]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/rx.c
Merge branches 'amba', 'fixes', 'kees', 'misc' and 'unstable/sa11x0' into for-next
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
58
59 return skb;
60 }
61
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
81 }
82
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
86 {
87 int len;
88
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 8;
91
92 /* allocate extra bitmaps */
93 if (status->vendor_radiotap_len)
94 len += 4;
95 if (status->chains)
96 len += 4 * hweight8(status->chains);
97
98 if (ieee80211_have_rx_timestamp(status)) {
99 len = ALIGN(len, 8);
100 len += 8;
101 }
102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 len += 1;
104
105 /* antenna field, if we don't have per-chain info */
106 if (!status->chains)
107 len += 1;
108
109 /* padding for RX_FLAGS if necessary */
110 len = ALIGN(len, 2);
111
112 if (status->flag & RX_FLAG_HT) /* HT info */
113 len += 3;
114
115 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 len = ALIGN(len, 4);
117 len += 8;
118 }
119
120 if (status->flag & RX_FLAG_VHT) {
121 len = ALIGN(len, 2);
122 len += 12;
123 }
124
125 if (status->chains) {
126 /* antenna and antenna signal fields */
127 len += 2 * hweight8(status->chains);
128 }
129
130 if (status->vendor_radiotap_len) {
131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 status->vendor_radiotap_align = 1;
133 /* align standard part of vendor namespace */
134 len = ALIGN(len, 2);
135 /* allocate standard part of vendor namespace */
136 len += 6;
137 /* align vendor-defined part */
138 len = ALIGN(len, status->vendor_radiotap_align);
139 /* vendor-defined part is already in skb */
140 }
141
142 return len;
143 }
144
145 /*
146 * ieee80211_add_rx_radiotap_header - add radiotap header
147 *
148 * add a radiotap header containing all the fields which the hardware provided.
149 */
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 struct sk_buff *skb,
153 struct ieee80211_rate *rate,
154 int rtap_len, bool has_fcs)
155 {
156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 struct ieee80211_radiotap_header *rthdr;
158 unsigned char *pos;
159 __le32 *it_present;
160 u32 it_present_val;
161 u16 rx_flags = 0;
162 u16 channel_flags = 0;
163 int mpdulen, chain;
164 unsigned long chains = status->chains;
165
166 mpdulen = skb->len;
167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 mpdulen += FCS_LEN;
169
170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 memset(rthdr, 0, rtap_len);
172 it_present = &rthdr->it_present;
173
174 /* radiotap header, set always present flags */
175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
179
180 if (!status->chains)
181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
182
183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 it_present_val |=
185 BIT(IEEE80211_RADIOTAP_EXT) |
186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 put_unaligned_le32(it_present_val, it_present);
188 it_present++;
189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
191 }
192
193 if (status->vendor_radiotap_len) {
194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 BIT(IEEE80211_RADIOTAP_EXT);
196 put_unaligned_le32(it_present_val, it_present);
197 it_present++;
198 it_present_val = status->vendor_radiotap_bitmap;
199 }
200
201 put_unaligned_le32(it_present_val, it_present);
202
203 pos = (void *)(it_present + 1);
204
205 /* the order of the following fields is important */
206
207 /* IEEE80211_RADIOTAP_TSFT */
208 if (ieee80211_have_rx_timestamp(status)) {
209 /* padding */
210 while ((pos - (u8 *)rthdr) & 7)
211 *pos++ = 0;
212 put_unaligned_le64(
213 ieee80211_calculate_rx_timestamp(local, status,
214 mpdulen, 0),
215 pos);
216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 pos += 8;
218 }
219
220 /* IEEE80211_RADIOTAP_FLAGS */
221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 *pos |= IEEE80211_RADIOTAP_F_FCS;
223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 if (status->flag & RX_FLAG_SHORTPRE)
226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 pos++;
228
229 /* IEEE80211_RADIOTAP_RATE */
230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
231 /*
232 * Without rate information don't add it. If we have,
233 * MCS information is a separate field in radiotap,
234 * added below. The byte here is needed as padding
235 * for the channel though, so initialise it to 0.
236 */
237 *pos = 0;
238 } else {
239 int shift = 0;
240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 if (status->flag & RX_FLAG_10MHZ)
242 shift = 1;
243 else if (status->flag & RX_FLAG_5MHZ)
244 shift = 2;
245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
246 }
247 pos++;
248
249 /* IEEE80211_RADIOTAP_CHANNEL */
250 put_unaligned_le16(status->freq, pos);
251 pos += 2;
252 if (status->flag & RX_FLAG_10MHZ)
253 channel_flags |= IEEE80211_CHAN_HALF;
254 else if (status->flag & RX_FLAG_5MHZ)
255 channel_flags |= IEEE80211_CHAN_QUARTER;
256
257 if (status->band == IEEE80211_BAND_5GHZ)
258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 else if (rate)
264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 else
266 channel_flags |= IEEE80211_CHAN_2GHZ;
267 put_unaligned_le16(channel_flags, pos);
268 pos += 2;
269
270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 *pos = status->signal;
274 rthdr->it_present |=
275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 pos++;
277 }
278
279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
280
281 if (!status->chains) {
282 /* IEEE80211_RADIOTAP_ANTENNA */
283 *pos = status->antenna;
284 pos++;
285 }
286
287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
288
289 /* IEEE80211_RADIOTAP_RX_FLAGS */
290 /* ensure 2 byte alignment for the 2 byte field as required */
291 if ((pos - (u8 *)rthdr) & 1)
292 *pos++ = 0;
293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 put_unaligned_le16(rx_flags, pos);
296 pos += 2;
297
298 if (status->flag & RX_FLAG_HT) {
299 unsigned int stbc;
300
301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 *pos++ = local->hw.radiotap_mcs_details;
303 *pos = 0;
304 if (status->flag & RX_FLAG_SHORT_GI)
305 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 if (status->flag & RX_FLAG_40MHZ)
307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 if (status->flag & RX_FLAG_HT_GF)
309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 pos++;
313 *pos++ = status->rate_idx;
314 }
315
316 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 u16 flags = 0;
318
319 /* ensure 4 byte alignment */
320 while ((pos - (u8 *)rthdr) & 3)
321 pos++;
322 rthdr->it_present |=
323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 put_unaligned_le32(status->ampdu_reference, pos);
325 pos += 4;
326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 put_unaligned_le16(flags, pos);
339 pos += 2;
340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 *pos++ = status->ampdu_delimiter_crc;
342 else
343 *pos++ = 0;
344 *pos++ = 0;
345 }
346
347 if (status->flag & RX_FLAG_VHT) {
348 u16 known = local->hw.radiotap_vht_details;
349
350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 /* known field - how to handle 80+80? */
352 if (status->flag & RX_FLAG_80P80MHZ)
353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 put_unaligned_le16(known, pos);
355 pos += 2;
356 /* flags */
357 if (status->flag & RX_FLAG_SHORT_GI)
358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 pos++;
360 /* bandwidth */
361 if (status->flag & RX_FLAG_80MHZ)
362 *pos++ = 4;
363 else if (status->flag & RX_FLAG_80P80MHZ)
364 *pos++ = 0; /* marked not known above */
365 else if (status->flag & RX_FLAG_160MHZ)
366 *pos++ = 11;
367 else if (status->flag & RX_FLAG_40MHZ)
368 *pos++ = 1;
369 else /* 20 MHz */
370 *pos++ = 0;
371 /* MCS/NSS */
372 *pos = (status->rate_idx << 4) | status->vht_nss;
373 pos += 4;
374 /* coding field */
375 pos++;
376 /* group ID */
377 pos++;
378 /* partial_aid */
379 pos += 2;
380 }
381
382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 *pos++ = status->chain_signal[chain];
384 *pos++ = chain;
385 }
386
387 if (status->vendor_radiotap_len) {
388 /* ensure 2 byte alignment for the vendor field as required */
389 if ((pos - (u8 *)rthdr) & 1)
390 *pos++ = 0;
391 *pos++ = status->vendor_radiotap_oui[0];
392 *pos++ = status->vendor_radiotap_oui[1];
393 *pos++ = status->vendor_radiotap_oui[2];
394 *pos++ = status->vendor_radiotap_subns;
395 put_unaligned_le16(status->vendor_radiotap_len, pos);
396 pos += 2;
397 /* align the actual payload as requested */
398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 *pos++ = 0;
400 }
401 }
402
403 /*
404 * This function copies a received frame to all monitor interfaces and
405 * returns a cleaned-up SKB that no longer includes the FCS nor the
406 * radiotap header the driver might have added.
407 */
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 struct ieee80211_rate *rate)
411 {
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 struct ieee80211_sub_if_data *sdata;
414 int needed_headroom;
415 struct sk_buff *skb, *skb2;
416 struct net_device *prev_dev = NULL;
417 int present_fcs_len = 0;
418
419 /*
420 * First, we may need to make a copy of the skb because
421 * (1) we need to modify it for radiotap (if not present), and
422 * (2) the other RX handlers will modify the skb we got.
423 *
424 * We don't need to, of course, if we aren't going to return
425 * the SKB because it has a bad FCS/PLCP checksum.
426 */
427
428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 present_fcs_len = FCS_LEN;
430
431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 dev_kfree_skb(origskb);
434 return NULL;
435 }
436
437 if (!local->monitors) {
438 if (should_drop_frame(origskb, present_fcs_len)) {
439 dev_kfree_skb(origskb);
440 return NULL;
441 }
442
443 return remove_monitor_info(local, origskb);
444 }
445
446 /* room for the radiotap header based on driver features */
447 needed_headroom = ieee80211_rx_radiotap_space(local, status);
448
449 if (should_drop_frame(origskb, present_fcs_len)) {
450 /* only need to expand headroom if necessary */
451 skb = origskb;
452 origskb = NULL;
453
454 /*
455 * This shouldn't trigger often because most devices have an
456 * RX header they pull before we get here, and that should
457 * be big enough for our radiotap information. We should
458 * probably export the length to drivers so that we can have
459 * them allocate enough headroom to start with.
460 */
461 if (skb_headroom(skb) < needed_headroom &&
462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 dev_kfree_skb(skb);
464 return NULL;
465 }
466 } else {
467 /*
468 * Need to make a copy and possibly remove radiotap header
469 * and FCS from the original.
470 */
471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
472
473 origskb = remove_monitor_info(local, origskb);
474
475 if (!skb)
476 return origskb;
477 }
478
479 /* prepend radiotap information */
480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 true);
482
483 skb_reset_mac_header(skb);
484 skb->ip_summed = CHECKSUM_UNNECESSARY;
485 skb->pkt_type = PACKET_OTHERHOST;
486 skb->protocol = htons(ETH_P_802_2);
487
488 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 continue;
491
492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 continue;
494
495 if (!ieee80211_sdata_running(sdata))
496 continue;
497
498 if (prev_dev) {
499 skb2 = skb_clone(skb, GFP_ATOMIC);
500 if (skb2) {
501 skb2->dev = prev_dev;
502 netif_receive_skb(skb2);
503 }
504 }
505
506 prev_dev = sdata->dev;
507 sdata->dev->stats.rx_packets++;
508 sdata->dev->stats.rx_bytes += skb->len;
509 }
510
511 if (prev_dev) {
512 skb->dev = prev_dev;
513 netif_receive_skb(skb);
514 } else
515 dev_kfree_skb(skb);
516
517 return origskb;
518 }
519
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
521 {
522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 int tid, seqno_idx, security_idx;
525
526 /* does the frame have a qos control field? */
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 u8 *qc = ieee80211_get_qos_ctl(hdr);
529 /* frame has qos control */
530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 status->rx_flags |= IEEE80211_RX_AMSDU;
533
534 seqno_idx = tid;
535 security_idx = tid;
536 } else {
537 /*
538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
539 *
540 * Sequence numbers for management frames, QoS data
541 * frames with a broadcast/multicast address in the
542 * Address 1 field, and all non-QoS data frames sent
543 * by QoS STAs are assigned using an additional single
544 * modulo-4096 counter, [...]
545 *
546 * We also use that counter for non-QoS STAs.
547 */
548 seqno_idx = IEEE80211_NUM_TIDS;
549 security_idx = 0;
550 if (ieee80211_is_mgmt(hdr->frame_control))
551 security_idx = IEEE80211_NUM_TIDS;
552 tid = 0;
553 }
554
555 rx->seqno_idx = seqno_idx;
556 rx->security_idx = security_idx;
557 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 * For now, set skb->priority to 0 for other cases. */
559 rx->skb->priority = (tid > 7) ? 0 : tid;
560 }
561
562 /**
563 * DOC: Packet alignment
564 *
565 * Drivers always need to pass packets that are aligned to two-byte boundaries
566 * to the stack.
567 *
568 * Additionally, should, if possible, align the payload data in a way that
569 * guarantees that the contained IP header is aligned to a four-byte
570 * boundary. In the case of regular frames, this simply means aligning the
571 * payload to a four-byte boundary (because either the IP header is directly
572 * contained, or IV/RFC1042 headers that have a length divisible by four are
573 * in front of it). If the payload data is not properly aligned and the
574 * architecture doesn't support efficient unaligned operations, mac80211
575 * will align the data.
576 *
577 * With A-MSDU frames, however, the payload data address must yield two modulo
578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579 * push the IP header further back to a multiple of four again. Thankfully, the
580 * specs were sane enough this time around to require padding each A-MSDU
581 * subframe to a length that is a multiple of four.
582 *
583 * Padding like Atheros hardware adds which is between the 802.11 header and
584 * the payload is not supported, the driver is required to move the 802.11
585 * header to be directly in front of the payload in that case.
586 */
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
588 {
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 WARN_ONCE((unsigned long)rx->skb->data & 1,
591 "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
593 }
594
595
596 /* rx handlers */
597
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
599 {
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
601
602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 return 0;
604
605 return ieee80211_is_robust_mgmt_frame(hdr);
606 }
607
608
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
610 {
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
612
613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 return 0;
615
616 return ieee80211_is_robust_mgmt_frame(hdr);
617 }
618
619
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
622 {
623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 struct ieee80211_mmie *mmie;
625
626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 return -1;
628
629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 return -1; /* not a robust management frame */
631
632 mmie = (struct ieee80211_mmie *)
633 (skb->data + skb->len - sizeof(*mmie));
634 if (mmie->element_id != WLAN_EID_MMIE ||
635 mmie->length != sizeof(*mmie) - 2)
636 return -1;
637
638 return le16_to_cpu(mmie->key_id);
639 }
640
641 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
642 {
643 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
644 char *dev_addr = rx->sdata->vif.addr;
645
646 if (ieee80211_is_data(hdr->frame_control)) {
647 if (is_multicast_ether_addr(hdr->addr1)) {
648 if (ieee80211_has_tods(hdr->frame_control) ||
649 !ieee80211_has_fromds(hdr->frame_control))
650 return RX_DROP_MONITOR;
651 if (ether_addr_equal(hdr->addr3, dev_addr))
652 return RX_DROP_MONITOR;
653 } else {
654 if (!ieee80211_has_a4(hdr->frame_control))
655 return RX_DROP_MONITOR;
656 if (ether_addr_equal(hdr->addr4, dev_addr))
657 return RX_DROP_MONITOR;
658 }
659 }
660
661 /* If there is not an established peer link and this is not a peer link
662 * establisment frame, beacon or probe, drop the frame.
663 */
664
665 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
666 struct ieee80211_mgmt *mgmt;
667
668 if (!ieee80211_is_mgmt(hdr->frame_control))
669 return RX_DROP_MONITOR;
670
671 if (ieee80211_is_action(hdr->frame_control)) {
672 u8 category;
673
674 /* make sure category field is present */
675 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
676 return RX_DROP_MONITOR;
677
678 mgmt = (struct ieee80211_mgmt *)hdr;
679 category = mgmt->u.action.category;
680 if (category != WLAN_CATEGORY_MESH_ACTION &&
681 category != WLAN_CATEGORY_SELF_PROTECTED)
682 return RX_DROP_MONITOR;
683 return RX_CONTINUE;
684 }
685
686 if (ieee80211_is_probe_req(hdr->frame_control) ||
687 ieee80211_is_probe_resp(hdr->frame_control) ||
688 ieee80211_is_beacon(hdr->frame_control) ||
689 ieee80211_is_auth(hdr->frame_control))
690 return RX_CONTINUE;
691
692 return RX_DROP_MONITOR;
693 }
694
695 return RX_CONTINUE;
696 }
697
698 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
699 struct tid_ampdu_rx *tid_agg_rx,
700 int index,
701 struct sk_buff_head *frames)
702 {
703 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
704 struct ieee80211_rx_status *status;
705
706 lockdep_assert_held(&tid_agg_rx->reorder_lock);
707
708 if (!skb)
709 goto no_frame;
710
711 /* release the frame from the reorder ring buffer */
712 tid_agg_rx->stored_mpdu_num--;
713 tid_agg_rx->reorder_buf[index] = NULL;
714 status = IEEE80211_SKB_RXCB(skb);
715 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
716 __skb_queue_tail(frames, skb);
717
718 no_frame:
719 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
720 }
721
722 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
723 struct tid_ampdu_rx *tid_agg_rx,
724 u16 head_seq_num,
725 struct sk_buff_head *frames)
726 {
727 int index;
728
729 lockdep_assert_held(&tid_agg_rx->reorder_lock);
730
731 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
732 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
733 tid_agg_rx->ssn) %
734 tid_agg_rx->buf_size;
735 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
736 frames);
737 }
738 }
739
740 /*
741 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
742 * the skb was added to the buffer longer than this time ago, the earlier
743 * frames that have not yet been received are assumed to be lost and the skb
744 * can be released for processing. This may also release other skb's from the
745 * reorder buffer if there are no additional gaps between the frames.
746 *
747 * Callers must hold tid_agg_rx->reorder_lock.
748 */
749 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
750
751 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
752 struct tid_ampdu_rx *tid_agg_rx,
753 struct sk_buff_head *frames)
754 {
755 int index, j;
756
757 lockdep_assert_held(&tid_agg_rx->reorder_lock);
758
759 /* release the buffer until next missing frame */
760 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
761 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
762 if (!tid_agg_rx->reorder_buf[index] &&
763 tid_agg_rx->stored_mpdu_num) {
764 /*
765 * No buffers ready to be released, but check whether any
766 * frames in the reorder buffer have timed out.
767 */
768 int skipped = 1;
769 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
770 j = (j + 1) % tid_agg_rx->buf_size) {
771 if (!tid_agg_rx->reorder_buf[j]) {
772 skipped++;
773 continue;
774 }
775 if (skipped &&
776 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
777 HT_RX_REORDER_BUF_TIMEOUT))
778 goto set_release_timer;
779
780 ht_dbg_ratelimited(sdata,
781 "release an RX reorder frame due to timeout on earlier frames\n");
782 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
783 frames);
784
785 /*
786 * Increment the head seq# also for the skipped slots.
787 */
788 tid_agg_rx->head_seq_num =
789 (tid_agg_rx->head_seq_num +
790 skipped) & IEEE80211_SN_MASK;
791 skipped = 0;
792 }
793 } else while (tid_agg_rx->reorder_buf[index]) {
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
797 tid_agg_rx->ssn) %
798 tid_agg_rx->buf_size;
799 }
800
801 if (tid_agg_rx->stored_mpdu_num) {
802 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
803 tid_agg_rx->ssn) %
804 tid_agg_rx->buf_size;
805
806 for (; j != (index - 1) % tid_agg_rx->buf_size;
807 j = (j + 1) % tid_agg_rx->buf_size) {
808 if (tid_agg_rx->reorder_buf[j])
809 break;
810 }
811
812 set_release_timer:
813
814 mod_timer(&tid_agg_rx->reorder_timer,
815 tid_agg_rx->reorder_time[j] + 1 +
816 HT_RX_REORDER_BUF_TIMEOUT);
817 } else {
818 del_timer(&tid_agg_rx->reorder_timer);
819 }
820 }
821
822 /*
823 * As this function belongs to the RX path it must be under
824 * rcu_read_lock protection. It returns false if the frame
825 * can be processed immediately, true if it was consumed.
826 */
827 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
828 struct tid_ampdu_rx *tid_agg_rx,
829 struct sk_buff *skb,
830 struct sk_buff_head *frames)
831 {
832 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
833 u16 sc = le16_to_cpu(hdr->seq_ctrl);
834 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
835 u16 head_seq_num, buf_size;
836 int index;
837 bool ret = true;
838
839 spin_lock(&tid_agg_rx->reorder_lock);
840
841 buf_size = tid_agg_rx->buf_size;
842 head_seq_num = tid_agg_rx->head_seq_num;
843
844 /* frame with out of date sequence number */
845 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
846 dev_kfree_skb(skb);
847 goto out;
848 }
849
850 /*
851 * If frame the sequence number exceeds our buffering window
852 * size release some previous frames to make room for this one.
853 */
854 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
855 head_seq_num = ieee80211_sn_inc(
856 ieee80211_sn_sub(mpdu_seq_num, buf_size));
857 /* release stored frames up to new head to stack */
858 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
859 head_seq_num, frames);
860 }
861
862 /* Now the new frame is always in the range of the reordering buffer */
863
864 index = ieee80211_sn_sub(mpdu_seq_num,
865 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
866
867 /* check if we already stored this frame */
868 if (tid_agg_rx->reorder_buf[index]) {
869 dev_kfree_skb(skb);
870 goto out;
871 }
872
873 /*
874 * If the current MPDU is in the right order and nothing else
875 * is stored we can process it directly, no need to buffer it.
876 * If it is first but there's something stored, we may be able
877 * to release frames after this one.
878 */
879 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
880 tid_agg_rx->stored_mpdu_num == 0) {
881 tid_agg_rx->head_seq_num =
882 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
883 ret = false;
884 goto out;
885 }
886
887 /* put the frame in the reordering buffer */
888 tid_agg_rx->reorder_buf[index] = skb;
889 tid_agg_rx->reorder_time[index] = jiffies;
890 tid_agg_rx->stored_mpdu_num++;
891 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
892
893 out:
894 spin_unlock(&tid_agg_rx->reorder_lock);
895 return ret;
896 }
897
898 /*
899 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
900 * true if the MPDU was buffered, false if it should be processed.
901 */
902 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
903 struct sk_buff_head *frames)
904 {
905 struct sk_buff *skb = rx->skb;
906 struct ieee80211_local *local = rx->local;
907 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
908 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
909 struct sta_info *sta = rx->sta;
910 struct tid_ampdu_rx *tid_agg_rx;
911 u16 sc;
912 u8 tid, ack_policy;
913
914 if (!ieee80211_is_data_qos(hdr->frame_control) ||
915 is_multicast_ether_addr(hdr->addr1))
916 goto dont_reorder;
917
918 /*
919 * filter the QoS data rx stream according to
920 * STA/TID and check if this STA/TID is on aggregation
921 */
922
923 if (!sta)
924 goto dont_reorder;
925
926 ack_policy = *ieee80211_get_qos_ctl(hdr) &
927 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
928 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
929
930 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
931 if (!tid_agg_rx)
932 goto dont_reorder;
933
934 /* qos null data frames are excluded */
935 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
936 goto dont_reorder;
937
938 /* not part of a BA session */
939 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
940 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
941 goto dont_reorder;
942
943 /* not actually part of this BA session */
944 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
945 goto dont_reorder;
946
947 /* new, potentially un-ordered, ampdu frame - process it */
948
949 /* reset session timer */
950 if (tid_agg_rx->timeout)
951 tid_agg_rx->last_rx = jiffies;
952
953 /* if this mpdu is fragmented - terminate rx aggregation session */
954 sc = le16_to_cpu(hdr->seq_ctrl);
955 if (sc & IEEE80211_SCTL_FRAG) {
956 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
957 skb_queue_tail(&rx->sdata->skb_queue, skb);
958 ieee80211_queue_work(&local->hw, &rx->sdata->work);
959 return;
960 }
961
962 /*
963 * No locking needed -- we will only ever process one
964 * RX packet at a time, and thus own tid_agg_rx. All
965 * other code manipulating it needs to (and does) make
966 * sure that we cannot get to it any more before doing
967 * anything with it.
968 */
969 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
970 frames))
971 return;
972
973 dont_reorder:
974 __skb_queue_tail(frames, skb);
975 }
976
977 static ieee80211_rx_result debug_noinline
978 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
979 {
980 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
981 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
982
983 /*
984 * Drop duplicate 802.11 retransmissions
985 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
986 */
987 if (rx->skb->len >= 24 && rx->sta &&
988 !ieee80211_is_ctl(hdr->frame_control) &&
989 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
990 !is_multicast_ether_addr(hdr->addr1)) {
991 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
992 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
993 hdr->seq_ctrl)) {
994 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
995 rx->local->dot11FrameDuplicateCount++;
996 rx->sta->num_duplicates++;
997 }
998 return RX_DROP_UNUSABLE;
999 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1000 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1001 }
1002 }
1003
1004 if (unlikely(rx->skb->len < 16)) {
1005 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1006 return RX_DROP_MONITOR;
1007 }
1008
1009 /* Drop disallowed frame classes based on STA auth/assoc state;
1010 * IEEE 802.11, Chap 5.5.
1011 *
1012 * mac80211 filters only based on association state, i.e. it drops
1013 * Class 3 frames from not associated stations. hostapd sends
1014 * deauth/disassoc frames when needed. In addition, hostapd is
1015 * responsible for filtering on both auth and assoc states.
1016 */
1017
1018 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1019 return ieee80211_rx_mesh_check(rx);
1020
1021 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1022 ieee80211_is_pspoll(hdr->frame_control)) &&
1023 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1024 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1025 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1026 /*
1027 * accept port control frames from the AP even when it's not
1028 * yet marked ASSOC to prevent a race where we don't set the
1029 * assoc bit quickly enough before it sends the first frame
1030 */
1031 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1032 ieee80211_is_data_present(hdr->frame_control)) {
1033 unsigned int hdrlen;
1034 __be16 ethertype;
1035
1036 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1037
1038 if (rx->skb->len < hdrlen + 8)
1039 return RX_DROP_MONITOR;
1040
1041 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1042 if (ethertype == rx->sdata->control_port_protocol)
1043 return RX_CONTINUE;
1044 }
1045
1046 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1047 cfg80211_rx_spurious_frame(rx->sdata->dev,
1048 hdr->addr2,
1049 GFP_ATOMIC))
1050 return RX_DROP_UNUSABLE;
1051
1052 return RX_DROP_MONITOR;
1053 }
1054
1055 return RX_CONTINUE;
1056 }
1057
1058
1059 static ieee80211_rx_result debug_noinline
1060 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1061 {
1062 struct ieee80211_local *local;
1063 struct ieee80211_hdr *hdr;
1064 struct sk_buff *skb;
1065
1066 local = rx->local;
1067 skb = rx->skb;
1068 hdr = (struct ieee80211_hdr *) skb->data;
1069
1070 if (!local->pspolling)
1071 return RX_CONTINUE;
1072
1073 if (!ieee80211_has_fromds(hdr->frame_control))
1074 /* this is not from AP */
1075 return RX_CONTINUE;
1076
1077 if (!ieee80211_is_data(hdr->frame_control))
1078 return RX_CONTINUE;
1079
1080 if (!ieee80211_has_moredata(hdr->frame_control)) {
1081 /* AP has no more frames buffered for us */
1082 local->pspolling = false;
1083 return RX_CONTINUE;
1084 }
1085
1086 /* more data bit is set, let's request a new frame from the AP */
1087 ieee80211_send_pspoll(local, rx->sdata);
1088
1089 return RX_CONTINUE;
1090 }
1091
1092 static void sta_ps_start(struct sta_info *sta)
1093 {
1094 struct ieee80211_sub_if_data *sdata = sta->sdata;
1095 struct ieee80211_local *local = sdata->local;
1096 struct ps_data *ps;
1097
1098 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1099 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1100 ps = &sdata->bss->ps;
1101 else
1102 return;
1103
1104 atomic_inc(&ps->num_sta_ps);
1105 set_sta_flag(sta, WLAN_STA_PS_STA);
1106 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1107 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1108 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1109 sta->sta.addr, sta->sta.aid);
1110 }
1111
1112 static void sta_ps_end(struct sta_info *sta)
1113 {
1114 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1115 sta->sta.addr, sta->sta.aid);
1116
1117 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1118 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1119 sta->sta.addr, sta->sta.aid);
1120 return;
1121 }
1122
1123 ieee80211_sta_ps_deliver_wakeup(sta);
1124 }
1125
1126 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1127 {
1128 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1129 bool in_ps;
1130
1131 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1132
1133 /* Don't let the same PS state be set twice */
1134 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1135 if ((start && in_ps) || (!start && !in_ps))
1136 return -EINVAL;
1137
1138 if (start)
1139 sta_ps_start(sta_inf);
1140 else
1141 sta_ps_end(sta_inf);
1142
1143 return 0;
1144 }
1145 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1146
1147 static ieee80211_rx_result debug_noinline
1148 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1149 {
1150 struct ieee80211_sub_if_data *sdata = rx->sdata;
1151 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1152 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1153 int tid, ac;
1154
1155 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1156 return RX_CONTINUE;
1157
1158 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1159 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1160 return RX_CONTINUE;
1161
1162 /*
1163 * The device handles station powersave, so don't do anything about
1164 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1165 * it to mac80211 since they're handled.)
1166 */
1167 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1168 return RX_CONTINUE;
1169
1170 /*
1171 * Don't do anything if the station isn't already asleep. In
1172 * the uAPSD case, the station will probably be marked asleep,
1173 * in the PS-Poll case the station must be confused ...
1174 */
1175 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1176 return RX_CONTINUE;
1177
1178 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1179 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1180 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1181 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1182 else
1183 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1184 }
1185
1186 /* Free PS Poll skb here instead of returning RX_DROP that would
1187 * count as an dropped frame. */
1188 dev_kfree_skb(rx->skb);
1189
1190 return RX_QUEUED;
1191 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1192 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1193 ieee80211_has_pm(hdr->frame_control) &&
1194 (ieee80211_is_data_qos(hdr->frame_control) ||
1195 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1196 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1197 ac = ieee802_1d_to_ac[tid & 7];
1198
1199 /*
1200 * If this AC is not trigger-enabled do nothing.
1201 *
1202 * NB: This could/should check a separate bitmap of trigger-
1203 * enabled queues, but for now we only implement uAPSD w/o
1204 * TSPEC changes to the ACs, so they're always the same.
1205 */
1206 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1207 return RX_CONTINUE;
1208
1209 /* if we are in a service period, do nothing */
1210 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1211 return RX_CONTINUE;
1212
1213 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1214 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1215 else
1216 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1217 }
1218
1219 return RX_CONTINUE;
1220 }
1221
1222 static ieee80211_rx_result debug_noinline
1223 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1224 {
1225 struct sta_info *sta = rx->sta;
1226 struct sk_buff *skb = rx->skb;
1227 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1228 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1229 int i;
1230
1231 if (!sta)
1232 return RX_CONTINUE;
1233
1234 /*
1235 * Update last_rx only for IBSS packets which are for the current
1236 * BSSID and for station already AUTHORIZED to avoid keeping the
1237 * current IBSS network alive in cases where other STAs start
1238 * using different BSSID. This will also give the station another
1239 * chance to restart the authentication/authorization in case
1240 * something went wrong the first time.
1241 */
1242 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1243 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1244 NL80211_IFTYPE_ADHOC);
1245 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1246 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1247 sta->last_rx = jiffies;
1248 if (ieee80211_is_data(hdr->frame_control)) {
1249 sta->last_rx_rate_idx = status->rate_idx;
1250 sta->last_rx_rate_flag = status->flag;
1251 sta->last_rx_rate_vht_nss = status->vht_nss;
1252 }
1253 }
1254 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1255 /*
1256 * Mesh beacons will update last_rx when if they are found to
1257 * match the current local configuration when processed.
1258 */
1259 sta->last_rx = jiffies;
1260 if (ieee80211_is_data(hdr->frame_control)) {
1261 sta->last_rx_rate_idx = status->rate_idx;
1262 sta->last_rx_rate_flag = status->flag;
1263 sta->last_rx_rate_vht_nss = status->vht_nss;
1264 }
1265 }
1266
1267 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1268 return RX_CONTINUE;
1269
1270 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1271 ieee80211_sta_rx_notify(rx->sdata, hdr);
1272
1273 sta->rx_fragments++;
1274 sta->rx_bytes += rx->skb->len;
1275 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1276 sta->last_signal = status->signal;
1277 ewma_add(&sta->avg_signal, -status->signal);
1278 }
1279
1280 if (status->chains) {
1281 sta->chains = status->chains;
1282 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1283 int signal = status->chain_signal[i];
1284
1285 if (!(status->chains & BIT(i)))
1286 continue;
1287
1288 sta->chain_signal_last[i] = signal;
1289 ewma_add(&sta->chain_signal_avg[i], -signal);
1290 }
1291 }
1292
1293 /*
1294 * Change STA power saving mode only at the end of a frame
1295 * exchange sequence.
1296 */
1297 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1298 !ieee80211_has_morefrags(hdr->frame_control) &&
1299 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1300 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1301 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1302 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1303 /*
1304 * Ignore doze->wake transitions that are
1305 * indicated by non-data frames, the standard
1306 * is unclear here, but for example going to
1307 * PS mode and then scanning would cause a
1308 * doze->wake transition for the probe request,
1309 * and that is clearly undesirable.
1310 */
1311 if (ieee80211_is_data(hdr->frame_control) &&
1312 !ieee80211_has_pm(hdr->frame_control))
1313 sta_ps_end(sta);
1314 } else {
1315 if (ieee80211_has_pm(hdr->frame_control))
1316 sta_ps_start(sta);
1317 }
1318 }
1319
1320 /* mesh power save support */
1321 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1322 ieee80211_mps_rx_h_sta_process(sta, hdr);
1323
1324 /*
1325 * Drop (qos-)data::nullfunc frames silently, since they
1326 * are used only to control station power saving mode.
1327 */
1328 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1329 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1330 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1331
1332 /*
1333 * If we receive a 4-addr nullfunc frame from a STA
1334 * that was not moved to a 4-addr STA vlan yet send
1335 * the event to userspace and for older hostapd drop
1336 * the frame to the monitor interface.
1337 */
1338 if (ieee80211_has_a4(hdr->frame_control) &&
1339 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1340 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1341 !rx->sdata->u.vlan.sta))) {
1342 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1343 cfg80211_rx_unexpected_4addr_frame(
1344 rx->sdata->dev, sta->sta.addr,
1345 GFP_ATOMIC);
1346 return RX_DROP_MONITOR;
1347 }
1348 /*
1349 * Update counter and free packet here to avoid
1350 * counting this as a dropped packed.
1351 */
1352 sta->rx_packets++;
1353 dev_kfree_skb(rx->skb);
1354 return RX_QUEUED;
1355 }
1356
1357 return RX_CONTINUE;
1358 } /* ieee80211_rx_h_sta_process */
1359
1360 static ieee80211_rx_result debug_noinline
1361 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1362 {
1363 struct sk_buff *skb = rx->skb;
1364 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1366 int keyidx;
1367 int hdrlen;
1368 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1369 struct ieee80211_key *sta_ptk = NULL;
1370 int mmie_keyidx = -1;
1371 __le16 fc;
1372
1373 /*
1374 * Key selection 101
1375 *
1376 * There are four types of keys:
1377 * - GTK (group keys)
1378 * - IGTK (group keys for management frames)
1379 * - PTK (pairwise keys)
1380 * - STK (station-to-station pairwise keys)
1381 *
1382 * When selecting a key, we have to distinguish between multicast
1383 * (including broadcast) and unicast frames, the latter can only
1384 * use PTKs and STKs while the former always use GTKs and IGTKs.
1385 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1386 * unicast frames can also use key indices like GTKs. Hence, if we
1387 * don't have a PTK/STK we check the key index for a WEP key.
1388 *
1389 * Note that in a regular BSS, multicast frames are sent by the
1390 * AP only, associated stations unicast the frame to the AP first
1391 * which then multicasts it on their behalf.
1392 *
1393 * There is also a slight problem in IBSS mode: GTKs are negotiated
1394 * with each station, that is something we don't currently handle.
1395 * The spec seems to expect that one negotiates the same key with
1396 * every station but there's no such requirement; VLANs could be
1397 * possible.
1398 */
1399
1400 /*
1401 * No point in finding a key and decrypting if the frame is neither
1402 * addressed to us nor a multicast frame.
1403 */
1404 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1405 return RX_CONTINUE;
1406
1407 /* start without a key */
1408 rx->key = NULL;
1409
1410 if (rx->sta)
1411 sta_ptk = rcu_dereference(rx->sta->ptk);
1412
1413 fc = hdr->frame_control;
1414
1415 if (!ieee80211_has_protected(fc))
1416 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1417
1418 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1419 rx->key = sta_ptk;
1420 if ((status->flag & RX_FLAG_DECRYPTED) &&
1421 (status->flag & RX_FLAG_IV_STRIPPED))
1422 return RX_CONTINUE;
1423 /* Skip decryption if the frame is not protected. */
1424 if (!ieee80211_has_protected(fc))
1425 return RX_CONTINUE;
1426 } else if (mmie_keyidx >= 0) {
1427 /* Broadcast/multicast robust management frame / BIP */
1428 if ((status->flag & RX_FLAG_DECRYPTED) &&
1429 (status->flag & RX_FLAG_IV_STRIPPED))
1430 return RX_CONTINUE;
1431
1432 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1433 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1434 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1435 if (rx->sta)
1436 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1437 if (!rx->key)
1438 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1439 } else if (!ieee80211_has_protected(fc)) {
1440 /*
1441 * The frame was not protected, so skip decryption. However, we
1442 * need to set rx->key if there is a key that could have been
1443 * used so that the frame may be dropped if encryption would
1444 * have been expected.
1445 */
1446 struct ieee80211_key *key = NULL;
1447 struct ieee80211_sub_if_data *sdata = rx->sdata;
1448 int i;
1449
1450 if (ieee80211_is_mgmt(fc) &&
1451 is_multicast_ether_addr(hdr->addr1) &&
1452 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1453 rx->key = key;
1454 else {
1455 if (rx->sta) {
1456 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1457 key = rcu_dereference(rx->sta->gtk[i]);
1458 if (key)
1459 break;
1460 }
1461 }
1462 if (!key) {
1463 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1464 key = rcu_dereference(sdata->keys[i]);
1465 if (key)
1466 break;
1467 }
1468 }
1469 if (key)
1470 rx->key = key;
1471 }
1472 return RX_CONTINUE;
1473 } else {
1474 u8 keyid;
1475 /*
1476 * The device doesn't give us the IV so we won't be
1477 * able to look up the key. That's ok though, we
1478 * don't need to decrypt the frame, we just won't
1479 * be able to keep statistics accurate.
1480 * Except for key threshold notifications, should
1481 * we somehow allow the driver to tell us which key
1482 * the hardware used if this flag is set?
1483 */
1484 if ((status->flag & RX_FLAG_DECRYPTED) &&
1485 (status->flag & RX_FLAG_IV_STRIPPED))
1486 return RX_CONTINUE;
1487
1488 hdrlen = ieee80211_hdrlen(fc);
1489
1490 if (rx->skb->len < 8 + hdrlen)
1491 return RX_DROP_UNUSABLE; /* TODO: count this? */
1492
1493 /*
1494 * no need to call ieee80211_wep_get_keyidx,
1495 * it verifies a bunch of things we've done already
1496 */
1497 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1498 keyidx = keyid >> 6;
1499
1500 /* check per-station GTK first, if multicast packet */
1501 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1502 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1503
1504 /* if not found, try default key */
1505 if (!rx->key) {
1506 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1507
1508 /*
1509 * RSNA-protected unicast frames should always be
1510 * sent with pairwise or station-to-station keys,
1511 * but for WEP we allow using a key index as well.
1512 */
1513 if (rx->key &&
1514 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1515 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1516 !is_multicast_ether_addr(hdr->addr1))
1517 rx->key = NULL;
1518 }
1519 }
1520
1521 if (rx->key) {
1522 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1523 return RX_DROP_MONITOR;
1524
1525 rx->key->tx_rx_count++;
1526 /* TODO: add threshold stuff again */
1527 } else {
1528 return RX_DROP_MONITOR;
1529 }
1530
1531 switch (rx->key->conf.cipher) {
1532 case WLAN_CIPHER_SUITE_WEP40:
1533 case WLAN_CIPHER_SUITE_WEP104:
1534 result = ieee80211_crypto_wep_decrypt(rx);
1535 break;
1536 case WLAN_CIPHER_SUITE_TKIP:
1537 result = ieee80211_crypto_tkip_decrypt(rx);
1538 break;
1539 case WLAN_CIPHER_SUITE_CCMP:
1540 result = ieee80211_crypto_ccmp_decrypt(rx);
1541 break;
1542 case WLAN_CIPHER_SUITE_AES_CMAC:
1543 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1544 break;
1545 default:
1546 /*
1547 * We can reach here only with HW-only algorithms
1548 * but why didn't it decrypt the frame?!
1549 */
1550 return RX_DROP_UNUSABLE;
1551 }
1552
1553 /* the hdr variable is invalid after the decrypt handlers */
1554
1555 /* either the frame has been decrypted or will be dropped */
1556 status->flag |= RX_FLAG_DECRYPTED;
1557
1558 return result;
1559 }
1560
1561 static inline struct ieee80211_fragment_entry *
1562 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1563 unsigned int frag, unsigned int seq, int rx_queue,
1564 struct sk_buff **skb)
1565 {
1566 struct ieee80211_fragment_entry *entry;
1567
1568 entry = &sdata->fragments[sdata->fragment_next++];
1569 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1570 sdata->fragment_next = 0;
1571
1572 if (!skb_queue_empty(&entry->skb_list))
1573 __skb_queue_purge(&entry->skb_list);
1574
1575 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1576 *skb = NULL;
1577 entry->first_frag_time = jiffies;
1578 entry->seq = seq;
1579 entry->rx_queue = rx_queue;
1580 entry->last_frag = frag;
1581 entry->ccmp = 0;
1582 entry->extra_len = 0;
1583
1584 return entry;
1585 }
1586
1587 static inline struct ieee80211_fragment_entry *
1588 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1589 unsigned int frag, unsigned int seq,
1590 int rx_queue, struct ieee80211_hdr *hdr)
1591 {
1592 struct ieee80211_fragment_entry *entry;
1593 int i, idx;
1594
1595 idx = sdata->fragment_next;
1596 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1597 struct ieee80211_hdr *f_hdr;
1598
1599 idx--;
1600 if (idx < 0)
1601 idx = IEEE80211_FRAGMENT_MAX - 1;
1602
1603 entry = &sdata->fragments[idx];
1604 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1605 entry->rx_queue != rx_queue ||
1606 entry->last_frag + 1 != frag)
1607 continue;
1608
1609 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1610
1611 /*
1612 * Check ftype and addresses are equal, else check next fragment
1613 */
1614 if (((hdr->frame_control ^ f_hdr->frame_control) &
1615 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1616 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1617 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1618 continue;
1619
1620 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1621 __skb_queue_purge(&entry->skb_list);
1622 continue;
1623 }
1624 return entry;
1625 }
1626
1627 return NULL;
1628 }
1629
1630 static ieee80211_rx_result debug_noinline
1631 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1632 {
1633 struct ieee80211_hdr *hdr;
1634 u16 sc;
1635 __le16 fc;
1636 unsigned int frag, seq;
1637 struct ieee80211_fragment_entry *entry;
1638 struct sk_buff *skb;
1639 struct ieee80211_rx_status *status;
1640
1641 hdr = (struct ieee80211_hdr *)rx->skb->data;
1642 fc = hdr->frame_control;
1643
1644 if (ieee80211_is_ctl(fc))
1645 return RX_CONTINUE;
1646
1647 sc = le16_to_cpu(hdr->seq_ctrl);
1648 frag = sc & IEEE80211_SCTL_FRAG;
1649
1650 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1651 is_multicast_ether_addr(hdr->addr1))) {
1652 /* not fragmented */
1653 goto out;
1654 }
1655 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1656
1657 if (skb_linearize(rx->skb))
1658 return RX_DROP_UNUSABLE;
1659
1660 /*
1661 * skb_linearize() might change the skb->data and
1662 * previously cached variables (in this case, hdr) need to
1663 * be refreshed with the new data.
1664 */
1665 hdr = (struct ieee80211_hdr *)rx->skb->data;
1666 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1667
1668 if (frag == 0) {
1669 /* This is the first fragment of a new frame. */
1670 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1671 rx->seqno_idx, &(rx->skb));
1672 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1673 ieee80211_has_protected(fc)) {
1674 int queue = rx->security_idx;
1675 /* Store CCMP PN so that we can verify that the next
1676 * fragment has a sequential PN value. */
1677 entry->ccmp = 1;
1678 memcpy(entry->last_pn,
1679 rx->key->u.ccmp.rx_pn[queue],
1680 IEEE80211_CCMP_PN_LEN);
1681 }
1682 return RX_QUEUED;
1683 }
1684
1685 /* This is a fragment for a frame that should already be pending in
1686 * fragment cache. Add this fragment to the end of the pending entry.
1687 */
1688 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1689 rx->seqno_idx, hdr);
1690 if (!entry) {
1691 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1692 return RX_DROP_MONITOR;
1693 }
1694
1695 /* Verify that MPDUs within one MSDU have sequential PN values.
1696 * (IEEE 802.11i, 8.3.3.4.5) */
1697 if (entry->ccmp) {
1698 int i;
1699 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1700 int queue;
1701 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1702 return RX_DROP_UNUSABLE;
1703 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1704 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1705 pn[i]++;
1706 if (pn[i])
1707 break;
1708 }
1709 queue = rx->security_idx;
1710 rpn = rx->key->u.ccmp.rx_pn[queue];
1711 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1712 return RX_DROP_UNUSABLE;
1713 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1714 }
1715
1716 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1717 __skb_queue_tail(&entry->skb_list, rx->skb);
1718 entry->last_frag = frag;
1719 entry->extra_len += rx->skb->len;
1720 if (ieee80211_has_morefrags(fc)) {
1721 rx->skb = NULL;
1722 return RX_QUEUED;
1723 }
1724
1725 rx->skb = __skb_dequeue(&entry->skb_list);
1726 if (skb_tailroom(rx->skb) < entry->extra_len) {
1727 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1728 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1729 GFP_ATOMIC))) {
1730 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1731 __skb_queue_purge(&entry->skb_list);
1732 return RX_DROP_UNUSABLE;
1733 }
1734 }
1735 while ((skb = __skb_dequeue(&entry->skb_list))) {
1736 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1737 dev_kfree_skb(skb);
1738 }
1739
1740 /* Complete frame has been reassembled - process it now */
1741 status = IEEE80211_SKB_RXCB(rx->skb);
1742 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1743
1744 out:
1745 if (rx->sta)
1746 rx->sta->rx_packets++;
1747 if (is_multicast_ether_addr(hdr->addr1))
1748 rx->local->dot11MulticastReceivedFrameCount++;
1749 else
1750 ieee80211_led_rx(rx->local);
1751 return RX_CONTINUE;
1752 }
1753
1754 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1755 {
1756 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1757 return -EACCES;
1758
1759 return 0;
1760 }
1761
1762 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1763 {
1764 struct sk_buff *skb = rx->skb;
1765 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1766
1767 /*
1768 * Pass through unencrypted frames if the hardware has
1769 * decrypted them already.
1770 */
1771 if (status->flag & RX_FLAG_DECRYPTED)
1772 return 0;
1773
1774 /* Drop unencrypted frames if key is set. */
1775 if (unlikely(!ieee80211_has_protected(fc) &&
1776 !ieee80211_is_nullfunc(fc) &&
1777 ieee80211_is_data(fc) &&
1778 (rx->key || rx->sdata->drop_unencrypted)))
1779 return -EACCES;
1780
1781 return 0;
1782 }
1783
1784 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1785 {
1786 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1787 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1788 __le16 fc = hdr->frame_control;
1789
1790 /*
1791 * Pass through unencrypted frames if the hardware has
1792 * decrypted them already.
1793 */
1794 if (status->flag & RX_FLAG_DECRYPTED)
1795 return 0;
1796
1797 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1798 if (unlikely(!ieee80211_has_protected(fc) &&
1799 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1800 rx->key)) {
1801 if (ieee80211_is_deauth(fc) ||
1802 ieee80211_is_disassoc(fc))
1803 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1804 rx->skb->data,
1805 rx->skb->len);
1806 return -EACCES;
1807 }
1808 /* BIP does not use Protected field, so need to check MMIE */
1809 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1810 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1811 if (ieee80211_is_deauth(fc) ||
1812 ieee80211_is_disassoc(fc))
1813 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1814 rx->skb->data,
1815 rx->skb->len);
1816 return -EACCES;
1817 }
1818 /*
1819 * When using MFP, Action frames are not allowed prior to
1820 * having configured keys.
1821 */
1822 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1823 ieee80211_is_robust_mgmt_frame(
1824 (struct ieee80211_hdr *) rx->skb->data)))
1825 return -EACCES;
1826 }
1827
1828 return 0;
1829 }
1830
1831 static int
1832 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1833 {
1834 struct ieee80211_sub_if_data *sdata = rx->sdata;
1835 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1836 bool check_port_control = false;
1837 struct ethhdr *ehdr;
1838 int ret;
1839
1840 *port_control = false;
1841 if (ieee80211_has_a4(hdr->frame_control) &&
1842 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1843 return -1;
1844
1845 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1846 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1847
1848 if (!sdata->u.mgd.use_4addr)
1849 return -1;
1850 else
1851 check_port_control = true;
1852 }
1853
1854 if (is_multicast_ether_addr(hdr->addr1) &&
1855 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1856 return -1;
1857
1858 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1859 if (ret < 0)
1860 return ret;
1861
1862 ehdr = (struct ethhdr *) rx->skb->data;
1863 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1864 *port_control = true;
1865 else if (check_port_control)
1866 return -1;
1867
1868 return 0;
1869 }
1870
1871 /*
1872 * requires that rx->skb is a frame with ethernet header
1873 */
1874 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1875 {
1876 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1877 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1878 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1879
1880 /*
1881 * Allow EAPOL frames to us/the PAE group address regardless
1882 * of whether the frame was encrypted or not.
1883 */
1884 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1885 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1886 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1887 return true;
1888
1889 if (ieee80211_802_1x_port_control(rx) ||
1890 ieee80211_drop_unencrypted(rx, fc))
1891 return false;
1892
1893 return true;
1894 }
1895
1896 /*
1897 * requires that rx->skb is a frame with ethernet header
1898 */
1899 static void
1900 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1901 {
1902 struct ieee80211_sub_if_data *sdata = rx->sdata;
1903 struct net_device *dev = sdata->dev;
1904 struct sk_buff *skb, *xmit_skb;
1905 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1906 struct sta_info *dsta;
1907 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1908
1909 skb = rx->skb;
1910 xmit_skb = NULL;
1911
1912 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1913 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1914 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1915 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1916 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1917 if (is_multicast_ether_addr(ehdr->h_dest)) {
1918 /*
1919 * send multicast frames both to higher layers in
1920 * local net stack and back to the wireless medium
1921 */
1922 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1923 if (!xmit_skb)
1924 net_info_ratelimited("%s: failed to clone multicast frame\n",
1925 dev->name);
1926 } else {
1927 dsta = sta_info_get(sdata, skb->data);
1928 if (dsta) {
1929 /*
1930 * The destination station is associated to
1931 * this AP (in this VLAN), so send the frame
1932 * directly to it and do not pass it to local
1933 * net stack.
1934 */
1935 xmit_skb = skb;
1936 skb = NULL;
1937 }
1938 }
1939 }
1940
1941 if (skb) {
1942 int align __maybe_unused;
1943
1944 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1945 /*
1946 * 'align' will only take the values 0 or 2 here
1947 * since all frames are required to be aligned
1948 * to 2-byte boundaries when being passed to
1949 * mac80211; the code here works just as well if
1950 * that isn't true, but mac80211 assumes it can
1951 * access fields as 2-byte aligned (e.g. for
1952 * compare_ether_addr)
1953 */
1954 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1955 if (align) {
1956 if (WARN_ON(skb_headroom(skb) < 3)) {
1957 dev_kfree_skb(skb);
1958 skb = NULL;
1959 } else {
1960 u8 *data = skb->data;
1961 size_t len = skb_headlen(skb);
1962 skb->data -= align;
1963 memmove(skb->data, data, len);
1964 skb_set_tail_pointer(skb, len);
1965 }
1966 }
1967 #endif
1968
1969 if (skb) {
1970 /* deliver to local stack */
1971 skb->protocol = eth_type_trans(skb, dev);
1972 memset(skb->cb, 0, sizeof(skb->cb));
1973 netif_receive_skb(skb);
1974 }
1975 }
1976
1977 if (xmit_skb) {
1978 /*
1979 * Send to wireless media and increase priority by 256 to
1980 * keep the received priority instead of reclassifying
1981 * the frame (see cfg80211_classify8021d).
1982 */
1983 xmit_skb->priority += 256;
1984 xmit_skb->protocol = htons(ETH_P_802_3);
1985 skb_reset_network_header(xmit_skb);
1986 skb_reset_mac_header(xmit_skb);
1987 dev_queue_xmit(xmit_skb);
1988 }
1989 }
1990
1991 static ieee80211_rx_result debug_noinline
1992 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1993 {
1994 struct net_device *dev = rx->sdata->dev;
1995 struct sk_buff *skb = rx->skb;
1996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1997 __le16 fc = hdr->frame_control;
1998 struct sk_buff_head frame_list;
1999 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2000
2001 if (unlikely(!ieee80211_is_data(fc)))
2002 return RX_CONTINUE;
2003
2004 if (unlikely(!ieee80211_is_data_present(fc)))
2005 return RX_DROP_MONITOR;
2006
2007 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2008 return RX_CONTINUE;
2009
2010 if (ieee80211_has_a4(hdr->frame_control) &&
2011 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2012 !rx->sdata->u.vlan.sta)
2013 return RX_DROP_UNUSABLE;
2014
2015 if (is_multicast_ether_addr(hdr->addr1) &&
2016 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2017 rx->sdata->u.vlan.sta) ||
2018 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2019 rx->sdata->u.mgd.use_4addr)))
2020 return RX_DROP_UNUSABLE;
2021
2022 skb->dev = dev;
2023 __skb_queue_head_init(&frame_list);
2024
2025 if (skb_linearize(skb))
2026 return RX_DROP_UNUSABLE;
2027
2028 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2029 rx->sdata->vif.type,
2030 rx->local->hw.extra_tx_headroom, true);
2031
2032 while (!skb_queue_empty(&frame_list)) {
2033 rx->skb = __skb_dequeue(&frame_list);
2034
2035 if (!ieee80211_frame_allowed(rx, fc)) {
2036 dev_kfree_skb(rx->skb);
2037 continue;
2038 }
2039 dev->stats.rx_packets++;
2040 dev->stats.rx_bytes += rx->skb->len;
2041
2042 ieee80211_deliver_skb(rx);
2043 }
2044
2045 return RX_QUEUED;
2046 }
2047
2048 #ifdef CONFIG_MAC80211_MESH
2049 static ieee80211_rx_result
2050 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2051 {
2052 struct ieee80211_hdr *fwd_hdr, *hdr;
2053 struct ieee80211_tx_info *info;
2054 struct ieee80211s_hdr *mesh_hdr;
2055 struct sk_buff *skb = rx->skb, *fwd_skb;
2056 struct ieee80211_local *local = rx->local;
2057 struct ieee80211_sub_if_data *sdata = rx->sdata;
2058 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2059 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2060 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2061 u16 q, hdrlen;
2062
2063 hdr = (struct ieee80211_hdr *) skb->data;
2064 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2065
2066 /* make sure fixed part of mesh header is there, also checks skb len */
2067 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2068 return RX_DROP_MONITOR;
2069
2070 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2071
2072 /* make sure full mesh header is there, also checks skb len */
2073 if (!pskb_may_pull(rx->skb,
2074 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2075 return RX_DROP_MONITOR;
2076
2077 /* reload pointers */
2078 hdr = (struct ieee80211_hdr *) skb->data;
2079 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2080
2081 /* frame is in RMC, don't forward */
2082 if (ieee80211_is_data(hdr->frame_control) &&
2083 is_multicast_ether_addr(hdr->addr1) &&
2084 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2085 return RX_DROP_MONITOR;
2086
2087 if (!ieee80211_is_data(hdr->frame_control) ||
2088 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2089 return RX_CONTINUE;
2090
2091 if (!mesh_hdr->ttl)
2092 return RX_DROP_MONITOR;
2093
2094 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2095 struct mesh_path *mppath;
2096 char *proxied_addr;
2097 char *mpp_addr;
2098
2099 if (is_multicast_ether_addr(hdr->addr1)) {
2100 mpp_addr = hdr->addr3;
2101 proxied_addr = mesh_hdr->eaddr1;
2102 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2103 /* has_a4 already checked in ieee80211_rx_mesh_check */
2104 mpp_addr = hdr->addr4;
2105 proxied_addr = mesh_hdr->eaddr2;
2106 } else {
2107 return RX_DROP_MONITOR;
2108 }
2109
2110 rcu_read_lock();
2111 mppath = mpp_path_lookup(sdata, proxied_addr);
2112 if (!mppath) {
2113 mpp_path_add(sdata, proxied_addr, mpp_addr);
2114 } else {
2115 spin_lock_bh(&mppath->state_lock);
2116 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2117 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2118 spin_unlock_bh(&mppath->state_lock);
2119 }
2120 rcu_read_unlock();
2121 }
2122
2123 /* Frame has reached destination. Don't forward */
2124 if (!is_multicast_ether_addr(hdr->addr1) &&
2125 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2126 return RX_CONTINUE;
2127
2128 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2129 if (ieee80211_queue_stopped(&local->hw, q)) {
2130 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2131 return RX_DROP_MONITOR;
2132 }
2133 skb_set_queue_mapping(skb, q);
2134
2135 if (!--mesh_hdr->ttl) {
2136 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2137 goto out;
2138 }
2139
2140 if (!ifmsh->mshcfg.dot11MeshForwarding)
2141 goto out;
2142
2143 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2144 if (!fwd_skb) {
2145 net_info_ratelimited("%s: failed to clone mesh frame\n",
2146 sdata->name);
2147 goto out;
2148 }
2149
2150 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2151 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2152 info = IEEE80211_SKB_CB(fwd_skb);
2153 memset(info, 0, sizeof(*info));
2154 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2155 info->control.vif = &rx->sdata->vif;
2156 info->control.jiffies = jiffies;
2157 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2158 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2159 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2160 /* update power mode indication when forwarding */
2161 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2162 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2163 /* mesh power mode flags updated in mesh_nexthop_lookup */
2164 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2165 } else {
2166 /* unable to resolve next hop */
2167 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2168 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2169 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2170 kfree_skb(fwd_skb);
2171 return RX_DROP_MONITOR;
2172 }
2173
2174 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2175 ieee80211_add_pending_skb(local, fwd_skb);
2176 out:
2177 if (is_multicast_ether_addr(hdr->addr1) ||
2178 sdata->dev->flags & IFF_PROMISC)
2179 return RX_CONTINUE;
2180 else
2181 return RX_DROP_MONITOR;
2182 }
2183 #endif
2184
2185 static ieee80211_rx_result debug_noinline
2186 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2187 {
2188 struct ieee80211_sub_if_data *sdata = rx->sdata;
2189 struct ieee80211_local *local = rx->local;
2190 struct net_device *dev = sdata->dev;
2191 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2192 __le16 fc = hdr->frame_control;
2193 bool port_control;
2194 int err;
2195
2196 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2197 return RX_CONTINUE;
2198
2199 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2200 return RX_DROP_MONITOR;
2201
2202 /*
2203 * Send unexpected-4addr-frame event to hostapd. For older versions,
2204 * also drop the frame to cooked monitor interfaces.
2205 */
2206 if (ieee80211_has_a4(hdr->frame_control) &&
2207 sdata->vif.type == NL80211_IFTYPE_AP) {
2208 if (rx->sta &&
2209 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2210 cfg80211_rx_unexpected_4addr_frame(
2211 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2212 return RX_DROP_MONITOR;
2213 }
2214
2215 err = __ieee80211_data_to_8023(rx, &port_control);
2216 if (unlikely(err))
2217 return RX_DROP_UNUSABLE;
2218
2219 if (!ieee80211_frame_allowed(rx, fc))
2220 return RX_DROP_MONITOR;
2221
2222 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2223 unlikely(port_control) && sdata->bss) {
2224 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2225 u.ap);
2226 dev = sdata->dev;
2227 rx->sdata = sdata;
2228 }
2229
2230 rx->skb->dev = dev;
2231
2232 dev->stats.rx_packets++;
2233 dev->stats.rx_bytes += rx->skb->len;
2234
2235 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2236 !is_multicast_ether_addr(
2237 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2238 (!local->scanning &&
2239 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2240 mod_timer(&local->dynamic_ps_timer, jiffies +
2241 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2242 }
2243
2244 ieee80211_deliver_skb(rx);
2245
2246 return RX_QUEUED;
2247 }
2248
2249 static ieee80211_rx_result debug_noinline
2250 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2251 {
2252 struct sk_buff *skb = rx->skb;
2253 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2254 struct tid_ampdu_rx *tid_agg_rx;
2255 u16 start_seq_num;
2256 u16 tid;
2257
2258 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2259 return RX_CONTINUE;
2260
2261 if (ieee80211_is_back_req(bar->frame_control)) {
2262 struct {
2263 __le16 control, start_seq_num;
2264 } __packed bar_data;
2265
2266 if (!rx->sta)
2267 return RX_DROP_MONITOR;
2268
2269 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2270 &bar_data, sizeof(bar_data)))
2271 return RX_DROP_MONITOR;
2272
2273 tid = le16_to_cpu(bar_data.control) >> 12;
2274
2275 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2276 if (!tid_agg_rx)
2277 return RX_DROP_MONITOR;
2278
2279 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2280
2281 /* reset session timer */
2282 if (tid_agg_rx->timeout)
2283 mod_timer(&tid_agg_rx->session_timer,
2284 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2285
2286 spin_lock(&tid_agg_rx->reorder_lock);
2287 /* release stored frames up to start of BAR */
2288 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2289 start_seq_num, frames);
2290 spin_unlock(&tid_agg_rx->reorder_lock);
2291
2292 kfree_skb(skb);
2293 return RX_QUEUED;
2294 }
2295
2296 /*
2297 * After this point, we only want management frames,
2298 * so we can drop all remaining control frames to
2299 * cooked monitor interfaces.
2300 */
2301 return RX_DROP_MONITOR;
2302 }
2303
2304 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2305 struct ieee80211_mgmt *mgmt,
2306 size_t len)
2307 {
2308 struct ieee80211_local *local = sdata->local;
2309 struct sk_buff *skb;
2310 struct ieee80211_mgmt *resp;
2311
2312 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2313 /* Not to own unicast address */
2314 return;
2315 }
2316
2317 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2318 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2319 /* Not from the current AP or not associated yet. */
2320 return;
2321 }
2322
2323 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2324 /* Too short SA Query request frame */
2325 return;
2326 }
2327
2328 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2329 if (skb == NULL)
2330 return;
2331
2332 skb_reserve(skb, local->hw.extra_tx_headroom);
2333 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2334 memset(resp, 0, 24);
2335 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2336 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2337 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2338 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2339 IEEE80211_STYPE_ACTION);
2340 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2341 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2342 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2343 memcpy(resp->u.action.u.sa_query.trans_id,
2344 mgmt->u.action.u.sa_query.trans_id,
2345 WLAN_SA_QUERY_TR_ID_LEN);
2346
2347 ieee80211_tx_skb(sdata, skb);
2348 }
2349
2350 static ieee80211_rx_result debug_noinline
2351 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2352 {
2353 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2354 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2355
2356 /*
2357 * From here on, look only at management frames.
2358 * Data and control frames are already handled,
2359 * and unknown (reserved) frames are useless.
2360 */
2361 if (rx->skb->len < 24)
2362 return RX_DROP_MONITOR;
2363
2364 if (!ieee80211_is_mgmt(mgmt->frame_control))
2365 return RX_DROP_MONITOR;
2366
2367 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2368 ieee80211_is_beacon(mgmt->frame_control) &&
2369 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2370 int sig = 0;
2371
2372 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2373 sig = status->signal;
2374
2375 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2376 rx->skb->data, rx->skb->len,
2377 status->freq, sig);
2378 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2379 }
2380
2381 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2382 return RX_DROP_MONITOR;
2383
2384 if (ieee80211_drop_unencrypted_mgmt(rx))
2385 return RX_DROP_UNUSABLE;
2386
2387 return RX_CONTINUE;
2388 }
2389
2390 static ieee80211_rx_result debug_noinline
2391 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2392 {
2393 struct ieee80211_local *local = rx->local;
2394 struct ieee80211_sub_if_data *sdata = rx->sdata;
2395 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2396 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2397 int len = rx->skb->len;
2398
2399 if (!ieee80211_is_action(mgmt->frame_control))
2400 return RX_CONTINUE;
2401
2402 /* drop too small frames */
2403 if (len < IEEE80211_MIN_ACTION_SIZE)
2404 return RX_DROP_UNUSABLE;
2405
2406 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2407 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2408 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2409 return RX_DROP_UNUSABLE;
2410
2411 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2412 return RX_DROP_UNUSABLE;
2413
2414 switch (mgmt->u.action.category) {
2415 case WLAN_CATEGORY_HT:
2416 /* reject HT action frames from stations not supporting HT */
2417 if (!rx->sta->sta.ht_cap.ht_supported)
2418 goto invalid;
2419
2420 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2421 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2422 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2423 sdata->vif.type != NL80211_IFTYPE_AP &&
2424 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2425 break;
2426
2427 /* verify action & smps_control/chanwidth are present */
2428 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2429 goto invalid;
2430
2431 switch (mgmt->u.action.u.ht_smps.action) {
2432 case WLAN_HT_ACTION_SMPS: {
2433 struct ieee80211_supported_band *sband;
2434 enum ieee80211_smps_mode smps_mode;
2435
2436 /* convert to HT capability */
2437 switch (mgmt->u.action.u.ht_smps.smps_control) {
2438 case WLAN_HT_SMPS_CONTROL_DISABLED:
2439 smps_mode = IEEE80211_SMPS_OFF;
2440 break;
2441 case WLAN_HT_SMPS_CONTROL_STATIC:
2442 smps_mode = IEEE80211_SMPS_STATIC;
2443 break;
2444 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2445 smps_mode = IEEE80211_SMPS_DYNAMIC;
2446 break;
2447 default:
2448 goto invalid;
2449 }
2450
2451 /* if no change do nothing */
2452 if (rx->sta->sta.smps_mode == smps_mode)
2453 goto handled;
2454 rx->sta->sta.smps_mode = smps_mode;
2455
2456 sband = rx->local->hw.wiphy->bands[status->band];
2457
2458 rate_control_rate_update(local, sband, rx->sta,
2459 IEEE80211_RC_SMPS_CHANGED);
2460 goto handled;
2461 }
2462 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2463 struct ieee80211_supported_band *sband;
2464 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2465 enum ieee80211_sta_rx_bandwidth new_bw;
2466
2467 /* If it doesn't support 40 MHz it can't change ... */
2468 if (!(rx->sta->sta.ht_cap.cap &
2469 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2470 goto handled;
2471
2472 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2473 new_bw = IEEE80211_STA_RX_BW_20;
2474 else
2475 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2476
2477 if (rx->sta->sta.bandwidth == new_bw)
2478 goto handled;
2479
2480 sband = rx->local->hw.wiphy->bands[status->band];
2481
2482 rate_control_rate_update(local, sband, rx->sta,
2483 IEEE80211_RC_BW_CHANGED);
2484 goto handled;
2485 }
2486 default:
2487 goto invalid;
2488 }
2489
2490 break;
2491 case WLAN_CATEGORY_PUBLIC:
2492 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2493 goto invalid;
2494 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2495 break;
2496 if (!rx->sta)
2497 break;
2498 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2499 break;
2500 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2501 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2502 break;
2503 if (len < offsetof(struct ieee80211_mgmt,
2504 u.action.u.ext_chan_switch.variable))
2505 goto invalid;
2506 goto queue;
2507 case WLAN_CATEGORY_VHT:
2508 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2509 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2510 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2511 sdata->vif.type != NL80211_IFTYPE_AP &&
2512 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2513 break;
2514
2515 /* verify action code is present */
2516 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2517 goto invalid;
2518
2519 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2520 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2521 u8 opmode;
2522
2523 /* verify opmode is present */
2524 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2525 goto invalid;
2526
2527 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2528
2529 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2530 opmode, status->band,
2531 false);
2532 goto handled;
2533 }
2534 default:
2535 break;
2536 }
2537 break;
2538 case WLAN_CATEGORY_BACK:
2539 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2540 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2541 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2542 sdata->vif.type != NL80211_IFTYPE_AP &&
2543 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2544 break;
2545
2546 /* verify action_code is present */
2547 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2548 break;
2549
2550 switch (mgmt->u.action.u.addba_req.action_code) {
2551 case WLAN_ACTION_ADDBA_REQ:
2552 if (len < (IEEE80211_MIN_ACTION_SIZE +
2553 sizeof(mgmt->u.action.u.addba_req)))
2554 goto invalid;
2555 break;
2556 case WLAN_ACTION_ADDBA_RESP:
2557 if (len < (IEEE80211_MIN_ACTION_SIZE +
2558 sizeof(mgmt->u.action.u.addba_resp)))
2559 goto invalid;
2560 break;
2561 case WLAN_ACTION_DELBA:
2562 if (len < (IEEE80211_MIN_ACTION_SIZE +
2563 sizeof(mgmt->u.action.u.delba)))
2564 goto invalid;
2565 break;
2566 default:
2567 goto invalid;
2568 }
2569
2570 goto queue;
2571 case WLAN_CATEGORY_SPECTRUM_MGMT:
2572 /* verify action_code is present */
2573 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2574 break;
2575
2576 switch (mgmt->u.action.u.measurement.action_code) {
2577 case WLAN_ACTION_SPCT_MSR_REQ:
2578 if (status->band != IEEE80211_BAND_5GHZ)
2579 break;
2580
2581 if (len < (IEEE80211_MIN_ACTION_SIZE +
2582 sizeof(mgmt->u.action.u.measurement)))
2583 break;
2584
2585 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2586 break;
2587
2588 ieee80211_process_measurement_req(sdata, mgmt, len);
2589 goto handled;
2590 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2591 u8 *bssid;
2592 if (len < (IEEE80211_MIN_ACTION_SIZE +
2593 sizeof(mgmt->u.action.u.chan_switch)))
2594 break;
2595
2596 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2597 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2598 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2599 break;
2600
2601 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2602 bssid = sdata->u.mgd.bssid;
2603 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2604 bssid = sdata->u.ibss.bssid;
2605 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2606 bssid = mgmt->sa;
2607 else
2608 break;
2609
2610 if (!ether_addr_equal(mgmt->bssid, bssid))
2611 break;
2612
2613 goto queue;
2614 }
2615 }
2616 break;
2617 case WLAN_CATEGORY_SA_QUERY:
2618 if (len < (IEEE80211_MIN_ACTION_SIZE +
2619 sizeof(mgmt->u.action.u.sa_query)))
2620 break;
2621
2622 switch (mgmt->u.action.u.sa_query.action) {
2623 case WLAN_ACTION_SA_QUERY_REQUEST:
2624 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2625 break;
2626 ieee80211_process_sa_query_req(sdata, mgmt, len);
2627 goto handled;
2628 }
2629 break;
2630 case WLAN_CATEGORY_SELF_PROTECTED:
2631 if (len < (IEEE80211_MIN_ACTION_SIZE +
2632 sizeof(mgmt->u.action.u.self_prot.action_code)))
2633 break;
2634
2635 switch (mgmt->u.action.u.self_prot.action_code) {
2636 case WLAN_SP_MESH_PEERING_OPEN:
2637 case WLAN_SP_MESH_PEERING_CLOSE:
2638 case WLAN_SP_MESH_PEERING_CONFIRM:
2639 if (!ieee80211_vif_is_mesh(&sdata->vif))
2640 goto invalid;
2641 if (sdata->u.mesh.user_mpm)
2642 /* userspace handles this frame */
2643 break;
2644 goto queue;
2645 case WLAN_SP_MGK_INFORM:
2646 case WLAN_SP_MGK_ACK:
2647 if (!ieee80211_vif_is_mesh(&sdata->vif))
2648 goto invalid;
2649 break;
2650 }
2651 break;
2652 case WLAN_CATEGORY_MESH_ACTION:
2653 if (len < (IEEE80211_MIN_ACTION_SIZE +
2654 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2655 break;
2656
2657 if (!ieee80211_vif_is_mesh(&sdata->vif))
2658 break;
2659 if (mesh_action_is_path_sel(mgmt) &&
2660 !mesh_path_sel_is_hwmp(sdata))
2661 break;
2662 goto queue;
2663 }
2664
2665 return RX_CONTINUE;
2666
2667 invalid:
2668 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2669 /* will return in the next handlers */
2670 return RX_CONTINUE;
2671
2672 handled:
2673 if (rx->sta)
2674 rx->sta->rx_packets++;
2675 dev_kfree_skb(rx->skb);
2676 return RX_QUEUED;
2677
2678 queue:
2679 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2680 skb_queue_tail(&sdata->skb_queue, rx->skb);
2681 ieee80211_queue_work(&local->hw, &sdata->work);
2682 if (rx->sta)
2683 rx->sta->rx_packets++;
2684 return RX_QUEUED;
2685 }
2686
2687 static ieee80211_rx_result debug_noinline
2688 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2689 {
2690 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2691 int sig = 0;
2692
2693 /* skip known-bad action frames and return them in the next handler */
2694 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2695 return RX_CONTINUE;
2696
2697 /*
2698 * Getting here means the kernel doesn't know how to handle
2699 * it, but maybe userspace does ... include returned frames
2700 * so userspace can register for those to know whether ones
2701 * it transmitted were processed or returned.
2702 */
2703
2704 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2705 sig = status->signal;
2706
2707 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2708 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2709 if (rx->sta)
2710 rx->sta->rx_packets++;
2711 dev_kfree_skb(rx->skb);
2712 return RX_QUEUED;
2713 }
2714
2715 return RX_CONTINUE;
2716 }
2717
2718 static ieee80211_rx_result debug_noinline
2719 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2720 {
2721 struct ieee80211_local *local = rx->local;
2722 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2723 struct sk_buff *nskb;
2724 struct ieee80211_sub_if_data *sdata = rx->sdata;
2725 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2726
2727 if (!ieee80211_is_action(mgmt->frame_control))
2728 return RX_CONTINUE;
2729
2730 /*
2731 * For AP mode, hostapd is responsible for handling any action
2732 * frames that we didn't handle, including returning unknown
2733 * ones. For all other modes we will return them to the sender,
2734 * setting the 0x80 bit in the action category, as required by
2735 * 802.11-2012 9.24.4.
2736 * Newer versions of hostapd shall also use the management frame
2737 * registration mechanisms, but older ones still use cooked
2738 * monitor interfaces so push all frames there.
2739 */
2740 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2741 (sdata->vif.type == NL80211_IFTYPE_AP ||
2742 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2743 return RX_DROP_MONITOR;
2744
2745 if (is_multicast_ether_addr(mgmt->da))
2746 return RX_DROP_MONITOR;
2747
2748 /* do not return rejected action frames */
2749 if (mgmt->u.action.category & 0x80)
2750 return RX_DROP_UNUSABLE;
2751
2752 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2753 GFP_ATOMIC);
2754 if (nskb) {
2755 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2756
2757 nmgmt->u.action.category |= 0x80;
2758 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2759 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2760
2761 memset(nskb->cb, 0, sizeof(nskb->cb));
2762
2763 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2764 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2765
2766 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2767 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2768 IEEE80211_TX_CTL_NO_CCK_RATE;
2769 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2770 info->hw_queue =
2771 local->hw.offchannel_tx_hw_queue;
2772 }
2773
2774 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2775 status->band);
2776 }
2777 dev_kfree_skb(rx->skb);
2778 return RX_QUEUED;
2779 }
2780
2781 static ieee80211_rx_result debug_noinline
2782 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2783 {
2784 struct ieee80211_sub_if_data *sdata = rx->sdata;
2785 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2786 __le16 stype;
2787
2788 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2789
2790 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2791 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2792 sdata->vif.type != NL80211_IFTYPE_STATION)
2793 return RX_DROP_MONITOR;
2794
2795 switch (stype) {
2796 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2797 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2798 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2799 /* process for all: mesh, mlme, ibss */
2800 break;
2801 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2802 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2803 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2804 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2805 if (is_multicast_ether_addr(mgmt->da) &&
2806 !is_broadcast_ether_addr(mgmt->da))
2807 return RX_DROP_MONITOR;
2808
2809 /* process only for station */
2810 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2811 return RX_DROP_MONITOR;
2812 break;
2813 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2814 /* process only for ibss and mesh */
2815 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2816 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2817 return RX_DROP_MONITOR;
2818 break;
2819 default:
2820 return RX_DROP_MONITOR;
2821 }
2822
2823 /* queue up frame and kick off work to process it */
2824 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2825 skb_queue_tail(&sdata->skb_queue, rx->skb);
2826 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2827 if (rx->sta)
2828 rx->sta->rx_packets++;
2829
2830 return RX_QUEUED;
2831 }
2832
2833 /* TODO: use IEEE80211_RX_FRAGMENTED */
2834 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2835 struct ieee80211_rate *rate)
2836 {
2837 struct ieee80211_sub_if_data *sdata;
2838 struct ieee80211_local *local = rx->local;
2839 struct sk_buff *skb = rx->skb, *skb2;
2840 struct net_device *prev_dev = NULL;
2841 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2842 int needed_headroom;
2843
2844 /*
2845 * If cooked monitor has been processed already, then
2846 * don't do it again. If not, set the flag.
2847 */
2848 if (rx->flags & IEEE80211_RX_CMNTR)
2849 goto out_free_skb;
2850 rx->flags |= IEEE80211_RX_CMNTR;
2851
2852 /* If there are no cooked monitor interfaces, just free the SKB */
2853 if (!local->cooked_mntrs)
2854 goto out_free_skb;
2855
2856 /* room for the radiotap header based on driver features */
2857 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2858
2859 if (skb_headroom(skb) < needed_headroom &&
2860 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2861 goto out_free_skb;
2862
2863 /* prepend radiotap information */
2864 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2865 false);
2866
2867 skb_set_mac_header(skb, 0);
2868 skb->ip_summed = CHECKSUM_UNNECESSARY;
2869 skb->pkt_type = PACKET_OTHERHOST;
2870 skb->protocol = htons(ETH_P_802_2);
2871
2872 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2873 if (!ieee80211_sdata_running(sdata))
2874 continue;
2875
2876 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2877 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2878 continue;
2879
2880 if (prev_dev) {
2881 skb2 = skb_clone(skb, GFP_ATOMIC);
2882 if (skb2) {
2883 skb2->dev = prev_dev;
2884 netif_receive_skb(skb2);
2885 }
2886 }
2887
2888 prev_dev = sdata->dev;
2889 sdata->dev->stats.rx_packets++;
2890 sdata->dev->stats.rx_bytes += skb->len;
2891 }
2892
2893 if (prev_dev) {
2894 skb->dev = prev_dev;
2895 netif_receive_skb(skb);
2896 return;
2897 }
2898
2899 out_free_skb:
2900 dev_kfree_skb(skb);
2901 }
2902
2903 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2904 ieee80211_rx_result res)
2905 {
2906 switch (res) {
2907 case RX_DROP_MONITOR:
2908 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2909 if (rx->sta)
2910 rx->sta->rx_dropped++;
2911 /* fall through */
2912 case RX_CONTINUE: {
2913 struct ieee80211_rate *rate = NULL;
2914 struct ieee80211_supported_band *sband;
2915 struct ieee80211_rx_status *status;
2916
2917 status = IEEE80211_SKB_RXCB((rx->skb));
2918
2919 sband = rx->local->hw.wiphy->bands[status->band];
2920 if (!(status->flag & RX_FLAG_HT) &&
2921 !(status->flag & RX_FLAG_VHT))
2922 rate = &sband->bitrates[status->rate_idx];
2923
2924 ieee80211_rx_cooked_monitor(rx, rate);
2925 break;
2926 }
2927 case RX_DROP_UNUSABLE:
2928 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2929 if (rx->sta)
2930 rx->sta->rx_dropped++;
2931 dev_kfree_skb(rx->skb);
2932 break;
2933 case RX_QUEUED:
2934 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2935 break;
2936 }
2937 }
2938
2939 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2940 struct sk_buff_head *frames)
2941 {
2942 ieee80211_rx_result res = RX_DROP_MONITOR;
2943 struct sk_buff *skb;
2944
2945 #define CALL_RXH(rxh) \
2946 do { \
2947 res = rxh(rx); \
2948 if (res != RX_CONTINUE) \
2949 goto rxh_next; \
2950 } while (0);
2951
2952 spin_lock_bh(&rx->local->rx_path_lock);
2953
2954 while ((skb = __skb_dequeue(frames))) {
2955 /*
2956 * all the other fields are valid across frames
2957 * that belong to an aMPDU since they are on the
2958 * same TID from the same station
2959 */
2960 rx->skb = skb;
2961
2962 CALL_RXH(ieee80211_rx_h_check_more_data)
2963 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2964 CALL_RXH(ieee80211_rx_h_sta_process)
2965 CALL_RXH(ieee80211_rx_h_decrypt)
2966 CALL_RXH(ieee80211_rx_h_defragment)
2967 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2968 /* must be after MMIC verify so header is counted in MPDU mic */
2969 #ifdef CONFIG_MAC80211_MESH
2970 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2971 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2972 #endif
2973 CALL_RXH(ieee80211_rx_h_amsdu)
2974 CALL_RXH(ieee80211_rx_h_data)
2975
2976 /* special treatment -- needs the queue */
2977 res = ieee80211_rx_h_ctrl(rx, frames);
2978 if (res != RX_CONTINUE)
2979 goto rxh_next;
2980
2981 CALL_RXH(ieee80211_rx_h_mgmt_check)
2982 CALL_RXH(ieee80211_rx_h_action)
2983 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2984 CALL_RXH(ieee80211_rx_h_action_return)
2985 CALL_RXH(ieee80211_rx_h_mgmt)
2986
2987 rxh_next:
2988 ieee80211_rx_handlers_result(rx, res);
2989
2990 #undef CALL_RXH
2991 }
2992
2993 spin_unlock_bh(&rx->local->rx_path_lock);
2994 }
2995
2996 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2997 {
2998 struct sk_buff_head reorder_release;
2999 ieee80211_rx_result res = RX_DROP_MONITOR;
3000
3001 __skb_queue_head_init(&reorder_release);
3002
3003 #define CALL_RXH(rxh) \
3004 do { \
3005 res = rxh(rx); \
3006 if (res != RX_CONTINUE) \
3007 goto rxh_next; \
3008 } while (0);
3009
3010 CALL_RXH(ieee80211_rx_h_check)
3011
3012 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3013
3014 ieee80211_rx_handlers(rx, &reorder_release);
3015 return;
3016
3017 rxh_next:
3018 ieee80211_rx_handlers_result(rx, res);
3019
3020 #undef CALL_RXH
3021 }
3022
3023 /*
3024 * This function makes calls into the RX path, therefore
3025 * it has to be invoked under RCU read lock.
3026 */
3027 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3028 {
3029 struct sk_buff_head frames;
3030 struct ieee80211_rx_data rx = {
3031 .sta = sta,
3032 .sdata = sta->sdata,
3033 .local = sta->local,
3034 /* This is OK -- must be QoS data frame */
3035 .security_idx = tid,
3036 .seqno_idx = tid,
3037 .flags = 0,
3038 };
3039 struct tid_ampdu_rx *tid_agg_rx;
3040
3041 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3042 if (!tid_agg_rx)
3043 return;
3044
3045 __skb_queue_head_init(&frames);
3046
3047 spin_lock(&tid_agg_rx->reorder_lock);
3048 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3049 spin_unlock(&tid_agg_rx->reorder_lock);
3050
3051 ieee80211_rx_handlers(&rx, &frames);
3052 }
3053
3054 /* main receive path */
3055
3056 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
3057 struct ieee80211_hdr *hdr)
3058 {
3059 struct ieee80211_sub_if_data *sdata = rx->sdata;
3060 struct sk_buff *skb = rx->skb;
3061 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3062 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3063 int multicast = is_multicast_ether_addr(hdr->addr1);
3064
3065 switch (sdata->vif.type) {
3066 case NL80211_IFTYPE_STATION:
3067 if (!bssid && !sdata->u.mgd.use_4addr)
3068 return 0;
3069 if (!multicast &&
3070 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3071 if (!(sdata->dev->flags & IFF_PROMISC) ||
3072 sdata->u.mgd.use_4addr)
3073 return 0;
3074 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3075 }
3076 break;
3077 case NL80211_IFTYPE_ADHOC:
3078 if (!bssid)
3079 return 0;
3080 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3081 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3082 return 0;
3083 if (ieee80211_is_beacon(hdr->frame_control)) {
3084 return 1;
3085 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3086 return 0;
3087 } else if (!multicast &&
3088 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3089 if (!(sdata->dev->flags & IFF_PROMISC))
3090 return 0;
3091 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3092 } else if (!rx->sta) {
3093 int rate_idx;
3094 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3095 rate_idx = 0; /* TODO: HT/VHT rates */
3096 else
3097 rate_idx = status->rate_idx;
3098 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3099 BIT(rate_idx));
3100 }
3101 break;
3102 case NL80211_IFTYPE_MESH_POINT:
3103 if (!multicast &&
3104 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3105 if (!(sdata->dev->flags & IFF_PROMISC))
3106 return 0;
3107
3108 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3109 }
3110 break;
3111 case NL80211_IFTYPE_AP_VLAN:
3112 case NL80211_IFTYPE_AP:
3113 if (!bssid) {
3114 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3115 return 0;
3116 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3117 /*
3118 * Accept public action frames even when the
3119 * BSSID doesn't match, this is used for P2P
3120 * and location updates. Note that mac80211
3121 * itself never looks at these frames.
3122 */
3123 if (!multicast &&
3124 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3125 return 0;
3126 if (ieee80211_is_public_action(hdr, skb->len))
3127 return 1;
3128 if (!ieee80211_is_beacon(hdr->frame_control))
3129 return 0;
3130 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3131 }
3132 break;
3133 case NL80211_IFTYPE_WDS:
3134 if (bssid || !ieee80211_is_data(hdr->frame_control))
3135 return 0;
3136 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3137 return 0;
3138 break;
3139 case NL80211_IFTYPE_P2P_DEVICE:
3140 if (!ieee80211_is_public_action(hdr, skb->len) &&
3141 !ieee80211_is_probe_req(hdr->frame_control) &&
3142 !ieee80211_is_probe_resp(hdr->frame_control) &&
3143 !ieee80211_is_beacon(hdr->frame_control))
3144 return 0;
3145 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3146 !multicast)
3147 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3148 break;
3149 default:
3150 /* should never get here */
3151 WARN_ON_ONCE(1);
3152 break;
3153 }
3154
3155 return 1;
3156 }
3157
3158 /*
3159 * This function returns whether or not the SKB
3160 * was destined for RX processing or not, which,
3161 * if consume is true, is equivalent to whether
3162 * or not the skb was consumed.
3163 */
3164 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3165 struct sk_buff *skb, bool consume)
3166 {
3167 struct ieee80211_local *local = rx->local;
3168 struct ieee80211_sub_if_data *sdata = rx->sdata;
3169 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3170 struct ieee80211_hdr *hdr = (void *)skb->data;
3171 int prepares;
3172
3173 rx->skb = skb;
3174 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3175 prepares = prepare_for_handlers(rx, hdr);
3176
3177 if (!prepares)
3178 return false;
3179
3180 if (!consume) {
3181 skb = skb_copy(skb, GFP_ATOMIC);
3182 if (!skb) {
3183 if (net_ratelimit())
3184 wiphy_debug(local->hw.wiphy,
3185 "failed to copy skb for %s\n",
3186 sdata->name);
3187 return true;
3188 }
3189
3190 rx->skb = skb;
3191 }
3192
3193 ieee80211_invoke_rx_handlers(rx);
3194 return true;
3195 }
3196
3197 /*
3198 * This is the actual Rx frames handler. as it blongs to Rx path it must
3199 * be called with rcu_read_lock protection.
3200 */
3201 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3202 struct sk_buff *skb)
3203 {
3204 struct ieee80211_local *local = hw_to_local(hw);
3205 struct ieee80211_sub_if_data *sdata;
3206 struct ieee80211_hdr *hdr;
3207 __le16 fc;
3208 struct ieee80211_rx_data rx;
3209 struct ieee80211_sub_if_data *prev;
3210 struct sta_info *sta, *tmp, *prev_sta;
3211 int err = 0;
3212
3213 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3214 memset(&rx, 0, sizeof(rx));
3215 rx.skb = skb;
3216 rx.local = local;
3217
3218 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3219 local->dot11ReceivedFragmentCount++;
3220
3221 if (ieee80211_is_mgmt(fc)) {
3222 /* drop frame if too short for header */
3223 if (skb->len < ieee80211_hdrlen(fc))
3224 err = -ENOBUFS;
3225 else
3226 err = skb_linearize(skb);
3227 } else {
3228 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3229 }
3230
3231 if (err) {
3232 dev_kfree_skb(skb);
3233 return;
3234 }
3235
3236 hdr = (struct ieee80211_hdr *)skb->data;
3237 ieee80211_parse_qos(&rx);
3238 ieee80211_verify_alignment(&rx);
3239
3240 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3241 ieee80211_is_beacon(hdr->frame_control)))
3242 ieee80211_scan_rx(local, skb);
3243
3244 if (ieee80211_is_data(fc)) {
3245 prev_sta = NULL;
3246
3247 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3248 if (!prev_sta) {
3249 prev_sta = sta;
3250 continue;
3251 }
3252
3253 rx.sta = prev_sta;
3254 rx.sdata = prev_sta->sdata;
3255 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3256
3257 prev_sta = sta;
3258 }
3259
3260 if (prev_sta) {
3261 rx.sta = prev_sta;
3262 rx.sdata = prev_sta->sdata;
3263
3264 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3265 return;
3266 goto out;
3267 }
3268 }
3269
3270 prev = NULL;
3271
3272 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3273 if (!ieee80211_sdata_running(sdata))
3274 continue;
3275
3276 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3277 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3278 continue;
3279
3280 /*
3281 * frame is destined for this interface, but if it's
3282 * not also for the previous one we handle that after
3283 * the loop to avoid copying the SKB once too much
3284 */
3285
3286 if (!prev) {
3287 prev = sdata;
3288 continue;
3289 }
3290
3291 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3292 rx.sdata = prev;
3293 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3294
3295 prev = sdata;
3296 }
3297
3298 if (prev) {
3299 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3300 rx.sdata = prev;
3301
3302 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3303 return;
3304 }
3305
3306 out:
3307 dev_kfree_skb(skb);
3308 }
3309
3310 /*
3311 * This is the receive path handler. It is called by a low level driver when an
3312 * 802.11 MPDU is received from the hardware.
3313 */
3314 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3315 {
3316 struct ieee80211_local *local = hw_to_local(hw);
3317 struct ieee80211_rate *rate = NULL;
3318 struct ieee80211_supported_band *sband;
3319 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3320
3321 WARN_ON_ONCE(softirq_count() == 0);
3322
3323 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3324 goto drop;
3325
3326 sband = local->hw.wiphy->bands[status->band];
3327 if (WARN_ON(!sband))
3328 goto drop;
3329
3330 /*
3331 * If we're suspending, it is possible although not too likely
3332 * that we'd be receiving frames after having already partially
3333 * quiesced the stack. We can't process such frames then since
3334 * that might, for example, cause stations to be added or other
3335 * driver callbacks be invoked.
3336 */
3337 if (unlikely(local->quiescing || local->suspended))
3338 goto drop;
3339
3340 /* We might be during a HW reconfig, prevent Rx for the same reason */
3341 if (unlikely(local->in_reconfig))
3342 goto drop;
3343
3344 /*
3345 * The same happens when we're not even started,
3346 * but that's worth a warning.
3347 */
3348 if (WARN_ON(!local->started))
3349 goto drop;
3350
3351 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3352 /*
3353 * Validate the rate, unless a PLCP error means that
3354 * we probably can't have a valid rate here anyway.
3355 */
3356
3357 if (status->flag & RX_FLAG_HT) {
3358 /*
3359 * rate_idx is MCS index, which can be [0-76]
3360 * as documented on:
3361 *
3362 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3363 *
3364 * Anything else would be some sort of driver or
3365 * hardware error. The driver should catch hardware
3366 * errors.
3367 */
3368 if (WARN(status->rate_idx > 76,
3369 "Rate marked as an HT rate but passed "
3370 "status->rate_idx is not "
3371 "an MCS index [0-76]: %d (0x%02x)\n",
3372 status->rate_idx,
3373 status->rate_idx))
3374 goto drop;
3375 } else if (status->flag & RX_FLAG_VHT) {
3376 if (WARN_ONCE(status->rate_idx > 9 ||
3377 !status->vht_nss ||
3378 status->vht_nss > 8,
3379 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3380 status->rate_idx, status->vht_nss))
3381 goto drop;
3382 } else {
3383 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3384 goto drop;
3385 rate = &sband->bitrates[status->rate_idx];
3386 }
3387 }
3388
3389 status->rx_flags = 0;
3390
3391 /*
3392 * key references and virtual interfaces are protected using RCU
3393 * and this requires that we are in a read-side RCU section during
3394 * receive processing
3395 */
3396 rcu_read_lock();
3397
3398 /*
3399 * Frames with failed FCS/PLCP checksum are not returned,
3400 * all other frames are returned without radiotap header
3401 * if it was previously present.
3402 * Also, frames with less than 16 bytes are dropped.
3403 */
3404 skb = ieee80211_rx_monitor(local, skb, rate);
3405 if (!skb) {
3406 rcu_read_unlock();
3407 return;
3408 }
3409
3410 ieee80211_tpt_led_trig_rx(local,
3411 ((struct ieee80211_hdr *)skb->data)->frame_control,
3412 skb->len);
3413 __ieee80211_rx_handle_packet(hw, skb);
3414
3415 rcu_read_unlock();
3416
3417 return;
3418 drop:
3419 kfree_skb(skb);
3420 }
3421 EXPORT_SYMBOL(ieee80211_rx);
3422
3423 /* This is a version of the rx handler that can be called from hard irq
3424 * context. Post the skb on the queue and schedule the tasklet */
3425 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3426 {
3427 struct ieee80211_local *local = hw_to_local(hw);
3428
3429 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3430
3431 skb->pkt_type = IEEE80211_RX_MSG;
3432 skb_queue_tail(&local->skb_queue, skb);
3433 tasklet_schedule(&local->tasklet);
3434 }
3435 EXPORT_SYMBOL(ieee80211_rx_irqsafe);