]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/rx.c
Merge remote-tracking branch 'wireless-next/master' into mac80211-next
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 /*
36 * monitor mode reception
37 *
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
40 */
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb,
43 unsigned int rtap_vendor_space)
44 {
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 __pskb_pull(skb, rtap_vendor_space);
57
58 return skb;
59 }
60
61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
62 unsigned int rtap_vendor_space)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + rtap_vendor_space);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return true;
73
74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
75 return true;
76
77 if (ieee80211_is_ctl(hdr->frame_control) &&
78 !ieee80211_is_pspoll(hdr->frame_control) &&
79 !ieee80211_is_back_req(hdr->frame_control))
80 return true;
81
82 return false;
83 }
84
85 static int
86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
87 struct ieee80211_rx_status *status,
88 struct sk_buff *skb)
89 {
90 int len;
91
92 /* always present fields */
93 len = sizeof(struct ieee80211_radiotap_header) + 8;
94
95 /* allocate extra bitmaps */
96 if (status->chains)
97 len += 4 * hweight8(status->chains);
98
99 if (ieee80211_have_rx_timestamp(status)) {
100 len = ALIGN(len, 8);
101 len += 8;
102 }
103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
104 len += 1;
105
106 /* antenna field, if we don't have per-chain info */
107 if (!status->chains)
108 len += 1;
109
110 /* padding for RX_FLAGS if necessary */
111 len = ALIGN(len, 2);
112
113 if (status->flag & RX_FLAG_HT) /* HT info */
114 len += 3;
115
116 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
117 len = ALIGN(len, 4);
118 len += 8;
119 }
120
121 if (status->flag & RX_FLAG_VHT) {
122 len = ALIGN(len, 2);
123 len += 12;
124 }
125
126 if (status->chains) {
127 /* antenna and antenna signal fields */
128 len += 2 * hweight8(status->chains);
129 }
130
131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
133
134 /* vendor presence bitmap */
135 len += 4;
136 /* alignment for fixed 6-byte vendor data header */
137 len = ALIGN(len, 2);
138 /* vendor data header */
139 len += 6;
140 if (WARN_ON(rtap->align == 0))
141 rtap->align = 1;
142 len = ALIGN(len, rtap->align);
143 len += rtap->len + rtap->pad;
144 }
145
146 return len;
147 }
148
149 /*
150 * ieee80211_add_rx_radiotap_header - add radiotap header
151 *
152 * add a radiotap header containing all the fields which the hardware provided.
153 */
154 static void
155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
156 struct sk_buff *skb,
157 struct ieee80211_rate *rate,
158 int rtap_len, bool has_fcs)
159 {
160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
161 struct ieee80211_radiotap_header *rthdr;
162 unsigned char *pos;
163 __le32 *it_present;
164 u32 it_present_val;
165 u16 rx_flags = 0;
166 u16 channel_flags = 0;
167 int mpdulen, chain;
168 unsigned long chains = status->chains;
169 struct ieee80211_vendor_radiotap rtap = {};
170
171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
173 /* rtap.len and rtap.pad are undone immediately */
174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
175 }
176
177 mpdulen = skb->len;
178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
179 mpdulen += FCS_LEN;
180
181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
183 it_present = &rthdr->it_present;
184
185 /* radiotap header, set always present flags */
186 rthdr->it_len = cpu_to_le16(rtap_len);
187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
188 BIT(IEEE80211_RADIOTAP_CHANNEL) |
189 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
190
191 if (!status->chains)
192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
193
194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
195 it_present_val |=
196 BIT(IEEE80211_RADIOTAP_EXT) |
197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
198 put_unaligned_le32(it_present_val, it_present);
199 it_present++;
200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
202 }
203
204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
206 BIT(IEEE80211_RADIOTAP_EXT);
207 put_unaligned_le32(it_present_val, it_present);
208 it_present++;
209 it_present_val = rtap.present;
210 }
211
212 put_unaligned_le32(it_present_val, it_present);
213
214 pos = (void *)(it_present + 1);
215
216 /* the order of the following fields is important */
217
218 /* IEEE80211_RADIOTAP_TSFT */
219 if (ieee80211_have_rx_timestamp(status)) {
220 /* padding */
221 while ((pos - (u8 *)rthdr) & 7)
222 *pos++ = 0;
223 put_unaligned_le64(
224 ieee80211_calculate_rx_timestamp(local, status,
225 mpdulen, 0),
226 pos);
227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
228 pos += 8;
229 }
230
231 /* IEEE80211_RADIOTAP_FLAGS */
232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
233 *pos |= IEEE80211_RADIOTAP_F_FCS;
234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
235 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
236 if (status->flag & RX_FLAG_SHORTPRE)
237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
238 pos++;
239
240 /* IEEE80211_RADIOTAP_RATE */
241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
242 /*
243 * Without rate information don't add it. If we have,
244 * MCS information is a separate field in radiotap,
245 * added below. The byte here is needed as padding
246 * for the channel though, so initialise it to 0.
247 */
248 *pos = 0;
249 } else {
250 int shift = 0;
251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
252 if (status->flag & RX_FLAG_10MHZ)
253 shift = 1;
254 else if (status->flag & RX_FLAG_5MHZ)
255 shift = 2;
256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
257 }
258 pos++;
259
260 /* IEEE80211_RADIOTAP_CHANNEL */
261 put_unaligned_le16(status->freq, pos);
262 pos += 2;
263 if (status->flag & RX_FLAG_10MHZ)
264 channel_flags |= IEEE80211_CHAN_HALF;
265 else if (status->flag & RX_FLAG_5MHZ)
266 channel_flags |= IEEE80211_CHAN_QUARTER;
267
268 if (status->band == IEEE80211_BAND_5GHZ)
269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
274 else if (rate)
275 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
276 else
277 channel_flags |= IEEE80211_CHAN_2GHZ;
278 put_unaligned_le16(channel_flags, pos);
279 pos += 2;
280
281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
284 *pos = status->signal;
285 rthdr->it_present |=
286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
287 pos++;
288 }
289
290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
291
292 if (!status->chains) {
293 /* IEEE80211_RADIOTAP_ANTENNA */
294 *pos = status->antenna;
295 pos++;
296 }
297
298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
299
300 /* IEEE80211_RADIOTAP_RX_FLAGS */
301 /* ensure 2 byte alignment for the 2 byte field as required */
302 if ((pos - (u8 *)rthdr) & 1)
303 *pos++ = 0;
304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
306 put_unaligned_le16(rx_flags, pos);
307 pos += 2;
308
309 if (status->flag & RX_FLAG_HT) {
310 unsigned int stbc;
311
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
313 *pos++ = local->hw.radiotap_mcs_details;
314 *pos = 0;
315 if (status->flag & RX_FLAG_SHORT_GI)
316 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
317 if (status->flag & RX_FLAG_40MHZ)
318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
319 if (status->flag & RX_FLAG_HT_GF)
320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
321 if (status->flag & RX_FLAG_LDPC)
322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
325 pos++;
326 *pos++ = status->rate_idx;
327 }
328
329 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
330 u16 flags = 0;
331
332 /* ensure 4 byte alignment */
333 while ((pos - (u8 *)rthdr) & 3)
334 pos++;
335 rthdr->it_present |=
336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
337 put_unaligned_le32(status->ampdu_reference, pos);
338 pos += 4;
339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
345 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
351 put_unaligned_le16(flags, pos);
352 pos += 2;
353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
354 *pos++ = status->ampdu_delimiter_crc;
355 else
356 *pos++ = 0;
357 *pos++ = 0;
358 }
359
360 if (status->flag & RX_FLAG_VHT) {
361 u16 known = local->hw.radiotap_vht_details;
362
363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
364 /* known field - how to handle 80+80? */
365 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
366 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
367 put_unaligned_le16(known, pos);
368 pos += 2;
369 /* flags */
370 if (status->flag & RX_FLAG_SHORT_GI)
371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
372 /* in VHT, STBC is binary */
373 if (status->flag & RX_FLAG_STBC_MASK)
374 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
375 if (status->vht_flag & RX_VHT_FLAG_BF)
376 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
377 pos++;
378 /* bandwidth */
379 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
380 *pos++ = 4;
381 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
382 *pos++ = 0; /* marked not known above */
383 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
384 *pos++ = 11;
385 else if (status->flag & RX_FLAG_40MHZ)
386 *pos++ = 1;
387 else /* 20 MHz */
388 *pos++ = 0;
389 /* MCS/NSS */
390 *pos = (status->rate_idx << 4) | status->vht_nss;
391 pos += 4;
392 /* coding field */
393 if (status->flag & RX_FLAG_LDPC)
394 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
395 pos++;
396 /* group ID */
397 pos++;
398 /* partial_aid */
399 pos += 2;
400 }
401
402 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
403 *pos++ = status->chain_signal[chain];
404 *pos++ = chain;
405 }
406
407 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
408 /* ensure 2 byte alignment for the vendor field as required */
409 if ((pos - (u8 *)rthdr) & 1)
410 *pos++ = 0;
411 *pos++ = rtap.oui[0];
412 *pos++ = rtap.oui[1];
413 *pos++ = rtap.oui[2];
414 *pos++ = rtap.subns;
415 put_unaligned_le16(rtap.len, pos);
416 pos += 2;
417 /* align the actual payload as requested */
418 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
419 *pos++ = 0;
420 /* data (and possible padding) already follows */
421 }
422 }
423
424 /*
425 * This function copies a received frame to all monitor interfaces and
426 * returns a cleaned-up SKB that no longer includes the FCS nor the
427 * radiotap header the driver might have added.
428 */
429 static struct sk_buff *
430 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
431 struct ieee80211_rate *rate)
432 {
433 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
434 struct ieee80211_sub_if_data *sdata;
435 int rt_hdrlen, needed_headroom;
436 struct sk_buff *skb, *skb2;
437 struct net_device *prev_dev = NULL;
438 int present_fcs_len = 0;
439 unsigned int rtap_vendor_space = 0;
440
441 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
442 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
443
444 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
445 }
446
447 /*
448 * First, we may need to make a copy of the skb because
449 * (1) we need to modify it for radiotap (if not present), and
450 * (2) the other RX handlers will modify the skb we got.
451 *
452 * We don't need to, of course, if we aren't going to return
453 * the SKB because it has a bad FCS/PLCP checksum.
454 */
455
456 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
457 present_fcs_len = FCS_LEN;
458
459 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
460 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
461 dev_kfree_skb(origskb);
462 return NULL;
463 }
464
465 if (!local->monitors) {
466 if (should_drop_frame(origskb, present_fcs_len,
467 rtap_vendor_space)) {
468 dev_kfree_skb(origskb);
469 return NULL;
470 }
471
472 return remove_monitor_info(local, origskb, rtap_vendor_space);
473 }
474
475 /* room for the radiotap header based on driver features */
476 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
477 needed_headroom = rt_hdrlen - rtap_vendor_space;
478
479 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
480 /* only need to expand headroom if necessary */
481 skb = origskb;
482 origskb = NULL;
483
484 /*
485 * This shouldn't trigger often because most devices have an
486 * RX header they pull before we get here, and that should
487 * be big enough for our radiotap information. We should
488 * probably export the length to drivers so that we can have
489 * them allocate enough headroom to start with.
490 */
491 if (skb_headroom(skb) < needed_headroom &&
492 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
493 dev_kfree_skb(skb);
494 return NULL;
495 }
496 } else {
497 /*
498 * Need to make a copy and possibly remove radiotap header
499 * and FCS from the original.
500 */
501 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
502
503 origskb = remove_monitor_info(local, origskb,
504 rtap_vendor_space);
505
506 if (!skb)
507 return origskb;
508 }
509
510 /* prepend radiotap information */
511 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
512
513 skb_reset_mac_header(skb);
514 skb->ip_summed = CHECKSUM_UNNECESSARY;
515 skb->pkt_type = PACKET_OTHERHOST;
516 skb->protocol = htons(ETH_P_802_2);
517
518 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
519 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
520 continue;
521
522 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
523 continue;
524
525 if (!ieee80211_sdata_running(sdata))
526 continue;
527
528 if (prev_dev) {
529 skb2 = skb_clone(skb, GFP_ATOMIC);
530 if (skb2) {
531 skb2->dev = prev_dev;
532 netif_receive_skb(skb2);
533 }
534 }
535
536 prev_dev = sdata->dev;
537 sdata->dev->stats.rx_packets++;
538 sdata->dev->stats.rx_bytes += skb->len;
539 }
540
541 if (prev_dev) {
542 skb->dev = prev_dev;
543 netif_receive_skb(skb);
544 } else
545 dev_kfree_skb(skb);
546
547 return origskb;
548 }
549
550 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
551 {
552 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
553 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
554 int tid, seqno_idx, security_idx;
555
556 /* does the frame have a qos control field? */
557 if (ieee80211_is_data_qos(hdr->frame_control)) {
558 u8 *qc = ieee80211_get_qos_ctl(hdr);
559 /* frame has qos control */
560 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
561 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
562 status->rx_flags |= IEEE80211_RX_AMSDU;
563
564 seqno_idx = tid;
565 security_idx = tid;
566 } else {
567 /*
568 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
569 *
570 * Sequence numbers for management frames, QoS data
571 * frames with a broadcast/multicast address in the
572 * Address 1 field, and all non-QoS data frames sent
573 * by QoS STAs are assigned using an additional single
574 * modulo-4096 counter, [...]
575 *
576 * We also use that counter for non-QoS STAs.
577 */
578 seqno_idx = IEEE80211_NUM_TIDS;
579 security_idx = 0;
580 if (ieee80211_is_mgmt(hdr->frame_control))
581 security_idx = IEEE80211_NUM_TIDS;
582 tid = 0;
583 }
584
585 rx->seqno_idx = seqno_idx;
586 rx->security_idx = security_idx;
587 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
588 * For now, set skb->priority to 0 for other cases. */
589 rx->skb->priority = (tid > 7) ? 0 : tid;
590 }
591
592 /**
593 * DOC: Packet alignment
594 *
595 * Drivers always need to pass packets that are aligned to two-byte boundaries
596 * to the stack.
597 *
598 * Additionally, should, if possible, align the payload data in a way that
599 * guarantees that the contained IP header is aligned to a four-byte
600 * boundary. In the case of regular frames, this simply means aligning the
601 * payload to a four-byte boundary (because either the IP header is directly
602 * contained, or IV/RFC1042 headers that have a length divisible by four are
603 * in front of it). If the payload data is not properly aligned and the
604 * architecture doesn't support efficient unaligned operations, mac80211
605 * will align the data.
606 *
607 * With A-MSDU frames, however, the payload data address must yield two modulo
608 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
609 * push the IP header further back to a multiple of four again. Thankfully, the
610 * specs were sane enough this time around to require padding each A-MSDU
611 * subframe to a length that is a multiple of four.
612 *
613 * Padding like Atheros hardware adds which is between the 802.11 header and
614 * the payload is not supported, the driver is required to move the 802.11
615 * header to be directly in front of the payload in that case.
616 */
617 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
618 {
619 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
620 WARN_ONCE((unsigned long)rx->skb->data & 1,
621 "unaligned packet at 0x%p\n", rx->skb->data);
622 #endif
623 }
624
625
626 /* rx handlers */
627
628 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
629 {
630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
631
632 if (is_multicast_ether_addr(hdr->addr1))
633 return 0;
634
635 return ieee80211_is_robust_mgmt_frame(skb);
636 }
637
638
639 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
640 {
641 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
642
643 if (!is_multicast_ether_addr(hdr->addr1))
644 return 0;
645
646 return ieee80211_is_robust_mgmt_frame(skb);
647 }
648
649
650 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
651 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
652 {
653 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
654 struct ieee80211_mmie *mmie;
655
656 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
657 return -1;
658
659 if (!ieee80211_is_robust_mgmt_frame(skb))
660 return -1; /* not a robust management frame */
661
662 mmie = (struct ieee80211_mmie *)
663 (skb->data + skb->len - sizeof(*mmie));
664 if (mmie->element_id != WLAN_EID_MMIE ||
665 mmie->length != sizeof(*mmie) - 2)
666 return -1;
667
668 return le16_to_cpu(mmie->key_id);
669 }
670
671 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
672 struct sk_buff *skb)
673 {
674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
675 __le16 fc;
676 int hdrlen;
677 u8 keyid;
678
679 fc = hdr->frame_control;
680 hdrlen = ieee80211_hdrlen(fc);
681
682 if (skb->len < hdrlen + cs->hdr_len)
683 return -EINVAL;
684
685 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
686 keyid &= cs->key_idx_mask;
687 keyid >>= cs->key_idx_shift;
688
689 return keyid;
690 }
691
692 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
693 {
694 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
695 char *dev_addr = rx->sdata->vif.addr;
696
697 if (ieee80211_is_data(hdr->frame_control)) {
698 if (is_multicast_ether_addr(hdr->addr1)) {
699 if (ieee80211_has_tods(hdr->frame_control) ||
700 !ieee80211_has_fromds(hdr->frame_control))
701 return RX_DROP_MONITOR;
702 if (ether_addr_equal(hdr->addr3, dev_addr))
703 return RX_DROP_MONITOR;
704 } else {
705 if (!ieee80211_has_a4(hdr->frame_control))
706 return RX_DROP_MONITOR;
707 if (ether_addr_equal(hdr->addr4, dev_addr))
708 return RX_DROP_MONITOR;
709 }
710 }
711
712 /* If there is not an established peer link and this is not a peer link
713 * establisment frame, beacon or probe, drop the frame.
714 */
715
716 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
717 struct ieee80211_mgmt *mgmt;
718
719 if (!ieee80211_is_mgmt(hdr->frame_control))
720 return RX_DROP_MONITOR;
721
722 if (ieee80211_is_action(hdr->frame_control)) {
723 u8 category;
724
725 /* make sure category field is present */
726 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
727 return RX_DROP_MONITOR;
728
729 mgmt = (struct ieee80211_mgmt *)hdr;
730 category = mgmt->u.action.category;
731 if (category != WLAN_CATEGORY_MESH_ACTION &&
732 category != WLAN_CATEGORY_SELF_PROTECTED)
733 return RX_DROP_MONITOR;
734 return RX_CONTINUE;
735 }
736
737 if (ieee80211_is_probe_req(hdr->frame_control) ||
738 ieee80211_is_probe_resp(hdr->frame_control) ||
739 ieee80211_is_beacon(hdr->frame_control) ||
740 ieee80211_is_auth(hdr->frame_control))
741 return RX_CONTINUE;
742
743 return RX_DROP_MONITOR;
744 }
745
746 return RX_CONTINUE;
747 }
748
749 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
750 struct tid_ampdu_rx *tid_agg_rx,
751 int index,
752 struct sk_buff_head *frames)
753 {
754 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
755 struct sk_buff *skb;
756 struct ieee80211_rx_status *status;
757
758 lockdep_assert_held(&tid_agg_rx->reorder_lock);
759
760 if (skb_queue_empty(skb_list))
761 goto no_frame;
762
763 if (!ieee80211_rx_reorder_ready(skb_list)) {
764 __skb_queue_purge(skb_list);
765 goto no_frame;
766 }
767
768 /* release frames from the reorder ring buffer */
769 tid_agg_rx->stored_mpdu_num--;
770 while ((skb = __skb_dequeue(skb_list))) {
771 status = IEEE80211_SKB_RXCB(skb);
772 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
773 __skb_queue_tail(frames, skb);
774 }
775
776 no_frame:
777 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
778 }
779
780 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
781 struct tid_ampdu_rx *tid_agg_rx,
782 u16 head_seq_num,
783 struct sk_buff_head *frames)
784 {
785 int index;
786
787 lockdep_assert_held(&tid_agg_rx->reorder_lock);
788
789 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
790 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
791 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
792 frames);
793 }
794 }
795
796 /*
797 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
798 * the skb was added to the buffer longer than this time ago, the earlier
799 * frames that have not yet been received are assumed to be lost and the skb
800 * can be released for processing. This may also release other skb's from the
801 * reorder buffer if there are no additional gaps between the frames.
802 *
803 * Callers must hold tid_agg_rx->reorder_lock.
804 */
805 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
806
807 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
808 struct tid_ampdu_rx *tid_agg_rx,
809 struct sk_buff_head *frames)
810 {
811 int index, i, j;
812
813 lockdep_assert_held(&tid_agg_rx->reorder_lock);
814
815 /* release the buffer until next missing frame */
816 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
817 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
818 tid_agg_rx->stored_mpdu_num) {
819 /*
820 * No buffers ready to be released, but check whether any
821 * frames in the reorder buffer have timed out.
822 */
823 int skipped = 1;
824 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
825 j = (j + 1) % tid_agg_rx->buf_size) {
826 if (!ieee80211_rx_reorder_ready(
827 &tid_agg_rx->reorder_buf[j])) {
828 skipped++;
829 continue;
830 }
831 if (skipped &&
832 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
833 HT_RX_REORDER_BUF_TIMEOUT))
834 goto set_release_timer;
835
836 /* don't leave incomplete A-MSDUs around */
837 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
838 i = (i + 1) % tid_agg_rx->buf_size)
839 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
840
841 ht_dbg_ratelimited(sdata,
842 "release an RX reorder frame due to timeout on earlier frames\n");
843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
844 frames);
845
846 /*
847 * Increment the head seq# also for the skipped slots.
848 */
849 tid_agg_rx->head_seq_num =
850 (tid_agg_rx->head_seq_num +
851 skipped) & IEEE80211_SN_MASK;
852 skipped = 0;
853 }
854 } else while (ieee80211_rx_reorder_ready(
855 &tid_agg_rx->reorder_buf[index])) {
856 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
857 frames);
858 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
859 }
860
861 if (tid_agg_rx->stored_mpdu_num) {
862 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
863
864 for (; j != (index - 1) % tid_agg_rx->buf_size;
865 j = (j + 1) % tid_agg_rx->buf_size) {
866 if (ieee80211_rx_reorder_ready(
867 &tid_agg_rx->reorder_buf[j]))
868 break;
869 }
870
871 set_release_timer:
872
873 mod_timer(&tid_agg_rx->reorder_timer,
874 tid_agg_rx->reorder_time[j] + 1 +
875 HT_RX_REORDER_BUF_TIMEOUT);
876 } else {
877 del_timer(&tid_agg_rx->reorder_timer);
878 }
879 }
880
881 /*
882 * As this function belongs to the RX path it must be under
883 * rcu_read_lock protection. It returns false if the frame
884 * can be processed immediately, true if it was consumed.
885 */
886 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
887 struct tid_ampdu_rx *tid_agg_rx,
888 struct sk_buff *skb,
889 struct sk_buff_head *frames)
890 {
891 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
893 u16 sc = le16_to_cpu(hdr->seq_ctrl);
894 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
895 u16 head_seq_num, buf_size;
896 int index;
897 bool ret = true;
898
899 spin_lock(&tid_agg_rx->reorder_lock);
900
901 /*
902 * Offloaded BA sessions have no known starting sequence number so pick
903 * one from first Rxed frame for this tid after BA was started.
904 */
905 if (unlikely(tid_agg_rx->auto_seq)) {
906 tid_agg_rx->auto_seq = false;
907 tid_agg_rx->ssn = mpdu_seq_num;
908 tid_agg_rx->head_seq_num = mpdu_seq_num;
909 }
910
911 buf_size = tid_agg_rx->buf_size;
912 head_seq_num = tid_agg_rx->head_seq_num;
913
914 /* frame with out of date sequence number */
915 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
916 dev_kfree_skb(skb);
917 goto out;
918 }
919
920 /*
921 * If frame the sequence number exceeds our buffering window
922 * size release some previous frames to make room for this one.
923 */
924 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
925 head_seq_num = ieee80211_sn_inc(
926 ieee80211_sn_sub(mpdu_seq_num, buf_size));
927 /* release stored frames up to new head to stack */
928 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
929 head_seq_num, frames);
930 }
931
932 /* Now the new frame is always in the range of the reordering buffer */
933
934 index = mpdu_seq_num % tid_agg_rx->buf_size;
935
936 /* check if we already stored this frame */
937 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
938 dev_kfree_skb(skb);
939 goto out;
940 }
941
942 /*
943 * If the current MPDU is in the right order and nothing else
944 * is stored we can process it directly, no need to buffer it.
945 * If it is first but there's something stored, we may be able
946 * to release frames after this one.
947 */
948 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
949 tid_agg_rx->stored_mpdu_num == 0) {
950 if (!(status->flag & RX_FLAG_AMSDU_MORE))
951 tid_agg_rx->head_seq_num =
952 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
953 ret = false;
954 goto out;
955 }
956
957 /* put the frame in the reordering buffer */
958 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
959 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
960 tid_agg_rx->reorder_time[index] = jiffies;
961 tid_agg_rx->stored_mpdu_num++;
962 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
963 }
964
965 out:
966 spin_unlock(&tid_agg_rx->reorder_lock);
967 return ret;
968 }
969
970 /*
971 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
972 * true if the MPDU was buffered, false if it should be processed.
973 */
974 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
975 struct sk_buff_head *frames)
976 {
977 struct sk_buff *skb = rx->skb;
978 struct ieee80211_local *local = rx->local;
979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
981 struct sta_info *sta = rx->sta;
982 struct tid_ampdu_rx *tid_agg_rx;
983 u16 sc;
984 u8 tid, ack_policy;
985
986 if (!ieee80211_is_data_qos(hdr->frame_control) ||
987 is_multicast_ether_addr(hdr->addr1))
988 goto dont_reorder;
989
990 /*
991 * filter the QoS data rx stream according to
992 * STA/TID and check if this STA/TID is on aggregation
993 */
994
995 if (!sta)
996 goto dont_reorder;
997
998 ack_policy = *ieee80211_get_qos_ctl(hdr) &
999 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1000 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1001
1002 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1003 if (!tid_agg_rx)
1004 goto dont_reorder;
1005
1006 /* qos null data frames are excluded */
1007 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1008 goto dont_reorder;
1009
1010 /* not part of a BA session */
1011 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1012 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1013 goto dont_reorder;
1014
1015 /* not actually part of this BA session */
1016 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1017 goto dont_reorder;
1018
1019 /* new, potentially un-ordered, ampdu frame - process it */
1020
1021 /* reset session timer */
1022 if (tid_agg_rx->timeout)
1023 tid_agg_rx->last_rx = jiffies;
1024
1025 /* if this mpdu is fragmented - terminate rx aggregation session */
1026 sc = le16_to_cpu(hdr->seq_ctrl);
1027 if (sc & IEEE80211_SCTL_FRAG) {
1028 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1029 skb_queue_tail(&rx->sdata->skb_queue, skb);
1030 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1031 return;
1032 }
1033
1034 /*
1035 * No locking needed -- we will only ever process one
1036 * RX packet at a time, and thus own tid_agg_rx. All
1037 * other code manipulating it needs to (and does) make
1038 * sure that we cannot get to it any more before doing
1039 * anything with it.
1040 */
1041 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1042 frames))
1043 return;
1044
1045 dont_reorder:
1046 __skb_queue_tail(frames, skb);
1047 }
1048
1049 static ieee80211_rx_result debug_noinline
1050 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1051 {
1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1053 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1054
1055 /*
1056 * Drop duplicate 802.11 retransmissions
1057 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1058 */
1059
1060 if (rx->skb->len < 24)
1061 return RX_CONTINUE;
1062
1063 if (ieee80211_is_ctl(hdr->frame_control) ||
1064 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1065 is_multicast_ether_addr(hdr->addr1))
1066 return RX_CONTINUE;
1067
1068 if (rx->sta) {
1069 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1070 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1071 hdr->seq_ctrl)) {
1072 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1073 rx->local->dot11FrameDuplicateCount++;
1074 rx->sta->num_duplicates++;
1075 }
1076 return RX_DROP_UNUSABLE;
1077 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1078 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1079 }
1080 }
1081
1082 return RX_CONTINUE;
1083 }
1084
1085 static ieee80211_rx_result debug_noinline
1086 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1087 {
1088 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1089
1090 if (unlikely(rx->skb->len < 16)) {
1091 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1092 return RX_DROP_MONITOR;
1093 }
1094
1095 /* Drop disallowed frame classes based on STA auth/assoc state;
1096 * IEEE 802.11, Chap 5.5.
1097 *
1098 * mac80211 filters only based on association state, i.e. it drops
1099 * Class 3 frames from not associated stations. hostapd sends
1100 * deauth/disassoc frames when needed. In addition, hostapd is
1101 * responsible for filtering on both auth and assoc states.
1102 */
1103
1104 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1105 return ieee80211_rx_mesh_check(rx);
1106
1107 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1108 ieee80211_is_pspoll(hdr->frame_control)) &&
1109 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1110 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1111 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1112 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1113 /*
1114 * accept port control frames from the AP even when it's not
1115 * yet marked ASSOC to prevent a race where we don't set the
1116 * assoc bit quickly enough before it sends the first frame
1117 */
1118 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1119 ieee80211_is_data_present(hdr->frame_control)) {
1120 unsigned int hdrlen;
1121 __be16 ethertype;
1122
1123 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1124
1125 if (rx->skb->len < hdrlen + 8)
1126 return RX_DROP_MONITOR;
1127
1128 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1129 if (ethertype == rx->sdata->control_port_protocol)
1130 return RX_CONTINUE;
1131 }
1132
1133 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1134 cfg80211_rx_spurious_frame(rx->sdata->dev,
1135 hdr->addr2,
1136 GFP_ATOMIC))
1137 return RX_DROP_UNUSABLE;
1138
1139 return RX_DROP_MONITOR;
1140 }
1141
1142 return RX_CONTINUE;
1143 }
1144
1145
1146 static ieee80211_rx_result debug_noinline
1147 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1148 {
1149 struct ieee80211_local *local;
1150 struct ieee80211_hdr *hdr;
1151 struct sk_buff *skb;
1152
1153 local = rx->local;
1154 skb = rx->skb;
1155 hdr = (struct ieee80211_hdr *) skb->data;
1156
1157 if (!local->pspolling)
1158 return RX_CONTINUE;
1159
1160 if (!ieee80211_has_fromds(hdr->frame_control))
1161 /* this is not from AP */
1162 return RX_CONTINUE;
1163
1164 if (!ieee80211_is_data(hdr->frame_control))
1165 return RX_CONTINUE;
1166
1167 if (!ieee80211_has_moredata(hdr->frame_control)) {
1168 /* AP has no more frames buffered for us */
1169 local->pspolling = false;
1170 return RX_CONTINUE;
1171 }
1172
1173 /* more data bit is set, let's request a new frame from the AP */
1174 ieee80211_send_pspoll(local, rx->sdata);
1175
1176 return RX_CONTINUE;
1177 }
1178
1179 static void sta_ps_start(struct sta_info *sta)
1180 {
1181 struct ieee80211_sub_if_data *sdata = sta->sdata;
1182 struct ieee80211_local *local = sdata->local;
1183 struct ps_data *ps;
1184
1185 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1186 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1187 ps = &sdata->bss->ps;
1188 else
1189 return;
1190
1191 atomic_inc(&ps->num_sta_ps);
1192 set_sta_flag(sta, WLAN_STA_PS_STA);
1193 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1194 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1195 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1196 sta->sta.addr, sta->sta.aid);
1197 }
1198
1199 static void sta_ps_end(struct sta_info *sta)
1200 {
1201 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1202 sta->sta.addr, sta->sta.aid);
1203
1204 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1205 /*
1206 * Clear the flag only if the other one is still set
1207 * so that the TX path won't start TX'ing new frames
1208 * directly ... In the case that the driver flag isn't
1209 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1210 */
1211 clear_sta_flag(sta, WLAN_STA_PS_STA);
1212 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1213 sta->sta.addr, sta->sta.aid);
1214 return;
1215 }
1216
1217 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1218 clear_sta_flag(sta, WLAN_STA_PS_STA);
1219 ieee80211_sta_ps_deliver_wakeup(sta);
1220 }
1221
1222 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1223 {
1224 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1225 bool in_ps;
1226
1227 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1228
1229 /* Don't let the same PS state be set twice */
1230 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1231 if ((start && in_ps) || (!start && !in_ps))
1232 return -EINVAL;
1233
1234 if (start)
1235 sta_ps_start(sta_inf);
1236 else
1237 sta_ps_end(sta_inf);
1238
1239 return 0;
1240 }
1241 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1242
1243 static ieee80211_rx_result debug_noinline
1244 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1245 {
1246 struct ieee80211_sub_if_data *sdata = rx->sdata;
1247 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1248 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1249 int tid, ac;
1250
1251 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1252 return RX_CONTINUE;
1253
1254 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1255 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1256 return RX_CONTINUE;
1257
1258 /*
1259 * The device handles station powersave, so don't do anything about
1260 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1261 * it to mac80211 since they're handled.)
1262 */
1263 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1264 return RX_CONTINUE;
1265
1266 /*
1267 * Don't do anything if the station isn't already asleep. In
1268 * the uAPSD case, the station will probably be marked asleep,
1269 * in the PS-Poll case the station must be confused ...
1270 */
1271 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1272 return RX_CONTINUE;
1273
1274 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1275 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1276 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1277 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1278 else
1279 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1280 }
1281
1282 /* Free PS Poll skb here instead of returning RX_DROP that would
1283 * count as an dropped frame. */
1284 dev_kfree_skb(rx->skb);
1285
1286 return RX_QUEUED;
1287 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1288 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1289 ieee80211_has_pm(hdr->frame_control) &&
1290 (ieee80211_is_data_qos(hdr->frame_control) ||
1291 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1292 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1293 ac = ieee802_1d_to_ac[tid & 7];
1294
1295 /*
1296 * If this AC is not trigger-enabled do nothing.
1297 *
1298 * NB: This could/should check a separate bitmap of trigger-
1299 * enabled queues, but for now we only implement uAPSD w/o
1300 * TSPEC changes to the ACs, so they're always the same.
1301 */
1302 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1303 return RX_CONTINUE;
1304
1305 /* if we are in a service period, do nothing */
1306 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1307 return RX_CONTINUE;
1308
1309 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1310 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1311 else
1312 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1313 }
1314
1315 return RX_CONTINUE;
1316 }
1317
1318 static ieee80211_rx_result debug_noinline
1319 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1320 {
1321 struct sta_info *sta = rx->sta;
1322 struct sk_buff *skb = rx->skb;
1323 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1324 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1325 int i;
1326
1327 if (!sta)
1328 return RX_CONTINUE;
1329
1330 /*
1331 * Update last_rx only for IBSS packets which are for the current
1332 * BSSID and for station already AUTHORIZED to avoid keeping the
1333 * current IBSS network alive in cases where other STAs start
1334 * using different BSSID. This will also give the station another
1335 * chance to restart the authentication/authorization in case
1336 * something went wrong the first time.
1337 */
1338 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1339 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1340 NL80211_IFTYPE_ADHOC);
1341 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1342 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1343 sta->last_rx = jiffies;
1344 if (ieee80211_is_data(hdr->frame_control) &&
1345 !is_multicast_ether_addr(hdr->addr1)) {
1346 sta->last_rx_rate_idx = status->rate_idx;
1347 sta->last_rx_rate_flag = status->flag;
1348 sta->last_rx_rate_vht_flag = status->vht_flag;
1349 sta->last_rx_rate_vht_nss = status->vht_nss;
1350 }
1351 }
1352 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1353 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1354 NL80211_IFTYPE_OCB);
1355 /* OCB uses wild-card BSSID */
1356 if (is_broadcast_ether_addr(bssid))
1357 sta->last_rx = jiffies;
1358 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1359 /*
1360 * Mesh beacons will update last_rx when if they are found to
1361 * match the current local configuration when processed.
1362 */
1363 sta->last_rx = jiffies;
1364 if (ieee80211_is_data(hdr->frame_control)) {
1365 sta->last_rx_rate_idx = status->rate_idx;
1366 sta->last_rx_rate_flag = status->flag;
1367 sta->last_rx_rate_vht_flag = status->vht_flag;
1368 sta->last_rx_rate_vht_nss = status->vht_nss;
1369 }
1370 }
1371
1372 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1373 return RX_CONTINUE;
1374
1375 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1376 ieee80211_sta_rx_notify(rx->sdata, hdr);
1377
1378 sta->rx_fragments++;
1379 sta->rx_bytes += rx->skb->len;
1380 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1381 sta->last_signal = status->signal;
1382 ewma_add(&sta->avg_signal, -status->signal);
1383 }
1384
1385 if (status->chains) {
1386 sta->chains = status->chains;
1387 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1388 int signal = status->chain_signal[i];
1389
1390 if (!(status->chains & BIT(i)))
1391 continue;
1392
1393 sta->chain_signal_last[i] = signal;
1394 ewma_add(&sta->chain_signal_avg[i], -signal);
1395 }
1396 }
1397
1398 /*
1399 * Change STA power saving mode only at the end of a frame
1400 * exchange sequence.
1401 */
1402 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1403 !ieee80211_has_morefrags(hdr->frame_control) &&
1404 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1405 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1406 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1407 /* PM bit is only checked in frames where it isn't reserved,
1408 * in AP mode it's reserved in non-bufferable management frames
1409 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1410 */
1411 (!ieee80211_is_mgmt(hdr->frame_control) ||
1412 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1413 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1414 if (!ieee80211_has_pm(hdr->frame_control))
1415 sta_ps_end(sta);
1416 } else {
1417 if (ieee80211_has_pm(hdr->frame_control))
1418 sta_ps_start(sta);
1419 }
1420 }
1421
1422 /* mesh power save support */
1423 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1424 ieee80211_mps_rx_h_sta_process(sta, hdr);
1425
1426 /*
1427 * Drop (qos-)data::nullfunc frames silently, since they
1428 * are used only to control station power saving mode.
1429 */
1430 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1431 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1432 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1433
1434 /*
1435 * If we receive a 4-addr nullfunc frame from a STA
1436 * that was not moved to a 4-addr STA vlan yet send
1437 * the event to userspace and for older hostapd drop
1438 * the frame to the monitor interface.
1439 */
1440 if (ieee80211_has_a4(hdr->frame_control) &&
1441 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1442 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1443 !rx->sdata->u.vlan.sta))) {
1444 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1445 cfg80211_rx_unexpected_4addr_frame(
1446 rx->sdata->dev, sta->sta.addr,
1447 GFP_ATOMIC);
1448 return RX_DROP_MONITOR;
1449 }
1450 /*
1451 * Update counter and free packet here to avoid
1452 * counting this as a dropped packed.
1453 */
1454 sta->rx_packets++;
1455 dev_kfree_skb(rx->skb);
1456 return RX_QUEUED;
1457 }
1458
1459 return RX_CONTINUE;
1460 } /* ieee80211_rx_h_sta_process */
1461
1462 static ieee80211_rx_result debug_noinline
1463 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1464 {
1465 struct sk_buff *skb = rx->skb;
1466 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1468 int keyidx;
1469 int hdrlen;
1470 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1471 struct ieee80211_key *sta_ptk = NULL;
1472 int mmie_keyidx = -1;
1473 __le16 fc;
1474 const struct ieee80211_cipher_scheme *cs = NULL;
1475
1476 /*
1477 * Key selection 101
1478 *
1479 * There are four types of keys:
1480 * - GTK (group keys)
1481 * - IGTK (group keys for management frames)
1482 * - PTK (pairwise keys)
1483 * - STK (station-to-station pairwise keys)
1484 *
1485 * When selecting a key, we have to distinguish between multicast
1486 * (including broadcast) and unicast frames, the latter can only
1487 * use PTKs and STKs while the former always use GTKs and IGTKs.
1488 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1489 * unicast frames can also use key indices like GTKs. Hence, if we
1490 * don't have a PTK/STK we check the key index for a WEP key.
1491 *
1492 * Note that in a regular BSS, multicast frames are sent by the
1493 * AP only, associated stations unicast the frame to the AP first
1494 * which then multicasts it on their behalf.
1495 *
1496 * There is also a slight problem in IBSS mode: GTKs are negotiated
1497 * with each station, that is something we don't currently handle.
1498 * The spec seems to expect that one negotiates the same key with
1499 * every station but there's no such requirement; VLANs could be
1500 * possible.
1501 */
1502
1503 /*
1504 * No point in finding a key and decrypting if the frame is neither
1505 * addressed to us nor a multicast frame.
1506 */
1507 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1508 return RX_CONTINUE;
1509
1510 /* start without a key */
1511 rx->key = NULL;
1512 fc = hdr->frame_control;
1513
1514 if (rx->sta) {
1515 int keyid = rx->sta->ptk_idx;
1516
1517 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1518 cs = rx->sta->cipher_scheme;
1519 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1520 if (unlikely(keyid < 0))
1521 return RX_DROP_UNUSABLE;
1522 }
1523 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1524 }
1525
1526 if (!ieee80211_has_protected(fc))
1527 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1528
1529 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1530 rx->key = sta_ptk;
1531 if ((status->flag & RX_FLAG_DECRYPTED) &&
1532 (status->flag & RX_FLAG_IV_STRIPPED))
1533 return RX_CONTINUE;
1534 /* Skip decryption if the frame is not protected. */
1535 if (!ieee80211_has_protected(fc))
1536 return RX_CONTINUE;
1537 } else if (mmie_keyidx >= 0) {
1538 /* Broadcast/multicast robust management frame / BIP */
1539 if ((status->flag & RX_FLAG_DECRYPTED) &&
1540 (status->flag & RX_FLAG_IV_STRIPPED))
1541 return RX_CONTINUE;
1542
1543 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1544 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1545 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1546 if (rx->sta)
1547 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1548 if (!rx->key)
1549 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1550 } else if (!ieee80211_has_protected(fc)) {
1551 /*
1552 * The frame was not protected, so skip decryption. However, we
1553 * need to set rx->key if there is a key that could have been
1554 * used so that the frame may be dropped if encryption would
1555 * have been expected.
1556 */
1557 struct ieee80211_key *key = NULL;
1558 struct ieee80211_sub_if_data *sdata = rx->sdata;
1559 int i;
1560
1561 if (ieee80211_is_mgmt(fc) &&
1562 is_multicast_ether_addr(hdr->addr1) &&
1563 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1564 rx->key = key;
1565 else {
1566 if (rx->sta) {
1567 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1568 key = rcu_dereference(rx->sta->gtk[i]);
1569 if (key)
1570 break;
1571 }
1572 }
1573 if (!key) {
1574 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1575 key = rcu_dereference(sdata->keys[i]);
1576 if (key)
1577 break;
1578 }
1579 }
1580 if (key)
1581 rx->key = key;
1582 }
1583 return RX_CONTINUE;
1584 } else {
1585 u8 keyid;
1586
1587 /*
1588 * The device doesn't give us the IV so we won't be
1589 * able to look up the key. That's ok though, we
1590 * don't need to decrypt the frame, we just won't
1591 * be able to keep statistics accurate.
1592 * Except for key threshold notifications, should
1593 * we somehow allow the driver to tell us which key
1594 * the hardware used if this flag is set?
1595 */
1596 if ((status->flag & RX_FLAG_DECRYPTED) &&
1597 (status->flag & RX_FLAG_IV_STRIPPED))
1598 return RX_CONTINUE;
1599
1600 hdrlen = ieee80211_hdrlen(fc);
1601
1602 if (cs) {
1603 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1604
1605 if (unlikely(keyidx < 0))
1606 return RX_DROP_UNUSABLE;
1607 } else {
1608 if (rx->skb->len < 8 + hdrlen)
1609 return RX_DROP_UNUSABLE; /* TODO: count this? */
1610 /*
1611 * no need to call ieee80211_wep_get_keyidx,
1612 * it verifies a bunch of things we've done already
1613 */
1614 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1615 keyidx = keyid >> 6;
1616 }
1617
1618 /* check per-station GTK first, if multicast packet */
1619 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1620 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1621
1622 /* if not found, try default key */
1623 if (!rx->key) {
1624 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1625
1626 /*
1627 * RSNA-protected unicast frames should always be
1628 * sent with pairwise or station-to-station keys,
1629 * but for WEP we allow using a key index as well.
1630 */
1631 if (rx->key &&
1632 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1633 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1634 !is_multicast_ether_addr(hdr->addr1))
1635 rx->key = NULL;
1636 }
1637 }
1638
1639 if (rx->key) {
1640 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1641 return RX_DROP_MONITOR;
1642
1643 rx->key->tx_rx_count++;
1644 /* TODO: add threshold stuff again */
1645 } else {
1646 return RX_DROP_MONITOR;
1647 }
1648
1649 switch (rx->key->conf.cipher) {
1650 case WLAN_CIPHER_SUITE_WEP40:
1651 case WLAN_CIPHER_SUITE_WEP104:
1652 result = ieee80211_crypto_wep_decrypt(rx);
1653 break;
1654 case WLAN_CIPHER_SUITE_TKIP:
1655 result = ieee80211_crypto_tkip_decrypt(rx);
1656 break;
1657 case WLAN_CIPHER_SUITE_CCMP:
1658 result = ieee80211_crypto_ccmp_decrypt(rx);
1659 break;
1660 case WLAN_CIPHER_SUITE_AES_CMAC:
1661 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1662 break;
1663 default:
1664 result = ieee80211_crypto_hw_decrypt(rx);
1665 }
1666
1667 /* the hdr variable is invalid after the decrypt handlers */
1668
1669 /* either the frame has been decrypted or will be dropped */
1670 status->flag |= RX_FLAG_DECRYPTED;
1671
1672 return result;
1673 }
1674
1675 static inline struct ieee80211_fragment_entry *
1676 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1677 unsigned int frag, unsigned int seq, int rx_queue,
1678 struct sk_buff **skb)
1679 {
1680 struct ieee80211_fragment_entry *entry;
1681
1682 entry = &sdata->fragments[sdata->fragment_next++];
1683 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1684 sdata->fragment_next = 0;
1685
1686 if (!skb_queue_empty(&entry->skb_list))
1687 __skb_queue_purge(&entry->skb_list);
1688
1689 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1690 *skb = NULL;
1691 entry->first_frag_time = jiffies;
1692 entry->seq = seq;
1693 entry->rx_queue = rx_queue;
1694 entry->last_frag = frag;
1695 entry->ccmp = 0;
1696 entry->extra_len = 0;
1697
1698 return entry;
1699 }
1700
1701 static inline struct ieee80211_fragment_entry *
1702 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1703 unsigned int frag, unsigned int seq,
1704 int rx_queue, struct ieee80211_hdr *hdr)
1705 {
1706 struct ieee80211_fragment_entry *entry;
1707 int i, idx;
1708
1709 idx = sdata->fragment_next;
1710 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1711 struct ieee80211_hdr *f_hdr;
1712
1713 idx--;
1714 if (idx < 0)
1715 idx = IEEE80211_FRAGMENT_MAX - 1;
1716
1717 entry = &sdata->fragments[idx];
1718 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1719 entry->rx_queue != rx_queue ||
1720 entry->last_frag + 1 != frag)
1721 continue;
1722
1723 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1724
1725 /*
1726 * Check ftype and addresses are equal, else check next fragment
1727 */
1728 if (((hdr->frame_control ^ f_hdr->frame_control) &
1729 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1730 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1731 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1732 continue;
1733
1734 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1735 __skb_queue_purge(&entry->skb_list);
1736 continue;
1737 }
1738 return entry;
1739 }
1740
1741 return NULL;
1742 }
1743
1744 static ieee80211_rx_result debug_noinline
1745 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1746 {
1747 struct ieee80211_hdr *hdr;
1748 u16 sc;
1749 __le16 fc;
1750 unsigned int frag, seq;
1751 struct ieee80211_fragment_entry *entry;
1752 struct sk_buff *skb;
1753 struct ieee80211_rx_status *status;
1754
1755 hdr = (struct ieee80211_hdr *)rx->skb->data;
1756 fc = hdr->frame_control;
1757
1758 if (ieee80211_is_ctl(fc))
1759 return RX_CONTINUE;
1760
1761 sc = le16_to_cpu(hdr->seq_ctrl);
1762 frag = sc & IEEE80211_SCTL_FRAG;
1763
1764 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1765 is_multicast_ether_addr(hdr->addr1))) {
1766 /* not fragmented */
1767 goto out;
1768 }
1769 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1770
1771 if (skb_linearize(rx->skb))
1772 return RX_DROP_UNUSABLE;
1773
1774 /*
1775 * skb_linearize() might change the skb->data and
1776 * previously cached variables (in this case, hdr) need to
1777 * be refreshed with the new data.
1778 */
1779 hdr = (struct ieee80211_hdr *)rx->skb->data;
1780 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1781
1782 if (frag == 0) {
1783 /* This is the first fragment of a new frame. */
1784 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1785 rx->seqno_idx, &(rx->skb));
1786 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1787 ieee80211_has_protected(fc)) {
1788 int queue = rx->security_idx;
1789 /* Store CCMP PN so that we can verify that the next
1790 * fragment has a sequential PN value. */
1791 entry->ccmp = 1;
1792 memcpy(entry->last_pn,
1793 rx->key->u.ccmp.rx_pn[queue],
1794 IEEE80211_CCMP_PN_LEN);
1795 }
1796 return RX_QUEUED;
1797 }
1798
1799 /* This is a fragment for a frame that should already be pending in
1800 * fragment cache. Add this fragment to the end of the pending entry.
1801 */
1802 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1803 rx->seqno_idx, hdr);
1804 if (!entry) {
1805 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1806 return RX_DROP_MONITOR;
1807 }
1808
1809 /* Verify that MPDUs within one MSDU have sequential PN values.
1810 * (IEEE 802.11i, 8.3.3.4.5) */
1811 if (entry->ccmp) {
1812 int i;
1813 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1814 int queue;
1815 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1816 return RX_DROP_UNUSABLE;
1817 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1818 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1819 pn[i]++;
1820 if (pn[i])
1821 break;
1822 }
1823 queue = rx->security_idx;
1824 rpn = rx->key->u.ccmp.rx_pn[queue];
1825 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1826 return RX_DROP_UNUSABLE;
1827 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1828 }
1829
1830 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1831 __skb_queue_tail(&entry->skb_list, rx->skb);
1832 entry->last_frag = frag;
1833 entry->extra_len += rx->skb->len;
1834 if (ieee80211_has_morefrags(fc)) {
1835 rx->skb = NULL;
1836 return RX_QUEUED;
1837 }
1838
1839 rx->skb = __skb_dequeue(&entry->skb_list);
1840 if (skb_tailroom(rx->skb) < entry->extra_len) {
1841 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1842 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1843 GFP_ATOMIC))) {
1844 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1845 __skb_queue_purge(&entry->skb_list);
1846 return RX_DROP_UNUSABLE;
1847 }
1848 }
1849 while ((skb = __skb_dequeue(&entry->skb_list))) {
1850 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1851 dev_kfree_skb(skb);
1852 }
1853
1854 /* Complete frame has been reassembled - process it now */
1855 status = IEEE80211_SKB_RXCB(rx->skb);
1856 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1857
1858 out:
1859 if (rx->sta)
1860 rx->sta->rx_packets++;
1861 if (is_multicast_ether_addr(hdr->addr1))
1862 rx->local->dot11MulticastReceivedFrameCount++;
1863 else
1864 ieee80211_led_rx(rx->local);
1865 return RX_CONTINUE;
1866 }
1867
1868 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1869 {
1870 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1871 return -EACCES;
1872
1873 return 0;
1874 }
1875
1876 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1877 {
1878 struct sk_buff *skb = rx->skb;
1879 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1880
1881 /*
1882 * Pass through unencrypted frames if the hardware has
1883 * decrypted them already.
1884 */
1885 if (status->flag & RX_FLAG_DECRYPTED)
1886 return 0;
1887
1888 /* Drop unencrypted frames if key is set. */
1889 if (unlikely(!ieee80211_has_protected(fc) &&
1890 !ieee80211_is_nullfunc(fc) &&
1891 ieee80211_is_data(fc) &&
1892 (rx->key || rx->sdata->drop_unencrypted)))
1893 return -EACCES;
1894
1895 return 0;
1896 }
1897
1898 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1899 {
1900 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1901 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1902 __le16 fc = hdr->frame_control;
1903
1904 /*
1905 * Pass through unencrypted frames if the hardware has
1906 * decrypted them already.
1907 */
1908 if (status->flag & RX_FLAG_DECRYPTED)
1909 return 0;
1910
1911 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1912 if (unlikely(!ieee80211_has_protected(fc) &&
1913 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1914 rx->key)) {
1915 if (ieee80211_is_deauth(fc) ||
1916 ieee80211_is_disassoc(fc))
1917 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1918 rx->skb->data,
1919 rx->skb->len);
1920 return -EACCES;
1921 }
1922 /* BIP does not use Protected field, so need to check MMIE */
1923 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1924 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1925 if (ieee80211_is_deauth(fc) ||
1926 ieee80211_is_disassoc(fc))
1927 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1928 rx->skb->data,
1929 rx->skb->len);
1930 return -EACCES;
1931 }
1932 /*
1933 * When using MFP, Action frames are not allowed prior to
1934 * having configured keys.
1935 */
1936 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1937 ieee80211_is_robust_mgmt_frame(rx->skb)))
1938 return -EACCES;
1939 }
1940
1941 return 0;
1942 }
1943
1944 static int
1945 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1946 {
1947 struct ieee80211_sub_if_data *sdata = rx->sdata;
1948 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1949 bool check_port_control = false;
1950 struct ethhdr *ehdr;
1951 int ret;
1952
1953 *port_control = false;
1954 if (ieee80211_has_a4(hdr->frame_control) &&
1955 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1956 return -1;
1957
1958 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1959 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1960
1961 if (!sdata->u.mgd.use_4addr)
1962 return -1;
1963 else
1964 check_port_control = true;
1965 }
1966
1967 if (is_multicast_ether_addr(hdr->addr1) &&
1968 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1969 return -1;
1970
1971 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1972 if (ret < 0)
1973 return ret;
1974
1975 ehdr = (struct ethhdr *) rx->skb->data;
1976 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1977 *port_control = true;
1978 else if (check_port_control)
1979 return -1;
1980
1981 return 0;
1982 }
1983
1984 /*
1985 * requires that rx->skb is a frame with ethernet header
1986 */
1987 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1988 {
1989 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1990 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1991 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1992
1993 /*
1994 * Allow EAPOL frames to us/the PAE group address regardless
1995 * of whether the frame was encrypted or not.
1996 */
1997 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1998 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1999 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2000 return true;
2001
2002 if (ieee80211_802_1x_port_control(rx) ||
2003 ieee80211_drop_unencrypted(rx, fc))
2004 return false;
2005
2006 return true;
2007 }
2008
2009 /*
2010 * requires that rx->skb is a frame with ethernet header
2011 */
2012 static void
2013 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2014 {
2015 struct ieee80211_sub_if_data *sdata = rx->sdata;
2016 struct net_device *dev = sdata->dev;
2017 struct sk_buff *skb, *xmit_skb;
2018 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2019 struct sta_info *dsta;
2020 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2021
2022 skb = rx->skb;
2023 xmit_skb = NULL;
2024
2025 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2026 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2027 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2028 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
2029 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2030 if (is_multicast_ether_addr(ehdr->h_dest)) {
2031 /*
2032 * send multicast frames both to higher layers in
2033 * local net stack and back to the wireless medium
2034 */
2035 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2036 if (!xmit_skb)
2037 net_info_ratelimited("%s: failed to clone multicast frame\n",
2038 dev->name);
2039 } else {
2040 dsta = sta_info_get(sdata, skb->data);
2041 if (dsta) {
2042 /*
2043 * The destination station is associated to
2044 * this AP (in this VLAN), so send the frame
2045 * directly to it and do not pass it to local
2046 * net stack.
2047 */
2048 xmit_skb = skb;
2049 skb = NULL;
2050 }
2051 }
2052 }
2053
2054 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2055 if (skb) {
2056 /* 'align' will only take the values 0 or 2 here since all
2057 * frames are required to be aligned to 2-byte boundaries
2058 * when being passed to mac80211; the code here works just
2059 * as well if that isn't true, but mac80211 assumes it can
2060 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2061 */
2062 int align;
2063
2064 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2065 if (align) {
2066 if (WARN_ON(skb_headroom(skb) < 3)) {
2067 dev_kfree_skb(skb);
2068 skb = NULL;
2069 } else {
2070 u8 *data = skb->data;
2071 size_t len = skb_headlen(skb);
2072 skb->data -= align;
2073 memmove(skb->data, data, len);
2074 skb_set_tail_pointer(skb, len);
2075 }
2076 }
2077 }
2078 #endif
2079
2080 if (skb) {
2081 /* deliver to local stack */
2082 skb->protocol = eth_type_trans(skb, dev);
2083 memset(skb->cb, 0, sizeof(skb->cb));
2084 if (rx->local->napi)
2085 napi_gro_receive(rx->local->napi, skb);
2086 else
2087 netif_receive_skb(skb);
2088 }
2089
2090 if (xmit_skb) {
2091 /*
2092 * Send to wireless media and increase priority by 256 to
2093 * keep the received priority instead of reclassifying
2094 * the frame (see cfg80211_classify8021d).
2095 */
2096 xmit_skb->priority += 256;
2097 xmit_skb->protocol = htons(ETH_P_802_3);
2098 skb_reset_network_header(xmit_skb);
2099 skb_reset_mac_header(xmit_skb);
2100 dev_queue_xmit(xmit_skb);
2101 }
2102 }
2103
2104 static ieee80211_rx_result debug_noinline
2105 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2106 {
2107 struct net_device *dev = rx->sdata->dev;
2108 struct sk_buff *skb = rx->skb;
2109 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2110 __le16 fc = hdr->frame_control;
2111 struct sk_buff_head frame_list;
2112 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2113
2114 if (unlikely(!ieee80211_is_data(fc)))
2115 return RX_CONTINUE;
2116
2117 if (unlikely(!ieee80211_is_data_present(fc)))
2118 return RX_DROP_MONITOR;
2119
2120 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2121 return RX_CONTINUE;
2122
2123 if (ieee80211_has_a4(hdr->frame_control) &&
2124 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2125 !rx->sdata->u.vlan.sta)
2126 return RX_DROP_UNUSABLE;
2127
2128 if (is_multicast_ether_addr(hdr->addr1) &&
2129 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2130 rx->sdata->u.vlan.sta) ||
2131 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2132 rx->sdata->u.mgd.use_4addr)))
2133 return RX_DROP_UNUSABLE;
2134
2135 skb->dev = dev;
2136 __skb_queue_head_init(&frame_list);
2137
2138 if (skb_linearize(skb))
2139 return RX_DROP_UNUSABLE;
2140
2141 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2142 rx->sdata->vif.type,
2143 rx->local->hw.extra_tx_headroom, true);
2144
2145 while (!skb_queue_empty(&frame_list)) {
2146 rx->skb = __skb_dequeue(&frame_list);
2147
2148 if (!ieee80211_frame_allowed(rx, fc)) {
2149 dev_kfree_skb(rx->skb);
2150 continue;
2151 }
2152 dev->stats.rx_packets++;
2153 dev->stats.rx_bytes += rx->skb->len;
2154
2155 ieee80211_deliver_skb(rx);
2156 }
2157
2158 return RX_QUEUED;
2159 }
2160
2161 #ifdef CONFIG_MAC80211_MESH
2162 static ieee80211_rx_result
2163 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2164 {
2165 struct ieee80211_hdr *fwd_hdr, *hdr;
2166 struct ieee80211_tx_info *info;
2167 struct ieee80211s_hdr *mesh_hdr;
2168 struct sk_buff *skb = rx->skb, *fwd_skb;
2169 struct ieee80211_local *local = rx->local;
2170 struct ieee80211_sub_if_data *sdata = rx->sdata;
2171 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2172 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2173 u16 q, hdrlen;
2174
2175 hdr = (struct ieee80211_hdr *) skb->data;
2176 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2177
2178 /* make sure fixed part of mesh header is there, also checks skb len */
2179 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2180 return RX_DROP_MONITOR;
2181
2182 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2183
2184 /* make sure full mesh header is there, also checks skb len */
2185 if (!pskb_may_pull(rx->skb,
2186 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2187 return RX_DROP_MONITOR;
2188
2189 /* reload pointers */
2190 hdr = (struct ieee80211_hdr *) skb->data;
2191 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2192
2193 /* frame is in RMC, don't forward */
2194 if (ieee80211_is_data(hdr->frame_control) &&
2195 is_multicast_ether_addr(hdr->addr1) &&
2196 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2197 return RX_DROP_MONITOR;
2198
2199 if (!ieee80211_is_data(hdr->frame_control) ||
2200 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2201 return RX_CONTINUE;
2202
2203 if (!mesh_hdr->ttl)
2204 return RX_DROP_MONITOR;
2205
2206 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2207 struct mesh_path *mppath;
2208 char *proxied_addr;
2209 char *mpp_addr;
2210
2211 if (is_multicast_ether_addr(hdr->addr1)) {
2212 mpp_addr = hdr->addr3;
2213 proxied_addr = mesh_hdr->eaddr1;
2214 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2215 /* has_a4 already checked in ieee80211_rx_mesh_check */
2216 mpp_addr = hdr->addr4;
2217 proxied_addr = mesh_hdr->eaddr2;
2218 } else {
2219 return RX_DROP_MONITOR;
2220 }
2221
2222 rcu_read_lock();
2223 mppath = mpp_path_lookup(sdata, proxied_addr);
2224 if (!mppath) {
2225 mpp_path_add(sdata, proxied_addr, mpp_addr);
2226 } else {
2227 spin_lock_bh(&mppath->state_lock);
2228 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2229 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2230 spin_unlock_bh(&mppath->state_lock);
2231 }
2232 rcu_read_unlock();
2233 }
2234
2235 /* Frame has reached destination. Don't forward */
2236 if (!is_multicast_ether_addr(hdr->addr1) &&
2237 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2238 return RX_CONTINUE;
2239
2240 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2241 if (ieee80211_queue_stopped(&local->hw, q)) {
2242 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2243 return RX_DROP_MONITOR;
2244 }
2245 skb_set_queue_mapping(skb, q);
2246
2247 if (!--mesh_hdr->ttl) {
2248 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2249 goto out;
2250 }
2251
2252 if (!ifmsh->mshcfg.dot11MeshForwarding)
2253 goto out;
2254
2255 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2256 if (!fwd_skb) {
2257 net_info_ratelimited("%s: failed to clone mesh frame\n",
2258 sdata->name);
2259 goto out;
2260 }
2261
2262 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2263 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2264 info = IEEE80211_SKB_CB(fwd_skb);
2265 memset(info, 0, sizeof(*info));
2266 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2267 info->control.vif = &rx->sdata->vif;
2268 info->control.jiffies = jiffies;
2269 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2270 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2271 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2272 /* update power mode indication when forwarding */
2273 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2274 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2275 /* mesh power mode flags updated in mesh_nexthop_lookup */
2276 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2277 } else {
2278 /* unable to resolve next hop */
2279 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2280 fwd_hdr->addr3, 0,
2281 WLAN_REASON_MESH_PATH_NOFORWARD,
2282 fwd_hdr->addr2);
2283 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2284 kfree_skb(fwd_skb);
2285 return RX_DROP_MONITOR;
2286 }
2287
2288 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2289 ieee80211_add_pending_skb(local, fwd_skb);
2290 out:
2291 if (is_multicast_ether_addr(hdr->addr1) ||
2292 sdata->dev->flags & IFF_PROMISC)
2293 return RX_CONTINUE;
2294 else
2295 return RX_DROP_MONITOR;
2296 }
2297 #endif
2298
2299 static ieee80211_rx_result debug_noinline
2300 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2301 {
2302 struct ieee80211_sub_if_data *sdata = rx->sdata;
2303 struct ieee80211_local *local = rx->local;
2304 struct net_device *dev = sdata->dev;
2305 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2306 __le16 fc = hdr->frame_control;
2307 bool port_control;
2308 int err;
2309
2310 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2311 return RX_CONTINUE;
2312
2313 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2314 return RX_DROP_MONITOR;
2315
2316 /*
2317 * Send unexpected-4addr-frame event to hostapd. For older versions,
2318 * also drop the frame to cooked monitor interfaces.
2319 */
2320 if (ieee80211_has_a4(hdr->frame_control) &&
2321 sdata->vif.type == NL80211_IFTYPE_AP) {
2322 if (rx->sta &&
2323 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2324 cfg80211_rx_unexpected_4addr_frame(
2325 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2326 return RX_DROP_MONITOR;
2327 }
2328
2329 err = __ieee80211_data_to_8023(rx, &port_control);
2330 if (unlikely(err))
2331 return RX_DROP_UNUSABLE;
2332
2333 if (!ieee80211_frame_allowed(rx, fc))
2334 return RX_DROP_MONITOR;
2335
2336 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2337 unlikely(port_control) && sdata->bss) {
2338 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2339 u.ap);
2340 dev = sdata->dev;
2341 rx->sdata = sdata;
2342 }
2343
2344 rx->skb->dev = dev;
2345
2346 dev->stats.rx_packets++;
2347 dev->stats.rx_bytes += rx->skb->len;
2348
2349 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2350 !is_multicast_ether_addr(
2351 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2352 (!local->scanning &&
2353 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2354 mod_timer(&local->dynamic_ps_timer, jiffies +
2355 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2356 }
2357
2358 ieee80211_deliver_skb(rx);
2359
2360 return RX_QUEUED;
2361 }
2362
2363 static ieee80211_rx_result debug_noinline
2364 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2365 {
2366 struct sk_buff *skb = rx->skb;
2367 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2368 struct tid_ampdu_rx *tid_agg_rx;
2369 u16 start_seq_num;
2370 u16 tid;
2371
2372 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2373 return RX_CONTINUE;
2374
2375 if (ieee80211_is_back_req(bar->frame_control)) {
2376 struct {
2377 __le16 control, start_seq_num;
2378 } __packed bar_data;
2379
2380 if (!rx->sta)
2381 return RX_DROP_MONITOR;
2382
2383 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2384 &bar_data, sizeof(bar_data)))
2385 return RX_DROP_MONITOR;
2386
2387 tid = le16_to_cpu(bar_data.control) >> 12;
2388
2389 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2390 if (!tid_agg_rx)
2391 return RX_DROP_MONITOR;
2392
2393 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2394
2395 /* reset session timer */
2396 if (tid_agg_rx->timeout)
2397 mod_timer(&tid_agg_rx->session_timer,
2398 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2399
2400 spin_lock(&tid_agg_rx->reorder_lock);
2401 /* release stored frames up to start of BAR */
2402 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2403 start_seq_num, frames);
2404 spin_unlock(&tid_agg_rx->reorder_lock);
2405
2406 kfree_skb(skb);
2407 return RX_QUEUED;
2408 }
2409
2410 /*
2411 * After this point, we only want management frames,
2412 * so we can drop all remaining control frames to
2413 * cooked monitor interfaces.
2414 */
2415 return RX_DROP_MONITOR;
2416 }
2417
2418 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2419 struct ieee80211_mgmt *mgmt,
2420 size_t len)
2421 {
2422 struct ieee80211_local *local = sdata->local;
2423 struct sk_buff *skb;
2424 struct ieee80211_mgmt *resp;
2425
2426 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2427 /* Not to own unicast address */
2428 return;
2429 }
2430
2431 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2432 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2433 /* Not from the current AP or not associated yet. */
2434 return;
2435 }
2436
2437 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2438 /* Too short SA Query request frame */
2439 return;
2440 }
2441
2442 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2443 if (skb == NULL)
2444 return;
2445
2446 skb_reserve(skb, local->hw.extra_tx_headroom);
2447 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2448 memset(resp, 0, 24);
2449 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2450 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2451 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2452 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2453 IEEE80211_STYPE_ACTION);
2454 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2455 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2456 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2457 memcpy(resp->u.action.u.sa_query.trans_id,
2458 mgmt->u.action.u.sa_query.trans_id,
2459 WLAN_SA_QUERY_TR_ID_LEN);
2460
2461 ieee80211_tx_skb(sdata, skb);
2462 }
2463
2464 static ieee80211_rx_result debug_noinline
2465 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2466 {
2467 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2468 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2469
2470 /*
2471 * From here on, look only at management frames.
2472 * Data and control frames are already handled,
2473 * and unknown (reserved) frames are useless.
2474 */
2475 if (rx->skb->len < 24)
2476 return RX_DROP_MONITOR;
2477
2478 if (!ieee80211_is_mgmt(mgmt->frame_control))
2479 return RX_DROP_MONITOR;
2480
2481 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2482 ieee80211_is_beacon(mgmt->frame_control) &&
2483 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2484 int sig = 0;
2485
2486 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2487 sig = status->signal;
2488
2489 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2490 rx->skb->data, rx->skb->len,
2491 status->freq, sig);
2492 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2493 }
2494
2495 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2496 return RX_DROP_MONITOR;
2497
2498 if (ieee80211_drop_unencrypted_mgmt(rx))
2499 return RX_DROP_UNUSABLE;
2500
2501 return RX_CONTINUE;
2502 }
2503
2504 static ieee80211_rx_result debug_noinline
2505 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2506 {
2507 struct ieee80211_local *local = rx->local;
2508 struct ieee80211_sub_if_data *sdata = rx->sdata;
2509 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2510 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2511 int len = rx->skb->len;
2512
2513 if (!ieee80211_is_action(mgmt->frame_control))
2514 return RX_CONTINUE;
2515
2516 /* drop too small frames */
2517 if (len < IEEE80211_MIN_ACTION_SIZE)
2518 return RX_DROP_UNUSABLE;
2519
2520 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2521 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2522 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2523 return RX_DROP_UNUSABLE;
2524
2525 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2526 return RX_DROP_UNUSABLE;
2527
2528 switch (mgmt->u.action.category) {
2529 case WLAN_CATEGORY_HT:
2530 /* reject HT action frames from stations not supporting HT */
2531 if (!rx->sta->sta.ht_cap.ht_supported)
2532 goto invalid;
2533
2534 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2535 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2536 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2537 sdata->vif.type != NL80211_IFTYPE_AP &&
2538 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2539 break;
2540
2541 /* verify action & smps_control/chanwidth are present */
2542 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2543 goto invalid;
2544
2545 switch (mgmt->u.action.u.ht_smps.action) {
2546 case WLAN_HT_ACTION_SMPS: {
2547 struct ieee80211_supported_band *sband;
2548 enum ieee80211_smps_mode smps_mode;
2549
2550 /* convert to HT capability */
2551 switch (mgmt->u.action.u.ht_smps.smps_control) {
2552 case WLAN_HT_SMPS_CONTROL_DISABLED:
2553 smps_mode = IEEE80211_SMPS_OFF;
2554 break;
2555 case WLAN_HT_SMPS_CONTROL_STATIC:
2556 smps_mode = IEEE80211_SMPS_STATIC;
2557 break;
2558 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2559 smps_mode = IEEE80211_SMPS_DYNAMIC;
2560 break;
2561 default:
2562 goto invalid;
2563 }
2564
2565 /* if no change do nothing */
2566 if (rx->sta->sta.smps_mode == smps_mode)
2567 goto handled;
2568 rx->sta->sta.smps_mode = smps_mode;
2569
2570 sband = rx->local->hw.wiphy->bands[status->band];
2571
2572 rate_control_rate_update(local, sband, rx->sta,
2573 IEEE80211_RC_SMPS_CHANGED);
2574 goto handled;
2575 }
2576 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2577 struct ieee80211_supported_band *sband;
2578 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2579 enum ieee80211_sta_rx_bandwidth new_bw;
2580
2581 /* If it doesn't support 40 MHz it can't change ... */
2582 if (!(rx->sta->sta.ht_cap.cap &
2583 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2584 goto handled;
2585
2586 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2587 new_bw = IEEE80211_STA_RX_BW_20;
2588 else
2589 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2590
2591 if (rx->sta->sta.bandwidth == new_bw)
2592 goto handled;
2593
2594 sband = rx->local->hw.wiphy->bands[status->band];
2595
2596 rate_control_rate_update(local, sband, rx->sta,
2597 IEEE80211_RC_BW_CHANGED);
2598 goto handled;
2599 }
2600 default:
2601 goto invalid;
2602 }
2603
2604 break;
2605 case WLAN_CATEGORY_PUBLIC:
2606 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2607 goto invalid;
2608 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2609 break;
2610 if (!rx->sta)
2611 break;
2612 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2613 break;
2614 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2615 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2616 break;
2617 if (len < offsetof(struct ieee80211_mgmt,
2618 u.action.u.ext_chan_switch.variable))
2619 goto invalid;
2620 goto queue;
2621 case WLAN_CATEGORY_VHT:
2622 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2623 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2624 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2625 sdata->vif.type != NL80211_IFTYPE_AP &&
2626 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2627 break;
2628
2629 /* verify action code is present */
2630 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2631 goto invalid;
2632
2633 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2634 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2635 u8 opmode;
2636
2637 /* verify opmode is present */
2638 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2639 goto invalid;
2640
2641 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2642
2643 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2644 opmode, status->band,
2645 false);
2646 goto handled;
2647 }
2648 default:
2649 break;
2650 }
2651 break;
2652 case WLAN_CATEGORY_BACK:
2653 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2654 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2655 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2656 sdata->vif.type != NL80211_IFTYPE_AP &&
2657 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2658 break;
2659
2660 /* verify action_code is present */
2661 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2662 break;
2663
2664 switch (mgmt->u.action.u.addba_req.action_code) {
2665 case WLAN_ACTION_ADDBA_REQ:
2666 if (len < (IEEE80211_MIN_ACTION_SIZE +
2667 sizeof(mgmt->u.action.u.addba_req)))
2668 goto invalid;
2669 break;
2670 case WLAN_ACTION_ADDBA_RESP:
2671 if (len < (IEEE80211_MIN_ACTION_SIZE +
2672 sizeof(mgmt->u.action.u.addba_resp)))
2673 goto invalid;
2674 break;
2675 case WLAN_ACTION_DELBA:
2676 if (len < (IEEE80211_MIN_ACTION_SIZE +
2677 sizeof(mgmt->u.action.u.delba)))
2678 goto invalid;
2679 break;
2680 default:
2681 goto invalid;
2682 }
2683
2684 goto queue;
2685 case WLAN_CATEGORY_SPECTRUM_MGMT:
2686 /* verify action_code is present */
2687 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2688 break;
2689
2690 switch (mgmt->u.action.u.measurement.action_code) {
2691 case WLAN_ACTION_SPCT_MSR_REQ:
2692 if (status->band != IEEE80211_BAND_5GHZ)
2693 break;
2694
2695 if (len < (IEEE80211_MIN_ACTION_SIZE +
2696 sizeof(mgmt->u.action.u.measurement)))
2697 break;
2698
2699 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2700 break;
2701
2702 ieee80211_process_measurement_req(sdata, mgmt, len);
2703 goto handled;
2704 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2705 u8 *bssid;
2706 if (len < (IEEE80211_MIN_ACTION_SIZE +
2707 sizeof(mgmt->u.action.u.chan_switch)))
2708 break;
2709
2710 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2711 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2712 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2713 break;
2714
2715 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2716 bssid = sdata->u.mgd.bssid;
2717 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2718 bssid = sdata->u.ibss.bssid;
2719 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2720 bssid = mgmt->sa;
2721 else
2722 break;
2723
2724 if (!ether_addr_equal(mgmt->bssid, bssid))
2725 break;
2726
2727 goto queue;
2728 }
2729 }
2730 break;
2731 case WLAN_CATEGORY_SA_QUERY:
2732 if (len < (IEEE80211_MIN_ACTION_SIZE +
2733 sizeof(mgmt->u.action.u.sa_query)))
2734 break;
2735
2736 switch (mgmt->u.action.u.sa_query.action) {
2737 case WLAN_ACTION_SA_QUERY_REQUEST:
2738 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2739 break;
2740 ieee80211_process_sa_query_req(sdata, mgmt, len);
2741 goto handled;
2742 }
2743 break;
2744 case WLAN_CATEGORY_SELF_PROTECTED:
2745 if (len < (IEEE80211_MIN_ACTION_SIZE +
2746 sizeof(mgmt->u.action.u.self_prot.action_code)))
2747 break;
2748
2749 switch (mgmt->u.action.u.self_prot.action_code) {
2750 case WLAN_SP_MESH_PEERING_OPEN:
2751 case WLAN_SP_MESH_PEERING_CLOSE:
2752 case WLAN_SP_MESH_PEERING_CONFIRM:
2753 if (!ieee80211_vif_is_mesh(&sdata->vif))
2754 goto invalid;
2755 if (sdata->u.mesh.user_mpm)
2756 /* userspace handles this frame */
2757 break;
2758 goto queue;
2759 case WLAN_SP_MGK_INFORM:
2760 case WLAN_SP_MGK_ACK:
2761 if (!ieee80211_vif_is_mesh(&sdata->vif))
2762 goto invalid;
2763 break;
2764 }
2765 break;
2766 case WLAN_CATEGORY_MESH_ACTION:
2767 if (len < (IEEE80211_MIN_ACTION_SIZE +
2768 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2769 break;
2770
2771 if (!ieee80211_vif_is_mesh(&sdata->vif))
2772 break;
2773 if (mesh_action_is_path_sel(mgmt) &&
2774 !mesh_path_sel_is_hwmp(sdata))
2775 break;
2776 goto queue;
2777 }
2778
2779 return RX_CONTINUE;
2780
2781 invalid:
2782 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2783 /* will return in the next handlers */
2784 return RX_CONTINUE;
2785
2786 handled:
2787 if (rx->sta)
2788 rx->sta->rx_packets++;
2789 dev_kfree_skb(rx->skb);
2790 return RX_QUEUED;
2791
2792 queue:
2793 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2794 skb_queue_tail(&sdata->skb_queue, rx->skb);
2795 ieee80211_queue_work(&local->hw, &sdata->work);
2796 if (rx->sta)
2797 rx->sta->rx_packets++;
2798 return RX_QUEUED;
2799 }
2800
2801 static ieee80211_rx_result debug_noinline
2802 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2803 {
2804 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2805 int sig = 0;
2806
2807 /* skip known-bad action frames and return them in the next handler */
2808 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2809 return RX_CONTINUE;
2810
2811 /*
2812 * Getting here means the kernel doesn't know how to handle
2813 * it, but maybe userspace does ... include returned frames
2814 * so userspace can register for those to know whether ones
2815 * it transmitted were processed or returned.
2816 */
2817
2818 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2819 sig = status->signal;
2820
2821 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2822 rx->skb->data, rx->skb->len, 0)) {
2823 if (rx->sta)
2824 rx->sta->rx_packets++;
2825 dev_kfree_skb(rx->skb);
2826 return RX_QUEUED;
2827 }
2828
2829 return RX_CONTINUE;
2830 }
2831
2832 static ieee80211_rx_result debug_noinline
2833 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2834 {
2835 struct ieee80211_local *local = rx->local;
2836 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2837 struct sk_buff *nskb;
2838 struct ieee80211_sub_if_data *sdata = rx->sdata;
2839 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2840
2841 if (!ieee80211_is_action(mgmt->frame_control))
2842 return RX_CONTINUE;
2843
2844 /*
2845 * For AP mode, hostapd is responsible for handling any action
2846 * frames that we didn't handle, including returning unknown
2847 * ones. For all other modes we will return them to the sender,
2848 * setting the 0x80 bit in the action category, as required by
2849 * 802.11-2012 9.24.4.
2850 * Newer versions of hostapd shall also use the management frame
2851 * registration mechanisms, but older ones still use cooked
2852 * monitor interfaces so push all frames there.
2853 */
2854 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2855 (sdata->vif.type == NL80211_IFTYPE_AP ||
2856 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2857 return RX_DROP_MONITOR;
2858
2859 if (is_multicast_ether_addr(mgmt->da))
2860 return RX_DROP_MONITOR;
2861
2862 /* do not return rejected action frames */
2863 if (mgmt->u.action.category & 0x80)
2864 return RX_DROP_UNUSABLE;
2865
2866 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2867 GFP_ATOMIC);
2868 if (nskb) {
2869 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2870
2871 nmgmt->u.action.category |= 0x80;
2872 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2873 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2874
2875 memset(nskb->cb, 0, sizeof(nskb->cb));
2876
2877 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2878 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2879
2880 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2881 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2882 IEEE80211_TX_CTL_NO_CCK_RATE;
2883 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2884 info->hw_queue =
2885 local->hw.offchannel_tx_hw_queue;
2886 }
2887
2888 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2889 status->band);
2890 }
2891 dev_kfree_skb(rx->skb);
2892 return RX_QUEUED;
2893 }
2894
2895 static ieee80211_rx_result debug_noinline
2896 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2897 {
2898 struct ieee80211_sub_if_data *sdata = rx->sdata;
2899 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2900 __le16 stype;
2901
2902 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2903
2904 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2905 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2906 sdata->vif.type != NL80211_IFTYPE_OCB &&
2907 sdata->vif.type != NL80211_IFTYPE_STATION)
2908 return RX_DROP_MONITOR;
2909
2910 switch (stype) {
2911 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2912 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2913 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2914 /* process for all: mesh, mlme, ibss */
2915 break;
2916 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2917 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2918 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2919 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2920 if (is_multicast_ether_addr(mgmt->da) &&
2921 !is_broadcast_ether_addr(mgmt->da))
2922 return RX_DROP_MONITOR;
2923
2924 /* process only for station */
2925 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2926 return RX_DROP_MONITOR;
2927 break;
2928 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2929 /* process only for ibss and mesh */
2930 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2931 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2932 return RX_DROP_MONITOR;
2933 break;
2934 default:
2935 return RX_DROP_MONITOR;
2936 }
2937
2938 /* queue up frame and kick off work to process it */
2939 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2940 skb_queue_tail(&sdata->skb_queue, rx->skb);
2941 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2942 if (rx->sta)
2943 rx->sta->rx_packets++;
2944
2945 return RX_QUEUED;
2946 }
2947
2948 /* TODO: use IEEE80211_RX_FRAGMENTED */
2949 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2950 struct ieee80211_rate *rate)
2951 {
2952 struct ieee80211_sub_if_data *sdata;
2953 struct ieee80211_local *local = rx->local;
2954 struct sk_buff *skb = rx->skb, *skb2;
2955 struct net_device *prev_dev = NULL;
2956 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2957 int needed_headroom;
2958
2959 /*
2960 * If cooked monitor has been processed already, then
2961 * don't do it again. If not, set the flag.
2962 */
2963 if (rx->flags & IEEE80211_RX_CMNTR)
2964 goto out_free_skb;
2965 rx->flags |= IEEE80211_RX_CMNTR;
2966
2967 /* If there are no cooked monitor interfaces, just free the SKB */
2968 if (!local->cooked_mntrs)
2969 goto out_free_skb;
2970
2971 /* vendor data is long removed here */
2972 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
2973 /* room for the radiotap header based on driver features */
2974 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
2975
2976 if (skb_headroom(skb) < needed_headroom &&
2977 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2978 goto out_free_skb;
2979
2980 /* prepend radiotap information */
2981 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2982 false);
2983
2984 skb_set_mac_header(skb, 0);
2985 skb->ip_summed = CHECKSUM_UNNECESSARY;
2986 skb->pkt_type = PACKET_OTHERHOST;
2987 skb->protocol = htons(ETH_P_802_2);
2988
2989 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2990 if (!ieee80211_sdata_running(sdata))
2991 continue;
2992
2993 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2994 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2995 continue;
2996
2997 if (prev_dev) {
2998 skb2 = skb_clone(skb, GFP_ATOMIC);
2999 if (skb2) {
3000 skb2->dev = prev_dev;
3001 netif_receive_skb(skb2);
3002 }
3003 }
3004
3005 prev_dev = sdata->dev;
3006 sdata->dev->stats.rx_packets++;
3007 sdata->dev->stats.rx_bytes += skb->len;
3008 }
3009
3010 if (prev_dev) {
3011 skb->dev = prev_dev;
3012 netif_receive_skb(skb);
3013 return;
3014 }
3015
3016 out_free_skb:
3017 dev_kfree_skb(skb);
3018 }
3019
3020 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3021 ieee80211_rx_result res)
3022 {
3023 switch (res) {
3024 case RX_DROP_MONITOR:
3025 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3026 if (rx->sta)
3027 rx->sta->rx_dropped++;
3028 /* fall through */
3029 case RX_CONTINUE: {
3030 struct ieee80211_rate *rate = NULL;
3031 struct ieee80211_supported_band *sband;
3032 struct ieee80211_rx_status *status;
3033
3034 status = IEEE80211_SKB_RXCB((rx->skb));
3035
3036 sband = rx->local->hw.wiphy->bands[status->band];
3037 if (!(status->flag & RX_FLAG_HT) &&
3038 !(status->flag & RX_FLAG_VHT))
3039 rate = &sband->bitrates[status->rate_idx];
3040
3041 ieee80211_rx_cooked_monitor(rx, rate);
3042 break;
3043 }
3044 case RX_DROP_UNUSABLE:
3045 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3046 if (rx->sta)
3047 rx->sta->rx_dropped++;
3048 dev_kfree_skb(rx->skb);
3049 break;
3050 case RX_QUEUED:
3051 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3052 break;
3053 }
3054 }
3055
3056 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3057 struct sk_buff_head *frames)
3058 {
3059 ieee80211_rx_result res = RX_DROP_MONITOR;
3060 struct sk_buff *skb;
3061
3062 #define CALL_RXH(rxh) \
3063 do { \
3064 res = rxh(rx); \
3065 if (res != RX_CONTINUE) \
3066 goto rxh_next; \
3067 } while (0);
3068
3069 spin_lock_bh(&rx->local->rx_path_lock);
3070
3071 while ((skb = __skb_dequeue(frames))) {
3072 /*
3073 * all the other fields are valid across frames
3074 * that belong to an aMPDU since they are on the
3075 * same TID from the same station
3076 */
3077 rx->skb = skb;
3078
3079 CALL_RXH(ieee80211_rx_h_check_more_data)
3080 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3081 CALL_RXH(ieee80211_rx_h_sta_process)
3082 CALL_RXH(ieee80211_rx_h_decrypt)
3083 CALL_RXH(ieee80211_rx_h_defragment)
3084 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3085 /* must be after MMIC verify so header is counted in MPDU mic */
3086 #ifdef CONFIG_MAC80211_MESH
3087 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3088 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3089 #endif
3090 CALL_RXH(ieee80211_rx_h_amsdu)
3091 CALL_RXH(ieee80211_rx_h_data)
3092
3093 /* special treatment -- needs the queue */
3094 res = ieee80211_rx_h_ctrl(rx, frames);
3095 if (res != RX_CONTINUE)
3096 goto rxh_next;
3097
3098 CALL_RXH(ieee80211_rx_h_mgmt_check)
3099 CALL_RXH(ieee80211_rx_h_action)
3100 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3101 CALL_RXH(ieee80211_rx_h_action_return)
3102 CALL_RXH(ieee80211_rx_h_mgmt)
3103
3104 rxh_next:
3105 ieee80211_rx_handlers_result(rx, res);
3106
3107 #undef CALL_RXH
3108 }
3109
3110 spin_unlock_bh(&rx->local->rx_path_lock);
3111 }
3112
3113 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3114 {
3115 struct sk_buff_head reorder_release;
3116 ieee80211_rx_result res = RX_DROP_MONITOR;
3117
3118 __skb_queue_head_init(&reorder_release);
3119
3120 #define CALL_RXH(rxh) \
3121 do { \
3122 res = rxh(rx); \
3123 if (res != RX_CONTINUE) \
3124 goto rxh_next; \
3125 } while (0);
3126
3127 CALL_RXH(ieee80211_rx_h_check_dup)
3128 CALL_RXH(ieee80211_rx_h_check)
3129
3130 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3131
3132 ieee80211_rx_handlers(rx, &reorder_release);
3133 return;
3134
3135 rxh_next:
3136 ieee80211_rx_handlers_result(rx, res);
3137
3138 #undef CALL_RXH
3139 }
3140
3141 /*
3142 * This function makes calls into the RX path, therefore
3143 * it has to be invoked under RCU read lock.
3144 */
3145 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3146 {
3147 struct sk_buff_head frames;
3148 struct ieee80211_rx_data rx = {
3149 .sta = sta,
3150 .sdata = sta->sdata,
3151 .local = sta->local,
3152 /* This is OK -- must be QoS data frame */
3153 .security_idx = tid,
3154 .seqno_idx = tid,
3155 .flags = 0,
3156 };
3157 struct tid_ampdu_rx *tid_agg_rx;
3158
3159 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3160 if (!tid_agg_rx)
3161 return;
3162
3163 __skb_queue_head_init(&frames);
3164
3165 spin_lock(&tid_agg_rx->reorder_lock);
3166 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3167 spin_unlock(&tid_agg_rx->reorder_lock);
3168
3169 ieee80211_rx_handlers(&rx, &frames);
3170 }
3171
3172 /* main receive path */
3173
3174 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3175 struct ieee80211_hdr *hdr)
3176 {
3177 struct ieee80211_sub_if_data *sdata = rx->sdata;
3178 struct sk_buff *skb = rx->skb;
3179 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3180 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3181 int multicast = is_multicast_ether_addr(hdr->addr1);
3182
3183 switch (sdata->vif.type) {
3184 case NL80211_IFTYPE_STATION:
3185 if (!bssid && !sdata->u.mgd.use_4addr)
3186 return false;
3187 if (!multicast &&
3188 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3189 if (!(sdata->dev->flags & IFF_PROMISC) ||
3190 sdata->u.mgd.use_4addr)
3191 return false;
3192 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3193 }
3194 break;
3195 case NL80211_IFTYPE_ADHOC:
3196 if (!bssid)
3197 return false;
3198 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3199 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3200 return false;
3201 if (ieee80211_is_beacon(hdr->frame_control)) {
3202 return true;
3203 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3204 return false;
3205 } else if (!multicast &&
3206 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3207 if (!(sdata->dev->flags & IFF_PROMISC))
3208 return false;
3209 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3210 } else if (!rx->sta) {
3211 int rate_idx;
3212 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3213 rate_idx = 0; /* TODO: HT/VHT rates */
3214 else
3215 rate_idx = status->rate_idx;
3216 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3217 BIT(rate_idx));
3218 }
3219 break;
3220 case NL80211_IFTYPE_OCB:
3221 if (!bssid)
3222 return false;
3223 if (ieee80211_is_beacon(hdr->frame_control)) {
3224 return false;
3225 } else if (!is_broadcast_ether_addr(bssid)) {
3226 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n");
3227 return false;
3228 } else if (!multicast &&
3229 !ether_addr_equal(sdata->dev->dev_addr,
3230 hdr->addr1)) {
3231 /* if we are in promisc mode we also accept
3232 * packets not destined for us
3233 */
3234 if (!(sdata->dev->flags & IFF_PROMISC))
3235 return false;
3236 rx->flags &= ~IEEE80211_RX_RA_MATCH;
3237 } else if (!rx->sta) {
3238 int rate_idx;
3239 if (status->flag & RX_FLAG_HT)
3240 rate_idx = 0; /* TODO: HT rates */
3241 else
3242 rate_idx = status->rate_idx;
3243 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3244 BIT(rate_idx));
3245 }
3246 break;
3247 case NL80211_IFTYPE_MESH_POINT:
3248 if (!multicast &&
3249 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3250 if (!(sdata->dev->flags & IFF_PROMISC))
3251 return false;
3252
3253 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3254 }
3255 break;
3256 case NL80211_IFTYPE_AP_VLAN:
3257 case NL80211_IFTYPE_AP:
3258 if (!bssid) {
3259 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3260 return false;
3261 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3262 /*
3263 * Accept public action frames even when the
3264 * BSSID doesn't match, this is used for P2P
3265 * and location updates. Note that mac80211
3266 * itself never looks at these frames.
3267 */
3268 if (!multicast &&
3269 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3270 return false;
3271 if (ieee80211_is_public_action(hdr, skb->len))
3272 return true;
3273 if (!ieee80211_is_beacon(hdr->frame_control))
3274 return false;
3275 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3276 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3277 /* ignore data frames to TDLS-peers */
3278 if (ieee80211_is_data(hdr->frame_control))
3279 return false;
3280 /* ignore action frames to TDLS-peers */
3281 if (ieee80211_is_action(hdr->frame_control) &&
3282 !ether_addr_equal(bssid, hdr->addr1))
3283 return false;
3284 }
3285 break;
3286 case NL80211_IFTYPE_WDS:
3287 if (bssid || !ieee80211_is_data(hdr->frame_control))
3288 return false;
3289 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3290 return false;
3291 break;
3292 case NL80211_IFTYPE_P2P_DEVICE:
3293 if (!ieee80211_is_public_action(hdr, skb->len) &&
3294 !ieee80211_is_probe_req(hdr->frame_control) &&
3295 !ieee80211_is_probe_resp(hdr->frame_control) &&
3296 !ieee80211_is_beacon(hdr->frame_control))
3297 return false;
3298 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3299 !multicast)
3300 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3301 break;
3302 default:
3303 /* should never get here */
3304 WARN_ON_ONCE(1);
3305 break;
3306 }
3307
3308 return true;
3309 }
3310
3311 /*
3312 * This function returns whether or not the SKB
3313 * was destined for RX processing or not, which,
3314 * if consume is true, is equivalent to whether
3315 * or not the skb was consumed.
3316 */
3317 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3318 struct sk_buff *skb, bool consume)
3319 {
3320 struct ieee80211_local *local = rx->local;
3321 struct ieee80211_sub_if_data *sdata = rx->sdata;
3322 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3323 struct ieee80211_hdr *hdr = (void *)skb->data;
3324
3325 rx->skb = skb;
3326 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3327
3328 if (!prepare_for_handlers(rx, hdr))
3329 return false;
3330
3331 if (!consume) {
3332 skb = skb_copy(skb, GFP_ATOMIC);
3333 if (!skb) {
3334 if (net_ratelimit())
3335 wiphy_debug(local->hw.wiphy,
3336 "failed to copy skb for %s\n",
3337 sdata->name);
3338 return true;
3339 }
3340
3341 rx->skb = skb;
3342 }
3343
3344 ieee80211_invoke_rx_handlers(rx);
3345 return true;
3346 }
3347
3348 /*
3349 * This is the actual Rx frames handler. as it belongs to Rx path it must
3350 * be called with rcu_read_lock protection.
3351 */
3352 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3353 struct sk_buff *skb)
3354 {
3355 struct ieee80211_local *local = hw_to_local(hw);
3356 struct ieee80211_sub_if_data *sdata;
3357 struct ieee80211_hdr *hdr;
3358 __le16 fc;
3359 struct ieee80211_rx_data rx;
3360 struct ieee80211_sub_if_data *prev;
3361 struct sta_info *sta, *tmp, *prev_sta;
3362 int err = 0;
3363
3364 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3365 memset(&rx, 0, sizeof(rx));
3366 rx.skb = skb;
3367 rx.local = local;
3368
3369 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3370 local->dot11ReceivedFragmentCount++;
3371
3372 if (ieee80211_is_mgmt(fc)) {
3373 /* drop frame if too short for header */
3374 if (skb->len < ieee80211_hdrlen(fc))
3375 err = -ENOBUFS;
3376 else
3377 err = skb_linearize(skb);
3378 } else {
3379 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3380 }
3381
3382 if (err) {
3383 dev_kfree_skb(skb);
3384 return;
3385 }
3386
3387 hdr = (struct ieee80211_hdr *)skb->data;
3388 ieee80211_parse_qos(&rx);
3389 ieee80211_verify_alignment(&rx);
3390
3391 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3392 ieee80211_is_beacon(hdr->frame_control)))
3393 ieee80211_scan_rx(local, skb);
3394
3395 if (ieee80211_is_data(fc)) {
3396 prev_sta = NULL;
3397
3398 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3399 if (!prev_sta) {
3400 prev_sta = sta;
3401 continue;
3402 }
3403
3404 rx.sta = prev_sta;
3405 rx.sdata = prev_sta->sdata;
3406 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3407
3408 prev_sta = sta;
3409 }
3410
3411 if (prev_sta) {
3412 rx.sta = prev_sta;
3413 rx.sdata = prev_sta->sdata;
3414
3415 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3416 return;
3417 goto out;
3418 }
3419 }
3420
3421 prev = NULL;
3422
3423 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3424 if (!ieee80211_sdata_running(sdata))
3425 continue;
3426
3427 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3428 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3429 continue;
3430
3431 /*
3432 * frame is destined for this interface, but if it's
3433 * not also for the previous one we handle that after
3434 * the loop to avoid copying the SKB once too much
3435 */
3436
3437 if (!prev) {
3438 prev = sdata;
3439 continue;
3440 }
3441
3442 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3443 rx.sdata = prev;
3444 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3445
3446 prev = sdata;
3447 }
3448
3449 if (prev) {
3450 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3451 rx.sdata = prev;
3452
3453 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3454 return;
3455 }
3456
3457 out:
3458 dev_kfree_skb(skb);
3459 }
3460
3461 /*
3462 * This is the receive path handler. It is called by a low level driver when an
3463 * 802.11 MPDU is received from the hardware.
3464 */
3465 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3466 {
3467 struct ieee80211_local *local = hw_to_local(hw);
3468 struct ieee80211_rate *rate = NULL;
3469 struct ieee80211_supported_band *sband;
3470 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3471
3472 WARN_ON_ONCE(softirq_count() == 0);
3473
3474 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3475 goto drop;
3476
3477 sband = local->hw.wiphy->bands[status->band];
3478 if (WARN_ON(!sband))
3479 goto drop;
3480
3481 /*
3482 * If we're suspending, it is possible although not too likely
3483 * that we'd be receiving frames after having already partially
3484 * quiesced the stack. We can't process such frames then since
3485 * that might, for example, cause stations to be added or other
3486 * driver callbacks be invoked.
3487 */
3488 if (unlikely(local->quiescing || local->suspended))
3489 goto drop;
3490
3491 /* We might be during a HW reconfig, prevent Rx for the same reason */
3492 if (unlikely(local->in_reconfig))
3493 goto drop;
3494
3495 /*
3496 * The same happens when we're not even started,
3497 * but that's worth a warning.
3498 */
3499 if (WARN_ON(!local->started))
3500 goto drop;
3501
3502 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3503 /*
3504 * Validate the rate, unless a PLCP error means that
3505 * we probably can't have a valid rate here anyway.
3506 */
3507
3508 if (status->flag & RX_FLAG_HT) {
3509 /*
3510 * rate_idx is MCS index, which can be [0-76]
3511 * as documented on:
3512 *
3513 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3514 *
3515 * Anything else would be some sort of driver or
3516 * hardware error. The driver should catch hardware
3517 * errors.
3518 */
3519 if (WARN(status->rate_idx > 76,
3520 "Rate marked as an HT rate but passed "
3521 "status->rate_idx is not "
3522 "an MCS index [0-76]: %d (0x%02x)\n",
3523 status->rate_idx,
3524 status->rate_idx))
3525 goto drop;
3526 } else if (status->flag & RX_FLAG_VHT) {
3527 if (WARN_ONCE(status->rate_idx > 9 ||
3528 !status->vht_nss ||
3529 status->vht_nss > 8,
3530 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3531 status->rate_idx, status->vht_nss))
3532 goto drop;
3533 } else {
3534 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3535 goto drop;
3536 rate = &sband->bitrates[status->rate_idx];
3537 }
3538 }
3539
3540 status->rx_flags = 0;
3541
3542 /*
3543 * key references and virtual interfaces are protected using RCU
3544 * and this requires that we are in a read-side RCU section during
3545 * receive processing
3546 */
3547 rcu_read_lock();
3548
3549 /*
3550 * Frames with failed FCS/PLCP checksum are not returned,
3551 * all other frames are returned without radiotap header
3552 * if it was previously present.
3553 * Also, frames with less than 16 bytes are dropped.
3554 */
3555 skb = ieee80211_rx_monitor(local, skb, rate);
3556 if (!skb) {
3557 rcu_read_unlock();
3558 return;
3559 }
3560
3561 ieee80211_tpt_led_trig_rx(local,
3562 ((struct ieee80211_hdr *)skb->data)->frame_control,
3563 skb->len);
3564 __ieee80211_rx_handle_packet(hw, skb);
3565
3566 rcu_read_unlock();
3567
3568 return;
3569 drop:
3570 kfree_skb(skb);
3571 }
3572 EXPORT_SYMBOL(ieee80211_rx);
3573
3574 /* This is a version of the rx handler that can be called from hard irq
3575 * context. Post the skb on the queue and schedule the tasklet */
3576 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3577 {
3578 struct ieee80211_local *local = hw_to_local(hw);
3579
3580 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3581
3582 skb->pkt_type = IEEE80211_RX_MSG;
3583 skb_queue_tail(&local->skb_queue, skb);
3584 tasklet_schedule(&local->tasklet);
3585 }
3586 EXPORT_SYMBOL(ieee80211_rx_irqsafe);