]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/rx.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi...
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
58
59 return skb;
60 }
61
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
81 }
82
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
86 {
87 int len;
88
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 8;
91
92 /* allocate extra bitmaps */
93 if (status->vendor_radiotap_len)
94 len += 4;
95 if (status->chains)
96 len += 4 * hweight8(status->chains);
97
98 if (ieee80211_have_rx_timestamp(status)) {
99 len = ALIGN(len, 8);
100 len += 8;
101 }
102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 len += 1;
104
105 /* antenna field, if we don't have per-chain info */
106 if (!status->chains)
107 len += 1;
108
109 /* padding for RX_FLAGS if necessary */
110 len = ALIGN(len, 2);
111
112 if (status->flag & RX_FLAG_HT) /* HT info */
113 len += 3;
114
115 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 len = ALIGN(len, 4);
117 len += 8;
118 }
119
120 if (status->flag & RX_FLAG_VHT) {
121 len = ALIGN(len, 2);
122 len += 12;
123 }
124
125 if (status->chains) {
126 /* antenna and antenna signal fields */
127 len += 2 * hweight8(status->chains);
128 }
129
130 if (status->vendor_radiotap_len) {
131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 status->vendor_radiotap_align = 1;
133 /* align standard part of vendor namespace */
134 len = ALIGN(len, 2);
135 /* allocate standard part of vendor namespace */
136 len += 6;
137 /* align vendor-defined part */
138 len = ALIGN(len, status->vendor_radiotap_align);
139 /* vendor-defined part is already in skb */
140 }
141
142 return len;
143 }
144
145 /*
146 * ieee80211_add_rx_radiotap_header - add radiotap header
147 *
148 * add a radiotap header containing all the fields which the hardware provided.
149 */
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 struct sk_buff *skb,
153 struct ieee80211_rate *rate,
154 int rtap_len, bool has_fcs)
155 {
156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 struct ieee80211_radiotap_header *rthdr;
158 unsigned char *pos;
159 __le32 *it_present;
160 u32 it_present_val;
161 u16 rx_flags = 0;
162 u16 channel_flags = 0;
163 int mpdulen, chain;
164 unsigned long chains = status->chains;
165
166 mpdulen = skb->len;
167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 mpdulen += FCS_LEN;
169
170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 memset(rthdr, 0, rtap_len);
172 it_present = &rthdr->it_present;
173
174 /* radiotap header, set always present flags */
175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
179
180 if (!status->chains)
181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
182
183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 it_present_val |=
185 BIT(IEEE80211_RADIOTAP_EXT) |
186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 put_unaligned_le32(it_present_val, it_present);
188 it_present++;
189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
191 }
192
193 if (status->vendor_radiotap_len) {
194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 BIT(IEEE80211_RADIOTAP_EXT);
196 put_unaligned_le32(it_present_val, it_present);
197 it_present++;
198 it_present_val = status->vendor_radiotap_bitmap;
199 }
200
201 put_unaligned_le32(it_present_val, it_present);
202
203 pos = (void *)(it_present + 1);
204
205 /* the order of the following fields is important */
206
207 /* IEEE80211_RADIOTAP_TSFT */
208 if (ieee80211_have_rx_timestamp(status)) {
209 /* padding */
210 while ((pos - (u8 *)rthdr) & 7)
211 *pos++ = 0;
212 put_unaligned_le64(
213 ieee80211_calculate_rx_timestamp(local, status,
214 mpdulen, 0),
215 pos);
216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 pos += 8;
218 }
219
220 /* IEEE80211_RADIOTAP_FLAGS */
221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 *pos |= IEEE80211_RADIOTAP_F_FCS;
223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 if (status->flag & RX_FLAG_SHORTPRE)
226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 pos++;
228
229 /* IEEE80211_RADIOTAP_RATE */
230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
231 /*
232 * Without rate information don't add it. If we have,
233 * MCS information is a separate field in radiotap,
234 * added below. The byte here is needed as padding
235 * for the channel though, so initialise it to 0.
236 */
237 *pos = 0;
238 } else {
239 int shift = 0;
240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 if (status->flag & RX_FLAG_10MHZ)
242 shift = 1;
243 else if (status->flag & RX_FLAG_5MHZ)
244 shift = 2;
245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
246 }
247 pos++;
248
249 /* IEEE80211_RADIOTAP_CHANNEL */
250 put_unaligned_le16(status->freq, pos);
251 pos += 2;
252 if (status->flag & RX_FLAG_10MHZ)
253 channel_flags |= IEEE80211_CHAN_HALF;
254 else if (status->flag & RX_FLAG_5MHZ)
255 channel_flags |= IEEE80211_CHAN_QUARTER;
256
257 if (status->band == IEEE80211_BAND_5GHZ)
258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 else if (rate)
264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 else
266 channel_flags |= IEEE80211_CHAN_2GHZ;
267 put_unaligned_le16(channel_flags, pos);
268 pos += 2;
269
270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 *pos = status->signal;
274 rthdr->it_present |=
275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 pos++;
277 }
278
279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
280
281 if (!status->chains) {
282 /* IEEE80211_RADIOTAP_ANTENNA */
283 *pos = status->antenna;
284 pos++;
285 }
286
287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
288
289 /* IEEE80211_RADIOTAP_RX_FLAGS */
290 /* ensure 2 byte alignment for the 2 byte field as required */
291 if ((pos - (u8 *)rthdr) & 1)
292 *pos++ = 0;
293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 put_unaligned_le16(rx_flags, pos);
296 pos += 2;
297
298 if (status->flag & RX_FLAG_HT) {
299 unsigned int stbc;
300
301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 *pos++ = local->hw.radiotap_mcs_details;
303 *pos = 0;
304 if (status->flag & RX_FLAG_SHORT_GI)
305 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 if (status->flag & RX_FLAG_40MHZ)
307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 if (status->flag & RX_FLAG_HT_GF)
309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 pos++;
313 *pos++ = status->rate_idx;
314 }
315
316 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 u16 flags = 0;
318
319 /* ensure 4 byte alignment */
320 while ((pos - (u8 *)rthdr) & 3)
321 pos++;
322 rthdr->it_present |=
323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 put_unaligned_le32(status->ampdu_reference, pos);
325 pos += 4;
326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 put_unaligned_le16(flags, pos);
339 pos += 2;
340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 *pos++ = status->ampdu_delimiter_crc;
342 else
343 *pos++ = 0;
344 *pos++ = 0;
345 }
346
347 if (status->flag & RX_FLAG_VHT) {
348 u16 known = local->hw.radiotap_vht_details;
349
350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 /* known field - how to handle 80+80? */
352 if (status->flag & RX_FLAG_80P80MHZ)
353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 put_unaligned_le16(known, pos);
355 pos += 2;
356 /* flags */
357 if (status->flag & RX_FLAG_SHORT_GI)
358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 pos++;
360 /* bandwidth */
361 if (status->flag & RX_FLAG_80MHZ)
362 *pos++ = 4;
363 else if (status->flag & RX_FLAG_80P80MHZ)
364 *pos++ = 0; /* marked not known above */
365 else if (status->flag & RX_FLAG_160MHZ)
366 *pos++ = 11;
367 else if (status->flag & RX_FLAG_40MHZ)
368 *pos++ = 1;
369 else /* 20 MHz */
370 *pos++ = 0;
371 /* MCS/NSS */
372 *pos = (status->rate_idx << 4) | status->vht_nss;
373 pos += 4;
374 /* coding field */
375 pos++;
376 /* group ID */
377 pos++;
378 /* partial_aid */
379 pos += 2;
380 }
381
382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 *pos++ = status->chain_signal[chain];
384 *pos++ = chain;
385 }
386
387 if (status->vendor_radiotap_len) {
388 /* ensure 2 byte alignment for the vendor field as required */
389 if ((pos - (u8 *)rthdr) & 1)
390 *pos++ = 0;
391 *pos++ = status->vendor_radiotap_oui[0];
392 *pos++ = status->vendor_radiotap_oui[1];
393 *pos++ = status->vendor_radiotap_oui[2];
394 *pos++ = status->vendor_radiotap_subns;
395 put_unaligned_le16(status->vendor_radiotap_len, pos);
396 pos += 2;
397 /* align the actual payload as requested */
398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 *pos++ = 0;
400 }
401 }
402
403 /*
404 * This function copies a received frame to all monitor interfaces and
405 * returns a cleaned-up SKB that no longer includes the FCS nor the
406 * radiotap header the driver might have added.
407 */
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 struct ieee80211_rate *rate)
411 {
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 struct ieee80211_sub_if_data *sdata;
414 int needed_headroom;
415 struct sk_buff *skb, *skb2;
416 struct net_device *prev_dev = NULL;
417 int present_fcs_len = 0;
418
419 /*
420 * First, we may need to make a copy of the skb because
421 * (1) we need to modify it for radiotap (if not present), and
422 * (2) the other RX handlers will modify the skb we got.
423 *
424 * We don't need to, of course, if we aren't going to return
425 * the SKB because it has a bad FCS/PLCP checksum.
426 */
427
428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 present_fcs_len = FCS_LEN;
430
431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 dev_kfree_skb(origskb);
434 return NULL;
435 }
436
437 if (!local->monitors) {
438 if (should_drop_frame(origskb, present_fcs_len)) {
439 dev_kfree_skb(origskb);
440 return NULL;
441 }
442
443 return remove_monitor_info(local, origskb);
444 }
445
446 /* room for the radiotap header based on driver features */
447 needed_headroom = ieee80211_rx_radiotap_space(local, status);
448
449 if (should_drop_frame(origskb, present_fcs_len)) {
450 /* only need to expand headroom if necessary */
451 skb = origskb;
452 origskb = NULL;
453
454 /*
455 * This shouldn't trigger often because most devices have an
456 * RX header they pull before we get here, and that should
457 * be big enough for our radiotap information. We should
458 * probably export the length to drivers so that we can have
459 * them allocate enough headroom to start with.
460 */
461 if (skb_headroom(skb) < needed_headroom &&
462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 dev_kfree_skb(skb);
464 return NULL;
465 }
466 } else {
467 /*
468 * Need to make a copy and possibly remove radiotap header
469 * and FCS from the original.
470 */
471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
472
473 origskb = remove_monitor_info(local, origskb);
474
475 if (!skb)
476 return origskb;
477 }
478
479 /* prepend radiotap information */
480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 true);
482
483 skb_reset_mac_header(skb);
484 skb->ip_summed = CHECKSUM_UNNECESSARY;
485 skb->pkt_type = PACKET_OTHERHOST;
486 skb->protocol = htons(ETH_P_802_2);
487
488 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 continue;
491
492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 continue;
494
495 if (!ieee80211_sdata_running(sdata))
496 continue;
497
498 if (prev_dev) {
499 skb2 = skb_clone(skb, GFP_ATOMIC);
500 if (skb2) {
501 skb2->dev = prev_dev;
502 netif_receive_skb(skb2);
503 }
504 }
505
506 prev_dev = sdata->dev;
507 sdata->dev->stats.rx_packets++;
508 sdata->dev->stats.rx_bytes += skb->len;
509 }
510
511 if (prev_dev) {
512 skb->dev = prev_dev;
513 netif_receive_skb(skb);
514 } else
515 dev_kfree_skb(skb);
516
517 return origskb;
518 }
519
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
521 {
522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 int tid, seqno_idx, security_idx;
525
526 /* does the frame have a qos control field? */
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 u8 *qc = ieee80211_get_qos_ctl(hdr);
529 /* frame has qos control */
530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 status->rx_flags |= IEEE80211_RX_AMSDU;
533
534 seqno_idx = tid;
535 security_idx = tid;
536 } else {
537 /*
538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
539 *
540 * Sequence numbers for management frames, QoS data
541 * frames with a broadcast/multicast address in the
542 * Address 1 field, and all non-QoS data frames sent
543 * by QoS STAs are assigned using an additional single
544 * modulo-4096 counter, [...]
545 *
546 * We also use that counter for non-QoS STAs.
547 */
548 seqno_idx = IEEE80211_NUM_TIDS;
549 security_idx = 0;
550 if (ieee80211_is_mgmt(hdr->frame_control))
551 security_idx = IEEE80211_NUM_TIDS;
552 tid = 0;
553 }
554
555 rx->seqno_idx = seqno_idx;
556 rx->security_idx = security_idx;
557 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 * For now, set skb->priority to 0 for other cases. */
559 rx->skb->priority = (tid > 7) ? 0 : tid;
560 }
561
562 /**
563 * DOC: Packet alignment
564 *
565 * Drivers always need to pass packets that are aligned to two-byte boundaries
566 * to the stack.
567 *
568 * Additionally, should, if possible, align the payload data in a way that
569 * guarantees that the contained IP header is aligned to a four-byte
570 * boundary. In the case of regular frames, this simply means aligning the
571 * payload to a four-byte boundary (because either the IP header is directly
572 * contained, or IV/RFC1042 headers that have a length divisible by four are
573 * in front of it). If the payload data is not properly aligned and the
574 * architecture doesn't support efficient unaligned operations, mac80211
575 * will align the data.
576 *
577 * With A-MSDU frames, however, the payload data address must yield two modulo
578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579 * push the IP header further back to a multiple of four again. Thankfully, the
580 * specs were sane enough this time around to require padding each A-MSDU
581 * subframe to a length that is a multiple of four.
582 *
583 * Padding like Atheros hardware adds which is between the 802.11 header and
584 * the payload is not supported, the driver is required to move the 802.11
585 * header to be directly in front of the payload in that case.
586 */
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
588 {
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 WARN_ONCE((unsigned long)rx->skb->data & 1,
591 "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
593 }
594
595
596 /* rx handlers */
597
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
599 {
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
601
602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 return 0;
604
605 return ieee80211_is_robust_mgmt_frame(hdr);
606 }
607
608
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
610 {
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
612
613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 return 0;
615
616 return ieee80211_is_robust_mgmt_frame(hdr);
617 }
618
619
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
622 {
623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 struct ieee80211_mmie *mmie;
625
626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 return -1;
628
629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 return -1; /* not a robust management frame */
631
632 mmie = (struct ieee80211_mmie *)
633 (skb->data + skb->len - sizeof(*mmie));
634 if (mmie->element_id != WLAN_EID_MMIE ||
635 mmie->length != sizeof(*mmie) - 2)
636 return -1;
637
638 return le16_to_cpu(mmie->key_id);
639 }
640
641 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
642 struct sk_buff *skb)
643 {
644 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
645 __le16 fc;
646 int hdrlen;
647 u8 keyid;
648
649 fc = hdr->frame_control;
650 hdrlen = ieee80211_hdrlen(fc);
651
652 if (skb->len < hdrlen + cs->hdr_len)
653 return -EINVAL;
654
655 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
656 keyid &= cs->key_idx_mask;
657 keyid >>= cs->key_idx_shift;
658
659 return keyid;
660 }
661
662 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
663 {
664 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
665 char *dev_addr = rx->sdata->vif.addr;
666
667 if (ieee80211_is_data(hdr->frame_control)) {
668 if (is_multicast_ether_addr(hdr->addr1)) {
669 if (ieee80211_has_tods(hdr->frame_control) ||
670 !ieee80211_has_fromds(hdr->frame_control))
671 return RX_DROP_MONITOR;
672 if (ether_addr_equal(hdr->addr3, dev_addr))
673 return RX_DROP_MONITOR;
674 } else {
675 if (!ieee80211_has_a4(hdr->frame_control))
676 return RX_DROP_MONITOR;
677 if (ether_addr_equal(hdr->addr4, dev_addr))
678 return RX_DROP_MONITOR;
679 }
680 }
681
682 /* If there is not an established peer link and this is not a peer link
683 * establisment frame, beacon or probe, drop the frame.
684 */
685
686 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
687 struct ieee80211_mgmt *mgmt;
688
689 if (!ieee80211_is_mgmt(hdr->frame_control))
690 return RX_DROP_MONITOR;
691
692 if (ieee80211_is_action(hdr->frame_control)) {
693 u8 category;
694
695 /* make sure category field is present */
696 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
697 return RX_DROP_MONITOR;
698
699 mgmt = (struct ieee80211_mgmt *)hdr;
700 category = mgmt->u.action.category;
701 if (category != WLAN_CATEGORY_MESH_ACTION &&
702 category != WLAN_CATEGORY_SELF_PROTECTED)
703 return RX_DROP_MONITOR;
704 return RX_CONTINUE;
705 }
706
707 if (ieee80211_is_probe_req(hdr->frame_control) ||
708 ieee80211_is_probe_resp(hdr->frame_control) ||
709 ieee80211_is_beacon(hdr->frame_control) ||
710 ieee80211_is_auth(hdr->frame_control))
711 return RX_CONTINUE;
712
713 return RX_DROP_MONITOR;
714 }
715
716 return RX_CONTINUE;
717 }
718
719 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
720 struct tid_ampdu_rx *tid_agg_rx,
721 int index,
722 struct sk_buff_head *frames)
723 {
724 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
725 struct ieee80211_rx_status *status;
726
727 lockdep_assert_held(&tid_agg_rx->reorder_lock);
728
729 if (!skb)
730 goto no_frame;
731
732 /* release the frame from the reorder ring buffer */
733 tid_agg_rx->stored_mpdu_num--;
734 tid_agg_rx->reorder_buf[index] = NULL;
735 status = IEEE80211_SKB_RXCB(skb);
736 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
737 __skb_queue_tail(frames, skb);
738
739 no_frame:
740 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
741 }
742
743 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
744 struct tid_ampdu_rx *tid_agg_rx,
745 u16 head_seq_num,
746 struct sk_buff_head *frames)
747 {
748 int index;
749
750 lockdep_assert_held(&tid_agg_rx->reorder_lock);
751
752 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
753 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
754 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
755 frames);
756 }
757 }
758
759 /*
760 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
761 * the skb was added to the buffer longer than this time ago, the earlier
762 * frames that have not yet been received are assumed to be lost and the skb
763 * can be released for processing. This may also release other skb's from the
764 * reorder buffer if there are no additional gaps between the frames.
765 *
766 * Callers must hold tid_agg_rx->reorder_lock.
767 */
768 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
769
770 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
771 struct tid_ampdu_rx *tid_agg_rx,
772 struct sk_buff_head *frames)
773 {
774 int index, j;
775
776 lockdep_assert_held(&tid_agg_rx->reorder_lock);
777
778 /* release the buffer until next missing frame */
779 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
780 if (!tid_agg_rx->reorder_buf[index] &&
781 tid_agg_rx->stored_mpdu_num) {
782 /*
783 * No buffers ready to be released, but check whether any
784 * frames in the reorder buffer have timed out.
785 */
786 int skipped = 1;
787 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
788 j = (j + 1) % tid_agg_rx->buf_size) {
789 if (!tid_agg_rx->reorder_buf[j]) {
790 skipped++;
791 continue;
792 }
793 if (skipped &&
794 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
795 HT_RX_REORDER_BUF_TIMEOUT))
796 goto set_release_timer;
797
798 ht_dbg_ratelimited(sdata,
799 "release an RX reorder frame due to timeout on earlier frames\n");
800 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
801 frames);
802
803 /*
804 * Increment the head seq# also for the skipped slots.
805 */
806 tid_agg_rx->head_seq_num =
807 (tid_agg_rx->head_seq_num +
808 skipped) & IEEE80211_SN_MASK;
809 skipped = 0;
810 }
811 } else while (tid_agg_rx->reorder_buf[index]) {
812 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
813 frames);
814 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
815 }
816
817 if (tid_agg_rx->stored_mpdu_num) {
818 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
819
820 for (; j != (index - 1) % tid_agg_rx->buf_size;
821 j = (j + 1) % tid_agg_rx->buf_size) {
822 if (tid_agg_rx->reorder_buf[j])
823 break;
824 }
825
826 set_release_timer:
827
828 mod_timer(&tid_agg_rx->reorder_timer,
829 tid_agg_rx->reorder_time[j] + 1 +
830 HT_RX_REORDER_BUF_TIMEOUT);
831 } else {
832 del_timer(&tid_agg_rx->reorder_timer);
833 }
834 }
835
836 /*
837 * As this function belongs to the RX path it must be under
838 * rcu_read_lock protection. It returns false if the frame
839 * can be processed immediately, true if it was consumed.
840 */
841 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
842 struct tid_ampdu_rx *tid_agg_rx,
843 struct sk_buff *skb,
844 struct sk_buff_head *frames)
845 {
846 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
847 u16 sc = le16_to_cpu(hdr->seq_ctrl);
848 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
849 u16 head_seq_num, buf_size;
850 int index;
851 bool ret = true;
852
853 spin_lock(&tid_agg_rx->reorder_lock);
854
855 buf_size = tid_agg_rx->buf_size;
856 head_seq_num = tid_agg_rx->head_seq_num;
857
858 /* frame with out of date sequence number */
859 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
860 dev_kfree_skb(skb);
861 goto out;
862 }
863
864 /*
865 * If frame the sequence number exceeds our buffering window
866 * size release some previous frames to make room for this one.
867 */
868 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
869 head_seq_num = ieee80211_sn_inc(
870 ieee80211_sn_sub(mpdu_seq_num, buf_size));
871 /* release stored frames up to new head to stack */
872 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
873 head_seq_num, frames);
874 }
875
876 /* Now the new frame is always in the range of the reordering buffer */
877
878 index = mpdu_seq_num % tid_agg_rx->buf_size;
879
880 /* check if we already stored this frame */
881 if (tid_agg_rx->reorder_buf[index]) {
882 dev_kfree_skb(skb);
883 goto out;
884 }
885
886 /*
887 * If the current MPDU is in the right order and nothing else
888 * is stored we can process it directly, no need to buffer it.
889 * If it is first but there's something stored, we may be able
890 * to release frames after this one.
891 */
892 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
893 tid_agg_rx->stored_mpdu_num == 0) {
894 tid_agg_rx->head_seq_num =
895 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
896 ret = false;
897 goto out;
898 }
899
900 /* put the frame in the reordering buffer */
901 tid_agg_rx->reorder_buf[index] = skb;
902 tid_agg_rx->reorder_time[index] = jiffies;
903 tid_agg_rx->stored_mpdu_num++;
904 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
905
906 out:
907 spin_unlock(&tid_agg_rx->reorder_lock);
908 return ret;
909 }
910
911 /*
912 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
913 * true if the MPDU was buffered, false if it should be processed.
914 */
915 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
916 struct sk_buff_head *frames)
917 {
918 struct sk_buff *skb = rx->skb;
919 struct ieee80211_local *local = rx->local;
920 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
921 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
922 struct sta_info *sta = rx->sta;
923 struct tid_ampdu_rx *tid_agg_rx;
924 u16 sc;
925 u8 tid, ack_policy;
926
927 if (!ieee80211_is_data_qos(hdr->frame_control) ||
928 is_multicast_ether_addr(hdr->addr1))
929 goto dont_reorder;
930
931 /*
932 * filter the QoS data rx stream according to
933 * STA/TID and check if this STA/TID is on aggregation
934 */
935
936 if (!sta)
937 goto dont_reorder;
938
939 ack_policy = *ieee80211_get_qos_ctl(hdr) &
940 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
941 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
942
943 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
944 if (!tid_agg_rx)
945 goto dont_reorder;
946
947 /* qos null data frames are excluded */
948 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
949 goto dont_reorder;
950
951 /* not part of a BA session */
952 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
953 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
954 goto dont_reorder;
955
956 /* not actually part of this BA session */
957 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
958 goto dont_reorder;
959
960 /* new, potentially un-ordered, ampdu frame - process it */
961
962 /* reset session timer */
963 if (tid_agg_rx->timeout)
964 tid_agg_rx->last_rx = jiffies;
965
966 /* if this mpdu is fragmented - terminate rx aggregation session */
967 sc = le16_to_cpu(hdr->seq_ctrl);
968 if (sc & IEEE80211_SCTL_FRAG) {
969 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
970 skb_queue_tail(&rx->sdata->skb_queue, skb);
971 ieee80211_queue_work(&local->hw, &rx->sdata->work);
972 return;
973 }
974
975 /*
976 * No locking needed -- we will only ever process one
977 * RX packet at a time, and thus own tid_agg_rx. All
978 * other code manipulating it needs to (and does) make
979 * sure that we cannot get to it any more before doing
980 * anything with it.
981 */
982 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
983 frames))
984 return;
985
986 dont_reorder:
987 __skb_queue_tail(frames, skb);
988 }
989
990 static ieee80211_rx_result debug_noinline
991 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
992 {
993 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
994 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
995
996 /*
997 * Drop duplicate 802.11 retransmissions
998 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
999 */
1000 if (rx->skb->len >= 24 && rx->sta &&
1001 !ieee80211_is_ctl(hdr->frame_control) &&
1002 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
1003 !is_multicast_ether_addr(hdr->addr1)) {
1004 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1005 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1006 hdr->seq_ctrl)) {
1007 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1008 rx->local->dot11FrameDuplicateCount++;
1009 rx->sta->num_duplicates++;
1010 }
1011 return RX_DROP_UNUSABLE;
1012 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1013 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1014 }
1015 }
1016
1017 if (unlikely(rx->skb->len < 16)) {
1018 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1019 return RX_DROP_MONITOR;
1020 }
1021
1022 /* Drop disallowed frame classes based on STA auth/assoc state;
1023 * IEEE 802.11, Chap 5.5.
1024 *
1025 * mac80211 filters only based on association state, i.e. it drops
1026 * Class 3 frames from not associated stations. hostapd sends
1027 * deauth/disassoc frames when needed. In addition, hostapd is
1028 * responsible for filtering on both auth and assoc states.
1029 */
1030
1031 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1032 return ieee80211_rx_mesh_check(rx);
1033
1034 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1035 ieee80211_is_pspoll(hdr->frame_control)) &&
1036 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1037 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1038 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1039 /*
1040 * accept port control frames from the AP even when it's not
1041 * yet marked ASSOC to prevent a race where we don't set the
1042 * assoc bit quickly enough before it sends the first frame
1043 */
1044 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1045 ieee80211_is_data_present(hdr->frame_control)) {
1046 unsigned int hdrlen;
1047 __be16 ethertype;
1048
1049 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1050
1051 if (rx->skb->len < hdrlen + 8)
1052 return RX_DROP_MONITOR;
1053
1054 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1055 if (ethertype == rx->sdata->control_port_protocol)
1056 return RX_CONTINUE;
1057 }
1058
1059 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1060 cfg80211_rx_spurious_frame(rx->sdata->dev,
1061 hdr->addr2,
1062 GFP_ATOMIC))
1063 return RX_DROP_UNUSABLE;
1064
1065 return RX_DROP_MONITOR;
1066 }
1067
1068 return RX_CONTINUE;
1069 }
1070
1071
1072 static ieee80211_rx_result debug_noinline
1073 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1074 {
1075 struct ieee80211_local *local;
1076 struct ieee80211_hdr *hdr;
1077 struct sk_buff *skb;
1078
1079 local = rx->local;
1080 skb = rx->skb;
1081 hdr = (struct ieee80211_hdr *) skb->data;
1082
1083 if (!local->pspolling)
1084 return RX_CONTINUE;
1085
1086 if (!ieee80211_has_fromds(hdr->frame_control))
1087 /* this is not from AP */
1088 return RX_CONTINUE;
1089
1090 if (!ieee80211_is_data(hdr->frame_control))
1091 return RX_CONTINUE;
1092
1093 if (!ieee80211_has_moredata(hdr->frame_control)) {
1094 /* AP has no more frames buffered for us */
1095 local->pspolling = false;
1096 return RX_CONTINUE;
1097 }
1098
1099 /* more data bit is set, let's request a new frame from the AP */
1100 ieee80211_send_pspoll(local, rx->sdata);
1101
1102 return RX_CONTINUE;
1103 }
1104
1105 static void sta_ps_start(struct sta_info *sta)
1106 {
1107 struct ieee80211_sub_if_data *sdata = sta->sdata;
1108 struct ieee80211_local *local = sdata->local;
1109 struct ps_data *ps;
1110
1111 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1112 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1113 ps = &sdata->bss->ps;
1114 else
1115 return;
1116
1117 atomic_inc(&ps->num_sta_ps);
1118 set_sta_flag(sta, WLAN_STA_PS_STA);
1119 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1120 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1121 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1122 sta->sta.addr, sta->sta.aid);
1123 }
1124
1125 static void sta_ps_end(struct sta_info *sta)
1126 {
1127 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1128 sta->sta.addr, sta->sta.aid);
1129
1130 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1131 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1132 sta->sta.addr, sta->sta.aid);
1133 return;
1134 }
1135
1136 ieee80211_sta_ps_deliver_wakeup(sta);
1137 }
1138
1139 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1140 {
1141 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1142 bool in_ps;
1143
1144 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1145
1146 /* Don't let the same PS state be set twice */
1147 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1148 if ((start && in_ps) || (!start && !in_ps))
1149 return -EINVAL;
1150
1151 if (start)
1152 sta_ps_start(sta_inf);
1153 else
1154 sta_ps_end(sta_inf);
1155
1156 return 0;
1157 }
1158 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1159
1160 static ieee80211_rx_result debug_noinline
1161 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1162 {
1163 struct ieee80211_sub_if_data *sdata = rx->sdata;
1164 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1165 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1166 int tid, ac;
1167
1168 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1169 return RX_CONTINUE;
1170
1171 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1172 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1173 return RX_CONTINUE;
1174
1175 /*
1176 * The device handles station powersave, so don't do anything about
1177 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1178 * it to mac80211 since they're handled.)
1179 */
1180 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1181 return RX_CONTINUE;
1182
1183 /*
1184 * Don't do anything if the station isn't already asleep. In
1185 * the uAPSD case, the station will probably be marked asleep,
1186 * in the PS-Poll case the station must be confused ...
1187 */
1188 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1189 return RX_CONTINUE;
1190
1191 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1192 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1193 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1194 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1195 else
1196 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1197 }
1198
1199 /* Free PS Poll skb here instead of returning RX_DROP that would
1200 * count as an dropped frame. */
1201 dev_kfree_skb(rx->skb);
1202
1203 return RX_QUEUED;
1204 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1205 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1206 ieee80211_has_pm(hdr->frame_control) &&
1207 (ieee80211_is_data_qos(hdr->frame_control) ||
1208 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1209 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1210 ac = ieee802_1d_to_ac[tid & 7];
1211
1212 /*
1213 * If this AC is not trigger-enabled do nothing.
1214 *
1215 * NB: This could/should check a separate bitmap of trigger-
1216 * enabled queues, but for now we only implement uAPSD w/o
1217 * TSPEC changes to the ACs, so they're always the same.
1218 */
1219 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1220 return RX_CONTINUE;
1221
1222 /* if we are in a service period, do nothing */
1223 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1224 return RX_CONTINUE;
1225
1226 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1227 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1228 else
1229 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1230 }
1231
1232 return RX_CONTINUE;
1233 }
1234
1235 static ieee80211_rx_result debug_noinline
1236 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1237 {
1238 struct sta_info *sta = rx->sta;
1239 struct sk_buff *skb = rx->skb;
1240 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1241 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1242 int i;
1243
1244 if (!sta)
1245 return RX_CONTINUE;
1246
1247 /*
1248 * Update last_rx only for IBSS packets which are for the current
1249 * BSSID and for station already AUTHORIZED to avoid keeping the
1250 * current IBSS network alive in cases where other STAs start
1251 * using different BSSID. This will also give the station another
1252 * chance to restart the authentication/authorization in case
1253 * something went wrong the first time.
1254 */
1255 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1256 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1257 NL80211_IFTYPE_ADHOC);
1258 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1259 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1260 sta->last_rx = jiffies;
1261 if (ieee80211_is_data(hdr->frame_control)) {
1262 sta->last_rx_rate_idx = status->rate_idx;
1263 sta->last_rx_rate_flag = status->flag;
1264 sta->last_rx_rate_vht_nss = status->vht_nss;
1265 }
1266 }
1267 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1268 /*
1269 * Mesh beacons will update last_rx when if they are found to
1270 * match the current local configuration when processed.
1271 */
1272 sta->last_rx = jiffies;
1273 if (ieee80211_is_data(hdr->frame_control)) {
1274 sta->last_rx_rate_idx = status->rate_idx;
1275 sta->last_rx_rate_flag = status->flag;
1276 sta->last_rx_rate_vht_nss = status->vht_nss;
1277 }
1278 }
1279
1280 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1281 return RX_CONTINUE;
1282
1283 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1284 ieee80211_sta_rx_notify(rx->sdata, hdr);
1285
1286 sta->rx_fragments++;
1287 sta->rx_bytes += rx->skb->len;
1288 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1289 sta->last_signal = status->signal;
1290 ewma_add(&sta->avg_signal, -status->signal);
1291 }
1292
1293 if (status->chains) {
1294 sta->chains = status->chains;
1295 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1296 int signal = status->chain_signal[i];
1297
1298 if (!(status->chains & BIT(i)))
1299 continue;
1300
1301 sta->chain_signal_last[i] = signal;
1302 ewma_add(&sta->chain_signal_avg[i], -signal);
1303 }
1304 }
1305
1306 /*
1307 * Change STA power saving mode only at the end of a frame
1308 * exchange sequence.
1309 */
1310 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1311 !ieee80211_has_morefrags(hdr->frame_control) &&
1312 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1313 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1314 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1315 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1316 /*
1317 * Ignore doze->wake transitions that are
1318 * indicated by non-data frames, the standard
1319 * is unclear here, but for example going to
1320 * PS mode and then scanning would cause a
1321 * doze->wake transition for the probe request,
1322 * and that is clearly undesirable.
1323 */
1324 if (ieee80211_is_data(hdr->frame_control) &&
1325 !ieee80211_has_pm(hdr->frame_control))
1326 sta_ps_end(sta);
1327 } else {
1328 if (ieee80211_has_pm(hdr->frame_control))
1329 sta_ps_start(sta);
1330 }
1331 }
1332
1333 /* mesh power save support */
1334 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1335 ieee80211_mps_rx_h_sta_process(sta, hdr);
1336
1337 /*
1338 * Drop (qos-)data::nullfunc frames silently, since they
1339 * are used only to control station power saving mode.
1340 */
1341 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1342 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1343 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1344
1345 /*
1346 * If we receive a 4-addr nullfunc frame from a STA
1347 * that was not moved to a 4-addr STA vlan yet send
1348 * the event to userspace and for older hostapd drop
1349 * the frame to the monitor interface.
1350 */
1351 if (ieee80211_has_a4(hdr->frame_control) &&
1352 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1353 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1354 !rx->sdata->u.vlan.sta))) {
1355 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1356 cfg80211_rx_unexpected_4addr_frame(
1357 rx->sdata->dev, sta->sta.addr,
1358 GFP_ATOMIC);
1359 return RX_DROP_MONITOR;
1360 }
1361 /*
1362 * Update counter and free packet here to avoid
1363 * counting this as a dropped packed.
1364 */
1365 sta->rx_packets++;
1366 dev_kfree_skb(rx->skb);
1367 return RX_QUEUED;
1368 }
1369
1370 return RX_CONTINUE;
1371 } /* ieee80211_rx_h_sta_process */
1372
1373 static ieee80211_rx_result debug_noinline
1374 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1375 {
1376 struct sk_buff *skb = rx->skb;
1377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1379 int keyidx;
1380 int hdrlen;
1381 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1382 struct ieee80211_key *sta_ptk = NULL;
1383 int mmie_keyidx = -1;
1384 __le16 fc;
1385 const struct ieee80211_cipher_scheme *cs = NULL;
1386
1387 /*
1388 * Key selection 101
1389 *
1390 * There are four types of keys:
1391 * - GTK (group keys)
1392 * - IGTK (group keys for management frames)
1393 * - PTK (pairwise keys)
1394 * - STK (station-to-station pairwise keys)
1395 *
1396 * When selecting a key, we have to distinguish between multicast
1397 * (including broadcast) and unicast frames, the latter can only
1398 * use PTKs and STKs while the former always use GTKs and IGTKs.
1399 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1400 * unicast frames can also use key indices like GTKs. Hence, if we
1401 * don't have a PTK/STK we check the key index for a WEP key.
1402 *
1403 * Note that in a regular BSS, multicast frames are sent by the
1404 * AP only, associated stations unicast the frame to the AP first
1405 * which then multicasts it on their behalf.
1406 *
1407 * There is also a slight problem in IBSS mode: GTKs are negotiated
1408 * with each station, that is something we don't currently handle.
1409 * The spec seems to expect that one negotiates the same key with
1410 * every station but there's no such requirement; VLANs could be
1411 * possible.
1412 */
1413
1414 /*
1415 * No point in finding a key and decrypting if the frame is neither
1416 * addressed to us nor a multicast frame.
1417 */
1418 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1419 return RX_CONTINUE;
1420
1421 /* start without a key */
1422 rx->key = NULL;
1423 fc = hdr->frame_control;
1424
1425 if (rx->sta) {
1426 int keyid = rx->sta->ptk_idx;
1427
1428 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1429 cs = rx->sta->cipher_scheme;
1430 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1431 if (unlikely(keyid < 0))
1432 return RX_DROP_UNUSABLE;
1433 }
1434 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1435 }
1436
1437 if (!ieee80211_has_protected(fc))
1438 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1439
1440 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1441 rx->key = sta_ptk;
1442 if ((status->flag & RX_FLAG_DECRYPTED) &&
1443 (status->flag & RX_FLAG_IV_STRIPPED))
1444 return RX_CONTINUE;
1445 /* Skip decryption if the frame is not protected. */
1446 if (!ieee80211_has_protected(fc))
1447 return RX_CONTINUE;
1448 } else if (mmie_keyidx >= 0) {
1449 /* Broadcast/multicast robust management frame / BIP */
1450 if ((status->flag & RX_FLAG_DECRYPTED) &&
1451 (status->flag & RX_FLAG_IV_STRIPPED))
1452 return RX_CONTINUE;
1453
1454 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1455 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1456 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1457 if (rx->sta)
1458 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1459 if (!rx->key)
1460 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1461 } else if (!ieee80211_has_protected(fc)) {
1462 /*
1463 * The frame was not protected, so skip decryption. However, we
1464 * need to set rx->key if there is a key that could have been
1465 * used so that the frame may be dropped if encryption would
1466 * have been expected.
1467 */
1468 struct ieee80211_key *key = NULL;
1469 struct ieee80211_sub_if_data *sdata = rx->sdata;
1470 int i;
1471
1472 if (ieee80211_is_mgmt(fc) &&
1473 is_multicast_ether_addr(hdr->addr1) &&
1474 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1475 rx->key = key;
1476 else {
1477 if (rx->sta) {
1478 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1479 key = rcu_dereference(rx->sta->gtk[i]);
1480 if (key)
1481 break;
1482 }
1483 }
1484 if (!key) {
1485 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1486 key = rcu_dereference(sdata->keys[i]);
1487 if (key)
1488 break;
1489 }
1490 }
1491 if (key)
1492 rx->key = key;
1493 }
1494 return RX_CONTINUE;
1495 } else {
1496 u8 keyid;
1497
1498 /*
1499 * The device doesn't give us the IV so we won't be
1500 * able to look up the key. That's ok though, we
1501 * don't need to decrypt the frame, we just won't
1502 * be able to keep statistics accurate.
1503 * Except for key threshold notifications, should
1504 * we somehow allow the driver to tell us which key
1505 * the hardware used if this flag is set?
1506 */
1507 if ((status->flag & RX_FLAG_DECRYPTED) &&
1508 (status->flag & RX_FLAG_IV_STRIPPED))
1509 return RX_CONTINUE;
1510
1511 hdrlen = ieee80211_hdrlen(fc);
1512
1513 if (cs) {
1514 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1515
1516 if (unlikely(keyidx < 0))
1517 return RX_DROP_UNUSABLE;
1518 } else {
1519 if (rx->skb->len < 8 + hdrlen)
1520 return RX_DROP_UNUSABLE; /* TODO: count this? */
1521 /*
1522 * no need to call ieee80211_wep_get_keyidx,
1523 * it verifies a bunch of things we've done already
1524 */
1525 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1526 keyidx = keyid >> 6;
1527 }
1528
1529 /* check per-station GTK first, if multicast packet */
1530 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1531 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1532
1533 /* if not found, try default key */
1534 if (!rx->key) {
1535 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1536
1537 /*
1538 * RSNA-protected unicast frames should always be
1539 * sent with pairwise or station-to-station keys,
1540 * but for WEP we allow using a key index as well.
1541 */
1542 if (rx->key &&
1543 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1544 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1545 !is_multicast_ether_addr(hdr->addr1))
1546 rx->key = NULL;
1547 }
1548 }
1549
1550 if (rx->key) {
1551 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1552 return RX_DROP_MONITOR;
1553
1554 rx->key->tx_rx_count++;
1555 /* TODO: add threshold stuff again */
1556 } else {
1557 return RX_DROP_MONITOR;
1558 }
1559
1560 switch (rx->key->conf.cipher) {
1561 case WLAN_CIPHER_SUITE_WEP40:
1562 case WLAN_CIPHER_SUITE_WEP104:
1563 result = ieee80211_crypto_wep_decrypt(rx);
1564 break;
1565 case WLAN_CIPHER_SUITE_TKIP:
1566 result = ieee80211_crypto_tkip_decrypt(rx);
1567 break;
1568 case WLAN_CIPHER_SUITE_CCMP:
1569 result = ieee80211_crypto_ccmp_decrypt(rx);
1570 break;
1571 case WLAN_CIPHER_SUITE_AES_CMAC:
1572 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1573 break;
1574 default:
1575 result = ieee80211_crypto_hw_decrypt(rx);
1576 }
1577
1578 /* the hdr variable is invalid after the decrypt handlers */
1579
1580 /* either the frame has been decrypted or will be dropped */
1581 status->flag |= RX_FLAG_DECRYPTED;
1582
1583 return result;
1584 }
1585
1586 static inline struct ieee80211_fragment_entry *
1587 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1588 unsigned int frag, unsigned int seq, int rx_queue,
1589 struct sk_buff **skb)
1590 {
1591 struct ieee80211_fragment_entry *entry;
1592
1593 entry = &sdata->fragments[sdata->fragment_next++];
1594 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1595 sdata->fragment_next = 0;
1596
1597 if (!skb_queue_empty(&entry->skb_list))
1598 __skb_queue_purge(&entry->skb_list);
1599
1600 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1601 *skb = NULL;
1602 entry->first_frag_time = jiffies;
1603 entry->seq = seq;
1604 entry->rx_queue = rx_queue;
1605 entry->last_frag = frag;
1606 entry->ccmp = 0;
1607 entry->extra_len = 0;
1608
1609 return entry;
1610 }
1611
1612 static inline struct ieee80211_fragment_entry *
1613 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1614 unsigned int frag, unsigned int seq,
1615 int rx_queue, struct ieee80211_hdr *hdr)
1616 {
1617 struct ieee80211_fragment_entry *entry;
1618 int i, idx;
1619
1620 idx = sdata->fragment_next;
1621 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1622 struct ieee80211_hdr *f_hdr;
1623
1624 idx--;
1625 if (idx < 0)
1626 idx = IEEE80211_FRAGMENT_MAX - 1;
1627
1628 entry = &sdata->fragments[idx];
1629 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1630 entry->rx_queue != rx_queue ||
1631 entry->last_frag + 1 != frag)
1632 continue;
1633
1634 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1635
1636 /*
1637 * Check ftype and addresses are equal, else check next fragment
1638 */
1639 if (((hdr->frame_control ^ f_hdr->frame_control) &
1640 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1641 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1642 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1643 continue;
1644
1645 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1646 __skb_queue_purge(&entry->skb_list);
1647 continue;
1648 }
1649 return entry;
1650 }
1651
1652 return NULL;
1653 }
1654
1655 static ieee80211_rx_result debug_noinline
1656 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1657 {
1658 struct ieee80211_hdr *hdr;
1659 u16 sc;
1660 __le16 fc;
1661 unsigned int frag, seq;
1662 struct ieee80211_fragment_entry *entry;
1663 struct sk_buff *skb;
1664 struct ieee80211_rx_status *status;
1665
1666 hdr = (struct ieee80211_hdr *)rx->skb->data;
1667 fc = hdr->frame_control;
1668
1669 if (ieee80211_is_ctl(fc))
1670 return RX_CONTINUE;
1671
1672 sc = le16_to_cpu(hdr->seq_ctrl);
1673 frag = sc & IEEE80211_SCTL_FRAG;
1674
1675 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1676 is_multicast_ether_addr(hdr->addr1))) {
1677 /* not fragmented */
1678 goto out;
1679 }
1680 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1681
1682 if (skb_linearize(rx->skb))
1683 return RX_DROP_UNUSABLE;
1684
1685 /*
1686 * skb_linearize() might change the skb->data and
1687 * previously cached variables (in this case, hdr) need to
1688 * be refreshed with the new data.
1689 */
1690 hdr = (struct ieee80211_hdr *)rx->skb->data;
1691 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1692
1693 if (frag == 0) {
1694 /* This is the first fragment of a new frame. */
1695 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1696 rx->seqno_idx, &(rx->skb));
1697 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1698 ieee80211_has_protected(fc)) {
1699 int queue = rx->security_idx;
1700 /* Store CCMP PN so that we can verify that the next
1701 * fragment has a sequential PN value. */
1702 entry->ccmp = 1;
1703 memcpy(entry->last_pn,
1704 rx->key->u.ccmp.rx_pn[queue],
1705 IEEE80211_CCMP_PN_LEN);
1706 }
1707 return RX_QUEUED;
1708 }
1709
1710 /* This is a fragment for a frame that should already be pending in
1711 * fragment cache. Add this fragment to the end of the pending entry.
1712 */
1713 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1714 rx->seqno_idx, hdr);
1715 if (!entry) {
1716 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1717 return RX_DROP_MONITOR;
1718 }
1719
1720 /* Verify that MPDUs within one MSDU have sequential PN values.
1721 * (IEEE 802.11i, 8.3.3.4.5) */
1722 if (entry->ccmp) {
1723 int i;
1724 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1725 int queue;
1726 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1727 return RX_DROP_UNUSABLE;
1728 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1729 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1730 pn[i]++;
1731 if (pn[i])
1732 break;
1733 }
1734 queue = rx->security_idx;
1735 rpn = rx->key->u.ccmp.rx_pn[queue];
1736 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1737 return RX_DROP_UNUSABLE;
1738 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1739 }
1740
1741 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1742 __skb_queue_tail(&entry->skb_list, rx->skb);
1743 entry->last_frag = frag;
1744 entry->extra_len += rx->skb->len;
1745 if (ieee80211_has_morefrags(fc)) {
1746 rx->skb = NULL;
1747 return RX_QUEUED;
1748 }
1749
1750 rx->skb = __skb_dequeue(&entry->skb_list);
1751 if (skb_tailroom(rx->skb) < entry->extra_len) {
1752 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1753 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1754 GFP_ATOMIC))) {
1755 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1756 __skb_queue_purge(&entry->skb_list);
1757 return RX_DROP_UNUSABLE;
1758 }
1759 }
1760 while ((skb = __skb_dequeue(&entry->skb_list))) {
1761 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1762 dev_kfree_skb(skb);
1763 }
1764
1765 /* Complete frame has been reassembled - process it now */
1766 status = IEEE80211_SKB_RXCB(rx->skb);
1767 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1768
1769 out:
1770 if (rx->sta)
1771 rx->sta->rx_packets++;
1772 if (is_multicast_ether_addr(hdr->addr1))
1773 rx->local->dot11MulticastReceivedFrameCount++;
1774 else
1775 ieee80211_led_rx(rx->local);
1776 return RX_CONTINUE;
1777 }
1778
1779 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1780 {
1781 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1782 return -EACCES;
1783
1784 return 0;
1785 }
1786
1787 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1788 {
1789 struct sk_buff *skb = rx->skb;
1790 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1791
1792 /*
1793 * Pass through unencrypted frames if the hardware has
1794 * decrypted them already.
1795 */
1796 if (status->flag & RX_FLAG_DECRYPTED)
1797 return 0;
1798
1799 /* Drop unencrypted frames if key is set. */
1800 if (unlikely(!ieee80211_has_protected(fc) &&
1801 !ieee80211_is_nullfunc(fc) &&
1802 ieee80211_is_data(fc) &&
1803 (rx->key || rx->sdata->drop_unencrypted)))
1804 return -EACCES;
1805
1806 return 0;
1807 }
1808
1809 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1810 {
1811 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1812 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1813 __le16 fc = hdr->frame_control;
1814
1815 /*
1816 * Pass through unencrypted frames if the hardware has
1817 * decrypted them already.
1818 */
1819 if (status->flag & RX_FLAG_DECRYPTED)
1820 return 0;
1821
1822 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1823 if (unlikely(!ieee80211_has_protected(fc) &&
1824 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1825 rx->key)) {
1826 if (ieee80211_is_deauth(fc) ||
1827 ieee80211_is_disassoc(fc))
1828 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1829 rx->skb->data,
1830 rx->skb->len);
1831 return -EACCES;
1832 }
1833 /* BIP does not use Protected field, so need to check MMIE */
1834 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1835 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1836 if (ieee80211_is_deauth(fc) ||
1837 ieee80211_is_disassoc(fc))
1838 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1839 rx->skb->data,
1840 rx->skb->len);
1841 return -EACCES;
1842 }
1843 /*
1844 * When using MFP, Action frames are not allowed prior to
1845 * having configured keys.
1846 */
1847 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1848 ieee80211_is_robust_mgmt_frame(
1849 (struct ieee80211_hdr *) rx->skb->data)))
1850 return -EACCES;
1851 }
1852
1853 return 0;
1854 }
1855
1856 static int
1857 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1858 {
1859 struct ieee80211_sub_if_data *sdata = rx->sdata;
1860 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1861 bool check_port_control = false;
1862 struct ethhdr *ehdr;
1863 int ret;
1864
1865 *port_control = false;
1866 if (ieee80211_has_a4(hdr->frame_control) &&
1867 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1868 return -1;
1869
1870 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1871 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1872
1873 if (!sdata->u.mgd.use_4addr)
1874 return -1;
1875 else
1876 check_port_control = true;
1877 }
1878
1879 if (is_multicast_ether_addr(hdr->addr1) &&
1880 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1881 return -1;
1882
1883 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1884 if (ret < 0)
1885 return ret;
1886
1887 ehdr = (struct ethhdr *) rx->skb->data;
1888 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1889 *port_control = true;
1890 else if (check_port_control)
1891 return -1;
1892
1893 return 0;
1894 }
1895
1896 /*
1897 * requires that rx->skb is a frame with ethernet header
1898 */
1899 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1900 {
1901 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1902 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1903 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1904
1905 /*
1906 * Allow EAPOL frames to us/the PAE group address regardless
1907 * of whether the frame was encrypted or not.
1908 */
1909 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1910 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1911 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1912 return true;
1913
1914 if (ieee80211_802_1x_port_control(rx) ||
1915 ieee80211_drop_unencrypted(rx, fc))
1916 return false;
1917
1918 return true;
1919 }
1920
1921 /*
1922 * requires that rx->skb is a frame with ethernet header
1923 */
1924 static void
1925 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1926 {
1927 struct ieee80211_sub_if_data *sdata = rx->sdata;
1928 struct net_device *dev = sdata->dev;
1929 struct sk_buff *skb, *xmit_skb;
1930 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1931 struct sta_info *dsta;
1932 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1933
1934 skb = rx->skb;
1935 xmit_skb = NULL;
1936
1937 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1938 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1939 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1940 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1941 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1942 if (is_multicast_ether_addr(ehdr->h_dest)) {
1943 /*
1944 * send multicast frames both to higher layers in
1945 * local net stack and back to the wireless medium
1946 */
1947 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1948 if (!xmit_skb)
1949 net_info_ratelimited("%s: failed to clone multicast frame\n",
1950 dev->name);
1951 } else {
1952 dsta = sta_info_get(sdata, skb->data);
1953 if (dsta) {
1954 /*
1955 * The destination station is associated to
1956 * this AP (in this VLAN), so send the frame
1957 * directly to it and do not pass it to local
1958 * net stack.
1959 */
1960 xmit_skb = skb;
1961 skb = NULL;
1962 }
1963 }
1964 }
1965
1966 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1967 if (skb) {
1968 /* 'align' will only take the values 0 or 2 here since all
1969 * frames are required to be aligned to 2-byte boundaries
1970 * when being passed to mac80211; the code here works just
1971 * as well if that isn't true, but mac80211 assumes it can
1972 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1973 */
1974 int align;
1975
1976 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1977 if (align) {
1978 if (WARN_ON(skb_headroom(skb) < 3)) {
1979 dev_kfree_skb(skb);
1980 skb = NULL;
1981 } else {
1982 u8 *data = skb->data;
1983 size_t len = skb_headlen(skb);
1984 skb->data -= align;
1985 memmove(skb->data, data, len);
1986 skb_set_tail_pointer(skb, len);
1987 }
1988 }
1989 }
1990 #endif
1991
1992 if (skb) {
1993 /* deliver to local stack */
1994 skb->protocol = eth_type_trans(skb, dev);
1995 memset(skb->cb, 0, sizeof(skb->cb));
1996 netif_receive_skb(skb);
1997 }
1998
1999 if (xmit_skb) {
2000 /*
2001 * Send to wireless media and increase priority by 256 to
2002 * keep the received priority instead of reclassifying
2003 * the frame (see cfg80211_classify8021d).
2004 */
2005 xmit_skb->priority += 256;
2006 xmit_skb->protocol = htons(ETH_P_802_3);
2007 skb_reset_network_header(xmit_skb);
2008 skb_reset_mac_header(xmit_skb);
2009 dev_queue_xmit(xmit_skb);
2010 }
2011 }
2012
2013 static ieee80211_rx_result debug_noinline
2014 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2015 {
2016 struct net_device *dev = rx->sdata->dev;
2017 struct sk_buff *skb = rx->skb;
2018 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2019 __le16 fc = hdr->frame_control;
2020 struct sk_buff_head frame_list;
2021 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2022
2023 if (unlikely(!ieee80211_is_data(fc)))
2024 return RX_CONTINUE;
2025
2026 if (unlikely(!ieee80211_is_data_present(fc)))
2027 return RX_DROP_MONITOR;
2028
2029 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2030 return RX_CONTINUE;
2031
2032 if (ieee80211_has_a4(hdr->frame_control) &&
2033 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2034 !rx->sdata->u.vlan.sta)
2035 return RX_DROP_UNUSABLE;
2036
2037 if (is_multicast_ether_addr(hdr->addr1) &&
2038 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2039 rx->sdata->u.vlan.sta) ||
2040 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2041 rx->sdata->u.mgd.use_4addr)))
2042 return RX_DROP_UNUSABLE;
2043
2044 skb->dev = dev;
2045 __skb_queue_head_init(&frame_list);
2046
2047 if (skb_linearize(skb))
2048 return RX_DROP_UNUSABLE;
2049
2050 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2051 rx->sdata->vif.type,
2052 rx->local->hw.extra_tx_headroom, true);
2053
2054 while (!skb_queue_empty(&frame_list)) {
2055 rx->skb = __skb_dequeue(&frame_list);
2056
2057 if (!ieee80211_frame_allowed(rx, fc)) {
2058 dev_kfree_skb(rx->skb);
2059 continue;
2060 }
2061 dev->stats.rx_packets++;
2062 dev->stats.rx_bytes += rx->skb->len;
2063
2064 ieee80211_deliver_skb(rx);
2065 }
2066
2067 return RX_QUEUED;
2068 }
2069
2070 #ifdef CONFIG_MAC80211_MESH
2071 static ieee80211_rx_result
2072 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2073 {
2074 struct ieee80211_hdr *fwd_hdr, *hdr;
2075 struct ieee80211_tx_info *info;
2076 struct ieee80211s_hdr *mesh_hdr;
2077 struct sk_buff *skb = rx->skb, *fwd_skb;
2078 struct ieee80211_local *local = rx->local;
2079 struct ieee80211_sub_if_data *sdata = rx->sdata;
2080 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2081 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2082 u16 q, hdrlen;
2083
2084 hdr = (struct ieee80211_hdr *) skb->data;
2085 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2086
2087 /* make sure fixed part of mesh header is there, also checks skb len */
2088 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2089 return RX_DROP_MONITOR;
2090
2091 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2092
2093 /* make sure full mesh header is there, also checks skb len */
2094 if (!pskb_may_pull(rx->skb,
2095 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2096 return RX_DROP_MONITOR;
2097
2098 /* reload pointers */
2099 hdr = (struct ieee80211_hdr *) skb->data;
2100 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2101
2102 /* frame is in RMC, don't forward */
2103 if (ieee80211_is_data(hdr->frame_control) &&
2104 is_multicast_ether_addr(hdr->addr1) &&
2105 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2106 return RX_DROP_MONITOR;
2107
2108 if (!ieee80211_is_data(hdr->frame_control) ||
2109 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2110 return RX_CONTINUE;
2111
2112 if (!mesh_hdr->ttl)
2113 return RX_DROP_MONITOR;
2114
2115 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2116 struct mesh_path *mppath;
2117 char *proxied_addr;
2118 char *mpp_addr;
2119
2120 if (is_multicast_ether_addr(hdr->addr1)) {
2121 mpp_addr = hdr->addr3;
2122 proxied_addr = mesh_hdr->eaddr1;
2123 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2124 /* has_a4 already checked in ieee80211_rx_mesh_check */
2125 mpp_addr = hdr->addr4;
2126 proxied_addr = mesh_hdr->eaddr2;
2127 } else {
2128 return RX_DROP_MONITOR;
2129 }
2130
2131 rcu_read_lock();
2132 mppath = mpp_path_lookup(sdata, proxied_addr);
2133 if (!mppath) {
2134 mpp_path_add(sdata, proxied_addr, mpp_addr);
2135 } else {
2136 spin_lock_bh(&mppath->state_lock);
2137 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2138 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2139 spin_unlock_bh(&mppath->state_lock);
2140 }
2141 rcu_read_unlock();
2142 }
2143
2144 /* Frame has reached destination. Don't forward */
2145 if (!is_multicast_ether_addr(hdr->addr1) &&
2146 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2147 return RX_CONTINUE;
2148
2149 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2150 if (ieee80211_queue_stopped(&local->hw, q)) {
2151 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2152 return RX_DROP_MONITOR;
2153 }
2154 skb_set_queue_mapping(skb, q);
2155
2156 if (!--mesh_hdr->ttl) {
2157 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2158 goto out;
2159 }
2160
2161 if (!ifmsh->mshcfg.dot11MeshForwarding)
2162 goto out;
2163
2164 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2165 if (!fwd_skb) {
2166 net_info_ratelimited("%s: failed to clone mesh frame\n",
2167 sdata->name);
2168 goto out;
2169 }
2170
2171 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2172 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2173 info = IEEE80211_SKB_CB(fwd_skb);
2174 memset(info, 0, sizeof(*info));
2175 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2176 info->control.vif = &rx->sdata->vif;
2177 info->control.jiffies = jiffies;
2178 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2179 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2180 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2181 /* update power mode indication when forwarding */
2182 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2183 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2184 /* mesh power mode flags updated in mesh_nexthop_lookup */
2185 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2186 } else {
2187 /* unable to resolve next hop */
2188 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2189 fwd_hdr->addr3, 0,
2190 WLAN_REASON_MESH_PATH_NOFORWARD,
2191 fwd_hdr->addr2);
2192 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2193 kfree_skb(fwd_skb);
2194 return RX_DROP_MONITOR;
2195 }
2196
2197 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2198 ieee80211_add_pending_skb(local, fwd_skb);
2199 out:
2200 if (is_multicast_ether_addr(hdr->addr1) ||
2201 sdata->dev->flags & IFF_PROMISC)
2202 return RX_CONTINUE;
2203 else
2204 return RX_DROP_MONITOR;
2205 }
2206 #endif
2207
2208 static ieee80211_rx_result debug_noinline
2209 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2210 {
2211 struct ieee80211_sub_if_data *sdata = rx->sdata;
2212 struct ieee80211_local *local = rx->local;
2213 struct net_device *dev = sdata->dev;
2214 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2215 __le16 fc = hdr->frame_control;
2216 bool port_control;
2217 int err;
2218
2219 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2220 return RX_CONTINUE;
2221
2222 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2223 return RX_DROP_MONITOR;
2224
2225 /*
2226 * Send unexpected-4addr-frame event to hostapd. For older versions,
2227 * also drop the frame to cooked monitor interfaces.
2228 */
2229 if (ieee80211_has_a4(hdr->frame_control) &&
2230 sdata->vif.type == NL80211_IFTYPE_AP) {
2231 if (rx->sta &&
2232 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2233 cfg80211_rx_unexpected_4addr_frame(
2234 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2235 return RX_DROP_MONITOR;
2236 }
2237
2238 err = __ieee80211_data_to_8023(rx, &port_control);
2239 if (unlikely(err))
2240 return RX_DROP_UNUSABLE;
2241
2242 if (!ieee80211_frame_allowed(rx, fc))
2243 return RX_DROP_MONITOR;
2244
2245 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2246 unlikely(port_control) && sdata->bss) {
2247 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2248 u.ap);
2249 dev = sdata->dev;
2250 rx->sdata = sdata;
2251 }
2252
2253 rx->skb->dev = dev;
2254
2255 dev->stats.rx_packets++;
2256 dev->stats.rx_bytes += rx->skb->len;
2257
2258 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2259 !is_multicast_ether_addr(
2260 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2261 (!local->scanning &&
2262 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2263 mod_timer(&local->dynamic_ps_timer, jiffies +
2264 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2265 }
2266
2267 ieee80211_deliver_skb(rx);
2268
2269 return RX_QUEUED;
2270 }
2271
2272 static ieee80211_rx_result debug_noinline
2273 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2274 {
2275 struct sk_buff *skb = rx->skb;
2276 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2277 struct tid_ampdu_rx *tid_agg_rx;
2278 u16 start_seq_num;
2279 u16 tid;
2280
2281 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2282 return RX_CONTINUE;
2283
2284 if (ieee80211_is_back_req(bar->frame_control)) {
2285 struct {
2286 __le16 control, start_seq_num;
2287 } __packed bar_data;
2288
2289 if (!rx->sta)
2290 return RX_DROP_MONITOR;
2291
2292 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2293 &bar_data, sizeof(bar_data)))
2294 return RX_DROP_MONITOR;
2295
2296 tid = le16_to_cpu(bar_data.control) >> 12;
2297
2298 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2299 if (!tid_agg_rx)
2300 return RX_DROP_MONITOR;
2301
2302 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2303
2304 /* reset session timer */
2305 if (tid_agg_rx->timeout)
2306 mod_timer(&tid_agg_rx->session_timer,
2307 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2308
2309 spin_lock(&tid_agg_rx->reorder_lock);
2310 /* release stored frames up to start of BAR */
2311 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2312 start_seq_num, frames);
2313 spin_unlock(&tid_agg_rx->reorder_lock);
2314
2315 kfree_skb(skb);
2316 return RX_QUEUED;
2317 }
2318
2319 /*
2320 * After this point, we only want management frames,
2321 * so we can drop all remaining control frames to
2322 * cooked monitor interfaces.
2323 */
2324 return RX_DROP_MONITOR;
2325 }
2326
2327 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2328 struct ieee80211_mgmt *mgmt,
2329 size_t len)
2330 {
2331 struct ieee80211_local *local = sdata->local;
2332 struct sk_buff *skb;
2333 struct ieee80211_mgmt *resp;
2334
2335 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2336 /* Not to own unicast address */
2337 return;
2338 }
2339
2340 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2341 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2342 /* Not from the current AP or not associated yet. */
2343 return;
2344 }
2345
2346 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2347 /* Too short SA Query request frame */
2348 return;
2349 }
2350
2351 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2352 if (skb == NULL)
2353 return;
2354
2355 skb_reserve(skb, local->hw.extra_tx_headroom);
2356 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2357 memset(resp, 0, 24);
2358 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2359 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2360 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2361 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2362 IEEE80211_STYPE_ACTION);
2363 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2364 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2365 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2366 memcpy(resp->u.action.u.sa_query.trans_id,
2367 mgmt->u.action.u.sa_query.trans_id,
2368 WLAN_SA_QUERY_TR_ID_LEN);
2369
2370 ieee80211_tx_skb(sdata, skb);
2371 }
2372
2373 static ieee80211_rx_result debug_noinline
2374 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2375 {
2376 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2378
2379 /*
2380 * From here on, look only at management frames.
2381 * Data and control frames are already handled,
2382 * and unknown (reserved) frames are useless.
2383 */
2384 if (rx->skb->len < 24)
2385 return RX_DROP_MONITOR;
2386
2387 if (!ieee80211_is_mgmt(mgmt->frame_control))
2388 return RX_DROP_MONITOR;
2389
2390 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2391 ieee80211_is_beacon(mgmt->frame_control) &&
2392 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2393 int sig = 0;
2394
2395 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2396 sig = status->signal;
2397
2398 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2399 rx->skb->data, rx->skb->len,
2400 status->freq, sig);
2401 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2402 }
2403
2404 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2405 return RX_DROP_MONITOR;
2406
2407 if (ieee80211_drop_unencrypted_mgmt(rx))
2408 return RX_DROP_UNUSABLE;
2409
2410 return RX_CONTINUE;
2411 }
2412
2413 static ieee80211_rx_result debug_noinline
2414 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2415 {
2416 struct ieee80211_local *local = rx->local;
2417 struct ieee80211_sub_if_data *sdata = rx->sdata;
2418 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2419 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2420 int len = rx->skb->len;
2421
2422 if (!ieee80211_is_action(mgmt->frame_control))
2423 return RX_CONTINUE;
2424
2425 /* drop too small frames */
2426 if (len < IEEE80211_MIN_ACTION_SIZE)
2427 return RX_DROP_UNUSABLE;
2428
2429 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2430 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2431 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2432 return RX_DROP_UNUSABLE;
2433
2434 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2435 return RX_DROP_UNUSABLE;
2436
2437 switch (mgmt->u.action.category) {
2438 case WLAN_CATEGORY_HT:
2439 /* reject HT action frames from stations not supporting HT */
2440 if (!rx->sta->sta.ht_cap.ht_supported)
2441 goto invalid;
2442
2443 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2444 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2445 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2446 sdata->vif.type != NL80211_IFTYPE_AP &&
2447 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2448 break;
2449
2450 /* verify action & smps_control/chanwidth are present */
2451 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2452 goto invalid;
2453
2454 switch (mgmt->u.action.u.ht_smps.action) {
2455 case WLAN_HT_ACTION_SMPS: {
2456 struct ieee80211_supported_band *sband;
2457 enum ieee80211_smps_mode smps_mode;
2458
2459 /* convert to HT capability */
2460 switch (mgmt->u.action.u.ht_smps.smps_control) {
2461 case WLAN_HT_SMPS_CONTROL_DISABLED:
2462 smps_mode = IEEE80211_SMPS_OFF;
2463 break;
2464 case WLAN_HT_SMPS_CONTROL_STATIC:
2465 smps_mode = IEEE80211_SMPS_STATIC;
2466 break;
2467 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2468 smps_mode = IEEE80211_SMPS_DYNAMIC;
2469 break;
2470 default:
2471 goto invalid;
2472 }
2473
2474 /* if no change do nothing */
2475 if (rx->sta->sta.smps_mode == smps_mode)
2476 goto handled;
2477 rx->sta->sta.smps_mode = smps_mode;
2478
2479 sband = rx->local->hw.wiphy->bands[status->band];
2480
2481 rate_control_rate_update(local, sband, rx->sta,
2482 IEEE80211_RC_SMPS_CHANGED);
2483 goto handled;
2484 }
2485 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2486 struct ieee80211_supported_band *sband;
2487 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2488 enum ieee80211_sta_rx_bandwidth new_bw;
2489
2490 /* If it doesn't support 40 MHz it can't change ... */
2491 if (!(rx->sta->sta.ht_cap.cap &
2492 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2493 goto handled;
2494
2495 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2496 new_bw = IEEE80211_STA_RX_BW_20;
2497 else
2498 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2499
2500 if (rx->sta->sta.bandwidth == new_bw)
2501 goto handled;
2502
2503 sband = rx->local->hw.wiphy->bands[status->band];
2504
2505 rate_control_rate_update(local, sband, rx->sta,
2506 IEEE80211_RC_BW_CHANGED);
2507 goto handled;
2508 }
2509 default:
2510 goto invalid;
2511 }
2512
2513 break;
2514 case WLAN_CATEGORY_PUBLIC:
2515 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2516 goto invalid;
2517 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2518 break;
2519 if (!rx->sta)
2520 break;
2521 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2522 break;
2523 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2524 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2525 break;
2526 if (len < offsetof(struct ieee80211_mgmt,
2527 u.action.u.ext_chan_switch.variable))
2528 goto invalid;
2529 goto queue;
2530 case WLAN_CATEGORY_VHT:
2531 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2532 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2533 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2534 sdata->vif.type != NL80211_IFTYPE_AP &&
2535 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2536 break;
2537
2538 /* verify action code is present */
2539 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2540 goto invalid;
2541
2542 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2543 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2544 u8 opmode;
2545
2546 /* verify opmode is present */
2547 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2548 goto invalid;
2549
2550 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2551
2552 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2553 opmode, status->band,
2554 false);
2555 goto handled;
2556 }
2557 default:
2558 break;
2559 }
2560 break;
2561 case WLAN_CATEGORY_BACK:
2562 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2563 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2564 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2565 sdata->vif.type != NL80211_IFTYPE_AP &&
2566 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2567 break;
2568
2569 /* verify action_code is present */
2570 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2571 break;
2572
2573 switch (mgmt->u.action.u.addba_req.action_code) {
2574 case WLAN_ACTION_ADDBA_REQ:
2575 if (len < (IEEE80211_MIN_ACTION_SIZE +
2576 sizeof(mgmt->u.action.u.addba_req)))
2577 goto invalid;
2578 break;
2579 case WLAN_ACTION_ADDBA_RESP:
2580 if (len < (IEEE80211_MIN_ACTION_SIZE +
2581 sizeof(mgmt->u.action.u.addba_resp)))
2582 goto invalid;
2583 break;
2584 case WLAN_ACTION_DELBA:
2585 if (len < (IEEE80211_MIN_ACTION_SIZE +
2586 sizeof(mgmt->u.action.u.delba)))
2587 goto invalid;
2588 break;
2589 default:
2590 goto invalid;
2591 }
2592
2593 goto queue;
2594 case WLAN_CATEGORY_SPECTRUM_MGMT:
2595 /* verify action_code is present */
2596 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2597 break;
2598
2599 switch (mgmt->u.action.u.measurement.action_code) {
2600 case WLAN_ACTION_SPCT_MSR_REQ:
2601 if (status->band != IEEE80211_BAND_5GHZ)
2602 break;
2603
2604 if (len < (IEEE80211_MIN_ACTION_SIZE +
2605 sizeof(mgmt->u.action.u.measurement)))
2606 break;
2607
2608 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2609 break;
2610
2611 ieee80211_process_measurement_req(sdata, mgmt, len);
2612 goto handled;
2613 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2614 u8 *bssid;
2615 if (len < (IEEE80211_MIN_ACTION_SIZE +
2616 sizeof(mgmt->u.action.u.chan_switch)))
2617 break;
2618
2619 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2620 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2621 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2622 break;
2623
2624 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2625 bssid = sdata->u.mgd.bssid;
2626 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2627 bssid = sdata->u.ibss.bssid;
2628 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2629 bssid = mgmt->sa;
2630 else
2631 break;
2632
2633 if (!ether_addr_equal(mgmt->bssid, bssid))
2634 break;
2635
2636 goto queue;
2637 }
2638 }
2639 break;
2640 case WLAN_CATEGORY_SA_QUERY:
2641 if (len < (IEEE80211_MIN_ACTION_SIZE +
2642 sizeof(mgmt->u.action.u.sa_query)))
2643 break;
2644
2645 switch (mgmt->u.action.u.sa_query.action) {
2646 case WLAN_ACTION_SA_QUERY_REQUEST:
2647 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2648 break;
2649 ieee80211_process_sa_query_req(sdata, mgmt, len);
2650 goto handled;
2651 }
2652 break;
2653 case WLAN_CATEGORY_SELF_PROTECTED:
2654 if (len < (IEEE80211_MIN_ACTION_SIZE +
2655 sizeof(mgmt->u.action.u.self_prot.action_code)))
2656 break;
2657
2658 switch (mgmt->u.action.u.self_prot.action_code) {
2659 case WLAN_SP_MESH_PEERING_OPEN:
2660 case WLAN_SP_MESH_PEERING_CLOSE:
2661 case WLAN_SP_MESH_PEERING_CONFIRM:
2662 if (!ieee80211_vif_is_mesh(&sdata->vif))
2663 goto invalid;
2664 if (sdata->u.mesh.user_mpm)
2665 /* userspace handles this frame */
2666 break;
2667 goto queue;
2668 case WLAN_SP_MGK_INFORM:
2669 case WLAN_SP_MGK_ACK:
2670 if (!ieee80211_vif_is_mesh(&sdata->vif))
2671 goto invalid;
2672 break;
2673 }
2674 break;
2675 case WLAN_CATEGORY_MESH_ACTION:
2676 if (len < (IEEE80211_MIN_ACTION_SIZE +
2677 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2678 break;
2679
2680 if (!ieee80211_vif_is_mesh(&sdata->vif))
2681 break;
2682 if (mesh_action_is_path_sel(mgmt) &&
2683 !mesh_path_sel_is_hwmp(sdata))
2684 break;
2685 goto queue;
2686 }
2687
2688 return RX_CONTINUE;
2689
2690 invalid:
2691 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2692 /* will return in the next handlers */
2693 return RX_CONTINUE;
2694
2695 handled:
2696 if (rx->sta)
2697 rx->sta->rx_packets++;
2698 dev_kfree_skb(rx->skb);
2699 return RX_QUEUED;
2700
2701 queue:
2702 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2703 skb_queue_tail(&sdata->skb_queue, rx->skb);
2704 ieee80211_queue_work(&local->hw, &sdata->work);
2705 if (rx->sta)
2706 rx->sta->rx_packets++;
2707 return RX_QUEUED;
2708 }
2709
2710 static ieee80211_rx_result debug_noinline
2711 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2712 {
2713 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2714 int sig = 0;
2715
2716 /* skip known-bad action frames and return them in the next handler */
2717 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2718 return RX_CONTINUE;
2719
2720 /*
2721 * Getting here means the kernel doesn't know how to handle
2722 * it, but maybe userspace does ... include returned frames
2723 * so userspace can register for those to know whether ones
2724 * it transmitted were processed or returned.
2725 */
2726
2727 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2728 sig = status->signal;
2729
2730 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2731 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2732 if (rx->sta)
2733 rx->sta->rx_packets++;
2734 dev_kfree_skb(rx->skb);
2735 return RX_QUEUED;
2736 }
2737
2738 return RX_CONTINUE;
2739 }
2740
2741 static ieee80211_rx_result debug_noinline
2742 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2743 {
2744 struct ieee80211_local *local = rx->local;
2745 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2746 struct sk_buff *nskb;
2747 struct ieee80211_sub_if_data *sdata = rx->sdata;
2748 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2749
2750 if (!ieee80211_is_action(mgmt->frame_control))
2751 return RX_CONTINUE;
2752
2753 /*
2754 * For AP mode, hostapd is responsible for handling any action
2755 * frames that we didn't handle, including returning unknown
2756 * ones. For all other modes we will return them to the sender,
2757 * setting the 0x80 bit in the action category, as required by
2758 * 802.11-2012 9.24.4.
2759 * Newer versions of hostapd shall also use the management frame
2760 * registration mechanisms, but older ones still use cooked
2761 * monitor interfaces so push all frames there.
2762 */
2763 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2764 (sdata->vif.type == NL80211_IFTYPE_AP ||
2765 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2766 return RX_DROP_MONITOR;
2767
2768 if (is_multicast_ether_addr(mgmt->da))
2769 return RX_DROP_MONITOR;
2770
2771 /* do not return rejected action frames */
2772 if (mgmt->u.action.category & 0x80)
2773 return RX_DROP_UNUSABLE;
2774
2775 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2776 GFP_ATOMIC);
2777 if (nskb) {
2778 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2779
2780 nmgmt->u.action.category |= 0x80;
2781 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2782 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2783
2784 memset(nskb->cb, 0, sizeof(nskb->cb));
2785
2786 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2787 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2788
2789 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2790 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2791 IEEE80211_TX_CTL_NO_CCK_RATE;
2792 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2793 info->hw_queue =
2794 local->hw.offchannel_tx_hw_queue;
2795 }
2796
2797 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2798 status->band);
2799 }
2800 dev_kfree_skb(rx->skb);
2801 return RX_QUEUED;
2802 }
2803
2804 static ieee80211_rx_result debug_noinline
2805 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2806 {
2807 struct ieee80211_sub_if_data *sdata = rx->sdata;
2808 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2809 __le16 stype;
2810
2811 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2812
2813 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2814 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2815 sdata->vif.type != NL80211_IFTYPE_STATION)
2816 return RX_DROP_MONITOR;
2817
2818 switch (stype) {
2819 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2820 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2821 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2822 /* process for all: mesh, mlme, ibss */
2823 break;
2824 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2825 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2826 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2827 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2828 if (is_multicast_ether_addr(mgmt->da) &&
2829 !is_broadcast_ether_addr(mgmt->da))
2830 return RX_DROP_MONITOR;
2831
2832 /* process only for station */
2833 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2834 return RX_DROP_MONITOR;
2835 break;
2836 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2837 /* process only for ibss and mesh */
2838 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2839 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2840 return RX_DROP_MONITOR;
2841 break;
2842 default:
2843 return RX_DROP_MONITOR;
2844 }
2845
2846 /* queue up frame and kick off work to process it */
2847 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2848 skb_queue_tail(&sdata->skb_queue, rx->skb);
2849 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2850 if (rx->sta)
2851 rx->sta->rx_packets++;
2852
2853 return RX_QUEUED;
2854 }
2855
2856 /* TODO: use IEEE80211_RX_FRAGMENTED */
2857 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2858 struct ieee80211_rate *rate)
2859 {
2860 struct ieee80211_sub_if_data *sdata;
2861 struct ieee80211_local *local = rx->local;
2862 struct sk_buff *skb = rx->skb, *skb2;
2863 struct net_device *prev_dev = NULL;
2864 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2865 int needed_headroom;
2866
2867 /*
2868 * If cooked monitor has been processed already, then
2869 * don't do it again. If not, set the flag.
2870 */
2871 if (rx->flags & IEEE80211_RX_CMNTR)
2872 goto out_free_skb;
2873 rx->flags |= IEEE80211_RX_CMNTR;
2874
2875 /* If there are no cooked monitor interfaces, just free the SKB */
2876 if (!local->cooked_mntrs)
2877 goto out_free_skb;
2878
2879 /* room for the radiotap header based on driver features */
2880 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2881
2882 if (skb_headroom(skb) < needed_headroom &&
2883 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2884 goto out_free_skb;
2885
2886 /* prepend radiotap information */
2887 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2888 false);
2889
2890 skb_set_mac_header(skb, 0);
2891 skb->ip_summed = CHECKSUM_UNNECESSARY;
2892 skb->pkt_type = PACKET_OTHERHOST;
2893 skb->protocol = htons(ETH_P_802_2);
2894
2895 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2896 if (!ieee80211_sdata_running(sdata))
2897 continue;
2898
2899 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2900 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2901 continue;
2902
2903 if (prev_dev) {
2904 skb2 = skb_clone(skb, GFP_ATOMIC);
2905 if (skb2) {
2906 skb2->dev = prev_dev;
2907 netif_receive_skb(skb2);
2908 }
2909 }
2910
2911 prev_dev = sdata->dev;
2912 sdata->dev->stats.rx_packets++;
2913 sdata->dev->stats.rx_bytes += skb->len;
2914 }
2915
2916 if (prev_dev) {
2917 skb->dev = prev_dev;
2918 netif_receive_skb(skb);
2919 return;
2920 }
2921
2922 out_free_skb:
2923 dev_kfree_skb(skb);
2924 }
2925
2926 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2927 ieee80211_rx_result res)
2928 {
2929 switch (res) {
2930 case RX_DROP_MONITOR:
2931 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2932 if (rx->sta)
2933 rx->sta->rx_dropped++;
2934 /* fall through */
2935 case RX_CONTINUE: {
2936 struct ieee80211_rate *rate = NULL;
2937 struct ieee80211_supported_band *sband;
2938 struct ieee80211_rx_status *status;
2939
2940 status = IEEE80211_SKB_RXCB((rx->skb));
2941
2942 sband = rx->local->hw.wiphy->bands[status->band];
2943 if (!(status->flag & RX_FLAG_HT) &&
2944 !(status->flag & RX_FLAG_VHT))
2945 rate = &sband->bitrates[status->rate_idx];
2946
2947 ieee80211_rx_cooked_monitor(rx, rate);
2948 break;
2949 }
2950 case RX_DROP_UNUSABLE:
2951 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2952 if (rx->sta)
2953 rx->sta->rx_dropped++;
2954 dev_kfree_skb(rx->skb);
2955 break;
2956 case RX_QUEUED:
2957 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2958 break;
2959 }
2960 }
2961
2962 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2963 struct sk_buff_head *frames)
2964 {
2965 ieee80211_rx_result res = RX_DROP_MONITOR;
2966 struct sk_buff *skb;
2967
2968 #define CALL_RXH(rxh) \
2969 do { \
2970 res = rxh(rx); \
2971 if (res != RX_CONTINUE) \
2972 goto rxh_next; \
2973 } while (0);
2974
2975 spin_lock_bh(&rx->local->rx_path_lock);
2976
2977 while ((skb = __skb_dequeue(frames))) {
2978 /*
2979 * all the other fields are valid across frames
2980 * that belong to an aMPDU since they are on the
2981 * same TID from the same station
2982 */
2983 rx->skb = skb;
2984
2985 CALL_RXH(ieee80211_rx_h_check_more_data)
2986 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2987 CALL_RXH(ieee80211_rx_h_sta_process)
2988 CALL_RXH(ieee80211_rx_h_decrypt)
2989 CALL_RXH(ieee80211_rx_h_defragment)
2990 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2991 /* must be after MMIC verify so header is counted in MPDU mic */
2992 #ifdef CONFIG_MAC80211_MESH
2993 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2994 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2995 #endif
2996 CALL_RXH(ieee80211_rx_h_amsdu)
2997 CALL_RXH(ieee80211_rx_h_data)
2998
2999 /* special treatment -- needs the queue */
3000 res = ieee80211_rx_h_ctrl(rx, frames);
3001 if (res != RX_CONTINUE)
3002 goto rxh_next;
3003
3004 CALL_RXH(ieee80211_rx_h_mgmt_check)
3005 CALL_RXH(ieee80211_rx_h_action)
3006 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3007 CALL_RXH(ieee80211_rx_h_action_return)
3008 CALL_RXH(ieee80211_rx_h_mgmt)
3009
3010 rxh_next:
3011 ieee80211_rx_handlers_result(rx, res);
3012
3013 #undef CALL_RXH
3014 }
3015
3016 spin_unlock_bh(&rx->local->rx_path_lock);
3017 }
3018
3019 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3020 {
3021 struct sk_buff_head reorder_release;
3022 ieee80211_rx_result res = RX_DROP_MONITOR;
3023
3024 __skb_queue_head_init(&reorder_release);
3025
3026 #define CALL_RXH(rxh) \
3027 do { \
3028 res = rxh(rx); \
3029 if (res != RX_CONTINUE) \
3030 goto rxh_next; \
3031 } while (0);
3032
3033 CALL_RXH(ieee80211_rx_h_check)
3034
3035 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3036
3037 ieee80211_rx_handlers(rx, &reorder_release);
3038 return;
3039
3040 rxh_next:
3041 ieee80211_rx_handlers_result(rx, res);
3042
3043 #undef CALL_RXH
3044 }
3045
3046 /*
3047 * This function makes calls into the RX path, therefore
3048 * it has to be invoked under RCU read lock.
3049 */
3050 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3051 {
3052 struct sk_buff_head frames;
3053 struct ieee80211_rx_data rx = {
3054 .sta = sta,
3055 .sdata = sta->sdata,
3056 .local = sta->local,
3057 /* This is OK -- must be QoS data frame */
3058 .security_idx = tid,
3059 .seqno_idx = tid,
3060 .flags = 0,
3061 };
3062 struct tid_ampdu_rx *tid_agg_rx;
3063
3064 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3065 if (!tid_agg_rx)
3066 return;
3067
3068 __skb_queue_head_init(&frames);
3069
3070 spin_lock(&tid_agg_rx->reorder_lock);
3071 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3072 spin_unlock(&tid_agg_rx->reorder_lock);
3073
3074 ieee80211_rx_handlers(&rx, &frames);
3075 }
3076
3077 /* main receive path */
3078
3079 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3080 struct ieee80211_hdr *hdr)
3081 {
3082 struct ieee80211_sub_if_data *sdata = rx->sdata;
3083 struct sk_buff *skb = rx->skb;
3084 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3085 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3086 int multicast = is_multicast_ether_addr(hdr->addr1);
3087
3088 switch (sdata->vif.type) {
3089 case NL80211_IFTYPE_STATION:
3090 if (!bssid && !sdata->u.mgd.use_4addr)
3091 return false;
3092 if (!multicast &&
3093 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3094 if (!(sdata->dev->flags & IFF_PROMISC) ||
3095 sdata->u.mgd.use_4addr)
3096 return false;
3097 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3098 }
3099 break;
3100 case NL80211_IFTYPE_ADHOC:
3101 if (!bssid)
3102 return false;
3103 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3104 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3105 return false;
3106 if (ieee80211_is_beacon(hdr->frame_control)) {
3107 return true;
3108 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3109 return false;
3110 } else if (!multicast &&
3111 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3112 if (!(sdata->dev->flags & IFF_PROMISC))
3113 return false;
3114 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3115 } else if (!rx->sta) {
3116 int rate_idx;
3117 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3118 rate_idx = 0; /* TODO: HT/VHT rates */
3119 else
3120 rate_idx = status->rate_idx;
3121 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3122 BIT(rate_idx));
3123 }
3124 break;
3125 case NL80211_IFTYPE_MESH_POINT:
3126 if (!multicast &&
3127 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3128 if (!(sdata->dev->flags & IFF_PROMISC))
3129 return false;
3130
3131 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3132 }
3133 break;
3134 case NL80211_IFTYPE_AP_VLAN:
3135 case NL80211_IFTYPE_AP:
3136 if (!bssid) {
3137 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3138 return false;
3139 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3140 /*
3141 * Accept public action frames even when the
3142 * BSSID doesn't match, this is used for P2P
3143 * and location updates. Note that mac80211
3144 * itself never looks at these frames.
3145 */
3146 if (!multicast &&
3147 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3148 return false;
3149 if (ieee80211_is_public_action(hdr, skb->len))
3150 return true;
3151 if (!ieee80211_is_beacon(hdr->frame_control))
3152 return false;
3153 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3154 }
3155 break;
3156 case NL80211_IFTYPE_WDS:
3157 if (bssid || !ieee80211_is_data(hdr->frame_control))
3158 return false;
3159 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3160 return false;
3161 break;
3162 case NL80211_IFTYPE_P2P_DEVICE:
3163 if (!ieee80211_is_public_action(hdr, skb->len) &&
3164 !ieee80211_is_probe_req(hdr->frame_control) &&
3165 !ieee80211_is_probe_resp(hdr->frame_control) &&
3166 !ieee80211_is_beacon(hdr->frame_control))
3167 return false;
3168 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3169 !multicast)
3170 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3171 break;
3172 default:
3173 /* should never get here */
3174 WARN_ON_ONCE(1);
3175 break;
3176 }
3177
3178 return true;
3179 }
3180
3181 /*
3182 * This function returns whether or not the SKB
3183 * was destined for RX processing or not, which,
3184 * if consume is true, is equivalent to whether
3185 * or not the skb was consumed.
3186 */
3187 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3188 struct sk_buff *skb, bool consume)
3189 {
3190 struct ieee80211_local *local = rx->local;
3191 struct ieee80211_sub_if_data *sdata = rx->sdata;
3192 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3193 struct ieee80211_hdr *hdr = (void *)skb->data;
3194
3195 rx->skb = skb;
3196 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3197
3198 if (!prepare_for_handlers(rx, hdr))
3199 return false;
3200
3201 if (!consume) {
3202 skb = skb_copy(skb, GFP_ATOMIC);
3203 if (!skb) {
3204 if (net_ratelimit())
3205 wiphy_debug(local->hw.wiphy,
3206 "failed to copy skb for %s\n",
3207 sdata->name);
3208 return true;
3209 }
3210
3211 rx->skb = skb;
3212 }
3213
3214 ieee80211_invoke_rx_handlers(rx);
3215 return true;
3216 }
3217
3218 /*
3219 * This is the actual Rx frames handler. as it blongs to Rx path it must
3220 * be called with rcu_read_lock protection.
3221 */
3222 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3223 struct sk_buff *skb)
3224 {
3225 struct ieee80211_local *local = hw_to_local(hw);
3226 struct ieee80211_sub_if_data *sdata;
3227 struct ieee80211_hdr *hdr;
3228 __le16 fc;
3229 struct ieee80211_rx_data rx;
3230 struct ieee80211_sub_if_data *prev;
3231 struct sta_info *sta, *tmp, *prev_sta;
3232 int err = 0;
3233
3234 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3235 memset(&rx, 0, sizeof(rx));
3236 rx.skb = skb;
3237 rx.local = local;
3238
3239 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3240 local->dot11ReceivedFragmentCount++;
3241
3242 if (ieee80211_is_mgmt(fc)) {
3243 /* drop frame if too short for header */
3244 if (skb->len < ieee80211_hdrlen(fc))
3245 err = -ENOBUFS;
3246 else
3247 err = skb_linearize(skb);
3248 } else {
3249 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3250 }
3251
3252 if (err) {
3253 dev_kfree_skb(skb);
3254 return;
3255 }
3256
3257 hdr = (struct ieee80211_hdr *)skb->data;
3258 ieee80211_parse_qos(&rx);
3259 ieee80211_verify_alignment(&rx);
3260
3261 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3262 ieee80211_is_beacon(hdr->frame_control)))
3263 ieee80211_scan_rx(local, skb);
3264
3265 if (ieee80211_is_data(fc)) {
3266 prev_sta = NULL;
3267
3268 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3269 if (!prev_sta) {
3270 prev_sta = sta;
3271 continue;
3272 }
3273
3274 rx.sta = prev_sta;
3275 rx.sdata = prev_sta->sdata;
3276 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3277
3278 prev_sta = sta;
3279 }
3280
3281 if (prev_sta) {
3282 rx.sta = prev_sta;
3283 rx.sdata = prev_sta->sdata;
3284
3285 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3286 return;
3287 goto out;
3288 }
3289 }
3290
3291 prev = NULL;
3292
3293 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3294 if (!ieee80211_sdata_running(sdata))
3295 continue;
3296
3297 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3298 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3299 continue;
3300
3301 /*
3302 * frame is destined for this interface, but if it's
3303 * not also for the previous one we handle that after
3304 * the loop to avoid copying the SKB once too much
3305 */
3306
3307 if (!prev) {
3308 prev = sdata;
3309 continue;
3310 }
3311
3312 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3313 rx.sdata = prev;
3314 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3315
3316 prev = sdata;
3317 }
3318
3319 if (prev) {
3320 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3321 rx.sdata = prev;
3322
3323 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3324 return;
3325 }
3326
3327 out:
3328 dev_kfree_skb(skb);
3329 }
3330
3331 /*
3332 * This is the receive path handler. It is called by a low level driver when an
3333 * 802.11 MPDU is received from the hardware.
3334 */
3335 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3336 {
3337 struct ieee80211_local *local = hw_to_local(hw);
3338 struct ieee80211_rate *rate = NULL;
3339 struct ieee80211_supported_band *sband;
3340 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3341
3342 WARN_ON_ONCE(softirq_count() == 0);
3343
3344 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3345 goto drop;
3346
3347 sband = local->hw.wiphy->bands[status->band];
3348 if (WARN_ON(!sband))
3349 goto drop;
3350
3351 /*
3352 * If we're suspending, it is possible although not too likely
3353 * that we'd be receiving frames after having already partially
3354 * quiesced the stack. We can't process such frames then since
3355 * that might, for example, cause stations to be added or other
3356 * driver callbacks be invoked.
3357 */
3358 if (unlikely(local->quiescing || local->suspended))
3359 goto drop;
3360
3361 /* We might be during a HW reconfig, prevent Rx for the same reason */
3362 if (unlikely(local->in_reconfig))
3363 goto drop;
3364
3365 /*
3366 * The same happens when we're not even started,
3367 * but that's worth a warning.
3368 */
3369 if (WARN_ON(!local->started))
3370 goto drop;
3371
3372 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3373 /*
3374 * Validate the rate, unless a PLCP error means that
3375 * we probably can't have a valid rate here anyway.
3376 */
3377
3378 if (status->flag & RX_FLAG_HT) {
3379 /*
3380 * rate_idx is MCS index, which can be [0-76]
3381 * as documented on:
3382 *
3383 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3384 *
3385 * Anything else would be some sort of driver or
3386 * hardware error. The driver should catch hardware
3387 * errors.
3388 */
3389 if (WARN(status->rate_idx > 76,
3390 "Rate marked as an HT rate but passed "
3391 "status->rate_idx is not "
3392 "an MCS index [0-76]: %d (0x%02x)\n",
3393 status->rate_idx,
3394 status->rate_idx))
3395 goto drop;
3396 } else if (status->flag & RX_FLAG_VHT) {
3397 if (WARN_ONCE(status->rate_idx > 9 ||
3398 !status->vht_nss ||
3399 status->vht_nss > 8,
3400 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3401 status->rate_idx, status->vht_nss))
3402 goto drop;
3403 } else {
3404 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3405 goto drop;
3406 rate = &sband->bitrates[status->rate_idx];
3407 }
3408 }
3409
3410 status->rx_flags = 0;
3411
3412 /*
3413 * key references and virtual interfaces are protected using RCU
3414 * and this requires that we are in a read-side RCU section during
3415 * receive processing
3416 */
3417 rcu_read_lock();
3418
3419 /*
3420 * Frames with failed FCS/PLCP checksum are not returned,
3421 * all other frames are returned without radiotap header
3422 * if it was previously present.
3423 * Also, frames with less than 16 bytes are dropped.
3424 */
3425 skb = ieee80211_rx_monitor(local, skb, rate);
3426 if (!skb) {
3427 rcu_read_unlock();
3428 return;
3429 }
3430
3431 ieee80211_tpt_led_trig_rx(local,
3432 ((struct ieee80211_hdr *)skb->data)->frame_control,
3433 skb->len);
3434 __ieee80211_rx_handle_packet(hw, skb);
3435
3436 rcu_read_unlock();
3437
3438 return;
3439 drop:
3440 kfree_skb(skb);
3441 }
3442 EXPORT_SYMBOL(ieee80211_rx);
3443
3444 /* This is a version of the rx handler that can be called from hard irq
3445 * context. Post the skb on the queue and schedule the tasklet */
3446 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3447 {
3448 struct ieee80211_local *local = hw_to_local(hw);
3449
3450 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3451
3452 skb->pkt_type = IEEE80211_RX_MSG;
3453 skb_queue_tail(&local->skb_queue, skb);
3454 tasklet_schedule(&local->tasklet);
3455 }
3456 EXPORT_SYMBOL(ieee80211_rx_irqsafe);