]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/rx.c
Merge tag 'h8300-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
58
59 return skb;
60 }
61
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
81 }
82
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
86 {
87 int len;
88
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 8;
91
92 /* allocate extra bitmaps */
93 if (status->vendor_radiotap_len)
94 len += 4;
95 if (status->chains)
96 len += 4 * hweight8(status->chains);
97
98 if (ieee80211_have_rx_timestamp(status)) {
99 len = ALIGN(len, 8);
100 len += 8;
101 }
102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 len += 1;
104
105 /* antenna field, if we don't have per-chain info */
106 if (!status->chains)
107 len += 1;
108
109 /* padding for RX_FLAGS if necessary */
110 len = ALIGN(len, 2);
111
112 if (status->flag & RX_FLAG_HT) /* HT info */
113 len += 3;
114
115 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 len = ALIGN(len, 4);
117 len += 8;
118 }
119
120 if (status->flag & RX_FLAG_VHT) {
121 len = ALIGN(len, 2);
122 len += 12;
123 }
124
125 if (status->chains) {
126 /* antenna and antenna signal fields */
127 len += 2 * hweight8(status->chains);
128 }
129
130 if (status->vendor_radiotap_len) {
131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 status->vendor_radiotap_align = 1;
133 /* align standard part of vendor namespace */
134 len = ALIGN(len, 2);
135 /* allocate standard part of vendor namespace */
136 len += 6;
137 /* align vendor-defined part */
138 len = ALIGN(len, status->vendor_radiotap_align);
139 /* vendor-defined part is already in skb */
140 }
141
142 return len;
143 }
144
145 /*
146 * ieee80211_add_rx_radiotap_header - add radiotap header
147 *
148 * add a radiotap header containing all the fields which the hardware provided.
149 */
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 struct sk_buff *skb,
153 struct ieee80211_rate *rate,
154 int rtap_len, bool has_fcs)
155 {
156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 struct ieee80211_radiotap_header *rthdr;
158 unsigned char *pos;
159 __le32 *it_present;
160 u32 it_present_val;
161 u16 rx_flags = 0;
162 u16 channel_flags = 0;
163 int mpdulen, chain;
164 unsigned long chains = status->chains;
165
166 mpdulen = skb->len;
167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 mpdulen += FCS_LEN;
169
170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 memset(rthdr, 0, rtap_len);
172 it_present = &rthdr->it_present;
173
174 /* radiotap header, set always present flags */
175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
179
180 if (!status->chains)
181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
182
183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 it_present_val |=
185 BIT(IEEE80211_RADIOTAP_EXT) |
186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 put_unaligned_le32(it_present_val, it_present);
188 it_present++;
189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
191 }
192
193 if (status->vendor_radiotap_len) {
194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 BIT(IEEE80211_RADIOTAP_EXT);
196 put_unaligned_le32(it_present_val, it_present);
197 it_present++;
198 it_present_val = status->vendor_radiotap_bitmap;
199 }
200
201 put_unaligned_le32(it_present_val, it_present);
202
203 pos = (void *)(it_present + 1);
204
205 /* the order of the following fields is important */
206
207 /* IEEE80211_RADIOTAP_TSFT */
208 if (ieee80211_have_rx_timestamp(status)) {
209 /* padding */
210 while ((pos - (u8 *)rthdr) & 7)
211 *pos++ = 0;
212 put_unaligned_le64(
213 ieee80211_calculate_rx_timestamp(local, status,
214 mpdulen, 0),
215 pos);
216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 pos += 8;
218 }
219
220 /* IEEE80211_RADIOTAP_FLAGS */
221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 *pos |= IEEE80211_RADIOTAP_F_FCS;
223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 if (status->flag & RX_FLAG_SHORTPRE)
226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 pos++;
228
229 /* IEEE80211_RADIOTAP_RATE */
230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
231 /*
232 * Without rate information don't add it. If we have,
233 * MCS information is a separate field in radiotap,
234 * added below. The byte here is needed as padding
235 * for the channel though, so initialise it to 0.
236 */
237 *pos = 0;
238 } else {
239 int shift = 0;
240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 if (status->flag & RX_FLAG_10MHZ)
242 shift = 1;
243 else if (status->flag & RX_FLAG_5MHZ)
244 shift = 2;
245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
246 }
247 pos++;
248
249 /* IEEE80211_RADIOTAP_CHANNEL */
250 put_unaligned_le16(status->freq, pos);
251 pos += 2;
252 if (status->flag & RX_FLAG_10MHZ)
253 channel_flags |= IEEE80211_CHAN_HALF;
254 else if (status->flag & RX_FLAG_5MHZ)
255 channel_flags |= IEEE80211_CHAN_QUARTER;
256
257 if (status->band == IEEE80211_BAND_5GHZ)
258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 else if (rate)
264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 else
266 channel_flags |= IEEE80211_CHAN_2GHZ;
267 put_unaligned_le16(channel_flags, pos);
268 pos += 2;
269
270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 *pos = status->signal;
274 rthdr->it_present |=
275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 pos++;
277 }
278
279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
280
281 if (!status->chains) {
282 /* IEEE80211_RADIOTAP_ANTENNA */
283 *pos = status->antenna;
284 pos++;
285 }
286
287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
288
289 /* IEEE80211_RADIOTAP_RX_FLAGS */
290 /* ensure 2 byte alignment for the 2 byte field as required */
291 if ((pos - (u8 *)rthdr) & 1)
292 *pos++ = 0;
293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 put_unaligned_le16(rx_flags, pos);
296 pos += 2;
297
298 if (status->flag & RX_FLAG_HT) {
299 unsigned int stbc;
300
301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 *pos++ = local->hw.radiotap_mcs_details;
303 *pos = 0;
304 if (status->flag & RX_FLAG_SHORT_GI)
305 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 if (status->flag & RX_FLAG_40MHZ)
307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 if (status->flag & RX_FLAG_HT_GF)
309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 pos++;
313 *pos++ = status->rate_idx;
314 }
315
316 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 u16 flags = 0;
318
319 /* ensure 4 byte alignment */
320 while ((pos - (u8 *)rthdr) & 3)
321 pos++;
322 rthdr->it_present |=
323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 put_unaligned_le32(status->ampdu_reference, pos);
325 pos += 4;
326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 put_unaligned_le16(flags, pos);
339 pos += 2;
340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 *pos++ = status->ampdu_delimiter_crc;
342 else
343 *pos++ = 0;
344 *pos++ = 0;
345 }
346
347 if (status->flag & RX_FLAG_VHT) {
348 u16 known = local->hw.radiotap_vht_details;
349
350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 /* known field - how to handle 80+80? */
352 if (status->flag & RX_FLAG_80P80MHZ)
353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 put_unaligned_le16(known, pos);
355 pos += 2;
356 /* flags */
357 if (status->flag & RX_FLAG_SHORT_GI)
358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 pos++;
360 /* bandwidth */
361 if (status->flag & RX_FLAG_80MHZ)
362 *pos++ = 4;
363 else if (status->flag & RX_FLAG_80P80MHZ)
364 *pos++ = 0; /* marked not known above */
365 else if (status->flag & RX_FLAG_160MHZ)
366 *pos++ = 11;
367 else if (status->flag & RX_FLAG_40MHZ)
368 *pos++ = 1;
369 else /* 20 MHz */
370 *pos++ = 0;
371 /* MCS/NSS */
372 *pos = (status->rate_idx << 4) | status->vht_nss;
373 pos += 4;
374 /* coding field */
375 pos++;
376 /* group ID */
377 pos++;
378 /* partial_aid */
379 pos += 2;
380 }
381
382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 *pos++ = status->chain_signal[chain];
384 *pos++ = chain;
385 }
386
387 if (status->vendor_radiotap_len) {
388 /* ensure 2 byte alignment for the vendor field as required */
389 if ((pos - (u8 *)rthdr) & 1)
390 *pos++ = 0;
391 *pos++ = status->vendor_radiotap_oui[0];
392 *pos++ = status->vendor_radiotap_oui[1];
393 *pos++ = status->vendor_radiotap_oui[2];
394 *pos++ = status->vendor_radiotap_subns;
395 put_unaligned_le16(status->vendor_radiotap_len, pos);
396 pos += 2;
397 /* align the actual payload as requested */
398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 *pos++ = 0;
400 }
401 }
402
403 /*
404 * This function copies a received frame to all monitor interfaces and
405 * returns a cleaned-up SKB that no longer includes the FCS nor the
406 * radiotap header the driver might have added.
407 */
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 struct ieee80211_rate *rate)
411 {
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 struct ieee80211_sub_if_data *sdata;
414 int needed_headroom;
415 struct sk_buff *skb, *skb2;
416 struct net_device *prev_dev = NULL;
417 int present_fcs_len = 0;
418
419 /*
420 * First, we may need to make a copy of the skb because
421 * (1) we need to modify it for radiotap (if not present), and
422 * (2) the other RX handlers will modify the skb we got.
423 *
424 * We don't need to, of course, if we aren't going to return
425 * the SKB because it has a bad FCS/PLCP checksum.
426 */
427
428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 present_fcs_len = FCS_LEN;
430
431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 dev_kfree_skb(origskb);
434 return NULL;
435 }
436
437 if (!local->monitors) {
438 if (should_drop_frame(origskb, present_fcs_len)) {
439 dev_kfree_skb(origskb);
440 return NULL;
441 }
442
443 return remove_monitor_info(local, origskb);
444 }
445
446 /* room for the radiotap header based on driver features */
447 needed_headroom = ieee80211_rx_radiotap_space(local, status);
448
449 if (should_drop_frame(origskb, present_fcs_len)) {
450 /* only need to expand headroom if necessary */
451 skb = origskb;
452 origskb = NULL;
453
454 /*
455 * This shouldn't trigger often because most devices have an
456 * RX header they pull before we get here, and that should
457 * be big enough for our radiotap information. We should
458 * probably export the length to drivers so that we can have
459 * them allocate enough headroom to start with.
460 */
461 if (skb_headroom(skb) < needed_headroom &&
462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 dev_kfree_skb(skb);
464 return NULL;
465 }
466 } else {
467 /*
468 * Need to make a copy and possibly remove radiotap header
469 * and FCS from the original.
470 */
471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
472
473 origskb = remove_monitor_info(local, origskb);
474
475 if (!skb)
476 return origskb;
477 }
478
479 /* prepend radiotap information */
480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 true);
482
483 skb_reset_mac_header(skb);
484 skb->ip_summed = CHECKSUM_UNNECESSARY;
485 skb->pkt_type = PACKET_OTHERHOST;
486 skb->protocol = htons(ETH_P_802_2);
487
488 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 continue;
491
492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 continue;
494
495 if (!ieee80211_sdata_running(sdata))
496 continue;
497
498 if (prev_dev) {
499 skb2 = skb_clone(skb, GFP_ATOMIC);
500 if (skb2) {
501 skb2->dev = prev_dev;
502 netif_receive_skb(skb2);
503 }
504 }
505
506 prev_dev = sdata->dev;
507 sdata->dev->stats.rx_packets++;
508 sdata->dev->stats.rx_bytes += skb->len;
509 }
510
511 if (prev_dev) {
512 skb->dev = prev_dev;
513 netif_receive_skb(skb);
514 } else
515 dev_kfree_skb(skb);
516
517 return origskb;
518 }
519
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
521 {
522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 int tid, seqno_idx, security_idx;
525
526 /* does the frame have a qos control field? */
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 u8 *qc = ieee80211_get_qos_ctl(hdr);
529 /* frame has qos control */
530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 status->rx_flags |= IEEE80211_RX_AMSDU;
533
534 seqno_idx = tid;
535 security_idx = tid;
536 } else {
537 /*
538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
539 *
540 * Sequence numbers for management frames, QoS data
541 * frames with a broadcast/multicast address in the
542 * Address 1 field, and all non-QoS data frames sent
543 * by QoS STAs are assigned using an additional single
544 * modulo-4096 counter, [...]
545 *
546 * We also use that counter for non-QoS STAs.
547 */
548 seqno_idx = IEEE80211_NUM_TIDS;
549 security_idx = 0;
550 if (ieee80211_is_mgmt(hdr->frame_control))
551 security_idx = IEEE80211_NUM_TIDS;
552 tid = 0;
553 }
554
555 rx->seqno_idx = seqno_idx;
556 rx->security_idx = security_idx;
557 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 * For now, set skb->priority to 0 for other cases. */
559 rx->skb->priority = (tid > 7) ? 0 : tid;
560 }
561
562 /**
563 * DOC: Packet alignment
564 *
565 * Drivers always need to pass packets that are aligned to two-byte boundaries
566 * to the stack.
567 *
568 * Additionally, should, if possible, align the payload data in a way that
569 * guarantees that the contained IP header is aligned to a four-byte
570 * boundary. In the case of regular frames, this simply means aligning the
571 * payload to a four-byte boundary (because either the IP header is directly
572 * contained, or IV/RFC1042 headers that have a length divisible by four are
573 * in front of it). If the payload data is not properly aligned and the
574 * architecture doesn't support efficient unaligned operations, mac80211
575 * will align the data.
576 *
577 * With A-MSDU frames, however, the payload data address must yield two modulo
578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579 * push the IP header further back to a multiple of four again. Thankfully, the
580 * specs were sane enough this time around to require padding each A-MSDU
581 * subframe to a length that is a multiple of four.
582 *
583 * Padding like Atheros hardware adds which is between the 802.11 header and
584 * the payload is not supported, the driver is required to move the 802.11
585 * header to be directly in front of the payload in that case.
586 */
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
588 {
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 WARN_ONCE((unsigned long)rx->skb->data & 1,
591 "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
593 }
594
595
596 /* rx handlers */
597
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
599 {
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
601
602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 return 0;
604
605 return ieee80211_is_robust_mgmt_frame(hdr);
606 }
607
608
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
610 {
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
612
613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 return 0;
615
616 return ieee80211_is_robust_mgmt_frame(hdr);
617 }
618
619
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
622 {
623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 struct ieee80211_mmie *mmie;
625
626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 return -1;
628
629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 return -1; /* not a robust management frame */
631
632 mmie = (struct ieee80211_mmie *)
633 (skb->data + skb->len - sizeof(*mmie));
634 if (mmie->element_id != WLAN_EID_MMIE ||
635 mmie->length != sizeof(*mmie) - 2)
636 return -1;
637
638 return le16_to_cpu(mmie->key_id);
639 }
640
641 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
642 {
643 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
644 char *dev_addr = rx->sdata->vif.addr;
645
646 if (ieee80211_is_data(hdr->frame_control)) {
647 if (is_multicast_ether_addr(hdr->addr1)) {
648 if (ieee80211_has_tods(hdr->frame_control) ||
649 !ieee80211_has_fromds(hdr->frame_control))
650 return RX_DROP_MONITOR;
651 if (ether_addr_equal(hdr->addr3, dev_addr))
652 return RX_DROP_MONITOR;
653 } else {
654 if (!ieee80211_has_a4(hdr->frame_control))
655 return RX_DROP_MONITOR;
656 if (ether_addr_equal(hdr->addr4, dev_addr))
657 return RX_DROP_MONITOR;
658 }
659 }
660
661 /* If there is not an established peer link and this is not a peer link
662 * establisment frame, beacon or probe, drop the frame.
663 */
664
665 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
666 struct ieee80211_mgmt *mgmt;
667
668 if (!ieee80211_is_mgmt(hdr->frame_control))
669 return RX_DROP_MONITOR;
670
671 if (ieee80211_is_action(hdr->frame_control)) {
672 u8 category;
673
674 /* make sure category field is present */
675 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
676 return RX_DROP_MONITOR;
677
678 mgmt = (struct ieee80211_mgmt *)hdr;
679 category = mgmt->u.action.category;
680 if (category != WLAN_CATEGORY_MESH_ACTION &&
681 category != WLAN_CATEGORY_SELF_PROTECTED)
682 return RX_DROP_MONITOR;
683 return RX_CONTINUE;
684 }
685
686 if (ieee80211_is_probe_req(hdr->frame_control) ||
687 ieee80211_is_probe_resp(hdr->frame_control) ||
688 ieee80211_is_beacon(hdr->frame_control) ||
689 ieee80211_is_auth(hdr->frame_control))
690 return RX_CONTINUE;
691
692 return RX_DROP_MONITOR;
693 }
694
695 return RX_CONTINUE;
696 }
697
698 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
699 struct tid_ampdu_rx *tid_agg_rx,
700 int index,
701 struct sk_buff_head *frames)
702 {
703 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
704 struct ieee80211_rx_status *status;
705
706 lockdep_assert_held(&tid_agg_rx->reorder_lock);
707
708 if (!skb)
709 goto no_frame;
710
711 /* release the frame from the reorder ring buffer */
712 tid_agg_rx->stored_mpdu_num--;
713 tid_agg_rx->reorder_buf[index] = NULL;
714 status = IEEE80211_SKB_RXCB(skb);
715 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
716 __skb_queue_tail(frames, skb);
717
718 no_frame:
719 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
720 }
721
722 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
723 struct tid_ampdu_rx *tid_agg_rx,
724 u16 head_seq_num,
725 struct sk_buff_head *frames)
726 {
727 int index;
728
729 lockdep_assert_held(&tid_agg_rx->reorder_lock);
730
731 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
732 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
733 tid_agg_rx->ssn) %
734 tid_agg_rx->buf_size;
735 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
736 frames);
737 }
738 }
739
740 /*
741 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
742 * the skb was added to the buffer longer than this time ago, the earlier
743 * frames that have not yet been received are assumed to be lost and the skb
744 * can be released for processing. This may also release other skb's from the
745 * reorder buffer if there are no additional gaps between the frames.
746 *
747 * Callers must hold tid_agg_rx->reorder_lock.
748 */
749 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
750
751 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
752 struct tid_ampdu_rx *tid_agg_rx,
753 struct sk_buff_head *frames)
754 {
755 int index, j;
756
757 lockdep_assert_held(&tid_agg_rx->reorder_lock);
758
759 /* release the buffer until next missing frame */
760 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
761 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
762 if (!tid_agg_rx->reorder_buf[index] &&
763 tid_agg_rx->stored_mpdu_num) {
764 /*
765 * No buffers ready to be released, but check whether any
766 * frames in the reorder buffer have timed out.
767 */
768 int skipped = 1;
769 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
770 j = (j + 1) % tid_agg_rx->buf_size) {
771 if (!tid_agg_rx->reorder_buf[j]) {
772 skipped++;
773 continue;
774 }
775 if (skipped &&
776 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
777 HT_RX_REORDER_BUF_TIMEOUT))
778 goto set_release_timer;
779
780 ht_dbg_ratelimited(sdata,
781 "release an RX reorder frame due to timeout on earlier frames\n");
782 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
783 frames);
784
785 /*
786 * Increment the head seq# also for the skipped slots.
787 */
788 tid_agg_rx->head_seq_num =
789 (tid_agg_rx->head_seq_num +
790 skipped) & IEEE80211_SN_MASK;
791 skipped = 0;
792 }
793 } else while (tid_agg_rx->reorder_buf[index]) {
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
797 tid_agg_rx->ssn) %
798 tid_agg_rx->buf_size;
799 }
800
801 if (tid_agg_rx->stored_mpdu_num) {
802 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
803 tid_agg_rx->ssn) %
804 tid_agg_rx->buf_size;
805
806 for (; j != (index - 1) % tid_agg_rx->buf_size;
807 j = (j + 1) % tid_agg_rx->buf_size) {
808 if (tid_agg_rx->reorder_buf[j])
809 break;
810 }
811
812 set_release_timer:
813
814 mod_timer(&tid_agg_rx->reorder_timer,
815 tid_agg_rx->reorder_time[j] + 1 +
816 HT_RX_REORDER_BUF_TIMEOUT);
817 } else {
818 del_timer(&tid_agg_rx->reorder_timer);
819 }
820 }
821
822 /*
823 * As this function belongs to the RX path it must be under
824 * rcu_read_lock protection. It returns false if the frame
825 * can be processed immediately, true if it was consumed.
826 */
827 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
828 struct tid_ampdu_rx *tid_agg_rx,
829 struct sk_buff *skb,
830 struct sk_buff_head *frames)
831 {
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
833 u16 sc = le16_to_cpu(hdr->seq_ctrl);
834 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
835 u16 head_seq_num, buf_size;
836 int index;
837 bool ret = true;
838
839 spin_lock(&tid_agg_rx->reorder_lock);
840
841 buf_size = tid_agg_rx->buf_size;
842 head_seq_num = tid_agg_rx->head_seq_num;
843
844 /* frame with out of date sequence number */
845 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
846 dev_kfree_skb(skb);
847 goto out;
848 }
849
850 /*
851 * If frame the sequence number exceeds our buffering window
852 * size release some previous frames to make room for this one.
853 */
854 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
855 head_seq_num = ieee80211_sn_inc(
856 ieee80211_sn_sub(mpdu_seq_num, buf_size));
857 /* release stored frames up to new head to stack */
858 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
859 head_seq_num, frames);
860 }
861
862 /* Now the new frame is always in the range of the reordering buffer */
863
864 index = ieee80211_sn_sub(mpdu_seq_num,
865 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
866
867 /* check if we already stored this frame */
868 if (tid_agg_rx->reorder_buf[index]) {
869 dev_kfree_skb(skb);
870 goto out;
871 }
872
873 /*
874 * If the current MPDU is in the right order and nothing else
875 * is stored we can process it directly, no need to buffer it.
876 * If it is first but there's something stored, we may be able
877 * to release frames after this one.
878 */
879 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
880 tid_agg_rx->stored_mpdu_num == 0) {
881 tid_agg_rx->head_seq_num =
882 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
883 ret = false;
884 goto out;
885 }
886
887 /* put the frame in the reordering buffer */
888 tid_agg_rx->reorder_buf[index] = skb;
889 tid_agg_rx->reorder_time[index] = jiffies;
890 tid_agg_rx->stored_mpdu_num++;
891 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
892
893 out:
894 spin_unlock(&tid_agg_rx->reorder_lock);
895 return ret;
896 }
897
898 /*
899 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
900 * true if the MPDU was buffered, false if it should be processed.
901 */
902 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
903 struct sk_buff_head *frames)
904 {
905 struct sk_buff *skb = rx->skb;
906 struct ieee80211_local *local = rx->local;
907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
908 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
909 struct sta_info *sta = rx->sta;
910 struct tid_ampdu_rx *tid_agg_rx;
911 u16 sc;
912 u8 tid, ack_policy;
913
914 if (!ieee80211_is_data_qos(hdr->frame_control))
915 goto dont_reorder;
916
917 /*
918 * filter the QoS data rx stream according to
919 * STA/TID and check if this STA/TID is on aggregation
920 */
921
922 if (!sta)
923 goto dont_reorder;
924
925 ack_policy = *ieee80211_get_qos_ctl(hdr) &
926 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
927 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
928
929 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
930 if (!tid_agg_rx)
931 goto dont_reorder;
932
933 /* qos null data frames are excluded */
934 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
935 goto dont_reorder;
936
937 /* not part of a BA session */
938 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
939 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
940 goto dont_reorder;
941
942 /* not actually part of this BA session */
943 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
944 goto dont_reorder;
945
946 /* new, potentially un-ordered, ampdu frame - process it */
947
948 /* reset session timer */
949 if (tid_agg_rx->timeout)
950 tid_agg_rx->last_rx = jiffies;
951
952 /* if this mpdu is fragmented - terminate rx aggregation session */
953 sc = le16_to_cpu(hdr->seq_ctrl);
954 if (sc & IEEE80211_SCTL_FRAG) {
955 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
956 skb_queue_tail(&rx->sdata->skb_queue, skb);
957 ieee80211_queue_work(&local->hw, &rx->sdata->work);
958 return;
959 }
960
961 /*
962 * No locking needed -- we will only ever process one
963 * RX packet at a time, and thus own tid_agg_rx. All
964 * other code manipulating it needs to (and does) make
965 * sure that we cannot get to it any more before doing
966 * anything with it.
967 */
968 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
969 frames))
970 return;
971
972 dont_reorder:
973 __skb_queue_tail(frames, skb);
974 }
975
976 static ieee80211_rx_result debug_noinline
977 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
978 {
979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
981
982 /*
983 * Drop duplicate 802.11 retransmissions
984 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
985 */
986 if (rx->skb->len >= 24 && rx->sta &&
987 !ieee80211_is_ctl(hdr->frame_control) &&
988 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
989 !is_multicast_ether_addr(hdr->addr1)) {
990 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
991 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
992 hdr->seq_ctrl)) {
993 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
994 rx->local->dot11FrameDuplicateCount++;
995 rx->sta->num_duplicates++;
996 }
997 return RX_DROP_UNUSABLE;
998 } else
999 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1000 }
1001
1002 if (unlikely(rx->skb->len < 16)) {
1003 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1004 return RX_DROP_MONITOR;
1005 }
1006
1007 /* Drop disallowed frame classes based on STA auth/assoc state;
1008 * IEEE 802.11, Chap 5.5.
1009 *
1010 * mac80211 filters only based on association state, i.e. it drops
1011 * Class 3 frames from not associated stations. hostapd sends
1012 * deauth/disassoc frames when needed. In addition, hostapd is
1013 * responsible for filtering on both auth and assoc states.
1014 */
1015
1016 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1017 return ieee80211_rx_mesh_check(rx);
1018
1019 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1020 ieee80211_is_pspoll(hdr->frame_control)) &&
1021 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1022 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1023 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1024 /*
1025 * accept port control frames from the AP even when it's not
1026 * yet marked ASSOC to prevent a race where we don't set the
1027 * assoc bit quickly enough before it sends the first frame
1028 */
1029 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1030 ieee80211_is_data_present(hdr->frame_control)) {
1031 unsigned int hdrlen;
1032 __be16 ethertype;
1033
1034 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1035
1036 if (rx->skb->len < hdrlen + 8)
1037 return RX_DROP_MONITOR;
1038
1039 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1040 if (ethertype == rx->sdata->control_port_protocol)
1041 return RX_CONTINUE;
1042 }
1043
1044 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1045 cfg80211_rx_spurious_frame(rx->sdata->dev,
1046 hdr->addr2,
1047 GFP_ATOMIC))
1048 return RX_DROP_UNUSABLE;
1049
1050 return RX_DROP_MONITOR;
1051 }
1052
1053 return RX_CONTINUE;
1054 }
1055
1056
1057 static ieee80211_rx_result debug_noinline
1058 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1059 {
1060 struct ieee80211_local *local;
1061 struct ieee80211_hdr *hdr;
1062 struct sk_buff *skb;
1063
1064 local = rx->local;
1065 skb = rx->skb;
1066 hdr = (struct ieee80211_hdr *) skb->data;
1067
1068 if (!local->pspolling)
1069 return RX_CONTINUE;
1070
1071 if (!ieee80211_has_fromds(hdr->frame_control))
1072 /* this is not from AP */
1073 return RX_CONTINUE;
1074
1075 if (!ieee80211_is_data(hdr->frame_control))
1076 return RX_CONTINUE;
1077
1078 if (!ieee80211_has_moredata(hdr->frame_control)) {
1079 /* AP has no more frames buffered for us */
1080 local->pspolling = false;
1081 return RX_CONTINUE;
1082 }
1083
1084 /* more data bit is set, let's request a new frame from the AP */
1085 ieee80211_send_pspoll(local, rx->sdata);
1086
1087 return RX_CONTINUE;
1088 }
1089
1090 static void sta_ps_start(struct sta_info *sta)
1091 {
1092 struct ieee80211_sub_if_data *sdata = sta->sdata;
1093 struct ieee80211_local *local = sdata->local;
1094 struct ps_data *ps;
1095
1096 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1097 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1098 ps = &sdata->bss->ps;
1099 else
1100 return;
1101
1102 atomic_inc(&ps->num_sta_ps);
1103 set_sta_flag(sta, WLAN_STA_PS_STA);
1104 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1105 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1106 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1107 sta->sta.addr, sta->sta.aid);
1108 }
1109
1110 static void sta_ps_end(struct sta_info *sta)
1111 {
1112 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1113 sta->sta.addr, sta->sta.aid);
1114
1115 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1116 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1117 sta->sta.addr, sta->sta.aid);
1118 return;
1119 }
1120
1121 ieee80211_sta_ps_deliver_wakeup(sta);
1122 }
1123
1124 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1125 {
1126 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1127 bool in_ps;
1128
1129 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1130
1131 /* Don't let the same PS state be set twice */
1132 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1133 if ((start && in_ps) || (!start && !in_ps))
1134 return -EINVAL;
1135
1136 if (start)
1137 sta_ps_start(sta_inf);
1138 else
1139 sta_ps_end(sta_inf);
1140
1141 return 0;
1142 }
1143 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1144
1145 static ieee80211_rx_result debug_noinline
1146 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1147 {
1148 struct ieee80211_sub_if_data *sdata = rx->sdata;
1149 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1150 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1151 int tid, ac;
1152
1153 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1154 return RX_CONTINUE;
1155
1156 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1157 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1158 return RX_CONTINUE;
1159
1160 /*
1161 * The device handles station powersave, so don't do anything about
1162 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1163 * it to mac80211 since they're handled.)
1164 */
1165 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1166 return RX_CONTINUE;
1167
1168 /*
1169 * Don't do anything if the station isn't already asleep. In
1170 * the uAPSD case, the station will probably be marked asleep,
1171 * in the PS-Poll case the station must be confused ...
1172 */
1173 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1174 return RX_CONTINUE;
1175
1176 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1177 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1178 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1179 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1180 else
1181 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1182 }
1183
1184 /* Free PS Poll skb here instead of returning RX_DROP that would
1185 * count as an dropped frame. */
1186 dev_kfree_skb(rx->skb);
1187
1188 return RX_QUEUED;
1189 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1190 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1191 ieee80211_has_pm(hdr->frame_control) &&
1192 (ieee80211_is_data_qos(hdr->frame_control) ||
1193 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1194 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1195 ac = ieee802_1d_to_ac[tid & 7];
1196
1197 /*
1198 * If this AC is not trigger-enabled do nothing.
1199 *
1200 * NB: This could/should check a separate bitmap of trigger-
1201 * enabled queues, but for now we only implement uAPSD w/o
1202 * TSPEC changes to the ACs, so they're always the same.
1203 */
1204 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1205 return RX_CONTINUE;
1206
1207 /* if we are in a service period, do nothing */
1208 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1209 return RX_CONTINUE;
1210
1211 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1212 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1213 else
1214 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1215 }
1216
1217 return RX_CONTINUE;
1218 }
1219
1220 static ieee80211_rx_result debug_noinline
1221 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1222 {
1223 struct sta_info *sta = rx->sta;
1224 struct sk_buff *skb = rx->skb;
1225 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1226 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1227 int i;
1228
1229 if (!sta)
1230 return RX_CONTINUE;
1231
1232 /*
1233 * Update last_rx only for IBSS packets which are for the current
1234 * BSSID and for station already AUTHORIZED to avoid keeping the
1235 * current IBSS network alive in cases where other STAs start
1236 * using different BSSID. This will also give the station another
1237 * chance to restart the authentication/authorization in case
1238 * something went wrong the first time.
1239 */
1240 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1241 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1242 NL80211_IFTYPE_ADHOC);
1243 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1244 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1245 sta->last_rx = jiffies;
1246 if (ieee80211_is_data(hdr->frame_control)) {
1247 sta->last_rx_rate_idx = status->rate_idx;
1248 sta->last_rx_rate_flag = status->flag;
1249 sta->last_rx_rate_vht_nss = status->vht_nss;
1250 }
1251 }
1252 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1253 /*
1254 * Mesh beacons will update last_rx when if they are found to
1255 * match the current local configuration when processed.
1256 */
1257 sta->last_rx = jiffies;
1258 if (ieee80211_is_data(hdr->frame_control)) {
1259 sta->last_rx_rate_idx = status->rate_idx;
1260 sta->last_rx_rate_flag = status->flag;
1261 sta->last_rx_rate_vht_nss = status->vht_nss;
1262 }
1263 }
1264
1265 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1266 return RX_CONTINUE;
1267
1268 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1269 ieee80211_sta_rx_notify(rx->sdata, hdr);
1270
1271 sta->rx_fragments++;
1272 sta->rx_bytes += rx->skb->len;
1273 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1274 sta->last_signal = status->signal;
1275 ewma_add(&sta->avg_signal, -status->signal);
1276 }
1277
1278 if (status->chains) {
1279 sta->chains = status->chains;
1280 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1281 int signal = status->chain_signal[i];
1282
1283 if (!(status->chains & BIT(i)))
1284 continue;
1285
1286 sta->chain_signal_last[i] = signal;
1287 ewma_add(&sta->chain_signal_avg[i], -signal);
1288 }
1289 }
1290
1291 /*
1292 * Change STA power saving mode only at the end of a frame
1293 * exchange sequence.
1294 */
1295 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1296 !ieee80211_has_morefrags(hdr->frame_control) &&
1297 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1298 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1299 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1300 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1301 /*
1302 * Ignore doze->wake transitions that are
1303 * indicated by non-data frames, the standard
1304 * is unclear here, but for example going to
1305 * PS mode and then scanning would cause a
1306 * doze->wake transition for the probe request,
1307 * and that is clearly undesirable.
1308 */
1309 if (ieee80211_is_data(hdr->frame_control) &&
1310 !ieee80211_has_pm(hdr->frame_control))
1311 sta_ps_end(sta);
1312 } else {
1313 if (ieee80211_has_pm(hdr->frame_control))
1314 sta_ps_start(sta);
1315 }
1316 }
1317
1318 /* mesh power save support */
1319 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1320 ieee80211_mps_rx_h_sta_process(sta, hdr);
1321
1322 /*
1323 * Drop (qos-)data::nullfunc frames silently, since they
1324 * are used only to control station power saving mode.
1325 */
1326 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1327 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1328 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1329
1330 /*
1331 * If we receive a 4-addr nullfunc frame from a STA
1332 * that was not moved to a 4-addr STA vlan yet send
1333 * the event to userspace and for older hostapd drop
1334 * the frame to the monitor interface.
1335 */
1336 if (ieee80211_has_a4(hdr->frame_control) &&
1337 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1338 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1339 !rx->sdata->u.vlan.sta))) {
1340 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1341 cfg80211_rx_unexpected_4addr_frame(
1342 rx->sdata->dev, sta->sta.addr,
1343 GFP_ATOMIC);
1344 return RX_DROP_MONITOR;
1345 }
1346 /*
1347 * Update counter and free packet here to avoid
1348 * counting this as a dropped packed.
1349 */
1350 sta->rx_packets++;
1351 dev_kfree_skb(rx->skb);
1352 return RX_QUEUED;
1353 }
1354
1355 return RX_CONTINUE;
1356 } /* ieee80211_rx_h_sta_process */
1357
1358 static ieee80211_rx_result debug_noinline
1359 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1360 {
1361 struct sk_buff *skb = rx->skb;
1362 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1364 int keyidx;
1365 int hdrlen;
1366 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1367 struct ieee80211_key *sta_ptk = NULL;
1368 int mmie_keyidx = -1;
1369 __le16 fc;
1370
1371 /*
1372 * Key selection 101
1373 *
1374 * There are four types of keys:
1375 * - GTK (group keys)
1376 * - IGTK (group keys for management frames)
1377 * - PTK (pairwise keys)
1378 * - STK (station-to-station pairwise keys)
1379 *
1380 * When selecting a key, we have to distinguish between multicast
1381 * (including broadcast) and unicast frames, the latter can only
1382 * use PTKs and STKs while the former always use GTKs and IGTKs.
1383 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1384 * unicast frames can also use key indices like GTKs. Hence, if we
1385 * don't have a PTK/STK we check the key index for a WEP key.
1386 *
1387 * Note that in a regular BSS, multicast frames are sent by the
1388 * AP only, associated stations unicast the frame to the AP first
1389 * which then multicasts it on their behalf.
1390 *
1391 * There is also a slight problem in IBSS mode: GTKs are negotiated
1392 * with each station, that is something we don't currently handle.
1393 * The spec seems to expect that one negotiates the same key with
1394 * every station but there's no such requirement; VLANs could be
1395 * possible.
1396 */
1397
1398 /*
1399 * No point in finding a key and decrypting if the frame is neither
1400 * addressed to us nor a multicast frame.
1401 */
1402 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1403 return RX_CONTINUE;
1404
1405 /* start without a key */
1406 rx->key = NULL;
1407
1408 if (rx->sta)
1409 sta_ptk = rcu_dereference(rx->sta->ptk);
1410
1411 fc = hdr->frame_control;
1412
1413 if (!ieee80211_has_protected(fc))
1414 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1415
1416 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1417 rx->key = sta_ptk;
1418 if ((status->flag & RX_FLAG_DECRYPTED) &&
1419 (status->flag & RX_FLAG_IV_STRIPPED))
1420 return RX_CONTINUE;
1421 /* Skip decryption if the frame is not protected. */
1422 if (!ieee80211_has_protected(fc))
1423 return RX_CONTINUE;
1424 } else if (mmie_keyidx >= 0) {
1425 /* Broadcast/multicast robust management frame / BIP */
1426 if ((status->flag & RX_FLAG_DECRYPTED) &&
1427 (status->flag & RX_FLAG_IV_STRIPPED))
1428 return RX_CONTINUE;
1429
1430 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1431 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1432 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1433 if (rx->sta)
1434 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1435 if (!rx->key)
1436 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1437 } else if (!ieee80211_has_protected(fc)) {
1438 /*
1439 * The frame was not protected, so skip decryption. However, we
1440 * need to set rx->key if there is a key that could have been
1441 * used so that the frame may be dropped if encryption would
1442 * have been expected.
1443 */
1444 struct ieee80211_key *key = NULL;
1445 struct ieee80211_sub_if_data *sdata = rx->sdata;
1446 int i;
1447
1448 if (ieee80211_is_mgmt(fc) &&
1449 is_multicast_ether_addr(hdr->addr1) &&
1450 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1451 rx->key = key;
1452 else {
1453 if (rx->sta) {
1454 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1455 key = rcu_dereference(rx->sta->gtk[i]);
1456 if (key)
1457 break;
1458 }
1459 }
1460 if (!key) {
1461 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1462 key = rcu_dereference(sdata->keys[i]);
1463 if (key)
1464 break;
1465 }
1466 }
1467 if (key)
1468 rx->key = key;
1469 }
1470 return RX_CONTINUE;
1471 } else {
1472 u8 keyid;
1473 /*
1474 * The device doesn't give us the IV so we won't be
1475 * able to look up the key. That's ok though, we
1476 * don't need to decrypt the frame, we just won't
1477 * be able to keep statistics accurate.
1478 * Except for key threshold notifications, should
1479 * we somehow allow the driver to tell us which key
1480 * the hardware used if this flag is set?
1481 */
1482 if ((status->flag & RX_FLAG_DECRYPTED) &&
1483 (status->flag & RX_FLAG_IV_STRIPPED))
1484 return RX_CONTINUE;
1485
1486 hdrlen = ieee80211_hdrlen(fc);
1487
1488 if (rx->skb->len < 8 + hdrlen)
1489 return RX_DROP_UNUSABLE; /* TODO: count this? */
1490
1491 /*
1492 * no need to call ieee80211_wep_get_keyidx,
1493 * it verifies a bunch of things we've done already
1494 */
1495 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1496 keyidx = keyid >> 6;
1497
1498 /* check per-station GTK first, if multicast packet */
1499 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1500 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1501
1502 /* if not found, try default key */
1503 if (!rx->key) {
1504 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1505
1506 /*
1507 * RSNA-protected unicast frames should always be
1508 * sent with pairwise or station-to-station keys,
1509 * but for WEP we allow using a key index as well.
1510 */
1511 if (rx->key &&
1512 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1513 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1514 !is_multicast_ether_addr(hdr->addr1))
1515 rx->key = NULL;
1516 }
1517 }
1518
1519 if (rx->key) {
1520 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1521 return RX_DROP_MONITOR;
1522
1523 rx->key->tx_rx_count++;
1524 /* TODO: add threshold stuff again */
1525 } else {
1526 return RX_DROP_MONITOR;
1527 }
1528
1529 switch (rx->key->conf.cipher) {
1530 case WLAN_CIPHER_SUITE_WEP40:
1531 case WLAN_CIPHER_SUITE_WEP104:
1532 result = ieee80211_crypto_wep_decrypt(rx);
1533 break;
1534 case WLAN_CIPHER_SUITE_TKIP:
1535 result = ieee80211_crypto_tkip_decrypt(rx);
1536 break;
1537 case WLAN_CIPHER_SUITE_CCMP:
1538 result = ieee80211_crypto_ccmp_decrypt(rx);
1539 break;
1540 case WLAN_CIPHER_SUITE_AES_CMAC:
1541 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1542 break;
1543 default:
1544 /*
1545 * We can reach here only with HW-only algorithms
1546 * but why didn't it decrypt the frame?!
1547 */
1548 return RX_DROP_UNUSABLE;
1549 }
1550
1551 /* the hdr variable is invalid after the decrypt handlers */
1552
1553 /* either the frame has been decrypted or will be dropped */
1554 status->flag |= RX_FLAG_DECRYPTED;
1555
1556 return result;
1557 }
1558
1559 static inline struct ieee80211_fragment_entry *
1560 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1561 unsigned int frag, unsigned int seq, int rx_queue,
1562 struct sk_buff **skb)
1563 {
1564 struct ieee80211_fragment_entry *entry;
1565
1566 entry = &sdata->fragments[sdata->fragment_next++];
1567 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1568 sdata->fragment_next = 0;
1569
1570 if (!skb_queue_empty(&entry->skb_list))
1571 __skb_queue_purge(&entry->skb_list);
1572
1573 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1574 *skb = NULL;
1575 entry->first_frag_time = jiffies;
1576 entry->seq = seq;
1577 entry->rx_queue = rx_queue;
1578 entry->last_frag = frag;
1579 entry->ccmp = 0;
1580 entry->extra_len = 0;
1581
1582 return entry;
1583 }
1584
1585 static inline struct ieee80211_fragment_entry *
1586 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1587 unsigned int frag, unsigned int seq,
1588 int rx_queue, struct ieee80211_hdr *hdr)
1589 {
1590 struct ieee80211_fragment_entry *entry;
1591 int i, idx;
1592
1593 idx = sdata->fragment_next;
1594 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1595 struct ieee80211_hdr *f_hdr;
1596
1597 idx--;
1598 if (idx < 0)
1599 idx = IEEE80211_FRAGMENT_MAX - 1;
1600
1601 entry = &sdata->fragments[idx];
1602 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1603 entry->rx_queue != rx_queue ||
1604 entry->last_frag + 1 != frag)
1605 continue;
1606
1607 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1608
1609 /*
1610 * Check ftype and addresses are equal, else check next fragment
1611 */
1612 if (((hdr->frame_control ^ f_hdr->frame_control) &
1613 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1614 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1615 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1616 continue;
1617
1618 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1619 __skb_queue_purge(&entry->skb_list);
1620 continue;
1621 }
1622 return entry;
1623 }
1624
1625 return NULL;
1626 }
1627
1628 static ieee80211_rx_result debug_noinline
1629 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1630 {
1631 struct ieee80211_hdr *hdr;
1632 u16 sc;
1633 __le16 fc;
1634 unsigned int frag, seq;
1635 struct ieee80211_fragment_entry *entry;
1636 struct sk_buff *skb;
1637 struct ieee80211_rx_status *status;
1638
1639 hdr = (struct ieee80211_hdr *)rx->skb->data;
1640 fc = hdr->frame_control;
1641
1642 if (ieee80211_is_ctl(fc))
1643 return RX_CONTINUE;
1644
1645 sc = le16_to_cpu(hdr->seq_ctrl);
1646 frag = sc & IEEE80211_SCTL_FRAG;
1647
1648 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1649 is_multicast_ether_addr(hdr->addr1))) {
1650 /* not fragmented */
1651 goto out;
1652 }
1653 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1654
1655 if (skb_linearize(rx->skb))
1656 return RX_DROP_UNUSABLE;
1657
1658 /*
1659 * skb_linearize() might change the skb->data and
1660 * previously cached variables (in this case, hdr) need to
1661 * be refreshed with the new data.
1662 */
1663 hdr = (struct ieee80211_hdr *)rx->skb->data;
1664 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1665
1666 if (frag == 0) {
1667 /* This is the first fragment of a new frame. */
1668 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1669 rx->seqno_idx, &(rx->skb));
1670 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1671 ieee80211_has_protected(fc)) {
1672 int queue = rx->security_idx;
1673 /* Store CCMP PN so that we can verify that the next
1674 * fragment has a sequential PN value. */
1675 entry->ccmp = 1;
1676 memcpy(entry->last_pn,
1677 rx->key->u.ccmp.rx_pn[queue],
1678 IEEE80211_CCMP_PN_LEN);
1679 }
1680 return RX_QUEUED;
1681 }
1682
1683 /* This is a fragment for a frame that should already be pending in
1684 * fragment cache. Add this fragment to the end of the pending entry.
1685 */
1686 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1687 rx->seqno_idx, hdr);
1688 if (!entry) {
1689 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1690 return RX_DROP_MONITOR;
1691 }
1692
1693 /* Verify that MPDUs within one MSDU have sequential PN values.
1694 * (IEEE 802.11i, 8.3.3.4.5) */
1695 if (entry->ccmp) {
1696 int i;
1697 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1698 int queue;
1699 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1700 return RX_DROP_UNUSABLE;
1701 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1702 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1703 pn[i]++;
1704 if (pn[i])
1705 break;
1706 }
1707 queue = rx->security_idx;
1708 rpn = rx->key->u.ccmp.rx_pn[queue];
1709 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1710 return RX_DROP_UNUSABLE;
1711 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1712 }
1713
1714 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1715 __skb_queue_tail(&entry->skb_list, rx->skb);
1716 entry->last_frag = frag;
1717 entry->extra_len += rx->skb->len;
1718 if (ieee80211_has_morefrags(fc)) {
1719 rx->skb = NULL;
1720 return RX_QUEUED;
1721 }
1722
1723 rx->skb = __skb_dequeue(&entry->skb_list);
1724 if (skb_tailroom(rx->skb) < entry->extra_len) {
1725 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1726 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1727 GFP_ATOMIC))) {
1728 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1729 __skb_queue_purge(&entry->skb_list);
1730 return RX_DROP_UNUSABLE;
1731 }
1732 }
1733 while ((skb = __skb_dequeue(&entry->skb_list))) {
1734 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1735 dev_kfree_skb(skb);
1736 }
1737
1738 /* Complete frame has been reassembled - process it now */
1739 status = IEEE80211_SKB_RXCB(rx->skb);
1740 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1741
1742 out:
1743 if (rx->sta)
1744 rx->sta->rx_packets++;
1745 if (is_multicast_ether_addr(hdr->addr1))
1746 rx->local->dot11MulticastReceivedFrameCount++;
1747 else
1748 ieee80211_led_rx(rx->local);
1749 return RX_CONTINUE;
1750 }
1751
1752 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1753 {
1754 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1755 return -EACCES;
1756
1757 return 0;
1758 }
1759
1760 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1761 {
1762 struct sk_buff *skb = rx->skb;
1763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1764
1765 /*
1766 * Pass through unencrypted frames if the hardware has
1767 * decrypted them already.
1768 */
1769 if (status->flag & RX_FLAG_DECRYPTED)
1770 return 0;
1771
1772 /* Drop unencrypted frames if key is set. */
1773 if (unlikely(!ieee80211_has_protected(fc) &&
1774 !ieee80211_is_nullfunc(fc) &&
1775 ieee80211_is_data(fc) &&
1776 (rx->key || rx->sdata->drop_unencrypted)))
1777 return -EACCES;
1778
1779 return 0;
1780 }
1781
1782 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1783 {
1784 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1785 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1786 __le16 fc = hdr->frame_control;
1787
1788 /*
1789 * Pass through unencrypted frames if the hardware has
1790 * decrypted them already.
1791 */
1792 if (status->flag & RX_FLAG_DECRYPTED)
1793 return 0;
1794
1795 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1796 if (unlikely(!ieee80211_has_protected(fc) &&
1797 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1798 rx->key)) {
1799 if (ieee80211_is_deauth(fc) ||
1800 ieee80211_is_disassoc(fc))
1801 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1802 rx->skb->data,
1803 rx->skb->len);
1804 return -EACCES;
1805 }
1806 /* BIP does not use Protected field, so need to check MMIE */
1807 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1808 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1809 if (ieee80211_is_deauth(fc) ||
1810 ieee80211_is_disassoc(fc))
1811 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1812 rx->skb->data,
1813 rx->skb->len);
1814 return -EACCES;
1815 }
1816 /*
1817 * When using MFP, Action frames are not allowed prior to
1818 * having configured keys.
1819 */
1820 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1821 ieee80211_is_robust_mgmt_frame(
1822 (struct ieee80211_hdr *) rx->skb->data)))
1823 return -EACCES;
1824 }
1825
1826 return 0;
1827 }
1828
1829 static int
1830 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1831 {
1832 struct ieee80211_sub_if_data *sdata = rx->sdata;
1833 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1834 bool check_port_control = false;
1835 struct ethhdr *ehdr;
1836 int ret;
1837
1838 *port_control = false;
1839 if (ieee80211_has_a4(hdr->frame_control) &&
1840 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1841 return -1;
1842
1843 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1844 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1845
1846 if (!sdata->u.mgd.use_4addr)
1847 return -1;
1848 else
1849 check_port_control = true;
1850 }
1851
1852 if (is_multicast_ether_addr(hdr->addr1) &&
1853 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1854 return -1;
1855
1856 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1857 if (ret < 0)
1858 return ret;
1859
1860 ehdr = (struct ethhdr *) rx->skb->data;
1861 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1862 *port_control = true;
1863 else if (check_port_control)
1864 return -1;
1865
1866 return 0;
1867 }
1868
1869 /*
1870 * requires that rx->skb is a frame with ethernet header
1871 */
1872 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1873 {
1874 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1875 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1876 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1877
1878 /*
1879 * Allow EAPOL frames to us/the PAE group address regardless
1880 * of whether the frame was encrypted or not.
1881 */
1882 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1883 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1884 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1885 return true;
1886
1887 if (ieee80211_802_1x_port_control(rx) ||
1888 ieee80211_drop_unencrypted(rx, fc))
1889 return false;
1890
1891 return true;
1892 }
1893
1894 /*
1895 * requires that rx->skb is a frame with ethernet header
1896 */
1897 static void
1898 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1899 {
1900 struct ieee80211_sub_if_data *sdata = rx->sdata;
1901 struct net_device *dev = sdata->dev;
1902 struct sk_buff *skb, *xmit_skb;
1903 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1904 struct sta_info *dsta;
1905 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1906
1907 skb = rx->skb;
1908 xmit_skb = NULL;
1909
1910 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1911 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1912 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1913 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1914 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1915 if (is_multicast_ether_addr(ehdr->h_dest)) {
1916 /*
1917 * send multicast frames both to higher layers in
1918 * local net stack and back to the wireless medium
1919 */
1920 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1921 if (!xmit_skb)
1922 net_info_ratelimited("%s: failed to clone multicast frame\n",
1923 dev->name);
1924 } else {
1925 dsta = sta_info_get(sdata, skb->data);
1926 if (dsta) {
1927 /*
1928 * The destination station is associated to
1929 * this AP (in this VLAN), so send the frame
1930 * directly to it and do not pass it to local
1931 * net stack.
1932 */
1933 xmit_skb = skb;
1934 skb = NULL;
1935 }
1936 }
1937 }
1938
1939 if (skb) {
1940 int align __maybe_unused;
1941
1942 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1943 /*
1944 * 'align' will only take the values 0 or 2 here
1945 * since all frames are required to be aligned
1946 * to 2-byte boundaries when being passed to
1947 * mac80211; the code here works just as well if
1948 * that isn't true, but mac80211 assumes it can
1949 * access fields as 2-byte aligned (e.g. for
1950 * compare_ether_addr)
1951 */
1952 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1953 if (align) {
1954 if (WARN_ON(skb_headroom(skb) < 3)) {
1955 dev_kfree_skb(skb);
1956 skb = NULL;
1957 } else {
1958 u8 *data = skb->data;
1959 size_t len = skb_headlen(skb);
1960 skb->data -= align;
1961 memmove(skb->data, data, len);
1962 skb_set_tail_pointer(skb, len);
1963 }
1964 }
1965 #endif
1966
1967 if (skb) {
1968 /* deliver to local stack */
1969 skb->protocol = eth_type_trans(skb, dev);
1970 memset(skb->cb, 0, sizeof(skb->cb));
1971 netif_receive_skb(skb);
1972 }
1973 }
1974
1975 if (xmit_skb) {
1976 /*
1977 * Send to wireless media and increase priority by 256 to
1978 * keep the received priority instead of reclassifying
1979 * the frame (see cfg80211_classify8021d).
1980 */
1981 xmit_skb->priority += 256;
1982 xmit_skb->protocol = htons(ETH_P_802_3);
1983 skb_reset_network_header(xmit_skb);
1984 skb_reset_mac_header(xmit_skb);
1985 dev_queue_xmit(xmit_skb);
1986 }
1987 }
1988
1989 static ieee80211_rx_result debug_noinline
1990 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1991 {
1992 struct net_device *dev = rx->sdata->dev;
1993 struct sk_buff *skb = rx->skb;
1994 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1995 __le16 fc = hdr->frame_control;
1996 struct sk_buff_head frame_list;
1997 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1998
1999 if (unlikely(!ieee80211_is_data(fc)))
2000 return RX_CONTINUE;
2001
2002 if (unlikely(!ieee80211_is_data_present(fc)))
2003 return RX_DROP_MONITOR;
2004
2005 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2006 return RX_CONTINUE;
2007
2008 if (ieee80211_has_a4(hdr->frame_control) &&
2009 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2010 !rx->sdata->u.vlan.sta)
2011 return RX_DROP_UNUSABLE;
2012
2013 if (is_multicast_ether_addr(hdr->addr1) &&
2014 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2015 rx->sdata->u.vlan.sta) ||
2016 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2017 rx->sdata->u.mgd.use_4addr)))
2018 return RX_DROP_UNUSABLE;
2019
2020 skb->dev = dev;
2021 __skb_queue_head_init(&frame_list);
2022
2023 if (skb_linearize(skb))
2024 return RX_DROP_UNUSABLE;
2025
2026 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2027 rx->sdata->vif.type,
2028 rx->local->hw.extra_tx_headroom, true);
2029
2030 while (!skb_queue_empty(&frame_list)) {
2031 rx->skb = __skb_dequeue(&frame_list);
2032
2033 if (!ieee80211_frame_allowed(rx, fc)) {
2034 dev_kfree_skb(rx->skb);
2035 continue;
2036 }
2037 dev->stats.rx_packets++;
2038 dev->stats.rx_bytes += rx->skb->len;
2039
2040 ieee80211_deliver_skb(rx);
2041 }
2042
2043 return RX_QUEUED;
2044 }
2045
2046 #ifdef CONFIG_MAC80211_MESH
2047 static ieee80211_rx_result
2048 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2049 {
2050 struct ieee80211_hdr *fwd_hdr, *hdr;
2051 struct ieee80211_tx_info *info;
2052 struct ieee80211s_hdr *mesh_hdr;
2053 struct sk_buff *skb = rx->skb, *fwd_skb;
2054 struct ieee80211_local *local = rx->local;
2055 struct ieee80211_sub_if_data *sdata = rx->sdata;
2056 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2057 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2058 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2059 u16 q, hdrlen;
2060
2061 hdr = (struct ieee80211_hdr *) skb->data;
2062 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2063
2064 /* make sure fixed part of mesh header is there, also checks skb len */
2065 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2066 return RX_DROP_MONITOR;
2067
2068 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2069
2070 /* make sure full mesh header is there, also checks skb len */
2071 if (!pskb_may_pull(rx->skb,
2072 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2073 return RX_DROP_MONITOR;
2074
2075 /* reload pointers */
2076 hdr = (struct ieee80211_hdr *) skb->data;
2077 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2078
2079 /* frame is in RMC, don't forward */
2080 if (ieee80211_is_data(hdr->frame_control) &&
2081 is_multicast_ether_addr(hdr->addr1) &&
2082 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2083 return RX_DROP_MONITOR;
2084
2085 if (!ieee80211_is_data(hdr->frame_control) ||
2086 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2087 return RX_CONTINUE;
2088
2089 if (!mesh_hdr->ttl)
2090 return RX_DROP_MONITOR;
2091
2092 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2093 struct mesh_path *mppath;
2094 char *proxied_addr;
2095 char *mpp_addr;
2096
2097 if (is_multicast_ether_addr(hdr->addr1)) {
2098 mpp_addr = hdr->addr3;
2099 proxied_addr = mesh_hdr->eaddr1;
2100 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2101 /* has_a4 already checked in ieee80211_rx_mesh_check */
2102 mpp_addr = hdr->addr4;
2103 proxied_addr = mesh_hdr->eaddr2;
2104 } else {
2105 return RX_DROP_MONITOR;
2106 }
2107
2108 rcu_read_lock();
2109 mppath = mpp_path_lookup(sdata, proxied_addr);
2110 if (!mppath) {
2111 mpp_path_add(sdata, proxied_addr, mpp_addr);
2112 } else {
2113 spin_lock_bh(&mppath->state_lock);
2114 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2115 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2116 spin_unlock_bh(&mppath->state_lock);
2117 }
2118 rcu_read_unlock();
2119 }
2120
2121 /* Frame has reached destination. Don't forward */
2122 if (!is_multicast_ether_addr(hdr->addr1) &&
2123 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2124 return RX_CONTINUE;
2125
2126 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2127 if (ieee80211_queue_stopped(&local->hw, q)) {
2128 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2129 return RX_DROP_MONITOR;
2130 }
2131 skb_set_queue_mapping(skb, q);
2132
2133 if (!--mesh_hdr->ttl) {
2134 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2135 goto out;
2136 }
2137
2138 if (!ifmsh->mshcfg.dot11MeshForwarding)
2139 goto out;
2140
2141 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2142 if (!fwd_skb) {
2143 net_info_ratelimited("%s: failed to clone mesh frame\n",
2144 sdata->name);
2145 goto out;
2146 }
2147
2148 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2149 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2150 info = IEEE80211_SKB_CB(fwd_skb);
2151 memset(info, 0, sizeof(*info));
2152 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2153 info->control.vif = &rx->sdata->vif;
2154 info->control.jiffies = jiffies;
2155 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2156 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2157 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2158 /* update power mode indication when forwarding */
2159 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2160 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2161 /* mesh power mode flags updated in mesh_nexthop_lookup */
2162 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2163 } else {
2164 /* unable to resolve next hop */
2165 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2166 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2167 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2168 kfree_skb(fwd_skb);
2169 return RX_DROP_MONITOR;
2170 }
2171
2172 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2173 ieee80211_add_pending_skb(local, fwd_skb);
2174 out:
2175 if (is_multicast_ether_addr(hdr->addr1) ||
2176 sdata->dev->flags & IFF_PROMISC)
2177 return RX_CONTINUE;
2178 else
2179 return RX_DROP_MONITOR;
2180 }
2181 #endif
2182
2183 static ieee80211_rx_result debug_noinline
2184 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2185 {
2186 struct ieee80211_sub_if_data *sdata = rx->sdata;
2187 struct ieee80211_local *local = rx->local;
2188 struct net_device *dev = sdata->dev;
2189 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2190 __le16 fc = hdr->frame_control;
2191 bool port_control;
2192 int err;
2193
2194 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2195 return RX_CONTINUE;
2196
2197 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2198 return RX_DROP_MONITOR;
2199
2200 /*
2201 * Send unexpected-4addr-frame event to hostapd. For older versions,
2202 * also drop the frame to cooked monitor interfaces.
2203 */
2204 if (ieee80211_has_a4(hdr->frame_control) &&
2205 sdata->vif.type == NL80211_IFTYPE_AP) {
2206 if (rx->sta &&
2207 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2208 cfg80211_rx_unexpected_4addr_frame(
2209 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2210 return RX_DROP_MONITOR;
2211 }
2212
2213 err = __ieee80211_data_to_8023(rx, &port_control);
2214 if (unlikely(err))
2215 return RX_DROP_UNUSABLE;
2216
2217 if (!ieee80211_frame_allowed(rx, fc))
2218 return RX_DROP_MONITOR;
2219
2220 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2221 unlikely(port_control) && sdata->bss) {
2222 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2223 u.ap);
2224 dev = sdata->dev;
2225 rx->sdata = sdata;
2226 }
2227
2228 rx->skb->dev = dev;
2229
2230 dev->stats.rx_packets++;
2231 dev->stats.rx_bytes += rx->skb->len;
2232
2233 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2234 !is_multicast_ether_addr(
2235 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2236 (!local->scanning &&
2237 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2238 mod_timer(&local->dynamic_ps_timer, jiffies +
2239 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2240 }
2241
2242 ieee80211_deliver_skb(rx);
2243
2244 return RX_QUEUED;
2245 }
2246
2247 static ieee80211_rx_result debug_noinline
2248 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2249 {
2250 struct sk_buff *skb = rx->skb;
2251 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2252 struct tid_ampdu_rx *tid_agg_rx;
2253 u16 start_seq_num;
2254 u16 tid;
2255
2256 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2257 return RX_CONTINUE;
2258
2259 if (ieee80211_is_back_req(bar->frame_control)) {
2260 struct {
2261 __le16 control, start_seq_num;
2262 } __packed bar_data;
2263
2264 if (!rx->sta)
2265 return RX_DROP_MONITOR;
2266
2267 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2268 &bar_data, sizeof(bar_data)))
2269 return RX_DROP_MONITOR;
2270
2271 tid = le16_to_cpu(bar_data.control) >> 12;
2272
2273 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2274 if (!tid_agg_rx)
2275 return RX_DROP_MONITOR;
2276
2277 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2278
2279 /* reset session timer */
2280 if (tid_agg_rx->timeout)
2281 mod_timer(&tid_agg_rx->session_timer,
2282 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2283
2284 spin_lock(&tid_agg_rx->reorder_lock);
2285 /* release stored frames up to start of BAR */
2286 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2287 start_seq_num, frames);
2288 spin_unlock(&tid_agg_rx->reorder_lock);
2289
2290 kfree_skb(skb);
2291 return RX_QUEUED;
2292 }
2293
2294 /*
2295 * After this point, we only want management frames,
2296 * so we can drop all remaining control frames to
2297 * cooked monitor interfaces.
2298 */
2299 return RX_DROP_MONITOR;
2300 }
2301
2302 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2303 struct ieee80211_mgmt *mgmt,
2304 size_t len)
2305 {
2306 struct ieee80211_local *local = sdata->local;
2307 struct sk_buff *skb;
2308 struct ieee80211_mgmt *resp;
2309
2310 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2311 /* Not to own unicast address */
2312 return;
2313 }
2314
2315 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2316 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2317 /* Not from the current AP or not associated yet. */
2318 return;
2319 }
2320
2321 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2322 /* Too short SA Query request frame */
2323 return;
2324 }
2325
2326 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2327 if (skb == NULL)
2328 return;
2329
2330 skb_reserve(skb, local->hw.extra_tx_headroom);
2331 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2332 memset(resp, 0, 24);
2333 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2334 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2335 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2336 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2337 IEEE80211_STYPE_ACTION);
2338 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2339 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2340 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2341 memcpy(resp->u.action.u.sa_query.trans_id,
2342 mgmt->u.action.u.sa_query.trans_id,
2343 WLAN_SA_QUERY_TR_ID_LEN);
2344
2345 ieee80211_tx_skb(sdata, skb);
2346 }
2347
2348 static ieee80211_rx_result debug_noinline
2349 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2350 {
2351 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2352 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2353
2354 /*
2355 * From here on, look only at management frames.
2356 * Data and control frames are already handled,
2357 * and unknown (reserved) frames are useless.
2358 */
2359 if (rx->skb->len < 24)
2360 return RX_DROP_MONITOR;
2361
2362 if (!ieee80211_is_mgmt(mgmt->frame_control))
2363 return RX_DROP_MONITOR;
2364
2365 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2366 ieee80211_is_beacon(mgmt->frame_control) &&
2367 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2368 int sig = 0;
2369
2370 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2371 sig = status->signal;
2372
2373 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2374 rx->skb->data, rx->skb->len,
2375 status->freq, sig);
2376 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2377 }
2378
2379 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2380 return RX_DROP_MONITOR;
2381
2382 if (ieee80211_drop_unencrypted_mgmt(rx))
2383 return RX_DROP_UNUSABLE;
2384
2385 return RX_CONTINUE;
2386 }
2387
2388 static ieee80211_rx_result debug_noinline
2389 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2390 {
2391 struct ieee80211_local *local = rx->local;
2392 struct ieee80211_sub_if_data *sdata = rx->sdata;
2393 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2394 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2395 int len = rx->skb->len;
2396
2397 if (!ieee80211_is_action(mgmt->frame_control))
2398 return RX_CONTINUE;
2399
2400 /* drop too small frames */
2401 if (len < IEEE80211_MIN_ACTION_SIZE)
2402 return RX_DROP_UNUSABLE;
2403
2404 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2405 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2406 return RX_DROP_UNUSABLE;
2407
2408 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2409 return RX_DROP_UNUSABLE;
2410
2411 switch (mgmt->u.action.category) {
2412 case WLAN_CATEGORY_HT:
2413 /* reject HT action frames from stations not supporting HT */
2414 if (!rx->sta->sta.ht_cap.ht_supported)
2415 goto invalid;
2416
2417 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2418 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2419 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2420 sdata->vif.type != NL80211_IFTYPE_AP &&
2421 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2422 break;
2423
2424 /* verify action & smps_control/chanwidth are present */
2425 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2426 goto invalid;
2427
2428 switch (mgmt->u.action.u.ht_smps.action) {
2429 case WLAN_HT_ACTION_SMPS: {
2430 struct ieee80211_supported_band *sband;
2431 enum ieee80211_smps_mode smps_mode;
2432
2433 /* convert to HT capability */
2434 switch (mgmt->u.action.u.ht_smps.smps_control) {
2435 case WLAN_HT_SMPS_CONTROL_DISABLED:
2436 smps_mode = IEEE80211_SMPS_OFF;
2437 break;
2438 case WLAN_HT_SMPS_CONTROL_STATIC:
2439 smps_mode = IEEE80211_SMPS_STATIC;
2440 break;
2441 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2442 smps_mode = IEEE80211_SMPS_DYNAMIC;
2443 break;
2444 default:
2445 goto invalid;
2446 }
2447
2448 /* if no change do nothing */
2449 if (rx->sta->sta.smps_mode == smps_mode)
2450 goto handled;
2451 rx->sta->sta.smps_mode = smps_mode;
2452
2453 sband = rx->local->hw.wiphy->bands[status->band];
2454
2455 rate_control_rate_update(local, sband, rx->sta,
2456 IEEE80211_RC_SMPS_CHANGED);
2457 goto handled;
2458 }
2459 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2460 struct ieee80211_supported_band *sband;
2461 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2462 enum ieee80211_sta_rx_bandwidth new_bw;
2463
2464 /* If it doesn't support 40 MHz it can't change ... */
2465 if (!(rx->sta->sta.ht_cap.cap &
2466 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2467 goto handled;
2468
2469 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2470 new_bw = IEEE80211_STA_RX_BW_20;
2471 else
2472 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2473
2474 if (rx->sta->sta.bandwidth == new_bw)
2475 goto handled;
2476
2477 sband = rx->local->hw.wiphy->bands[status->band];
2478
2479 rate_control_rate_update(local, sband, rx->sta,
2480 IEEE80211_RC_BW_CHANGED);
2481 goto handled;
2482 }
2483 default:
2484 goto invalid;
2485 }
2486
2487 break;
2488 case WLAN_CATEGORY_PUBLIC:
2489 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2490 goto invalid;
2491 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2492 break;
2493 if (!rx->sta)
2494 break;
2495 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2496 break;
2497 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2498 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2499 break;
2500 if (len < offsetof(struct ieee80211_mgmt,
2501 u.action.u.ext_chan_switch.variable))
2502 goto invalid;
2503 goto queue;
2504 case WLAN_CATEGORY_VHT:
2505 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2506 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2507 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2508 sdata->vif.type != NL80211_IFTYPE_AP &&
2509 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2510 break;
2511
2512 /* verify action code is present */
2513 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2514 goto invalid;
2515
2516 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2517 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2518 u8 opmode;
2519
2520 /* verify opmode is present */
2521 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2522 goto invalid;
2523
2524 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2525
2526 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2527 opmode, status->band,
2528 false);
2529 goto handled;
2530 }
2531 default:
2532 break;
2533 }
2534 break;
2535 case WLAN_CATEGORY_BACK:
2536 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2537 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2538 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2539 sdata->vif.type != NL80211_IFTYPE_AP &&
2540 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2541 break;
2542
2543 /* verify action_code is present */
2544 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2545 break;
2546
2547 switch (mgmt->u.action.u.addba_req.action_code) {
2548 case WLAN_ACTION_ADDBA_REQ:
2549 if (len < (IEEE80211_MIN_ACTION_SIZE +
2550 sizeof(mgmt->u.action.u.addba_req)))
2551 goto invalid;
2552 break;
2553 case WLAN_ACTION_ADDBA_RESP:
2554 if (len < (IEEE80211_MIN_ACTION_SIZE +
2555 sizeof(mgmt->u.action.u.addba_resp)))
2556 goto invalid;
2557 break;
2558 case WLAN_ACTION_DELBA:
2559 if (len < (IEEE80211_MIN_ACTION_SIZE +
2560 sizeof(mgmt->u.action.u.delba)))
2561 goto invalid;
2562 break;
2563 default:
2564 goto invalid;
2565 }
2566
2567 goto queue;
2568 case WLAN_CATEGORY_SPECTRUM_MGMT:
2569 if (status->band != IEEE80211_BAND_5GHZ)
2570 break;
2571
2572 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2573 break;
2574
2575 /* verify action_code is present */
2576 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2577 break;
2578
2579 switch (mgmt->u.action.u.measurement.action_code) {
2580 case WLAN_ACTION_SPCT_MSR_REQ:
2581 if (len < (IEEE80211_MIN_ACTION_SIZE +
2582 sizeof(mgmt->u.action.u.measurement)))
2583 break;
2584 ieee80211_process_measurement_req(sdata, mgmt, len);
2585 goto handled;
2586 case WLAN_ACTION_SPCT_CHL_SWITCH:
2587 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2588 break;
2589
2590 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2591 break;
2592
2593 goto queue;
2594 }
2595 break;
2596 case WLAN_CATEGORY_SA_QUERY:
2597 if (len < (IEEE80211_MIN_ACTION_SIZE +
2598 sizeof(mgmt->u.action.u.sa_query)))
2599 break;
2600
2601 switch (mgmt->u.action.u.sa_query.action) {
2602 case WLAN_ACTION_SA_QUERY_REQUEST:
2603 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2604 break;
2605 ieee80211_process_sa_query_req(sdata, mgmt, len);
2606 goto handled;
2607 }
2608 break;
2609 case WLAN_CATEGORY_SELF_PROTECTED:
2610 if (len < (IEEE80211_MIN_ACTION_SIZE +
2611 sizeof(mgmt->u.action.u.self_prot.action_code)))
2612 break;
2613
2614 switch (mgmt->u.action.u.self_prot.action_code) {
2615 case WLAN_SP_MESH_PEERING_OPEN:
2616 case WLAN_SP_MESH_PEERING_CLOSE:
2617 case WLAN_SP_MESH_PEERING_CONFIRM:
2618 if (!ieee80211_vif_is_mesh(&sdata->vif))
2619 goto invalid;
2620 if (sdata->u.mesh.user_mpm)
2621 /* userspace handles this frame */
2622 break;
2623 goto queue;
2624 case WLAN_SP_MGK_INFORM:
2625 case WLAN_SP_MGK_ACK:
2626 if (!ieee80211_vif_is_mesh(&sdata->vif))
2627 goto invalid;
2628 break;
2629 }
2630 break;
2631 case WLAN_CATEGORY_MESH_ACTION:
2632 if (len < (IEEE80211_MIN_ACTION_SIZE +
2633 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2634 break;
2635
2636 if (!ieee80211_vif_is_mesh(&sdata->vif))
2637 break;
2638 if (mesh_action_is_path_sel(mgmt) &&
2639 !mesh_path_sel_is_hwmp(sdata))
2640 break;
2641 goto queue;
2642 }
2643
2644 return RX_CONTINUE;
2645
2646 invalid:
2647 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2648 /* will return in the next handlers */
2649 return RX_CONTINUE;
2650
2651 handled:
2652 if (rx->sta)
2653 rx->sta->rx_packets++;
2654 dev_kfree_skb(rx->skb);
2655 return RX_QUEUED;
2656
2657 queue:
2658 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2659 skb_queue_tail(&sdata->skb_queue, rx->skb);
2660 ieee80211_queue_work(&local->hw, &sdata->work);
2661 if (rx->sta)
2662 rx->sta->rx_packets++;
2663 return RX_QUEUED;
2664 }
2665
2666 static ieee80211_rx_result debug_noinline
2667 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2668 {
2669 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2670 int sig = 0;
2671
2672 /* skip known-bad action frames and return them in the next handler */
2673 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2674 return RX_CONTINUE;
2675
2676 /*
2677 * Getting here means the kernel doesn't know how to handle
2678 * it, but maybe userspace does ... include returned frames
2679 * so userspace can register for those to know whether ones
2680 * it transmitted were processed or returned.
2681 */
2682
2683 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2684 sig = status->signal;
2685
2686 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2687 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2688 if (rx->sta)
2689 rx->sta->rx_packets++;
2690 dev_kfree_skb(rx->skb);
2691 return RX_QUEUED;
2692 }
2693
2694 return RX_CONTINUE;
2695 }
2696
2697 static ieee80211_rx_result debug_noinline
2698 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2699 {
2700 struct ieee80211_local *local = rx->local;
2701 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2702 struct sk_buff *nskb;
2703 struct ieee80211_sub_if_data *sdata = rx->sdata;
2704 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2705
2706 if (!ieee80211_is_action(mgmt->frame_control))
2707 return RX_CONTINUE;
2708
2709 /*
2710 * For AP mode, hostapd is responsible for handling any action
2711 * frames that we didn't handle, including returning unknown
2712 * ones. For all other modes we will return them to the sender,
2713 * setting the 0x80 bit in the action category, as required by
2714 * 802.11-2012 9.24.4.
2715 * Newer versions of hostapd shall also use the management frame
2716 * registration mechanisms, but older ones still use cooked
2717 * monitor interfaces so push all frames there.
2718 */
2719 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2720 (sdata->vif.type == NL80211_IFTYPE_AP ||
2721 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2722 return RX_DROP_MONITOR;
2723
2724 if (is_multicast_ether_addr(mgmt->da))
2725 return RX_DROP_MONITOR;
2726
2727 /* do not return rejected action frames */
2728 if (mgmt->u.action.category & 0x80)
2729 return RX_DROP_UNUSABLE;
2730
2731 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2732 GFP_ATOMIC);
2733 if (nskb) {
2734 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2735
2736 nmgmt->u.action.category |= 0x80;
2737 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2738 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2739
2740 memset(nskb->cb, 0, sizeof(nskb->cb));
2741
2742 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2743 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2744
2745 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2746 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2747 IEEE80211_TX_CTL_NO_CCK_RATE;
2748 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2749 info->hw_queue =
2750 local->hw.offchannel_tx_hw_queue;
2751 }
2752
2753 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2754 status->band);
2755 }
2756 dev_kfree_skb(rx->skb);
2757 return RX_QUEUED;
2758 }
2759
2760 static ieee80211_rx_result debug_noinline
2761 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2762 {
2763 struct ieee80211_sub_if_data *sdata = rx->sdata;
2764 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2765 __le16 stype;
2766
2767 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2768
2769 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2770 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2771 sdata->vif.type != NL80211_IFTYPE_STATION)
2772 return RX_DROP_MONITOR;
2773
2774 switch (stype) {
2775 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2776 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2777 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2778 /* process for all: mesh, mlme, ibss */
2779 break;
2780 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2781 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2782 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2783 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2784 if (is_multicast_ether_addr(mgmt->da) &&
2785 !is_broadcast_ether_addr(mgmt->da))
2786 return RX_DROP_MONITOR;
2787
2788 /* process only for station */
2789 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2790 return RX_DROP_MONITOR;
2791 break;
2792 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2793 /* process only for ibss and mesh */
2794 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2795 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2796 return RX_DROP_MONITOR;
2797 break;
2798 default:
2799 return RX_DROP_MONITOR;
2800 }
2801
2802 /* queue up frame and kick off work to process it */
2803 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2804 skb_queue_tail(&sdata->skb_queue, rx->skb);
2805 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2806 if (rx->sta)
2807 rx->sta->rx_packets++;
2808
2809 return RX_QUEUED;
2810 }
2811
2812 /* TODO: use IEEE80211_RX_FRAGMENTED */
2813 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2814 struct ieee80211_rate *rate)
2815 {
2816 struct ieee80211_sub_if_data *sdata;
2817 struct ieee80211_local *local = rx->local;
2818 struct sk_buff *skb = rx->skb, *skb2;
2819 struct net_device *prev_dev = NULL;
2820 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2821 int needed_headroom;
2822
2823 /*
2824 * If cooked monitor has been processed already, then
2825 * don't do it again. If not, set the flag.
2826 */
2827 if (rx->flags & IEEE80211_RX_CMNTR)
2828 goto out_free_skb;
2829 rx->flags |= IEEE80211_RX_CMNTR;
2830
2831 /* If there are no cooked monitor interfaces, just free the SKB */
2832 if (!local->cooked_mntrs)
2833 goto out_free_skb;
2834
2835 /* room for the radiotap header based on driver features */
2836 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2837
2838 if (skb_headroom(skb) < needed_headroom &&
2839 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2840 goto out_free_skb;
2841
2842 /* prepend radiotap information */
2843 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2844 false);
2845
2846 skb_set_mac_header(skb, 0);
2847 skb->ip_summed = CHECKSUM_UNNECESSARY;
2848 skb->pkt_type = PACKET_OTHERHOST;
2849 skb->protocol = htons(ETH_P_802_2);
2850
2851 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2852 if (!ieee80211_sdata_running(sdata))
2853 continue;
2854
2855 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2856 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2857 continue;
2858
2859 if (prev_dev) {
2860 skb2 = skb_clone(skb, GFP_ATOMIC);
2861 if (skb2) {
2862 skb2->dev = prev_dev;
2863 netif_receive_skb(skb2);
2864 }
2865 }
2866
2867 prev_dev = sdata->dev;
2868 sdata->dev->stats.rx_packets++;
2869 sdata->dev->stats.rx_bytes += skb->len;
2870 }
2871
2872 if (prev_dev) {
2873 skb->dev = prev_dev;
2874 netif_receive_skb(skb);
2875 return;
2876 }
2877
2878 out_free_skb:
2879 dev_kfree_skb(skb);
2880 }
2881
2882 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2883 ieee80211_rx_result res)
2884 {
2885 switch (res) {
2886 case RX_DROP_MONITOR:
2887 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2888 if (rx->sta)
2889 rx->sta->rx_dropped++;
2890 /* fall through */
2891 case RX_CONTINUE: {
2892 struct ieee80211_rate *rate = NULL;
2893 struct ieee80211_supported_band *sband;
2894 struct ieee80211_rx_status *status;
2895
2896 status = IEEE80211_SKB_RXCB((rx->skb));
2897
2898 sband = rx->local->hw.wiphy->bands[status->band];
2899 if (!(status->flag & RX_FLAG_HT) &&
2900 !(status->flag & RX_FLAG_VHT))
2901 rate = &sband->bitrates[status->rate_idx];
2902
2903 ieee80211_rx_cooked_monitor(rx, rate);
2904 break;
2905 }
2906 case RX_DROP_UNUSABLE:
2907 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2908 if (rx->sta)
2909 rx->sta->rx_dropped++;
2910 dev_kfree_skb(rx->skb);
2911 break;
2912 case RX_QUEUED:
2913 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2914 break;
2915 }
2916 }
2917
2918 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2919 struct sk_buff_head *frames)
2920 {
2921 ieee80211_rx_result res = RX_DROP_MONITOR;
2922 struct sk_buff *skb;
2923
2924 #define CALL_RXH(rxh) \
2925 do { \
2926 res = rxh(rx); \
2927 if (res != RX_CONTINUE) \
2928 goto rxh_next; \
2929 } while (0);
2930
2931 spin_lock_bh(&rx->local->rx_path_lock);
2932
2933 while ((skb = __skb_dequeue(frames))) {
2934 /*
2935 * all the other fields are valid across frames
2936 * that belong to an aMPDU since they are on the
2937 * same TID from the same station
2938 */
2939 rx->skb = skb;
2940
2941 CALL_RXH(ieee80211_rx_h_check_more_data)
2942 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2943 CALL_RXH(ieee80211_rx_h_sta_process)
2944 CALL_RXH(ieee80211_rx_h_decrypt)
2945 CALL_RXH(ieee80211_rx_h_defragment)
2946 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2947 /* must be after MMIC verify so header is counted in MPDU mic */
2948 #ifdef CONFIG_MAC80211_MESH
2949 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2950 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2951 #endif
2952 CALL_RXH(ieee80211_rx_h_amsdu)
2953 CALL_RXH(ieee80211_rx_h_data)
2954
2955 /* special treatment -- needs the queue */
2956 res = ieee80211_rx_h_ctrl(rx, frames);
2957 if (res != RX_CONTINUE)
2958 goto rxh_next;
2959
2960 CALL_RXH(ieee80211_rx_h_mgmt_check)
2961 CALL_RXH(ieee80211_rx_h_action)
2962 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2963 CALL_RXH(ieee80211_rx_h_action_return)
2964 CALL_RXH(ieee80211_rx_h_mgmt)
2965
2966 rxh_next:
2967 ieee80211_rx_handlers_result(rx, res);
2968
2969 #undef CALL_RXH
2970 }
2971
2972 spin_unlock_bh(&rx->local->rx_path_lock);
2973 }
2974
2975 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2976 {
2977 struct sk_buff_head reorder_release;
2978 ieee80211_rx_result res = RX_DROP_MONITOR;
2979
2980 __skb_queue_head_init(&reorder_release);
2981
2982 #define CALL_RXH(rxh) \
2983 do { \
2984 res = rxh(rx); \
2985 if (res != RX_CONTINUE) \
2986 goto rxh_next; \
2987 } while (0);
2988
2989 CALL_RXH(ieee80211_rx_h_check)
2990
2991 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2992
2993 ieee80211_rx_handlers(rx, &reorder_release);
2994 return;
2995
2996 rxh_next:
2997 ieee80211_rx_handlers_result(rx, res);
2998
2999 #undef CALL_RXH
3000 }
3001
3002 /*
3003 * This function makes calls into the RX path, therefore
3004 * it has to be invoked under RCU read lock.
3005 */
3006 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3007 {
3008 struct sk_buff_head frames;
3009 struct ieee80211_rx_data rx = {
3010 .sta = sta,
3011 .sdata = sta->sdata,
3012 .local = sta->local,
3013 /* This is OK -- must be QoS data frame */
3014 .security_idx = tid,
3015 .seqno_idx = tid,
3016 .flags = 0,
3017 };
3018 struct tid_ampdu_rx *tid_agg_rx;
3019
3020 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3021 if (!tid_agg_rx)
3022 return;
3023
3024 __skb_queue_head_init(&frames);
3025
3026 spin_lock(&tid_agg_rx->reorder_lock);
3027 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3028 spin_unlock(&tid_agg_rx->reorder_lock);
3029
3030 ieee80211_rx_handlers(&rx, &frames);
3031 }
3032
3033 /* main receive path */
3034
3035 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
3036 struct ieee80211_hdr *hdr)
3037 {
3038 struct ieee80211_sub_if_data *sdata = rx->sdata;
3039 struct sk_buff *skb = rx->skb;
3040 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3041 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3042 int multicast = is_multicast_ether_addr(hdr->addr1);
3043
3044 switch (sdata->vif.type) {
3045 case NL80211_IFTYPE_STATION:
3046 if (!bssid && !sdata->u.mgd.use_4addr)
3047 return 0;
3048 if (!multicast &&
3049 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3050 if (!(sdata->dev->flags & IFF_PROMISC) ||
3051 sdata->u.mgd.use_4addr)
3052 return 0;
3053 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3054 }
3055 break;
3056 case NL80211_IFTYPE_ADHOC:
3057 if (!bssid)
3058 return 0;
3059 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3060 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3061 return 0;
3062 if (ieee80211_is_beacon(hdr->frame_control)) {
3063 return 1;
3064 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3065 return 0;
3066 } else if (!multicast &&
3067 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3068 if (!(sdata->dev->flags & IFF_PROMISC))
3069 return 0;
3070 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3071 } else if (!rx->sta) {
3072 int rate_idx;
3073 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3074 rate_idx = 0; /* TODO: HT/VHT rates */
3075 else
3076 rate_idx = status->rate_idx;
3077 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3078 BIT(rate_idx));
3079 }
3080 break;
3081 case NL80211_IFTYPE_MESH_POINT:
3082 if (!multicast &&
3083 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3084 if (!(sdata->dev->flags & IFF_PROMISC))
3085 return 0;
3086
3087 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3088 }
3089 break;
3090 case NL80211_IFTYPE_AP_VLAN:
3091 case NL80211_IFTYPE_AP:
3092 if (!bssid) {
3093 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3094 return 0;
3095 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3096 /*
3097 * Accept public action frames even when the
3098 * BSSID doesn't match, this is used for P2P
3099 * and location updates. Note that mac80211
3100 * itself never looks at these frames.
3101 */
3102 if (!multicast &&
3103 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3104 return 0;
3105 if (ieee80211_is_public_action(hdr, skb->len))
3106 return 1;
3107 if (!ieee80211_is_beacon(hdr->frame_control))
3108 return 0;
3109 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3110 }
3111 break;
3112 case NL80211_IFTYPE_WDS:
3113 if (bssid || !ieee80211_is_data(hdr->frame_control))
3114 return 0;
3115 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3116 return 0;
3117 break;
3118 case NL80211_IFTYPE_P2P_DEVICE:
3119 if (!ieee80211_is_public_action(hdr, skb->len) &&
3120 !ieee80211_is_probe_req(hdr->frame_control) &&
3121 !ieee80211_is_probe_resp(hdr->frame_control) &&
3122 !ieee80211_is_beacon(hdr->frame_control))
3123 return 0;
3124 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3125 !multicast)
3126 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3127 break;
3128 default:
3129 /* should never get here */
3130 WARN_ON_ONCE(1);
3131 break;
3132 }
3133
3134 return 1;
3135 }
3136
3137 /*
3138 * This function returns whether or not the SKB
3139 * was destined for RX processing or not, which,
3140 * if consume is true, is equivalent to whether
3141 * or not the skb was consumed.
3142 */
3143 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3144 struct sk_buff *skb, bool consume)
3145 {
3146 struct ieee80211_local *local = rx->local;
3147 struct ieee80211_sub_if_data *sdata = rx->sdata;
3148 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3149 struct ieee80211_hdr *hdr = (void *)skb->data;
3150 int prepares;
3151
3152 rx->skb = skb;
3153 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3154 prepares = prepare_for_handlers(rx, hdr);
3155
3156 if (!prepares)
3157 return false;
3158
3159 if (!consume) {
3160 skb = skb_copy(skb, GFP_ATOMIC);
3161 if (!skb) {
3162 if (net_ratelimit())
3163 wiphy_debug(local->hw.wiphy,
3164 "failed to copy skb for %s\n",
3165 sdata->name);
3166 return true;
3167 }
3168
3169 rx->skb = skb;
3170 }
3171
3172 ieee80211_invoke_rx_handlers(rx);
3173 return true;
3174 }
3175
3176 /*
3177 * This is the actual Rx frames handler. as it blongs to Rx path it must
3178 * be called with rcu_read_lock protection.
3179 */
3180 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3181 struct sk_buff *skb)
3182 {
3183 struct ieee80211_local *local = hw_to_local(hw);
3184 struct ieee80211_sub_if_data *sdata;
3185 struct ieee80211_hdr *hdr;
3186 __le16 fc;
3187 struct ieee80211_rx_data rx;
3188 struct ieee80211_sub_if_data *prev;
3189 struct sta_info *sta, *tmp, *prev_sta;
3190 int err = 0;
3191
3192 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3193 memset(&rx, 0, sizeof(rx));
3194 rx.skb = skb;
3195 rx.local = local;
3196
3197 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3198 local->dot11ReceivedFragmentCount++;
3199
3200 if (ieee80211_is_mgmt(fc)) {
3201 /* drop frame if too short for header */
3202 if (skb->len < ieee80211_hdrlen(fc))
3203 err = -ENOBUFS;
3204 else
3205 err = skb_linearize(skb);
3206 } else {
3207 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3208 }
3209
3210 if (err) {
3211 dev_kfree_skb(skb);
3212 return;
3213 }
3214
3215 hdr = (struct ieee80211_hdr *)skb->data;
3216 ieee80211_parse_qos(&rx);
3217 ieee80211_verify_alignment(&rx);
3218
3219 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3220 ieee80211_is_beacon(hdr->frame_control)))
3221 ieee80211_scan_rx(local, skb);
3222
3223 if (ieee80211_is_data(fc)) {
3224 prev_sta = NULL;
3225
3226 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3227 if (!prev_sta) {
3228 prev_sta = sta;
3229 continue;
3230 }
3231
3232 rx.sta = prev_sta;
3233 rx.sdata = prev_sta->sdata;
3234 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3235
3236 prev_sta = sta;
3237 }
3238
3239 if (prev_sta) {
3240 rx.sta = prev_sta;
3241 rx.sdata = prev_sta->sdata;
3242
3243 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3244 return;
3245 goto out;
3246 }
3247 }
3248
3249 prev = NULL;
3250
3251 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3252 if (!ieee80211_sdata_running(sdata))
3253 continue;
3254
3255 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3256 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3257 continue;
3258
3259 /*
3260 * frame is destined for this interface, but if it's
3261 * not also for the previous one we handle that after
3262 * the loop to avoid copying the SKB once too much
3263 */
3264
3265 if (!prev) {
3266 prev = sdata;
3267 continue;
3268 }
3269
3270 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3271 rx.sdata = prev;
3272 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3273
3274 prev = sdata;
3275 }
3276
3277 if (prev) {
3278 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3279 rx.sdata = prev;
3280
3281 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3282 return;
3283 }
3284
3285 out:
3286 dev_kfree_skb(skb);
3287 }
3288
3289 /*
3290 * This is the receive path handler. It is called by a low level driver when an
3291 * 802.11 MPDU is received from the hardware.
3292 */
3293 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3294 {
3295 struct ieee80211_local *local = hw_to_local(hw);
3296 struct ieee80211_rate *rate = NULL;
3297 struct ieee80211_supported_band *sband;
3298 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3299
3300 WARN_ON_ONCE(softirq_count() == 0);
3301
3302 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3303 goto drop;
3304
3305 sband = local->hw.wiphy->bands[status->band];
3306 if (WARN_ON(!sband))
3307 goto drop;
3308
3309 /*
3310 * If we're suspending, it is possible although not too likely
3311 * that we'd be receiving frames after having already partially
3312 * quiesced the stack. We can't process such frames then since
3313 * that might, for example, cause stations to be added or other
3314 * driver callbacks be invoked.
3315 */
3316 if (unlikely(local->quiescing || local->suspended))
3317 goto drop;
3318
3319 /* We might be during a HW reconfig, prevent Rx for the same reason */
3320 if (unlikely(local->in_reconfig))
3321 goto drop;
3322
3323 /*
3324 * The same happens when we're not even started,
3325 * but that's worth a warning.
3326 */
3327 if (WARN_ON(!local->started))
3328 goto drop;
3329
3330 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3331 /*
3332 * Validate the rate, unless a PLCP error means that
3333 * we probably can't have a valid rate here anyway.
3334 */
3335
3336 if (status->flag & RX_FLAG_HT) {
3337 /*
3338 * rate_idx is MCS index, which can be [0-76]
3339 * as documented on:
3340 *
3341 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3342 *
3343 * Anything else would be some sort of driver or
3344 * hardware error. The driver should catch hardware
3345 * errors.
3346 */
3347 if (WARN(status->rate_idx > 76,
3348 "Rate marked as an HT rate but passed "
3349 "status->rate_idx is not "
3350 "an MCS index [0-76]: %d (0x%02x)\n",
3351 status->rate_idx,
3352 status->rate_idx))
3353 goto drop;
3354 } else if (status->flag & RX_FLAG_VHT) {
3355 if (WARN_ONCE(status->rate_idx > 9 ||
3356 !status->vht_nss ||
3357 status->vht_nss > 8,
3358 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3359 status->rate_idx, status->vht_nss))
3360 goto drop;
3361 } else {
3362 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3363 goto drop;
3364 rate = &sband->bitrates[status->rate_idx];
3365 }
3366 }
3367
3368 status->rx_flags = 0;
3369
3370 /*
3371 * key references and virtual interfaces are protected using RCU
3372 * and this requires that we are in a read-side RCU section during
3373 * receive processing
3374 */
3375 rcu_read_lock();
3376
3377 /*
3378 * Frames with failed FCS/PLCP checksum are not returned,
3379 * all other frames are returned without radiotap header
3380 * if it was previously present.
3381 * Also, frames with less than 16 bytes are dropped.
3382 */
3383 skb = ieee80211_rx_monitor(local, skb, rate);
3384 if (!skb) {
3385 rcu_read_unlock();
3386 return;
3387 }
3388
3389 ieee80211_tpt_led_trig_rx(local,
3390 ((struct ieee80211_hdr *)skb->data)->frame_control,
3391 skb->len);
3392 __ieee80211_rx_handle_packet(hw, skb);
3393
3394 rcu_read_unlock();
3395
3396 return;
3397 drop:
3398 kfree_skb(skb);
3399 }
3400 EXPORT_SYMBOL(ieee80211_rx);
3401
3402 /* This is a version of the rx handler that can be called from hard irq
3403 * context. Post the skb on the queue and schedule the tasklet */
3404 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3405 {
3406 struct ieee80211_local *local = hw_to_local(hw);
3407
3408 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3409
3410 skb->pkt_type = IEEE80211_RX_MSG;
3411 skb_queue_tail(&local->skb_queue, skb);
3412 tasklet_schedule(&local->tasklet);
3413 }
3414 EXPORT_SYMBOL(ieee80211_rx_irqsafe);