap header containing all the fields which the hardware provided.
153 */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 struct sk_buff *skb,
157 struct ieee80211_rate *rate,
158 int rtap_len, bool has_fcs)
159 {
160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 struct ieee80211_radiotap_header *rthdr;
162 unsigned char *pos;
163 __le32 *it_present;
164 u32 it_present_val;
165 u16 rx_flags = 0;
166 u16 channel_flags = 0;
167 int mpdulen, chain;
168 unsigned long chains = status->chains;
169 struct ieee80211_vendor_radiotap rtap = {};
170
171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 /* rtap.len and rtap.pad are undone immediately */
174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 }
176
177 mpdulen = skb->len;
178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 mpdulen += FCS_LEN;
180
181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 it_present = &rthdr->it_present;
184
185 /* radiotap header, set always present flags */
186 rthdr->it_len = cpu_to_le16(rtap_len);
187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190
191 if (!status->chains)
192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193
194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 it_present_val |=
196 BIT(IEEE80211_RADIOTAP_EXT) |
197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 put_unaligned_le32(it_present_val, it_present);
199 it_present++;
200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 }
203
204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 BIT(IEEE80211_RADIOTAP_EXT);
207 put_unaligned_le32(it_present_val, it_present);
208 it_present++;
209 it_present_val = rtap.present;
210 }
211
212 put_unaligned_le32(it_present_val, it_present);
213
214 pos = (void *)(it_present + 1);
215
216 /* the order of the following fields is important */
217
218 /* IEEE80211_RADIOTAP_TSFT */
219 if (ieee80211_have_rx_timestamp(status)) {
220 /* padding */
221 while ((pos - (u8 *)rthdr) & 7)
222 *pos++ = 0;
223 put_unaligned_le64(
224 ieee80211_calculate_rx_timestamp(local, status,
225 mpdulen, 0),
226 pos);
227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 pos += 8;
229 }
230
231 /* IEEE80211_RADIOTAP_FLAGS */
232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 *pos |= IEEE80211_RADIOTAP_F_FCS;
234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 if (status->flag & RX_FLAG_SHORTPRE)
237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 pos++;
239
240 /* IEEE80211_RADIOTAP_RATE */
241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 /*
243 * Without rate information don't add it. If we have,
244 * MCS information is a separate field in radiotap,
245 * added below. The byte here is needed as padding
246 * for the channel though, so initialise it to 0.
247 */
248 *pos = 0;
249 } else {
250 int shift = 0;
251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 if (status->flag & RX_FLAG_10MHZ)
253 shift = 1;
254 else if (status->flag & RX_FLAG_5MHZ)
255 shift = 2;
256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 }
258 pos++;
259
260 /* IEEE80211_RADIOTAP_CHANNEL */
261 put_unaligned_le16(status->freq, pos);
262 pos += 2;
263 if (status->flag & RX_FLAG_10MHZ)
264 channel_flags |= IEEE80211_CHAN_HALF;
265 else if (status->flag & RX_FLAG_5MHZ)
266 channel_flags |= IEEE80211_CHAN_QUARTER;
267
268 if (status->band == IEEE80211_BAND_5GHZ)
269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 else if (rate)
275 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
276 else
277 channel_flags |= IEEE80211_CHAN_2GHZ;
278 put_unaligned_le16(channel_flags, pos);
279 pos += 2;
280
281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 *pos = status->signal;
285 rthdr->it_present |=
286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 pos++;
288 }
289
290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291
292 if (!status->chains) {
293 /* IEEE80211_RADIOTAP_ANTENNA */
294 *pos = status->antenna;
295 pos++;
296 }
297
298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299
300 /* IEEE80211_RADIOTAP_RX_FLAGS */
301 /* ensure 2 byte alignment for the 2 byte field as required */
302 if ((pos - (u8 *)rthdr) & 1)
303 *pos++ = 0;
304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 put_unaligned_le16(rx_flags, pos);
307 pos += 2;
308
309 if (status->flag & RX_FLAG_HT) {
310 unsigned int stbc;
311
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 *pos++ = local->hw.radiotap_mcs_details;
314 *pos = 0;
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 if (status->flag & RX_FLAG_40MHZ)
318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 if (status->flag & RX_FLAG_HT_GF)
320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 if (status->flag & RX_FLAG_LDPC)
322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 pos++;
326 *pos++ = status->rate_idx;
327 }
328
329 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 u16 flags = 0;
331
332 /* ensure 4 byte alignment */
333 while ((pos - (u8 *)rthdr) & 3)
334 pos++;
335 rthdr->it_present |=
336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 put_unaligned_le32(status->ampdu_reference, pos);
338 pos += 4;
339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 put_unaligned_le16(flags, pos);
352 pos += 2;
353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 *pos++ = status->ampdu_delimiter_crc;
355 else
356 *pos++ = 0;
357 *pos++ = 0;
358 }
359
360 if (status->flag & RX_FLAG_VHT) {
361 u16 known = local->hw.radiotap_vht_details;
362
363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 /* known field - how to handle 80+80? */
365 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
366 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
367 put_unaligned_le16(known, pos);
368 pos += 2;
369 /* flags */
370 if (status->flag & RX_FLAG_SHORT_GI)
371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
372 /* in VHT, STBC is binary */
373 if (status->flag & RX_FLAG_STBC_MASK)
374 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
375 if (status->vht_flag & RX_VHT_FLAG_BF)
376 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
377 pos++;
378 /* bandwidth */
379 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
380 *pos++ = 4;
381 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
382 *pos++ = 0; /* marked not known above */
383 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
384 *pos++ = 11;
385 else if (status->flag & RX_FLAG_40MHZ)
386 *pos++ = 1;
387 else /* 20 MHz */
388 *pos++ = 0;
389 /* MCS/NSS */
390 *pos = (status->rate_idx << 4) | status->vht_nss;
391 pos += 4;
392 /* coding field */
393 if (status->flag & RX_FLAG_LDPC)
394 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
395 pos++;
396 /* group ID */
397 pos++;
398 /* partial_aid */
399 pos += 2;
400 }
401
402 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
403 *pos++ = status->chain_signal[chain];
404 *pos++ = chain;
405 }
406
407 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
408 /* ensure 2 byte alignment for the vendor field as required */
409 if ((pos - (u8 *)rthdr) & 1)
410 *pos++ = 0;
411 *pos++ = rtap.oui[0];
412 *pos++ = rtap.oui[1];
413 *pos++ = rtap.oui[2];
414 *pos++ = rtap.subns;
415 put_unaligned_le16(rtap.len, pos);
416 pos += 2;
417 /* align the actual payload as requested */
418 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
419 *pos++ = 0;
420 /* data (and possible padding) already follows */
421 }
422 }
423
424 /*
425 * This function copies a received frame to all monitor interfaces and
426 * returns a cleaned-up SKB that no longer includes the FCS nor the
427 * radiotap header the driver might have added.
428 */
429 static struct sk_buff *
430 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
431 struct ieee80211_rate *rate)
432 {
433 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
434 struct ieee80211_sub_if_data *sdata;
435 int rt_hdrlen, needed_headroom;
436 struct sk_buff *skb, *skb2;
437 struct net_device *prev_dev = NULL;
438 int present_fcs_len = 0;
439 unsigned int rtap_vendor_space = 0;
440
441 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
442 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
443
444 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
445 }
446
447 /*
448 * First, we may need to make a copy of the skb because
449 * (1) we need to modify it for radiotap (if not present), and
450 * (2) the other RX handlers will modify the skb we got.
451 *
452 * We don't need to, of course, if we aren't going to return
453 * the SKB because it has a bad FCS/PLCP checksum.
454 */
455
456 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
457 present_fcs_len = FCS_LEN;
458
459 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
460 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
461 dev_kfree_skb(origskb);
462 return NULL;
463 }
464
465 if (!local->monitors) {
466 if (should_drop_frame(origskb, present_fcs_len,
467 rtap_vendor_space)) {
468 dev_kfree_skb(origskb);
469 return NULL;
470 }
471
472 return remove_monitor_info(local, origskb, rtap_vendor_space);
473 }
474
475 /* room for the radiotap header based on driver features */
476 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
477 needed_headroom = rt_hdrlen - rtap_vendor_space;
478
479 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
480 /* only need to expand headroom if necessary */
481 skb = origskb;
482 origskb = NULL;
483
484 /*
485 * This shouldn't trigger often because most devices have an
486 * RX header they pull before we get here, and that should
487 * be big enough for our radiotap information. We should
488 * probably export the length to drivers so that we can have
489 * them allocate enough headroom to start with.
490 */
491 if (skb_headroom(skb) < needed_headroom &&
492 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
493 dev_kfree_skb(skb);
494 return NULL;
495 }
496 } else {
497 /*
498 * Need to make a copy and possibly remove radiotap header
499 * and FCS from the original.
500 */
501 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
502
503 origskb = remove_monitor_info(local, origskb,
504 rtap_vendor_space);
505
506 if (!skb)
507 return origskb;
508 }
509
510 /* prepend radiotap information */
511 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
512
513 skb_reset_mac_header(skb);
514 skb->ip_summed = CHECKSUM_UNNECESSARY;
515 skb->pkt_type = PACKET_OTHERHOST;
516 skb->protocol = htons(ETH_P_802_2);
517
518 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
519 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
520 continue;
521
522 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
523 continue;
524
525 if (!ieee80211_sdata_running(sdata))
526 continue;
527
528 if (prev_dev) {
529 skb2 = skb_clone(skb, GFP_ATOMIC);
530 if (skb2) {
531 skb2->dev = prev_dev;
532 netif_receive_skb(skb2);
533 }
534 }
535
536 prev_dev = sdata->dev;
537 sdata->dev->stats.rx_packets++;
538 sdata->dev->stats.rx_bytes += skb->len;
539 }
540
541 if (prev_dev) {
542 skb->dev = prev_dev;
543 netif_receive_skb(skb);
544 } else
545 dev_kfree_skb(skb);
546
547 return origskb;
548 }
549
550 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
551 {
552 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
553 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
554 int tid, seqno_idx, security_idx;
555
556 /* does the frame have a qos control field? */
557 if (ieee80211_is_data_qos(hdr->frame_control)) {
558 u8 *qc = ieee80211_get_qos_ctl(hdr);
559 /* frame has qos control */
560 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
561 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
562 status->rx_flags |= IEEE80211_RX_AMSDU;
563
564 seqno_idx = tid;
565 security_idx = tid;
566 } else {
567 /*
568 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
569 *
570 * Sequence numbers for management frames, QoS data
571 * frames with a broadcast/multicast address in the
572 * Address 1 field, and all non-QoS data frames sent
573 * by QoS STAs are assigned using an additional single
574 * modulo-4096 counter, [...]
575 *
576 * We also use that counter for non-QoS STAs.
577 */
578 seqno_idx = IEEE80211_NUM_TIDS;
579 security_idx = 0;
580 if (ieee80211_is_mgmt(hdr->frame_control))
581 security_idx = IEEE80211_NUM_TIDS;
582 tid = 0;
583 }
584
585 rx->seqno_idx = seqno_idx;
586 rx->security_idx = security_idx;
587 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
588 * For now, set skb->priority to 0 for other cases. */
589 rx->skb->priority = (tid > 7) ? 0 : tid;
590 }
591
592 /**
593 * DOC: Packet alignment
594 *
595 * Drivers always need to pass packets that are aligned to two-byte boundaries
596 * to the stack.
597 *
598 * Additionally, should, if possible, align the payload data in a way that
599 * guarantees that the contained IP header is aligned to a four-byte
600 * boundary. In the case of regular frames, this simply means aligning the
601 * payload to a four-byte boundary (because either the IP header is directly
602 * contained, or IV/RFC1042 headers that have a length divisible by four are
603 * in front of it). If the payload data is not properly aligned and the
604 * architecture doesn't support efficient unaligned operations, mac80211
605 * will align the data.
606 *
607 * With A-MSDU frames, however, the payload data address must yield two modulo
608 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
609 * push the IP header further back to a multiple of four again. Thankfully, the
610 * specs were sane enough this time around to require padding each A-MSDU
611 * subframe to a length that is a multiple of four.
612 *
613 * Padding like Atheros hardware adds which is between the 802.11 header and
614 * the payload is not supported, the driver is required to move the 802.11
615 * header to be directly in front of the payload in that case.
616 */
617 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
618 {
619 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
620 WARN_ONCE((unsigned long)rx->skb->data & 1,
621 "unaligned packet at 0x%p\n", rx->skb->data);
622 #endif
623 }
624
625
626 /* rx handlers */
627
628 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
629 {
630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
631
632 if (is_multicast_ether_addr(hdr->addr1))
633 return 0;
634
635 return ieee80211_is_robust_mgmt_frame(skb);
636 }
637
638
639 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
640 {
641 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
642
643 if (!is_multicast_ether_addr(hdr->addr1))
644 return 0;
645
646 return ieee80211_is_robust_mgmt_frame(skb);
647 }
648
649
650 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
651 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
652 {
653 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
654 struct ieee80211_mmie *mmie;
655
656 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
657 return -1;
658
659 if (!ieee80211_is_robust_mgmt_frame(skb))
660 return -1; /* not a robust management frame */
661
662 mmie = (struct ieee80211_mmie *)
663 (skb->data + skb->len - sizeof(*mmie));
664 if (mmie->element_id != WLAN_EID_MMIE ||
665 mmie->length != sizeof(*mmie) - 2)
666 return -1;
667
668 return le16_to_cpu(mmie->key_id);
669 }
670
671 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
672 struct sk_buff *skb)
673 {
674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
675 __le16 fc;
676 int hdrlen;
677 u8 keyid;
678
679 fc = hdr->frame_control;
680 hdrlen = ieee80211_hdrlen(fc);
681
682 if (skb->len < hdrlen + cs->hdr_len)
683 return -EINVAL;
684
685 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
686 keyid &= cs->key_idx_mask;
687 keyid >>= cs->key_idx_shift;
688
689 return keyid;
690 }
691
692 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
693 {
694 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
695 char *dev_addr = rx->sdata->vif.addr;
696
697 if (ieee80211_is_data(hdr->frame_control)) {
698 if (is_multicast_ether_addr(hdr->addr1)) {
699 if (ieee80211_has_tods(hdr->frame_control) ||
700 !ieee80211_has_fromds(hdr->frame_control))
701 return RX_DROP_MONITOR;
702 if (ether_addr_equal(hdr->addr3, dev_addr))
703 return RX_DROP_MONITOR;
704 } else {
705 if (!ieee80211_has_a4(hdr->frame_control))
706 return RX_DROP_MONITOR;
707 if (ether_addr_equal(hdr->addr4, dev_addr))
708 return RX_DROP_MONITOR;
709 }
710 }
711
712 /* If there is not an established peer link and this is not a peer link
713 * establisment frame, beacon or probe, drop the frame.
714 */
715
716 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
717 struct ieee80211_mgmt *mgmt;
718
719 if (!ieee80211_is_mgmt(hdr->frame_control))
720 return RX_DROP_MONITOR;
721
722 if (ieee80211_is_action(hdr->frame_control)) {
723 u8 category;
724
725 /* make sure category field is present */
726 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
727 return RX_DROP_MONITOR;
728
729 mgmt = (struct ieee80211_mgmt *)hdr;
730 category = mgmt->u.action.category;
731 if (category != WLAN_CATEGORY_MESH_ACTION &&
732 category != WLAN_CATEGORY_SELF_PROTECTED)
733 return RX_DROP_MONITOR;
734 return RX_CONTINUE;
735 }
736
737 if (ieee80211_is_probe_req(hdr->frame_control) ||
738 ieee80211_is_probe_resp(hdr->frame_control) ||
739 ieee80211_is_beacon(hdr->frame_control) ||
740 ieee80211_is_auth(hdr->frame_control))
741 return RX_CONTINUE;
742
743 return RX_DROP_MONITOR;
744 }
745
746 return RX_CONTINUE;
747 }
748
749 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
750 struct tid_ampdu_rx *tid_agg_rx,
751 int index,
752 struct sk_buff_head *frames)
753 {
754 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
755 struct sk_buff *skb;
756 struct ieee80211_rx_status *status;
757
758 lockdep_assert_held(&tid_agg_rx->reorder_lock);
759
760 if (skb_queue_empty(skb_list))
761 goto no_frame;
762
763 if (!ieee80211_rx_reorder_ready(skb_list)) {
764 __skb_queue_purge(skb_list);
765 goto no_frame;
766 }
767
768 /* release frames from the reorder ring buffer */
769 tid_agg_rx->stored_mpdu_num--;
770 while ((skb = __skb_dequeue(skb_list))) {
771 status = IEEE80211_SKB_RXCB(skb);
772 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
773 __skb_queue_tail(frames, skb);
774 }
775
776 no_frame:
777 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
778 }
779
780 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
781 struct tid_ampdu_rx *tid_agg_rx,
782 u16 head_seq_num,
783 struct sk_buff_head *frames)
784 {
785 int index;
786
787 lockdep_assert_held(&tid_agg_rx->reorder_lock);
788
789 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
790 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
791 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
792 frames);
793 }
794 }
795
796 /*
797 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
798 * the skb was added to the buffer longer than this time ago, the earlier
799 * frames that have not yet been received are assumed to be lost and the skb
800 * can be released for processing. This may also release other skb's from the
801 * reorder buffer if there are no additional gaps between the frames.
802 *
803 * Callers must hold tid_agg_rx->reorder_lock.
804 */
805 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
806
807 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
808 struct tid_ampdu_rx *tid_agg_rx,
809 struct sk_buff_head *frames)
810 {
811 int index, i, j;
812
813 lockdep_assert_held(&tid_agg_rx->reorder_lock);
814
815 /* release the buffer until next missing frame */
816 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
817 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
818 tid_agg_rx->stored_mpdu_num) {
819 /*
820 * No buffers ready to be released, but check whether any
821 * frames in the reorder buffer have timed out.
822 */
823 int skipped = 1;
824 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
825 j = (j + 1) % tid_agg_rx->buf_size) {
826 if (!ieee80211_rx_reorder_ready(
827 &tid_agg_rx->reorder_buf[j])) {
828 skipped++;
829 continue;
830 }
831 if (skipped &&
832 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
833 HT_RX_REORDER_BUF_TIMEOUT))
834 goto set_release_timer;
835
836 /* don't leave incomplete A-MSDUs around */
837 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
838 i = (i + 1) % tid_agg_rx->buf_size)
839 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
840
841 ht_dbg_ratelimited(sdata,
842 "release an RX reorder frame due to timeout on earlier frames\n");
843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
844 frames);
845
846 /*
847 * Increment the head seq# also for the skipped slots.
848 */
849 tid_agg_rx->head_seq_num =
850 (tid_agg_rx->head_seq_num +
851 skipped) & IEEE80211_SN_MASK;
852 skipped = 0;
853 }
854 } else while (ieee80211_rx_reorder_ready(
855 &tid_agg_rx->reorder_buf[index])) {
856 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
857 frames);
858 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
859 }
860
861 if (tid_agg_rx->stored_mpdu_num) {
862 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
863
864 for (; j != (index - 1) % tid_agg_rx->buf_size;
865 j = (j + 1) % tid_agg_rx->buf_size) {
866 if (ieee80211_rx_reorder_ready(
867 &tid_agg_rx->reorder_buf[j]))
868 break;
869 }
870
871 set_release_timer:
872
873 mod_timer(&tid_agg_rx->reorder_timer,
874 tid_agg_rx->reorder_time[j] + 1 +
875 HT_RX_REORDER_BUF_TIMEOUT);
876 } else {
877 del_timer(&tid_agg_rx->reorder_timer);
878 }
879 }
880
881 /*
882 * As this function belongs to the RX path it must be under
883 * rcu_read_lock protection. It returns false if the frame
884 * can be processed immediately, true if it was consumed.
885 */
886 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
887 struct tid_ampdu_rx *tid_agg_rx,
888 struct sk_buff *skb,
889 struct sk_buff_head *frames)
890 {
891 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
893 u16 sc = le16_to_cpu(hdr->seq_ctrl);
894 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
895 u16 head_seq_num, buf_size;
896 int index;
897 bool ret = true;
898
899 spin_lock(&tid_agg_rx->reorder_lock);
900
901 /*
902 * Offloaded BA sessions have no known starting sequence number so pick
903 * one from first Rxed frame for this tid after BA was started.
904 */
905 if (unlikely(tid_agg_rx->auto_seq)) {
906 tid_agg_rx->auto_seq = false;
907 tid_agg_rx->ssn = mpdu_seq_num;
908 tid_agg_rx->head_seq_num = mpdu_seq_num;
909 }
910
911 buf_size = tid_agg_rx->buf_size;
912 head_seq_num = tid_agg_rx->head_seq_num;
913
914 /* frame with out of date sequence number */
915 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
916 dev_kfree_skb(skb);
917 goto out;
918 }
919
920 /*
921 * If frame the sequence number exceeds our buffering window
922 * size release some previous frames to make room for this one.
923 */
924 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
925 head_seq_num = ieee80211_sn_inc(
926 ieee80211_sn_sub(mpdu_seq_num, buf_size));
927 /* release stored frames up to new head to stack */
928 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
929 head_seq_num, frames);
930 }
931
932 /* Now the new frame is always in the range of the reordering buffer */
933
934 index = mpdu_seq_num % tid_agg_rx->buf_size;
935
936 /* check if we already stored this frame */
937 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
938 dev_kfree_skb(skb);
939 goto out;
940 }
941
942 /*
943 * If the current MPDU is in the right order and nothing else
944 * is stored we can process it directly, no need to buffer it.
945 * If it is first but there's something stored, we may be able
946 * to release frames after this one.
947 */
948 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
949 tid_agg_rx->stored_mpdu_num == 0) {
950 if (!(status->flag & RX_FLAG_AMSDU_MORE))
951 tid_agg_rx->head_seq_num =
952 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
953 ret = false;
954 goto out;
955 }
956
957 /* put the frame in the reordering buffer */
958 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
959 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
960 tid_agg_rx->reorder_time[index] = jiffies;
961 tid_agg_rx->stored_mpdu_num++;
962 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
963 }
964
965 out:
966 spin_unlock(&tid_agg_rx->reorder_lock);
967 return ret;
968 }
969
970 /*
971 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
972 * true if the MPDU was buffered, false if it should be processed.
973 */
974 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
975 struct sk_buff_head *frames)
976 {
977 struct sk_buff *skb = rx->skb;
978 struct ieee80211_local *local = rx->local;
979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
981 struct sta_info *sta = rx->sta;
982 struct tid_ampdu_rx *tid_agg_rx;
983 u16 sc;
984 u8 tid, ack_policy;
985
986 if (!ieee80211_is_data_qos(hdr->frame_control) ||
987 is_multicast_ether_addr(hdr->addr1))
988 goto dont_reorder;
989
990 /*
991 * filter the QoS data rx stream according to
992 * STA/TID and check if this STA/TID is on aggregation
993 */
994
995 if (!sta)
996 goto dont_reorder;
997
998 ack_policy = *ieee80211_get_qos_ctl(hdr) &
999 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1000 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1001
1002 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1003 if (!tid_agg_rx)
1004 goto dont_reorder;
1005
1006 /* qos null data frames are excluded */
1007 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1008 goto dont_reorder;
1009
1010 /* not part of a BA session */
1011 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1012 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1013 goto dont_reorder;
1014
1015 /* not actually part of this BA session */
1016 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1017 goto dont_reorder;
1018
1019 /* new, potentially un-ordered, ampdu frame - process it */
1020
1021 /* reset session timer */
1022 if (tid_agg_rx->timeout)
1023 tid_agg_rx->last_rx = jiffies;
1024
1025 /* if this mpdu is fragmented - terminate rx aggregation session */
1026 sc = le16_to_cpu(hdr->seq_ctrl);
1027 if (sc & IEEE80211_SCTL_FRAG) {
1028 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1029 skb_queue_tail(&rx->sdata->skb_queue, skb);
1030 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1031 return;
1032 }
1033
1034 /*
1035 * No locking needed -- we will only ever process one
1036 * RX packet at a time, and thus own tid_agg_rx. All
1037 * other code manipulating it needs to (and does) make
1038 * sure that we cannot get to it any more before doing
1039 * anything with it.
1040 */
1041 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1042 frames))
1043 return;
1044
1045 dont_reorder:
1046 __skb_queue_tail(frames, skb);
1047 }
1048
1049 static ieee80211_rx_result debug_noinline
1050 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1051 {
1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1053 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1054
1055 /*
1056 * Drop duplicate 802.11 retransmissions
1057 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1058 */
1059 if (rx->skb->len >= 24 && rx->sta &&
1060 !ieee80211_is_ctl(hdr->frame_control) &&
1061 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
1062 !is_multicast_ether_addr(hdr->addr1)) {
1063 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1064 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1065 hdr->seq_ctrl)) {
1066 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1067 rx->local->dot11FrameDuplicateCount++;
1068 rx->sta->num_duplicates++;
1069 }
1070 return RX_DROP_UNUSABLE;
1071 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1072 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1073 }
1074 }
1075
1076 if (unlikely(rx->skb->len < 16)) {
1077 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1078 return RX_DROP_MONITOR;
1079 }
1080
1081 /* Drop disallowed frame classes based on STA auth/assoc state;
1082 * IEEE 802.11, Chap 5.5.
1083 *
1084 * mac80211 filters only based on association state, i.e. it drops
1085 * Class 3 frames from not associated stations. hostapd sends
1086 * deauth/disassoc frames when needed. In addition, hostapd is
1087 * responsible for filtering on both auth and assoc states.
1088 */
1089
1090 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1091 return ieee80211_rx_mesh_check(rx);
1092
1093 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1094 ieee80211_is_pspoll(hdr->frame_control)) &&
1095 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1096 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1097 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1098 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1099 /*
1100 * accept port control frames from the AP even when it's not
1101 * yet marked ASSOC to prevent a race where we don't set the
1102 * assoc bit quickly enough before it sends the first frame
1103 */
1104 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1105 ieee80211_is_data_present(hdr->frame_control)) {
1106 unsigned int hdrlen;
1107 __be16 ethertype;
1108
1109 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1110
1111 if (rx->skb->len < hdrlen + 8)
1112 return RX_DROP_MONITOR;
1113
1114 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1115 if (ethertype == rx->sdata->control_port_protocol)
1116 return RX_CONTINUE;
1117 }
1118
1119 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1120 cfg80211_rx_spurious_frame(rx->sdata->dev,
1121 hdr->addr2,
1122 GFP_ATOMIC))
1123 return RX_DROP_UNUSABLE;
1124
1125 return RX_DROP_MONITOR;
1126 }
1127
1128 return RX_CONTINUE;
1129 }
1130
1131
1132 static ieee80211_rx_result debug_noinline
1133 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1134 {
1135 struct ieee80211_local *local;
1136 struct ieee80211_hdr *hdr;
1137 struct sk_buff *skb;
1138
1139 local = rx->local;
1140 skb = rx->skb;
1141 hdr = (struct ieee80211_hdr *) skb->data;
1142
1143 if (!local->pspolling)
1144 return RX_CONTINUE;
1145
1146 if (!ieee80211_has_fromds(hdr->frame_control))
1147 /* this is not from AP */
1148 return RX_CONTINUE;
1149
1150 if (!ieee80211_is_data(hdr->frame_control))
1151 return RX_CONTINUE;
1152
1153 if (!ieee80211_has_moredata(hdr->frame_control)) {
1154 /* AP has no more frames buffered for us */
1155 local->pspolling = false;
1156 return RX_CONTINUE;
1157 }
1158
1159 /* more data bit is set, let's request a new frame from the AP */
1160 ieee80211_send_pspoll(local, rx->sdata);
1161
1162 return RX_CONTINUE;
1163 }
1164
1165 static void sta_ps_start(struct sta_info *sta)
1166 {
1167 struct ieee80211_sub_if_data *sdata = sta->sdata;
1168 struct ieee80211_local *local = sdata->local;
1169 struct ps_data *ps;
1170
1171 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1172 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1173 ps = &sdata->bss->ps;
1174 else
1175 return;
1176
1177 atomic_inc(&ps->num_sta_ps);
1178 set_sta_flag(sta, WLAN_STA_PS_STA);
1179 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1180 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1181 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1182 sta->sta.addr, sta->sta.aid);
1183 }
1184
1185 static void sta_ps_end(struct sta_info *sta)
1186 {
1187 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1188 sta->sta.addr, sta->sta.aid);
1189
1190 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1191 /*
1192 * Clear the flag only if the other one is still set
1193 * so that the TX path won't start TX'ing new frames
1194 * directly ... In the case that the driver flag isn't
1195 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1196 */
1197 clear_sta_flag(sta, WLAN_STA_PS_STA);
1198 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1199 sta->sta.addr, sta->sta.aid);
1200 return;
1201 }
1202
1203 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1204 clear_sta_flag(sta, WLAN_STA_PS_STA);
1205 ieee80211_sta_ps_deliver_wakeup(sta);
1206 }
1207
1208 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1209 {
1210 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1211 bool in_ps;
1212
1213 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1214
1215 /* Don't let the same PS state be set twice */
1216 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1217 if ((start && in_ps) || (!start && !in_ps))
1218 return -EINVAL;
1219
1220 if (start)
1221 sta_ps_start(sta_inf);
1222 else
1223 sta_ps_end(sta_inf);
1224
1225 return 0;
1226 }
1227 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1228
1229 static ieee80211_rx_result debug_noinline
1230 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1231 {
1232 struct ieee80211_sub_if_data *sdata = rx->sdata;
1233 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1234 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1235 int tid, ac;
1236
1237 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1238 return RX_CONTINUE;
1239
1240 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1241 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1242 return RX_CONTINUE;
1243
1244 /*
1245 * The device handles station powersave, so don't do anything about
1246 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1247 * it to mac80211 since they're handled.)
1248 */
1249 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1250 return RX_CONTINUE;
1251
1252 /*
1253 * Don't do anything if the station isn't already asleep. In
1254 * the uAPSD case, the station will probably be marked asleep,
1255 * in the PS-Poll case the station must be confused ...
1256 */
1257 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1258 return RX_CONTINUE;
1259
1260 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1261 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1262 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1263 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1264 else
1265 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1266 }
1267
1268 /* Free PS Poll skb here instead of returning RX_DROP that would
1269 * count as an dropped frame. */
1270 dev_kfree_skb(rx->skb);
1271
1272 return RX_QUEUED;
1273 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1274 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1275 ieee80211_has_pm(hdr->frame_control) &&
1276 (ieee80211_is_data_qos(hdr->frame_control) ||
1277 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1278 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1279 ac = ieee802_1d_to_ac[tid & 7];
1280
1281 /*
1282 * If this AC is not trigger-enabled do nothing.
1283 *
1284 * NB: This could/should check a separate bitmap of trigger-
1285 * enabled queues, but for now we only implement uAPSD w/o
1286 * TSPEC changes to the ACs, so they're always the same.
1287 */
1288 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1289 return RX_CONTINUE;
1290
1291 /* if we are in a service period, do nothing */
1292 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1293 return RX_CONTINUE;
1294
1295 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1296 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1297 else
1298 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1299 }
1300
1301 return RX_CONTINUE;
1302 }
1303
1304 static ieee80211_rx_result debug_noinline
1305 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1306 {
1307 struct sta_info *sta = rx->sta;
1308 struct sk_buff *skb = rx->skb;
1309 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1310 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1311 int i;
1312
1313 if (!sta)
1314 return RX_CONTINUE;
1315
1316 /*
1317 * Update last_rx only for IBSS packets which are for the current
1318 * BSSID and for station already AUTHORIZED to avoid keeping the
1319 * current IBSS network alive in cases where other STAs start
1320 * using different BSSID. This will also give the station another
1321 * chance to restart the authentication/authorization in case
1322 * something went wrong the first time.
1323 */
1324 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1325 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1326 NL80211_IFTYPE_ADHOC);
1327 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1328 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1329 sta->last_rx = jiffies;
1330 if (ieee80211_is_data(hdr->frame_control) &&
1331 !is_multicast_ether_addr(hdr->addr1)) {
1332 sta->last_rx_rate_idx = status->rate_idx;
1333 sta->last_rx_rate_flag = status->flag;
1334 sta->last_rx_rate_vht_flag = status->vht_flag;
1335 sta->last_rx_rate_vht_nss = status->vht_nss;
1336 }
1337 }
1338 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1339 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1340 NL80211_IFTYPE_OCB);
1341 /* OCB uses wild-card BSSID */
1342 if (is_broadcast_ether_addr(bssid))
1343 sta->last_rx = jiffies;
1344 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1345 /*
1346 * Mesh beacons will update last_rx when if they are found to
1347 * match the current local configuration when processed.
1348 */
1349 sta->last_rx = jiffies;
1350 if (ieee80211_is_data(hdr->frame_control)) {
1351 sta->last_rx_rate_idx = status->rate_idx;
1352 sta->last_rx_rate_flag = status->flag;
1353 sta->last_rx_rate_vht_flag = status->vht_flag;
1354 sta->last_rx_rate_vht_nss = status->vht_nss;
1355 }
1356 }
1357
1358 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1359 return RX_CONTINUE;
1360
1361 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1362 ieee80211_sta_rx_notify(rx->sdata, hdr);
1363
1364 sta->rx_fragments++;
1365 sta->rx_bytes += rx->skb->len;
1366 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1367 sta->last_signal = status->signal;
1368 ewma_add(&sta->avg_signal, -status->signal);
1369 }
1370
1371 if (status->chains) {
1372 sta->chains = status->chains;
1373 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1374 int signal = status->chain_signal[i];
1375
1376 if (!(status->chains & BIT(i)))
1377 continue;
1378
1379 sta->chain_signal_last[i] = signal;
1380 ewma_add(&sta->chain_signal_avg[i], -signal);
1381 }
1382 }
1383
1384 /*
1385 * Change STA power saving mode only at the end of a frame
1386 * exchange sequence.
1387 */
1388 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1389 !ieee80211_has_morefrags(hdr->frame_control) &&
1390 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1391 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1392 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1393 /* PM bit is only checked in frames where it isn't reserved,
1394 * in AP mode it's reserved in non-bufferable management frames
1395 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1396 */
1397 (!ieee80211_is_mgmt(hdr->frame_control) ||
1398 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1399 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1400 if (!ieee80211_has_pm(hdr->frame_control))
1401 sta_ps_end(sta);
1402 } else {
1403 if (ieee80211_has_pm(hdr->frame_control))
1404 sta_ps_start(sta);
1405 }
1406 }
1407
1408 /* mesh power save support */
1409 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1410 ieee80211_mps_rx_h_sta_process(sta, hdr);
1411
1412 /*
1413 * Drop (qos-)data::nullfunc frames silently, since they
1414 * are used only to control station power saving mode.
1415 */
1416 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1417 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1418 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1419
1420 /*
1421 * If we receive a 4-addr nullfunc frame from a STA
1422 * that was not moved to a 4-addr STA vlan yet send
1423 * the event to userspace and for older hostapd drop
1424 * the frame to the monitor interface.
1425 */
1426 if (ieee80211_has_a4(hdr->frame_control) &&
1427 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1428 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1429 !rx->sdata->u.vlan.sta))) {
1430 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1431 cfg80211_rx_unexpected_4addr_frame(
1432 rx->sdata->dev, sta->sta.addr,
1433 GFP_ATOMIC);
1434 return RX_DROP_MONITOR;
1435 }
1436 /*
1437 * Update counter and free packet here to avoid
1438 * counting this as a dropped packed.
1439 */
1440 sta->rx_packets++;
1441 dev_kfree_skb(rx->skb);
1442 return RX_QUEUED;
1443 }
1444
1445 return RX_CONTINUE;
1446 } /* ieee80211_rx_h_sta_process */
1447
1448 static ieee80211_rx_result debug_noinline
1449 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1450 {
1451 struct sk_buff *skb = rx->skb;
1452 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1453 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1454 int keyidx;
1455 int hdrlen;
1456 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1457 struct ieee80211_key *sta_ptk = NULL;
1458 int mmie_keyidx = -1;
1459 __le16 fc;
1460 const struct ieee80211_cipher_scheme *cs = NULL;
1461
1462 /*
1463 * Key selection 101
1464 *
1465 * There are four types of keys:
1466 * - GTK (group keys)
1467 * - IGTK (group keys for management frames)
1468 * - PTK (pairwise keys)
1469 * - STK (station-to-station pairwise keys)
1470 *
1471 * When selecting a key, we have to distinguish between multicast
1472 * (including broadcast) and unicast frames, the latter can only
1473 * use PTKs and STKs while the former always use GTKs and IGTKs.
1474 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1475 * unicast frames can also use key indices like GTKs. Hence, if we
1476 * don't have a PTK/STK we check the key index for a WEP key.
1477 *
1478 * Note that in a regular BSS, multicast frames are sent by the
1479 * AP only, associated stations unicast the frame to the AP first
1480 * which then multicasts it on their behalf.
1481 *
1482 * There is also a slight problem in IBSS mode: GTKs are negotiated
1483 * with each station, that is something we don't currently handle.
1484 * The spec seems to expect that one negotiates the same key with
1485 * every station but there's no such requirement; VLANs could be
1486 * possible.
1487 */
1488
1489 /*
1490 * No point in finding a key and decrypting if the frame is neither
1491 * addressed to us nor a multicast frame.
1492 */
1493 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1494 return RX_CONTINUE;
1495
1496 /* start without a key */
1497 rx->key = NULL;
1498 fc = hdr->frame_control;
1499
1500 if (rx->sta) {
1501 int keyid = rx->sta->ptk_idx;
1502
1503 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1504 cs = rx->sta->cipher_scheme;
1505 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1506 if (unlikely(keyid < 0))
1507 return RX_DROP_UNUSABLE;
1508 }
1509 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1510 }
1511
1512 if (!ieee80211_has_protected(fc))
1513 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1514
1515 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1516 rx->key = sta_ptk;
1517 if ((status->flag & RX_FLAG_DECRYPTED) &&
1518 (status->flag & RX_FLAG_IV_STRIPPED))
1519 return RX_CONTINUE;
1520 /* Skip decryption if the frame is not protected. */
1521 if (!ieee80211_has_protected(fc))
1522 return RX_CONTINUE;
1523 } else if (mmie_keyidx >= 0) {
1524 /* Broadcast/multicast robust management frame / BIP */
1525 if ((status->flag & RX_FLAG_DECRYPTED) &&
1526 (status->flag & RX_FLAG_IV_STRIPPED))
1527 return RX_CONTINUE;
1528
1529 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1530 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1531 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1532 if (rx->sta)
1533 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1534 if (!rx->key)
1535 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1536 } else if (!ieee80211_has_protected(fc)) {
1537 /*
1538 * The frame was not protected, so skip decryption. However, we
1539 * need to set rx->key if there is a key that could have been
1540 * used so that the frame may be dropped if encryption would
1541 * have been expected.
1542 */
1543 struct ieee80211_key *key = NULL;
1544 struct ieee80211_sub_if_data *sdata = rx->sdata;
1545 int i;
1546
1547 if (ieee80211_is_mgmt(fc) &&
1548 is_multicast_ether_addr(hdr->addr1) &&
1549 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1550 rx->key = key;
1551 else {
1552 if (rx->sta) {
1553 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1554 key = rcu_dereference(rx->sta->gtk[i]);
1555 if (key)
1556 break;
1557 }
1558 }
1559 if (!key) {
1560 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1561 key = rcu_dereference(sdata->keys[i]);
1562 if (key)
1563 break;
1564 }
1565 }
1566 if (key)
1567 rx->key = key;
1568 }
1569 return RX_CONTINUE;
1570 } else {
1571 u8 keyid;
1572
1573 /*
1574 * The device doesn't give us the IV so we won't be
1575 * able to look up the key. That's ok though, we
1576 * don't need to decrypt the frame, we just won't
1577 * be able to keep statistics accurate.
1578 * Except for key threshold notifications, should
1579 * we somehow allow the driver to tell us which key
1580 * the hardware used if this flag is set?
1581 */
1582 if ((status->flag & RX_FLAG_DECRYPTED) &&
1583 (status->flag & RX_FLAG_IV_STRIPPED))
1584 return RX_CONTINUE;
1585
1586 hdrlen = ieee80211_hdrlen(fc);
1587
1588 if (cs) {
1589 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1590
1591 if (unlikely(keyidx < 0))
1592 return RX_DROP_UNUSABLE;
1593 } else {
1594 if (rx->skb->len < 8 + hdrlen)
1595 return RX_DROP_UNUSABLE; /* TODO: count this? */
1596 /*
1597 * no need to call ieee80211_wep_get_keyidx,
1598 * it verifies a bunch of things we've done already
1599 */
1600 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1601 keyidx = keyid >> 6;
1602 }
1603
1604 /* check per-station GTK first, if multicast packet */
1605 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1606 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1607
1608 /* if not found, try default key */
1609 if (!rx->key) {
1610 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1611
1612 /*
1613 * RSNA-protected unicast frames should always be
1614 * sent with pairwise or station-to-station keys,
1615 * but for WEP we allow using a key index as well.
1616 */
1617 if (rx->key &&
1618 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1619 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1620 !is_multicast_ether_addr(hdr->addr1))
1621 rx->key = NULL;
1622 }
1623 }
1624
1625 if (rx->key) {
1626 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1627 return RX_DROP_MONITOR;
1628
1629 rx->key->tx_rx_count++;
1630 /* TODO: add threshold stuff again */
1631 } else {
1632 return RX_DROP_MONITOR;
1633 }
1634
1635 switch (rx->key->conf.cipher) {
1636 case WLAN_CIPHER_SUITE_WEP40:
1637 case WLAN_CIPHER_SUITE_WEP104:
1638 result = ieee80211_crypto_wep_decrypt(rx);
1639 break;
1640 case WLAN_CIPHER_SUITE_TKIP:
1641 result = ieee80211_crypto_tkip_decrypt(rx);
1642 break;
1643 case WLAN_CIPHER_SUITE_CCMP:
1644 result = ieee80211_crypto_ccmp_decrypt(rx);
1645 break;
1646 case WLAN_CIPHER_SUITE_AES_CMAC:
1647 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1648 break;
1649 default:
1650 result = ieee80211_crypto_hw_decrypt(rx);
1651 }
1652
1653 /* the hdr variable is invalid after the decrypt handlers */
1654
1655 /* either the frame has been decrypted or will be dropped */
1656 status->flag |= RX_FLAG_DECRYPTED;
1657
1658 return result;
1659 }
1660
1661 static inline struct ieee80211_fragment_entry *
1662 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1663 unsigned int frag, unsigned int seq, int rx_queue,
1664 struct sk_buff **skb)
1665 {
1666 struct ieee80211_fragment_entry *entry;
1667
1668 entry = &sdata->fragments[sdata->fragment_next++];
1669 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1670 sdata->fragment_next = 0;
1671
1672 if (!skb_queue_empty(&entry->skb_list))
1673 __skb_queue_purge(&entry->skb_list);
1674
1675 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1676 *skb = NULL;
1677 entry->first_frag_time = jiffies;
1678 entry->seq = seq;
1679 entry->rx_queue = rx_queue;
1680 entry->last_frag = frag;
1681 entry->ccmp = 0;
1682 entry->extra_len = 0;
1683
1684 return entry;
1685 }
1686
1687 static inline struct ieee80211_fragment_entry *
1688 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1689 unsigned int frag, unsigned int seq,
1690 int rx_queue, struct ieee80211_hdr *hdr)
1691 {
1692 struct ieee80211_fragment_entry *entry;
1693 int i, idx;
1694
1695 idx = sdata->fragment_next;
1696 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1697 struct ieee80211_hdr *f_hdr;
1698
1699 idx--;
1700 if (idx < 0)
1701 idx = IEEE80211_FRAGMENT_MAX - 1;
1702
1703 entry = &sdata->fragments[idx];
1704 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1705 entry->rx_queue != rx_queue ||
1706 entry->last_frag + 1 != frag)
1707 continue;
1708
1709 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1710
1711 /*
1712 * Check ftype and addresses are equal, else check next fragment
1713 */
1714 if (((hdr->frame_control ^ f_hdr->frame_control) &
1715 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1716 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1717 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1718 continue;
1719
1720 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1721 __skb_queue_purge(&entry->skb_list);
1722 continue;
1723 }
1724 return entry;
1725 }
1726
1727 return NULL;
1728 }
1729
1730 static ieee80211_rx_result debug_noinline
1731 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1732 {
1733 struct ieee80211_hdr *hdr;
1734 u16 sc;
1735 __le16 fc;
1736 unsigned int frag, seq;
1737 struct ieee80211_fragment_entry *entry;
1738 struct sk_buff *skb;
1739 struct ieee80211_rx_status *status;
1740
1741 hdr = (struct ieee80211_hdr *)rx->skb->data;
1742 fc = hdr->frame_control;
1743
1744 if (ieee80211_is_ctl(fc))
1745 return RX_CONTINUE;
1746
1747 sc = le16_to_cpu(hdr->seq_ctrl);
1748 frag = sc & IEEE80211_SCTL_FRAG;
1749
1750 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1751 is_multicast_ether_addr(hdr->addr1))) {
1752 /* not fragmented */
1753 goto out;
1754 }
1755 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1756
1757 if (skb_linearize(rx->skb))
1758 return RX_DROP_UNUSABLE;
1759
1760 /*
1761 * skb_linearize() might change the skb->data and
1762 * previously cached variables (in this case, hdr) need to
1763 * be refreshed with the new data.
1764 */
1765 hdr = (struct ieee80211_hdr *)rx->skb->data;
1766 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1767
1768 if (frag == 0) {
1769 /* This is the first fragment of a new frame. */
1770 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1771 rx->seqno_idx, &(rx->skb));
1772 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1773 ieee80211_has_protected(fc)) {
1774 int queue = rx->security_idx;
1775 /* Store CCMP PN so that we can verify that the next
1776 * fragment has a sequential PN value. */
1777 entry->ccmp = 1;
1778 memcpy(entry->last_pn,
1779 rx->key->u.ccmp.rx_pn[queue],
1780 IEEE80211_CCMP_PN_LEN);
1781 }
1782 return RX_QUEUED;
1783 }
1784
1785 /* This is a fragment for a frame that should already be pending in
1786 * fragment cache. Add this fragment to the end of the pending entry.
1787 */
1788 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1789 rx->seqno_idx, hdr);
1790 if (!entry) {
1791 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1792 return RX_DROP_MONITOR;
1793 }
1794
1795 /* Verify that MPDUs within one MSDU have sequential PN values.
1796 * (IEEE 802.11i, 8.3.3.4.5) */
1797 if (entry->ccmp) {
1798 int i;
1799 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1800 int queue;
1801 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1802 return RX_DROP_UNUSABLE;
1803 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1804 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1805 pn[i]++;
1806 if (pn[i])
1807 break;
1808 }
1809 queue = rx->security_idx;
1810 rpn = rx->key->u.ccmp.rx_pn[queue];
1811 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1812 return RX_DROP_UNUSABLE;
1813 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1814 }
1815
1816 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1817 __skb_queue_tail(&entry->skb_list, rx->skb);
1818 entry->last_frag = frag;
1819 entry->extra_len += rx->skb->len;
1820 if (ieee80211_has_morefrags(fc)) {
1821 rx->skb = NULL;
1822 return RX_QUEUED;
1823 }
1824
1825 rx->skb = __skb_dequeue(&entry->skb_list);
1826 if (skb_tailroom(rx->skb) < entry->extra_len) {
1827 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1828 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1829 GFP_ATOMIC))) {
1830 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1831 __skb_queue_purge(&entry->skb_list);
1832 return RX_DROP_UNUSABLE;
1833 }
1834 }
1835 while ((skb = __skb_dequeue(&entry->skb_list))) {
1836 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1837 dev_kfree_skb(skb);
1838 }
1839
1840 /* Complete frame has been reassembled - process it now */
1841 status = IEEE80211_SKB_RXCB(rx->skb);
1842 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1843
1844 out:
1845 if (rx->sta)
1846 rx->sta->rx_packets++;
1847 if (is_multicast_ether_addr(hdr->addr1))
1848 rx->local->dot11MulticastReceivedFrameCount++;
1849 else
1850 ieee80211_led_rx(rx->local);
1851 return RX_CONTINUE;
1852 }
1853
1854 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1855 {
1856 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1857 return -EACCES;
1858
1859 return 0;
1860 }
1861
1862 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1863 {
1864 struct sk_buff *skb = rx->skb;
1865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1866
1867 /*
1868 * Pass through unencrypted frames if the hardware has
1869 * decrypted them already.
1870 */
1871 if (status->flag & RX_FLAG_DECRYPTED)
1872 return 0;
1873
1874 /* Drop unencrypted frames if key is set. */
1875 if (unlikely(!ieee80211_has_protected(fc) &&
1876 !ieee80211_is_nullfunc(fc) &&
1877 ieee80211_is_data(fc) &&
1878 (rx->key || rx->sdata->drop_unencrypted)))
1879 return -EACCES;
1880
1881 return 0;
1882 }
1883
1884 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1885 {
1886 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1887 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1888 __le16 fc = hdr->frame_control;
1889
1890 /*
1891 * Pass through unencrypted frames if the hardware has
1892 * decrypted them already.
1893 */
1894 if (status->flag & RX_FLAG_DECRYPTED)
1895 return 0;
1896
1897 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1898 if (unlikely(!ieee80211_has_protected(fc) &&
1899 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1900 rx->key)) {
1901 if (ieee80211_is_deauth(fc) ||
1902 ieee80211_is_disassoc(fc))
1903 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1904 rx->skb->data,
1905 rx->skb->len);
1906 return -EACCES;
1907 }
1908 /* BIP does not use Protected field, so need to check MMIE */
1909 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1910 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1911 if (ieee80211_is_deauth(fc) ||
1912 ieee80211_is_disassoc(fc))
1913 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1914 rx->skb->data,
1915 rx->skb->len);
1916 return -EACCES;
1917 }
1918 /*
1919 * When using MFP, Action frames are not allowed prior to
1920 * having configured keys.
1921 */
1922 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1923 ieee80211_is_robust_mgmt_frame(rx->skb)))
1924 return -EACCES;
1925 }
1926
1927 return 0;
1928 }
1929
1930 static int
1931 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1932 {
1933 struct ieee80211_sub_if_data *sdata = rx->sdata;
1934 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1935 bool check_port_control = false;
1936 struct ethhdr *ehdr;
1937 int ret;
1938
1939 *port_control = false;
1940 if (ieee80211_has_a4(hdr->frame_control) &&
1941 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1942 return -1;
1943
1944 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1945 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1946
1947 if (!sdata->u.mgd.use_4addr)
1948 return -1;
1949 else
1950 check_port_control = true;
1951 }
1952
1953 if (is_multicast_ether_addr(hdr->addr1) &&
1954 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1955 return -1;
1956
1957 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1958 if (ret < 0)
1959 return ret;
1960
1961 ehdr = (struct ethhdr *) rx->skb->data;
1962 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1963 *port_control = true;
1964 else if (check_port_control)
1965 return -1;
1966
1967 return 0;
1968 }
1969
1970 /*
1971 * requires that rx->skb is a frame with ethernet header
1972 */
1973 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1974 {
1975 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1976 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1977 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1978
1979 /*
1980 * Allow EAPOL frames to us/the PAE group address regardless
1981 * of whether the frame was encrypted or not.
1982 */
1983 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1984 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1985 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1986 return true;
1987
1988 if (ieee80211_802_1x_port_control(rx) ||
1989 ieee80211_drop_unencrypted(rx, fc))
1990 return false;
1991
1992 return true;
1993 }
1994
1995 /*
1996 * requires that rx->skb is a frame with ethernet header
1997 */
1998 static void
1999 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2000 {
2001 struct ieee80211_sub_if_data *sdata = rx->sdata;
2002 struct net_device *dev = sdata->dev;
2003 struct sk_buff *skb, *xmit_skb;
2004 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2005 struct sta_info *dsta;
2006 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2007
2008 skb = rx->skb;
2009 xmit_skb = NULL;
2010
2011 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2012 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2013 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2014 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2015 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2016 if (is_multicast_ether_addr(ehdr->h_dest)) {
2017 /*
2018 * send multicast frames both to higher layers in
2019 * local net stack and back to the wireless medium
2020 */
2021 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2022 if (!xmit_skb)
2023 net_info_ratelimited("%s: failed to clone multicast frame\n",
2024 dev->name);
2025 } else {
2026 dsta = sta_info_get(sdata, skb->data);
2027 if (dsta) {
2028 /*
2029 * The destination station is associated to
2030 * this AP (in this VLAN), so send the frame
2031 * directly to it and do not pass it to local
2032 * net stack.
2033 */
2034 xmit_skb = skb;
2035 skb = NULL;
2036 }
2037 }
2038 }
2039
2040 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2041 if (skb) {
2042 /* 'align' will only take the values 0 or 2 here since all
2043 * frames are required to be aligned to 2-byte boundaries
2044 * when being passed to mac80211; the code here works just
2045 * as well if that isn't true, but mac80211 assumes it can
2046 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2047 */
2048 int align;
2049
2050 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2051 if (align) {
2052 if (WARN_ON(skb_headroom(skb) < 3)) {
2053 dev_kfree_skb(skb);
2054 skb = NULL;
2055 } else {
2056 u8 *data = skb->data;
2057 size_t len = skb_headlen(skb);
2058 skb->data -= align;
2059 memmove(skb->data, data, len);
2060 skb_set_tail_pointer(skb, len);
2061 }
2062 }
2063 }
2064 #endif
2065
2066 if (skb) {
2067 /* deliver to local stack */
2068 skb->protocol = eth_type_trans(skb, dev);
2069 memset(skb->cb, 0, sizeof(skb->cb));
2070 if (rx->local->napi)
2071 napi_gro_receive(rx->local->napi, skb);
2072 else
2073 netif_receive_skb(skb);
2074 }
2075
2076 if (xmit_skb) {
2077 /*
2078 * Send to wireless media and increase priority by 256 to
2079 * keep the received priority instead of reclassifying
2080 * the frame (see cfg80211_classify8021d).
2081 */
2082 xmit_skb->priority += 256;
2083 xmit_skb->protocol = htons(ETH_P_802_3);
2084 skb_reset_network_header(xmit_skb);
2085 skb_reset_mac_header(xmit_skb);
2086 dev_queue_xmit(xmit_skb);
2087 }
2088 }
2089
2090 static ieee80211_rx_result debug_noinline
2091 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2092 {
2093 struct net_device *dev = rx->sdata->dev;
2094 struct sk_buff *skb = rx->skb;
2095 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2096 __le16 fc = hdr->frame_control;
2097 struct sk_buff_head frame_list;
2098 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2099
2100 if (unlikely(!ieee80211_is_data(fc)))
2101 return RX_CONTINUE;
2102
2103 if (unlikely(!ieee80211_is_data_present(fc)))
2104 return RX_DROP_MONITOR;
2105
2106 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2107 return RX_CONTINUE;
2108
2109 if (ieee80211_has_a4(hdr->frame_control) &&
2110 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2111 !rx->sdata->u.vlan.sta)
2112 return RX_DROP_UNUSABLE;
2113
2114 if (is_multicast_ether_addr(hdr->addr1) &&
2115 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2116 rx->sdata->u.vlan.sta) ||
2117 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2118 rx->sdata->u.mgd.use_4addr)))
2119 return RX_DROP_UNUSABLE;
2120
2121 skb->dev = dev;
2122 __skb_queue_head_init(&frame_list);
2123
2124 if (skb_linearize(skb))
2125 return RX_DROP_UNUSABLE;
2126
2127 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2128 rx->sdata->vif.type,
2129 rx->local->hw.extra_tx_headroom, true);
2130
2131 while (!skb_queue_empty(&frame_list)) {
2132 rx->skb = __skb_dequeue(&frame_list);
2133
2134 if (!ieee80211_frame_allowed(rx, fc)) {
2135 dev_kfree_skb(rx->skb);
2136 continue;
2137 }
2138 dev->stats.rx_packets++;
2139 dev->stats.rx_bytes += rx->skb->len;
2140
2141 ieee80211_deliver_skb(rx);
2142 }
2143
2144 return RX_QUEUED;
2145 }
2146
2147 #ifdef CONFIG_MAC80211_MESH
2148 static ieee80211_rx_result
2149 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2150 {
2151 struct ieee80211_hdr *fwd_hdr, *hdr;
2152 struct ieee80211_tx_info *info;
2153 struct ieee80211s_hdr *mesh_hdr;
2154 struct sk_buff *skb = rx->skb, *fwd_skb;
2155 struct ieee80211_local *local = rx->local;
2156 struct ieee80211_sub_if_data *sdata = rx->sdata;
2157 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2158 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2159 u16 q, hdrlen;
2160
2161 hdr = (struct ieee80211_hdr *) skb->data;
2162 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2163
2164 /* make sure fixed part of mesh header is there, also checks skb len */
2165 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2166 return RX_DROP_MONITOR;
2167
2168 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2169
2170 /* make sure full mesh header is there, also checks skb len */
2171 if (!pskb_may_pull(rx->skb,
2172 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2173 return RX_DROP_MONITOR;
2174
2175 /* reload pointers */
2176 hdr = (struct ieee80211_hdr *) skb->data;
2177 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2178
2179 /* frame is in RMC, don't forward */
2180 if (ieee80211_is_data(hdr->frame_control) &&
2181 is_multicast_ether_addr(hdr->addr1) &&
2182 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2183 return RX_DROP_MONITOR;
2184
2185 if (!ieee80211_is_data(hdr->frame_control) ||
2186 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2187 return RX_CONTINUE;
2188
2189 if (!mesh_hdr->ttl)
2190 return RX_DROP_MONITOR;
2191
2192 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2193 struct mesh_path *mppath;
2194 char *proxied_addr;
2195 char *mpp_addr;
2196
2197 if (is_multicast_ether_addr(hdr->addr1)) {
2198 mpp_addr = hdr->addr3;
2199 proxied_addr = mesh_hdr->eaddr1;
2200 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2201 /* has_a4 already checked in ieee80211_rx_mesh_check */
2202 mpp_addr = hdr->addr4;
2203 proxied_addr = mesh_hdr->eaddr2;
2204 } else {
2205 return RX_DROP_MONITOR;
2206 }
2207
2208 rcu_read_lock();
2209 mppath = mpp_path_lookup(sdata, proxied_addr);
2210 if (!mppath) {
2211 mpp_path_add(sdata, proxied_addr, mpp_addr);
2212 } else {
2213 spin_lock_bh(&mppath->state_lock);
2214 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2215 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2216 spin_unlock_bh(&mppath->state_lock);
2217 }
2218 rcu_read_unlock();
2219 }
2220
2221 /* Frame has reached destination. Don't forward */
2222 if (!is_multicast_ether_addr(hdr->addr1) &&
2223 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2224 return RX_CONTINUE;
2225
2226 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2227 if (ieee80211_queue_stopped(&local->hw, q)) {
2228 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2229 return RX_DROP_MONITOR;
2230 }
2231 skb_set_queue_mapping(skb, q);
2232
2233 if (!--mesh_hdr->ttl) {
2234 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2235 goto out;
2236 }
2237
2238 if (!ifmsh->mshcfg.dot11MeshForwarding)
2239 goto out;
2240
2241 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2242 if (!fwd_skb) {
2243 net_info_ratelimited("%s: failed to clone mesh frame\n",
2244 sdata->name);
2245 goto out;
2246 }
2247
2248 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2249 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2250 info = IEEE80211_SKB_CB(fwd_skb);
2251 memset(info, 0, sizeof(*info));
2252 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2253 info->control.vif = &rx->sdata->vif;
2254 info->control.jiffies = jiffies;
2255 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2256 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2257 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2258 /* update power mode indication when forwarding */
2259 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2260 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2261 /* mesh power mode flags updated in mesh_nexthop_lookup */
2262 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2263 } else {
2264 /* unable to resolve next hop */
2265 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2266 fwd_hdr->addr3, 0,
2267 WLAN_REASON_MESH_PATH_NOFORWARD,
2268 fwd_hdr->addr2);
2269 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2270 kfree_skb(fwd_skb);
2271 return RX_DROP_MONITOR;
2272 }
2273
2274 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2275 ieee80211_add_pending_skb(local, fwd_skb);
2276 out:
2277 if (is_multicast_ether_addr(hdr->addr1) ||
2278 sdata->dev->flags & IFF_PROMISC)
2279 return RX_CONTINUE;
2280 else
2281 return RX_DROP_MONITOR;
2282 }
2283 #endif
2284
2285 static ieee80211_rx_result debug_noinline
2286 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2287 {
2288 struct ieee80211_sub_if_data *sdata = rx->sdata;
2289 struct ieee80211_local *local = rx->local;
2290 struct net_device *dev = sdata->dev;
2291 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2292 __le16 fc = hdr->frame_control;
2293 bool port_control;
2294 int err;
2295
2296 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2297 return RX_CONTINUE;
2298
2299 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2300 return RX_DROP_MONITOR;
2301
2302 /*
2303 * Send unexpected-4addr-frame event to hostapd. For older versions,
2304 * also drop the frame to cooked monitor interfaces.
2305 */
2306 if (ieee80211_has_a4(hdr->frame_control) &&
2307 sdata->vif.type == NL80211_IFTYPE_AP) {
2308 if (rx->sta &&
2309 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2310 cfg80211_rx_unexpected_4addr_frame(
2311 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2312 return RX_DROP_MONITOR;
2313 }
2314
2315 err = __ieee80211_data_to_8023(rx, &port_control);
2316 if (unlikely(err))
2317 return RX_DROP_UNUSABLE;
2318
2319 if (!ieee80211_frame_allowed(rx, fc))
2320 return RX_DROP_MONITOR;
2321
2322 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2323 unlikely(port_control) && sdata->bss) {
2324 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2325 u.ap);
2326 dev = sdata->dev;
2327 rx->sdata = sdata;
2328 }
2329
2330 rx->skb->dev = dev;
2331
2332 dev->stats.rx_packets++;
2333 dev->stats.rx_bytes += rx->skb->len;
2334
2335 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2336 !is_multicast_ether_addr(
2337 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2338 (!local->scanning &&
2339 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2340 mod_timer(&local->dynamic_ps_timer, jiffies +
2341 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2342 }
2343
2344 ieee80211_deliver_skb(rx);
2345
2346 return RX_QUEUED;
2347 }
2348
2349 static ieee80211_rx_result debug_noinline
2350 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2351 {
2352 struct sk_buff *skb = rx->skb;
2353 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2354 struct tid_ampdu_rx *tid_agg_rx;
2355 u16 start_seq_num;
2356 u16 tid;
2357
2358 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2359 return RX_CONTINUE;
2360
2361 if (ieee80211_is_back_req(bar->frame_control)) {
2362 struct {
2363 __le16 control, start_seq_num;
2364 } __packed bar_data;
2365
2366 if (!rx->sta)
2367 return RX_DROP_MONITOR;
2368
2369 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2370 &bar_data, sizeof(bar_data)))
2371 return RX_DROP_MONITOR;
2372
2373 tid = le16_to_cpu(bar_data.control) >> 12;
2374
2375 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2376 if (!tid_agg_rx)
2377 return RX_DROP_MONITOR;
2378
2379 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2380
2381 /* reset session timer */
2382 if (tid_agg_rx->timeout)
2383 mod_timer(&tid_agg_rx->session_timer,
2384 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2385
2386 spin_lock(&tid_agg_rx->reorder_lock);
2387 /* release stored frames up to start of BAR */
2388 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2389 start_seq_num, frames);
2390 spin_unlock(&tid_agg_rx->reorder_lock);
2391
2392 kfree_skb(skb);
2393 return RX_QUEUED;
2394 }
2395
2396 /*
2397 * After this point, we only want management frames,
2398 * so we can drop all remaining control frames to
2399 * cooked monitor interfaces.
2400 */
2401 return RX_DROP_MONITOR;
2402 }
2403
2404 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2405 struct ieee80211_mgmt *mgmt,
2406 size_t len)
2407 {
2408 struct ieee80211_local *local = sdata->local;
2409 struct sk_buff *skb;
2410 struct ieee80211_mgmt *resp;
2411
2412 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2413 /* Not to own unicast address */
2414 return;
2415 }
2416
2417 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2418 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2419 /* Not from the current AP or not associated yet. */
2420 return;
2421 }
2422
2423 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2424 /* Too short SA Query request frame */
2425 return;
2426 }
2427
2428 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2429 if (skb == NULL)
2430 return;
2431
2432 skb_reserve(skb, local->hw.extra_tx_headroom);
2433 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2434 memset(resp, 0, 24);
2435 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2436 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2437 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2438 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2439 IEEE80211_STYPE_ACTION);
2440 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2441 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2442 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2443 memcpy(resp->u.action.u.sa_query.trans_id,
2444 mgmt->u.action.u.sa_query.trans_id,
2445 WLAN_SA_QUERY_TR_ID_LEN);
2446
2447 ieee80211_tx_skb(sdata, skb);
2448 }
2449
2450 static ieee80211_rx_result debug_noinline
2451 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2452 {
2453 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2454 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2455
2456 /*
2457 * From here on, look only at management frames.
2458 * Data and control frames are already handled,
2459 * and unknown (reserved) frames are useless.
2460 */
2461 if (rx->skb->len < 24)
2462 return RX_DROP_MONITOR;
2463
2464 if (!ieee80211_is_mgmt(mgmt->frame_control))
2465 return RX_DROP_MONITOR;
2466
2467 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2468 ieee80211_is_beacon(mgmt->frame_control) &&
2469 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2470 int sig = 0;
2471
2472 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2473 sig = status->signal;
2474
2475 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2476 rx->skb->data, rx->skb->len,
2477 status->freq, sig);
2478 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2479 }
2480
2481 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2482 return RX_DROP_MONITOR;
2483
2484 if (ieee80211_drop_unencrypted_mgmt(rx))
2485 return RX_DROP_UNUSABLE;
2486
2487 return RX_CONTINUE;
2488 }
2489
2490 static ieee80211_rx_result debug_noinline
2491 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2492 {
2493 struct ieee80211_local *local = rx->local;
2494 struct ieee80211_sub_if_data *sdata = rx->sdata;
2495 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2496 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2497 int len = rx->skb->len;
2498
2499 if (!ieee80211_is_action(mgmt->frame_control))
2500 return RX_CONTINUE;
2501
2502 /* drop too small frames */
2503 if (len < IEEE80211_MIN_ACTION_SIZE)
2504 return RX_DROP_UNUSABLE;
2505
2506 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2507 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2508 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2509 return RX_DROP_UNUSABLE;
2510
2511 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2512 return RX_DROP_UNUSABLE;
2513
2514 switch (mgmt->u.action.category) {
2515 case WLAN_CATEGORY_HT:
2516 /* reject HT action frames from stations not supporting HT */
2517 if (!rx->sta->sta.ht_cap.ht_supported)
2518 goto invalid;
2519
2520 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2521 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2522 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2523 sdata->vif.type != NL80211_IFTYPE_AP &&
2524 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2525 break;
2526
2527 /* verify action & smps_control/chanwidth are present */
2528 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2529 goto invalid;
2530
2531 switch (mgmt->u.action.u.ht_smps.action) {
2532 case WLAN_HT_ACTION_SMPS: {
2533 struct ieee80211_supported_band *sband;
2534 enum ieee80211_smps_mode smps_mode;
2535
2536 /* convert to HT capability */
2537 switch (mgmt->u.action.u.ht_smps.smps_control) {
2538 case WLAN_HT_SMPS_CONTROL_DISABLED:
2539 smps_mode = IEEE80211_SMPS_OFF;
2540 break;
2541 case WLAN_HT_SMPS_CONTROL_STATIC:
2542 smps_mode = IEEE80211_SMPS_STATIC;
2543 break;
2544 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2545 smps_mode = IEEE80211_SMPS_DYNAMIC;
2546 break;
2547 default:
2548 goto invalid;
2549 }
2550
2551 /* if no change do nothing */
2552 if (rx->sta->sta.smps_mode == smps_mode)
2553 goto handled;
2554 rx->sta->sta.smps_mode = smps_mode;
2555
2556 sband = rx->local->hw.wiphy->bands[status->band];
2557
2558 rate_control_rate_update(local, sband, rx->sta,
2559 IEEE80211_RC_SMPS_CHANGED);
2560 goto handled;
2561 }
2562 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2563 struct ieee80211_supported_band *sband;
2564 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2565 enum ieee80211_sta_rx_bandwidth new_bw;
2566
2567 /* If it doesn't support 40 MHz it can't change ... */
2568 if (!(rx->sta->sta.ht_cap.cap &
2569 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2570 goto handled;
2571
2572 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2573 new_bw = IEEE80211_STA_RX_BW_20;
2574 else
2575 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2576
2577 if (rx->sta->sta.bandwidth == new_bw)
2578 goto handled;
2579
2580 sband = rx->local->hw.wiphy->bands[status->band];
2581
2582 rate_control_rate_update(local, sband, rx->sta,
2583 IEEE80211_RC_BW_CHANGED);
2584 goto handled;
2585 }
2586 default:
2587 goto invalid;
2588 }
2589
2590 break;
2591 case WLAN_CATEGORY_PUBLIC:
2592 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2593 goto invalid;
2594 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2595 break;
2596 if (!rx->sta)
2597 break;
2598 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2599 break;
2600 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2601 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2602 break;
2603 if (len < offsetof(struct ieee80211_mgmt,
2604 u.action.u.ext_chan_switch.variable))
2605 goto invalid;
2606 goto queue;
2607 case WLAN_CATEGORY_VHT:
2608 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2609 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2610 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2611 sdata->vif.type != NL80211_IFTYPE_AP &&
2612 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2613 break;
2614
2615 /* verify action code is present */
2616 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2617 goto invalid;
2618
2619 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2620 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2621 u8 opmode;
2622
2623 /* verify opmode is present */
2624 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2625 goto invalid;
2626
2627 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2628
2629 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2630 opmode, status->band,
2631 false);
2632 goto handled;
2633 }
2634 default:
2635 break;
2636 }
2637 break;
2638 case WLAN_CATEGORY_BACK:
2639 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2640 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2641 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2642 sdata->vif.type != NL80211_IFTYPE_AP &&
2643 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2644 break;
2645
2646 /* verify action_code is present */
2647 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2648 break;
2649
2650 switch (mgmt->u.action.u.addba_req.action_code) {
2651 case WLAN_ACTION_ADDBA_REQ:
2652 if (len < (IEEE80211_MIN_ACTION_SIZE +
2653 sizeof(mgmt->u.action.u.addba_req)))
2654 goto invalid;
2655 break;
2656 case WLAN_ACTION_ADDBA_RESP:
2657 if (len < (IEEE80211_MIN_ACTION_SIZE +
2658 sizeof(mgmt->u.action.u.addba_resp)))
2659 goto invalid;
2660 break;
2661 case WLAN_ACTION_DELBA:
2662 if (len < (IEEE80211_MIN_ACTION_SIZE +
2663 sizeof(mgmt->u.action.u.delba)))
2664 goto invalid;
2665 break;
2666 default:
2667 goto invalid;
2668 }
2669
2670 goto queue;
2671 case WLAN_CATEGORY_SPECTRUM_MGMT:
2672 /* verify action_code is present */
2673 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2674 break;
2675
2676 switch (mgmt->u.action.u.measurement.action_code) {
2677 case WLAN_ACTION_SPCT_MSR_REQ:
2678 if (status->band != IEEE80211_BAND_5GHZ)
2679 break;
2680
2681 if (len < (IEEE80211_MIN_ACTION_SIZE +
2682 sizeof(mgmt->u.action.u.measurement)))
2683 break;
2684
2685 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2686 break;
2687
2688 ieee80211_process_measurement_req(sdata, mgmt, len);
2689 goto handled;
2690 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2691 u8 *bssid;
2692 if (len < (IEEE80211_MIN_ACTION_SIZE +
2693 sizeof(mgmt->u.action.u.chan_switch)))
2694 break;
2695
2696 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2697 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2698 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2699 break;
2700
2701 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2702 bssid = sdata->u.mgd.bssid;
2703 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2704 bssid = sdata->u.ibss.bssid;
2705 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2706 bssid = mgmt->sa;
2707 else
2708 break;
2709
2710 if (!ether_addr_equal(mgmt->bssid, bssid))
2711 break;
2712
2713 goto queue;
2714 }
2715 }
2716 break;
2717 case WLAN_CATEGORY_SA_QUERY:
2718 if (len < (IEEE80211_MIN_ACTION_SIZE +
2719 sizeof(mgmt->u.action.u.sa_query)))
2720 break;
2721
2722 switch (mgmt->u.action.u.sa_query.action) {
2723 case WLAN_ACTION_SA_QUERY_REQUEST:
2724 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2725 break;
2726 ieee80211_process_sa_query_req(sdata, mgmt, len);
2727 goto handled;
2728 }
2729 break;
2730 case WLAN_CATEGORY_SELF_PROTECTED:
2731 if (len < (IEEE80211_MIN_ACTION_SIZE +
2732 sizeof(mgmt->u.action.u.self_prot.action_code)))
2733 break;
2734
2735 switch (mgmt->u.action.u.self_prot.action_code) {
2736 case WLAN_SP_MESH_PEERING_OPEN:
2737 case WLAN_SP_MESH_PEERING_CLOSE:
2738 case WLAN_SP_MESH_PEERING_CONFIRM:
2739 if (!ieee80211_vif_is_mesh(&sdata->vif))
2740 goto invalid;
2741 if (sdata->u.mesh.user_mpm)
2742 /* userspace handles this frame */
2743 break;
2744 goto queue;
2745 case WLAN_SP_MGK_INFORM:
2746 case WLAN_SP_MGK_ACK:
2747 if (!ieee80211_vif_is_mesh(&sdata->vif))
2748 goto invalid;
2749 break;
2750 }
2751 break;
2752 case WLAN_CATEGORY_MESH_ACTION:
2753 if (len < (IEEE80211_MIN_ACTION_SIZE +
2754 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2755 break;
2756
2757 if (!ieee80211_vif_is_mesh(&sdata->vif))
2758 break;
2759 if (mesh_action_is_path_sel(mgmt) &&
2760 !mesh_path_sel_is_hwmp(sdata))
2761 break;
2762 goto queue;
2763 }
2764
2765 return RX_CONTINUE;
2766
2767 invalid:
2768 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2769 /* will return in the next handlers */
2770 return RX_CONTINUE;
2771
2772 handled:
2773 if (rx->sta)
2774 rx->sta->rx_packets++;
2775 dev_kfree_skb(rx->skb);
2776 return RX_QUEUED;
2777
2778 queue:
2779 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2780 skb_queue_tail(&sdata->skb_queue, rx->skb);
2781 ieee80211_queue_work(&local->hw, &sdata->work);
2782 if (rx->sta)
2783 rx->sta->rx_packets++;
2784 return RX_QUEUED;
2785 }
2786
2787 static ieee80211_rx_result debug_noinline
2788 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2789 {
2790 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2791 int sig = 0;
2792
2793 /* skip known-bad action frames and return them in the next handler */
2794 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2795 return RX_CONTINUE;
2796
2797 /*
2798 * Getting here means the kernel doesn't know how to handle
2799 * it, but maybe userspace does ... include returned frames
2800 * so userspace can register for those to know whether ones
2801 * it transmitted were processed or returned.
2802 */
2803
2804 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2805 sig = status->signal;
2806
2807 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2808 rx->skb->data, rx->skb->len, 0)) {
2809 if (rx->sta)
2810 rx->sta->rx_packets++;
2811 dev_kfree_skb(rx->skb);
2812 return RX_QUEUED;
2813 }
2814
2815 return RX_CONTINUE;
2816 }
2817
2818 static ieee80211_rx_result debug_noinline
2819 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2820 {
2821 struct ieee80211_local *local = rx->local;
2822 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2823 struct sk_buff *nskb;
2824 struct ieee80211_sub_if_data *sdata = rx->sdata;
2825 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2826
2827 if (!ieee80211_is_action(mgmt->frame_control))
2828 return RX_CONTINUE;
2829
2830 /*
2831 * For AP mode, hostapd is responsible for handling any action
2832 * frames that we didn't handle, including returning unknown
2833 * ones. For all other modes we will return them to the sender,
2834 * setting the 0x80 bit in the action category, as required by
2835 * 802.11-2012 9.24.4.
2836 * Newer versions of hostapd shall also use the management frame
2837 * registration mechanisms, but older ones still use cooked
2838 * monitor interfaces so push all frames there.
2839 */
2840 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2841 (sdata->vif.type == NL80211_IFTYPE_AP ||
2842 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2843 return RX_DROP_MONITOR;
2844
2845 if (is_multicast_ether_addr(mgmt->da))
2846 return RX_DROP_MONITOR;
2847
2848 /* do not return rejected action frames */
2849 if (mgmt->u.action.category & 0x80)
2850 return RX_DROP_UNUSABLE;
2851
2852 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2853 GFP_ATOMIC);
2854 if (nskb) {
2855 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2856
2857 nmgmt->u.action.category |= 0x80;
2858 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2859 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2860
2861 memset(nskb->cb, 0, sizeof(nskb->cb));
2862
2863 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2864 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2865
2866 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2867 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2868 IEEE80211_TX_CTL_NO_CCK_RATE;
2869 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2870 info->hw_queue =
2871 local->hw.offchannel_tx_hw_queue;
2872 }
2873
2874 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2875 status->band);
2876 }
2877 dev_kfree_skb(rx->skb);
2878 return RX_QUEUED;
2879 }
2880
2881 static ieee80211_rx_result debug_noinline
2882 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2883 {
2884 struct ieee80211_sub_if_data *sdata = rx->sdata;
2885 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2886 __le16 stype;
2887
2888 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2889
2890 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2891 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2892 sdata->vif.type != NL80211_IFTYPE_OCB &&
2893 sdata->vif.type != NL80211_IFTYPE_STATION)
2894 return RX_DROP_MONITOR;
2895
2896 switch (stype) {
2897 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2898 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2899 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2900 /* process for all: mesh, mlme, ibss */
2901 break;
2902 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2903 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2904 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2905 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2906 if (is_multicast_ether_addr(mgmt->da) &&
2907 !is_broadcast_ether_addr(mgmt->da))
2908 return RX_DROP_MONITOR;
2909
2910 /* process only for station */
2911 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2912 return RX_DROP_MONITOR;
2913 break;
2914 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2915 /* process only for ibss and mesh */
2916 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2917 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2918 return RX_DROP_MONITOR;
2919 break;
2920 default:
2921 return RX_DROP_MONITOR;
2922 }
2923
2924 /* queue up frame and kick off work to process it */
2925 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2926 skb_queue_tail(&sdata->skb_queue, rx->skb);
2927 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2928 if (rx->sta)
2929 rx->sta->rx_packets++;
2930
2931 return RX_QUEUED;
2932 }
2933
2934 /* TODO: use IEEE80211_RX_FRAGMENTED */
2935 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2936 struct ieee80211_rate *rate)
2937 {
2938 struct ieee80211_sub_if_data *sdata;
2939 struct ieee80211_local *local = rx->local;
2940 struct sk_buff *skb = rx->skb, *skb2;
2941 struct net_device *prev_dev = NULL;
2942 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2943 int needed_headroom;
2944
2945 /*
2946 * If cooked monitor has been processed already, then
2947 * don't do it again. If not, set the flag.
2948 */
2949 if (rx->flags & IEEE80211_RX_CMNTR)
2950 goto out_free_skb;
2951 rx->flags |= IEEE80211_RX_CMNTR;
2952
2953 /* If there are no cooked monitor interfaces, just free the SKB */
2954 if (!local->cooked_mntrs)
2955 goto out_free_skb;
2956
2957 /* vendor data is long removed here */
2958 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
2959 /* room for the radiotap header based on driver features */
2960 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
2961
2962 if (skb_headroom(skb) < needed_headroom &&
2963 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2964 goto out_free_skb;
2965
2966 /* prepend radiotap information */
2967 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2968 false);
2969
2970 skb_set_mac_header(skb, 0);
2971 skb->ip_summed = CHECKSUM_UNNECESSARY;
2972 skb->pkt_type = PACKET_OTHERHOST;
2973 skb->protocol = htons(ETH_P_802_2);
2974
2975 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2976 if (!ieee80211_sdata_running(sdata))
2977 continue;
2978
2979 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2980 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2981 continue;
2982
2983 if (prev_dev) {
2984 skb2 = skb_clone(skb, GFP_ATOMIC);
2985 if (skb2) {
2986 skb2->dev = prev_dev;
2987 netif_receive_skb(skb2);
2988 }
2989 }
2990
2991 prev_dev = sdata->dev;
2992 sdata->dev->stats.rx_packets++;
2993 sdata->dev->stats.rx_bytes += skb->len;
2994 }
2995
2996 if (prev_dev) {
2997 skb->dev = prev_dev;
2998 netif_receive_skb(skb);
2999 return;
3000 }
3001
3002 out_free_skb:
3003 dev_kfree_skb(skb);
3004 }
3005
3006 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3007 ieee80211_rx_result res)
3008 {
3009 switch (res) {
3010 case RX_DROP_MONITOR:
3011 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3012 if (rx->sta)
3013 rx->sta->rx_dropped++;
3014 /* fall through */
3015 case RX_CONTINUE: {
3016 struct ieee80211_rate *rate = NULL;
3017 struct ieee80211_supported_band *sband;
3018 struct ieee80211_rx_status *status;
3019
3020 status = IEEE80211_SKB_RXCB((rx->skb));
3021
3022 sband = rx->local->hw.wiphy->bands[status->band];
3023 if (!(status->flag & RX_FLAG_HT) &&
3024 !(status->flag & RX_FLAG_VHT))
3025 rate = &sband->bitrates[status->rate_idx];
3026
3027 ieee80211_rx_cooked_monitor(rx, rate);
3028 break;
3029 }
3030 case RX_DROP_UNUSABLE:
3031 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3032 if (rx->sta)
3033 rx->sta->rx_dropped++;
3034 dev_kfree_skb(rx->skb);
3035 break;
3036 case RX_QUEUED:
3037 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3038 break;
3039 }
3040 }
3041
3042 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3043 struct sk_buff_head *frames)
3044 {
3045 ieee80211_rx_result res = RX_DROP_MONITOR;
3046 struct sk_buff *skb;
3047
3048 #define CALL_RXH(rxh) \
3049 do { \
3050 res = rxh(rx); \
3051 if (res != RX_CONTINUE) \
3052 goto rxh_next; \
3053 } while (0);
3054
3055 spin_lock_bh(&rx->local->rx_path_lock);
3056
3057 while ((skb = __skb_dequeue(frames))) {
3058 /*
3059 * all the other fields are valid across frames
3060 * that belong to an aMPDU since they are on the
3061 * same TID from the same station
3062 */
3063 rx->skb = skb;
3064
3065 CALL_RXH(ieee80211_rx_h_check_more_data)
3066 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3067 CALL_RXH(ieee80211_rx_h_sta_process)
3068 CALL_RXH(ieee80211_rx_h_decrypt)
3069 CALL_RXH(ieee80211_rx_h_defragment)
3070 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3071 /* must be after MMIC verify so header is counted in MPDU mic */
3072 #ifdef CONFIG_MAC80211_MESH
3073 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3074 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3075 #endif
3076 CALL_RXH(ieee80211_rx_h_amsdu)
3077 CALL_RXH(ieee80211_rx_h_data)
3078
3079 /* special treatment -- needs the queue */
3080 res = ieee80211_rx_h_ctrl(rx, frames);
3081 if (res != RX_CONTINUE)
3082 goto rxh_next;
3083
3084 CALL_RXH(ieee80211_rx_h_mgmt_check)
3085 CALL_RXH(ieee80211_rx_h_action)
3086 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3087 CALL_RXH(ieee80211_rx_h_action_return)
3088 CALL_RXH(ieee80211_rx_h_mgmt)
3089
3090 rxh_next:
3091 ieee80211_rx_handlers_result(rx, res);
3092
3093 #undef CALL_RXH
3094 }
3095
3096 spin_unlock_bh(&rx->local->rx_path_lock);
3097 }
3098
3099 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3100 {
3101 struct sk_buff_head reorder_release;
3102 ieee80211_rx_result res = RX_DROP_MONITOR;
3103
3104 __skb_queue_head_init(&reorder_release);
3105
3106 #define CALL_RXH(rxh) \
3107 do { \
3108 res = rxh(rx); \
3109 if (res != RX_CONTINUE) \
3110 goto rxh_next; \
3111 } while (0);
3112
3113 CALL_RXH(ieee80211_rx_h_check)
3114
3115 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3116
3117 ieee80211_rx_handlers(rx, &reorder_release);
3118 return;
3119
3120 rxh_next:
3121 ieee80211_rx_handlers_result(rx, res);
3122
3123 #undef CALL_RXH
3124 }
3125
3126 /*
3127 * This function makes calls into the RX path, therefore
3128 * it has to be invoked under RCU read lock.
3129 */
3130 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3131 {
3132 struct sk_buff_head frames;
3133 struct ieee80211_rx_data rx = {
3134 .sta = sta,
3135 .sdata = sta->sdata,
3136 .local = sta->local,
3137 /* This is OK -- must be QoS data frame */
3138 .security_idx = tid,
3139 .seqno_idx = tid,
3140 .flags = 0,
3141 };
3142 struct tid_ampdu_rx *tid_agg_rx;
3143
3144 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3145 if (!tid_agg_rx)
3146 return;
3147
3148 __skb_queue_head_init(&frames);
3149
3150 spin_lock(&tid_agg_rx->reorder_lock);
3151 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3152 spin_unlock(&tid_agg_rx->reorder_lock);
3153
3154 ieee80211_rx_handlers(&rx, &frames);
3155 }
3156
3157 /* main receive path */
3158
3159 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3160 struct ieee80211_hdr *hdr)
3161 {
3162 struct ieee80211_sub_if_data *sdata = rx->sdata;
3163 struct sk_buff *skb = rx->skb;
3164 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3165 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3166 int multicast = is_multicast_ether_addr(hdr->addr1);
3167
3168 switch (sdata->vif.type) {
3169 case NL80211_IFTYPE_STATION:
3170 if (!bssid && !sdata->u.mgd.use_4addr)
3171 return false;
3172 if (!multicast &&
3173 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3174 if (!(sdata->dev->flags & IFF_PROMISC) ||
3175 sdata->u.mgd.use_4addr)
3176 return false;
3177 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3178 }
3179 break;
3180 case NL80211_IFTYPE_ADHOC:
3181 if (!bssid)
3182 return false;
3183 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3184 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3185 return false;
3186 if (ieee80211_is_beacon(hdr->frame_control)) {
3187 return true;
3188 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3189 return false;
3190 } else if (!multicast &&
3191 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3192 if (!(sdata->dev->flags & IFF_PROMISC))
3193 return false;
3194 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3195 } else if (!rx->sta) {
3196 int rate_idx;
3197 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3198 rate_idx = 0; /* TODO: HT/VHT rates */
3199 else
3200 rate_idx = status->rate_idx;
3201 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3202 BIT(rate_idx));
3203 }
3204 break;
3205 case NL80211_IFTYPE_OCB:
3206 if (!bssid)
3207 return false;
3208 if (ieee80211_is_beacon(hdr->frame_control)) {
3209 return false;
3210 } else if (!is_broadcast_ether_addr(bssid)) {
3211 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3212 return false;
3213 } else if (!multicast &&
3214 !ether_addr_equal(sdata->dev->dev_addr,
3215 hdr->addr1)) {
3216 /* if we are in promisc mode we also accept
3217 * packets not destined for us
3218 */
3219 if (!(sdata->dev->flags & IFF_PROMISC))
3220 return false;
3221 rx->flags &= ~IEEE80211_RX_RA_MATCH;
3222 } else if (!rx->sta) {
3223 int rate_idx;
3224 if (status->flag & RX_FLAG_HT)
3225 rate_idx = 0; /* TODO: HT rates */
3226 else
3227 rate_idx = status->rate_idx;
3228 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3229 BIT(rate_idx));
3230 }
3231 break;
3232 case NL80211_IFTYPE_MESH_POINT:
3233 if (!multicast &&
3234 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3235 if (!(sdata->dev->flags & IFF_PROMISC))
3236 return false;
3237
3238 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3239 }
3240 break;
3241 case NL80211_IFTYPE_AP_VLAN:
3242 case NL80211_IFTYPE_AP:
3243 if (!bssid) {
3244 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3245 return false;
3246 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3247 /*
3248 * Accept public action frames even when the
3249 * BSSID doesn't match, this is used for P2P
3250 * and location updates. Note that mac80211
3251 * itself never looks at these frames.
3252 */
3253 if (!multicast &&
3254 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3255 return false;
3256 if (ieee80211_is_public_action(hdr, skb->len))
3257 return true;
3258 if (!ieee80211_is_beacon(hdr->frame_control))
3259 return false;
3260 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3261 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3262 /* ignore data frames to TDLS-peers */
3263 if (ieee80211_is_data(hdr->frame_control))
3264 return false;
3265 /* ignore action frames to TDLS-peers */
3266 if (ieee80211_is_action(hdr->frame_control) &&
3267 !ether_addr_equal(bssid, hdr->addr1))
3268 return false;
3269 }
3270 break;
3271 case NL80211_IFTYPE_WDS:
3272 if (bssid || !ieee80211_is_data(hdr->frame_control))
3273 return false;
3274 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3275 return false;
3276 break;
3277 case NL80211_IFTYPE_P2P_DEVICE:
3278 if (!ieee80211_is_public_action(hdr, skb->len) &&
3279 !ieee80211_is_probe_req(hdr->frame_control) &&
3280 !ieee80211_is_probe_resp(hdr->frame_control) &&
3281 !ieee80211_is_beacon(hdr->frame_control))
3282 return false;
3283 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3284 !multicast)
3285 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3286 break;
3287 default:
3288 /* should never get here */
3289 WARN_ON_ONCE(1);
3290 break;
3291 }
3292
3293 return true;
3294 }
3295
3296 /*
3297 * This function returns whether or not the SKB
3298 * was destined for RX processing or not, which,
3299 * if consume is true, is equivalent to whether
3300 * or not the skb was consumed.
3301 */
3302 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3303 struct sk_buff *skb, bool consume)
3304 {
3305 struct ieee80211_local *local = rx->local;
3306 struct ieee80211_sub_if_data *sdata = rx->sdata;
3307 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3308 struct ieee80211_hdr *hdr = (void *)skb->data;
3309
3310 rx->skb = skb;
3311 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3312
3313 if (!prepare_for_handlers(rx, hdr))
3314 return false;
3315
3316 if (!consume) {
3317 skb = skb_copy(skb, GFP_ATOMIC);
3318 if (!skb) {
3319 if (net_ratelimit())
3320 wiphy_debug(local->hw.wiphy,
3321 "failed to copy skb for %s\n",
3322 sdata->name);
3323 return true;
3324 }
3325
3326 rx->skb = skb;
3327 }
3328
3329 ieee80211_invoke_rx_handlers(rx);
3330 return true;
3331 }
3332
3333 /*
3334 * This is the actual Rx frames handler. as it belongs to Rx path it must
3335 * be called with rcu_read_lock protection.
3336 */
3337 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3338 struct sk_buff *skb)
3339 {
3340 struct ieee80211_local *local = hw_to_local(hw);
3341 struct ieee80211_sub_if_data *sdata;
3342 struct ieee80211_hdr *hdr;
3343 __le16 fc;
3344 struct ieee80211_rx_data rx;
3345 struct ieee80211_sub_if_data *prev;
3346 struct sta_info *sta, *tmp, *prev_sta;
3347 int err = 0;
3348
3349 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3350 memset(&rx, 0, sizeof(rx));
3351 rx.skb = skb;
3352 rx.local = local;
3353
3354 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3355 local->dot11ReceivedFragmentCount++;
3356
3357 if (ieee80211_is_mgmt(fc)) {
3358 /* drop frame if too short for header */
3359 if (skb->len < ieee80211_hdrlen(fc))
3360 err = -ENOBUFS;
3361 else
3362 err = skb_linearize(skb);
3363 } else {
3364 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3365 }
3366
3367 if (err) {
3368 dev_kfree_skb(skb);
3369 return;
3370 }
3371
3372 hdr = (struct ieee80211_hdr *)skb->data;
3373 ieee80211_parse_qos(&rx);
3374 ieee80211_verify_alignment(&rx);
3375
3376 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3377 ieee80211_is_beacon(hdr->frame_control)))
3378 ieee80211_scan_rx(local, skb);
3379
3380 if (ieee80211_is_data(fc)) {
3381 prev_sta = NULL;
3382
3383 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3384 if (!prev_sta) {
3385 prev_sta = sta;
3386 continue;
3387 }
3388
3389 rx.sta = prev_sta;
3390 rx.sdata = prev_sta->sdata;
3391 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3392
3393 prev_sta = sta;
3394 }
3395
3396 if (prev_sta) {
3397 rx.sta = prev_sta;
3398 rx.sdata = prev_sta->sdata;
3399
3400 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3401 return;
3402 goto out;
3403 }
3404 }
3405
3406 prev = NULL;
3407
3408 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3409 if (!ieee80211_sdata_running(sdata))
3410 continue;
3411
3412 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3413 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3414 continue;
3415
3416 /*
3417 * frame is destined for this interface, but if it's
3418 * not also for the previous one we handle that after
3419 * the loop to avoid copying the SKB once too much
3420 */
3421
3422 if (!prev) {
3423 prev = sdata;
3424 continue;
3425 }
3426
3427 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3428 rx.sdata = prev;
3429 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3430
3431 prev = sdata;
3432 }
3433
3434 if (prev) {
3435 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3436 rx.sdata = prev;
3437
3438 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3439 return;
3440 }
3441
3442 out:
3443 dev_kfree_skb(skb);
3444 }
3445
3446 /*
3447 * This is the receive path handler. It is called by a low level driver when an
3448 * 802.11 MPDU is received from the hardware.
3449 */
3450 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3451 {
3452 struct ieee80211_local *local = hw_to_local(hw);
3453 struct ieee80211_rate *rate = NULL;
3454 struct ieee80211_supported_band *sband;
3455 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3456
3457 WARN_ON_ONCE(softirq_count() == 0);
3458
3459 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3460 goto drop;
3461
3462 sband = local->hw.wiphy->bands[status->band];
3463 if (WARN_ON(!sband))
3464 goto drop;
3465
3466 /*
3467 * If we're suspending, it is possible although not too likely
3468 * that we'd be receiving frames after having already partially
3469 * quiesced the stack. We can't process such frames then since
3470 * that might, for example, cause stations to be added or other
3471 * driver callbacks be invoked.
3472 */
3473 if (unlikely(local->quiescing || local->suspended))
3474 goto drop;
3475
3476 /* We might be during a HW reconfig, prevent Rx for the same reason */
3477 if (unlikely(local->in_reconfig))
3478 goto drop;
3479
3480 /*
3481 * The same happens when we're not even started,
3482 * but that's worth a warning.
3483 */
3484 if (WARN_ON(!local->started))
3485 goto drop;
3486
3487 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3488 /*
3489 * Validate the rate, unless a PLCP error means that
3490 * we probably can't have a valid rate here anyway.
3491 */
3492
3493 if (status->flag & RX_FLAG_HT) {
3494 /*
3495 * rate_idx is MCS index, which can be [0-76]
3496 * as documented on:
3497 *
3498 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3499 *
3500 * Anything else would be some sort of driver or
3501 * hardware error. The driver should catch hardware
3502 * errors.
3503 */
3504 if (WARN(status->rate_idx > 76,
3505 "Rate marked as an HT rate but passed "
3506 "status->rate_idx is not "
3507 "an MCS index [0-76]: %d (0x%02x)\n",
3508 status->rate_idx,
3509 status->rate_idx))
3510 goto drop;
3511 } else if (status->flag & RX_FLAG_VHT) {
3512 if (WARN_ONCE(status->rate_idx > 9 ||
3513 !status->vht_nss ||
3514 status->vht_nss > 8,
3515 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3516 status->rate_idx, status->vht_nss))
3517 goto drop;
3518 } else {
3519 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3520 goto drop;
3521 rate = &sband->bitrates[status->rate_idx];
3522 }
3523 }
3524
3525 status->rx_flags = 0;
3526
3527 /*
3528 * key references and virtual interfaces are protected using RCU
3529 * and this requires that we are in a read-side RCU section during
3530 * receive processing
3531 */
3532 rcu_read_lock();
3533
3534 /*
3535 * Frames with failed FCS/PLCP checksum are not returned,
3536 * all other frames are returned without radiotap header
3537 * if it was previously present.
3538 * Also, frames with less than 16 bytes are dropped.
3539 */
3540 skb = ieee80211_rx_monitor(local, skb, rate);
3541 if (!skb) {
3542 rcu_read_unlock();
3543 return;
3544 }
3545
3546 ieee80211_tpt_led_trig_rx(local,
3547 ((struct ieee80211_hdr *)skb->data)->frame_control,
3548 skb->len);
3549 __ieee80211_rx_handle_packet(hw, skb);
3550
3551 rcu_read_unlock();
3552
3553 return;
3554 drop:
3555 kfree_skb(skb);
3556 }
3557 EXPORT_SYMBOL(ieee80211_rx);
3558
3559 /* This is a version of the rx handler that can be called from hard irq
3560 * context. Post the skb on the queue and schedule the tasklet */
3561 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3562 {
3563 struct ieee80211_local *local = hw_to_local(hw);
3564
3565 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3566
3567 skb->pkt_type = IEEE80211_RX_MSG;
3568 skb_queue_tail(&local->skb_queue, skb);
3569 tasklet_schedule(&local->tasklet);
3570 }
3571 EXPORT_SYMBOL(ieee80211_rx_irqsafe);