]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/mac80211/sta_info.c
2961f3d6b209c19fe2c1284b2dbc92b0186bdfe7
[mirror_ubuntu-jammy-kernel.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/mac80211.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "rate.h"
25 #include "sta_info.h"
26 #include "debugfs_sta.h"
27 #include "mesh.h"
28 #include "wme.h"
29
30 /**
31 * DOC: STA information lifetime rules
32 *
33 * STA info structures (&struct sta_info) are managed in a hash table
34 * for faster lookup and a list for iteration. They are managed using
35 * RCU, i.e. access to the list and hash table is protected by RCU.
36 *
37 * Upon allocating a STA info structure with sta_info_alloc(), the caller
38 * owns that structure. It must then insert it into the hash table using
39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
40 * case (which acquires an rcu read section but must not be called from
41 * within one) will the pointer still be valid after the call. Note that
42 * the caller may not do much with the STA info before inserting it, in
43 * particular, it may not start any mesh peer link management or add
44 * encryption keys.
45 *
46 * When the insertion fails (sta_info_insert()) returns non-zero), the
47 * structure will have been freed by sta_info_insert()!
48 *
49 * Station entries are added by mac80211 when you establish a link with a
50 * peer. This means different things for the different type of interfaces
51 * we support. For a regular station this mean we add the AP sta when we
52 * receive an association response from the AP. For IBSS this occurs when
53 * get to know about a peer on the same IBSS. For WDS we add the sta for
54 * the peer immediately upon device open. When using AP mode we add stations
55 * for each respective station upon request from userspace through nl80211.
56 *
57 * In order to remove a STA info structure, various sta_info_destroy_*()
58 * calls are available.
59 *
60 * There is no concept of ownership on a STA entry, each structure is
61 * owned by the global hash table/list until it is removed. All users of
62 * the structure need to be RCU protected so that the structure won't be
63 * freed before they are done using it.
64 */
65
66 /* Caller must hold local->sta_mtx */
67 static int sta_info_hash_del(struct ieee80211_local *local,
68 struct sta_info *sta)
69 {
70 struct sta_info *s;
71
72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
73 lockdep_is_held(&local->sta_mtx));
74 if (!s)
75 return -ENOENT;
76 if (s == sta) {
77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
78 s->hnext);
79 return 0;
80 }
81
82 while (rcu_access_pointer(s->hnext) &&
83 rcu_access_pointer(s->hnext) != sta)
84 s = rcu_dereference_protected(s->hnext,
85 lockdep_is_held(&local->sta_mtx));
86 if (rcu_access_pointer(s->hnext)) {
87 rcu_assign_pointer(s->hnext, sta->hnext);
88 return 0;
89 }
90
91 return -ENOENT;
92 }
93
94 static void cleanup_single_sta(struct sta_info *sta)
95 {
96 int ac, i;
97 struct tid_ampdu_tx *tid_tx;
98 struct ieee80211_sub_if_data *sdata = sta->sdata;
99 struct ieee80211_local *local = sdata->local;
100 struct ps_data *ps;
101
102 /*
103 * At this point, when being called as call_rcu callback,
104 * neither mac80211 nor the driver can reference this
105 * sta struct any more except by still existing timers
106 * associated with this station that we clean up below.
107 *
108 * Note though that this still uses the sdata and even
109 * calls the driver in AP and mesh mode, so interfaces
110 * of those types mush use call sta_info_flush_cleanup()
111 * (typically via sta_info_flush()) before deconfiguring
112 * the driver.
113 *
114 * In station mode, nothing happens here so it doesn't
115 * have to (and doesn't) do that, this is intentional to
116 * speed up roaming.
117 */
118
119 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
120 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
121 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
122 ps = &sdata->bss->ps;
123 else if (ieee80211_vif_is_mesh(&sdata->vif))
124 ps = &sdata->u.mesh.ps;
125 else
126 return;
127
128 clear_sta_flag(sta, WLAN_STA_PS_STA);
129
130 atomic_dec(&ps->num_sta_ps);
131 sta_info_recalc_tim(sta);
132 }
133
134 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
135 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
136 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
137 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
138 }
139
140 if (ieee80211_vif_is_mesh(&sdata->vif))
141 mesh_sta_cleanup(sta);
142
143 cancel_work_sync(&sta->drv_unblock_wk);
144
145 /*
146 * Destroy aggregation state here. It would be nice to wait for the
147 * driver to finish aggregation stop and then clean up, but for now
148 * drivers have to handle aggregation stop being requested, followed
149 * directly by station destruction.
150 */
151 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
152 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
153 if (!tid_tx)
154 continue;
155 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
156 kfree(tid_tx);
157 }
158
159 sta_info_free(local, sta);
160 }
161
162 void ieee80211_cleanup_sdata_stas(struct ieee80211_sub_if_data *sdata)
163 {
164 struct sta_info *sta;
165
166 spin_lock_bh(&sdata->cleanup_stations_lock);
167 while (!list_empty(&sdata->cleanup_stations)) {
168 sta = list_first_entry(&sdata->cleanup_stations,
169 struct sta_info, list);
170 list_del(&sta->list);
171 spin_unlock_bh(&sdata->cleanup_stations_lock);
172
173 cleanup_single_sta(sta);
174
175 spin_lock_bh(&sdata->cleanup_stations_lock);
176 }
177
178 spin_unlock_bh(&sdata->cleanup_stations_lock);
179 }
180
181 static void free_sta_rcu(struct rcu_head *h)
182 {
183 struct sta_info *sta = container_of(h, struct sta_info, rcu_head);
184 struct ieee80211_sub_if_data *sdata = sta->sdata;
185
186 spin_lock(&sdata->cleanup_stations_lock);
187 list_add_tail(&sta->list, &sdata->cleanup_stations);
188 spin_unlock(&sdata->cleanup_stations_lock);
189
190 ieee80211_queue_work(&sdata->local->hw, &sdata->cleanup_stations_wk);
191 }
192
193 /* protected by RCU */
194 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
195 const u8 *addr)
196 {
197 struct ieee80211_local *local = sdata->local;
198 struct sta_info *sta;
199
200 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
201 lockdep_is_held(&local->sta_mtx));
202 while (sta) {
203 if (sta->sdata == sdata &&
204 ether_addr_equal(sta->sta.addr, addr))
205 break;
206 sta = rcu_dereference_check(sta->hnext,
207 lockdep_is_held(&local->sta_mtx));
208 }
209 return sta;
210 }
211
212 /*
213 * Get sta info either from the specified interface
214 * or from one of its vlans
215 */
216 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
217 const u8 *addr)
218 {
219 struct ieee80211_local *local = sdata->local;
220 struct sta_info *sta;
221
222 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
223 lockdep_is_held(&local->sta_mtx));
224 while (sta) {
225 if ((sta->sdata == sdata ||
226 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
227 ether_addr_equal(sta->sta.addr, addr))
228 break;
229 sta = rcu_dereference_check(sta->hnext,
230 lockdep_is_held(&local->sta_mtx));
231 }
232 return sta;
233 }
234
235 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
236 int idx)
237 {
238 struct ieee80211_local *local = sdata->local;
239 struct sta_info *sta;
240 int i = 0;
241
242 list_for_each_entry_rcu(sta, &local->sta_list, list) {
243 if (sdata != sta->sdata)
244 continue;
245 if (i < idx) {
246 ++i;
247 continue;
248 }
249 return sta;
250 }
251
252 return NULL;
253 }
254
255 /**
256 * sta_info_free - free STA
257 *
258 * @local: pointer to the global information
259 * @sta: STA info to free
260 *
261 * This function must undo everything done by sta_info_alloc()
262 * that may happen before sta_info_insert(). It may only be
263 * called when sta_info_insert() has not been attempted (and
264 * if that fails, the station is freed anyway.)
265 */
266 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
267 {
268 if (sta->rate_ctrl)
269 rate_control_free_sta(sta);
270
271 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
272
273 kfree(sta);
274 }
275
276 /* Caller must hold local->sta_mtx */
277 static void sta_info_hash_add(struct ieee80211_local *local,
278 struct sta_info *sta)
279 {
280 lockdep_assert_held(&local->sta_mtx);
281 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
282 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
283 }
284
285 static void sta_unblock(struct work_struct *wk)
286 {
287 struct sta_info *sta;
288
289 sta = container_of(wk, struct sta_info, drv_unblock_wk);
290
291 if (sta->dead)
292 return;
293
294 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
295 local_bh_disable();
296 ieee80211_sta_ps_deliver_wakeup(sta);
297 local_bh_enable();
298 } else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) {
299 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
300
301 local_bh_disable();
302 ieee80211_sta_ps_deliver_poll_response(sta);
303 local_bh_enable();
304 } else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) {
305 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
306
307 local_bh_disable();
308 ieee80211_sta_ps_deliver_uapsd(sta);
309 local_bh_enable();
310 } else
311 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
312 }
313
314 static int sta_prepare_rate_control(struct ieee80211_local *local,
315 struct sta_info *sta, gfp_t gfp)
316 {
317 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
318 return 0;
319
320 sta->rate_ctrl = local->rate_ctrl;
321 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
322 &sta->sta, gfp);
323 if (!sta->rate_ctrl_priv)
324 return -ENOMEM;
325
326 return 0;
327 }
328
329 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
330 const u8 *addr, gfp_t gfp)
331 {
332 struct ieee80211_local *local = sdata->local;
333 struct sta_info *sta;
334 struct timespec uptime;
335 int i;
336
337 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
338 if (!sta)
339 return NULL;
340
341 spin_lock_init(&sta->lock);
342 INIT_WORK(&sta->drv_unblock_wk, sta_unblock);
343 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
344 mutex_init(&sta->ampdu_mlme.mtx);
345 #ifdef CONFIG_MAC80211_MESH
346 if (ieee80211_vif_is_mesh(&sdata->vif) &&
347 !sdata->u.mesh.user_mpm)
348 init_timer(&sta->plink_timer);
349 #endif
350
351 memcpy(sta->sta.addr, addr, ETH_ALEN);
352 sta->local = local;
353 sta->sdata = sdata;
354 sta->last_rx = jiffies;
355
356 sta->sta_state = IEEE80211_STA_NONE;
357
358 do_posix_clock_monotonic_gettime(&uptime);
359 sta->last_connected = uptime.tv_sec;
360 ewma_init(&sta->avg_signal, 1024, 8);
361
362 if (sta_prepare_rate_control(local, sta, gfp)) {
363 kfree(sta);
364 return NULL;
365 }
366
367 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
368 /*
369 * timer_to_tid must be initialized with identity mapping
370 * to enable session_timer's data differentiation. See
371 * sta_rx_agg_session_timer_expired for usage.
372 */
373 sta->timer_to_tid[i] = i;
374 }
375 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
376 skb_queue_head_init(&sta->ps_tx_buf[i]);
377 skb_queue_head_init(&sta->tx_filtered[i]);
378 }
379
380 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
381 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
382
383 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
384
385 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
386
387 return sta;
388 }
389
390 static int sta_info_insert_check(struct sta_info *sta)
391 {
392 struct ieee80211_sub_if_data *sdata = sta->sdata;
393
394 /*
395 * Can't be a WARN_ON because it can be triggered through a race:
396 * something inserts a STA (on one CPU) without holding the RTNL
397 * and another CPU turns off the net device.
398 */
399 if (unlikely(!ieee80211_sdata_running(sdata)))
400 return -ENETDOWN;
401
402 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
403 is_multicast_ether_addr(sta->sta.addr)))
404 return -EINVAL;
405
406 return 0;
407 }
408
409 static int sta_info_insert_drv_state(struct ieee80211_local *local,
410 struct ieee80211_sub_if_data *sdata,
411 struct sta_info *sta)
412 {
413 enum ieee80211_sta_state state;
414 int err = 0;
415
416 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
417 err = drv_sta_state(local, sdata, sta, state, state + 1);
418 if (err)
419 break;
420 }
421
422 if (!err) {
423 /*
424 * Drivers using legacy sta_add/sta_remove callbacks only
425 * get uploaded set to true after sta_add is called.
426 */
427 if (!local->ops->sta_add)
428 sta->uploaded = true;
429 return 0;
430 }
431
432 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
433 sdata_info(sdata,
434 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
435 sta->sta.addr, state + 1, err);
436 err = 0;
437 }
438
439 /* unwind on error */
440 for (; state > IEEE80211_STA_NOTEXIST; state--)
441 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
442
443 return err;
444 }
445
446 /*
447 * should be called with sta_mtx locked
448 * this function replaces the mutex lock
449 * with a RCU lock
450 */
451 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
452 {
453 struct ieee80211_local *local = sta->local;
454 struct ieee80211_sub_if_data *sdata = sta->sdata;
455 struct station_info sinfo;
456 int err = 0;
457
458 lockdep_assert_held(&local->sta_mtx);
459
460 /* check if STA exists already */
461 if (sta_info_get_bss(sdata, sta->sta.addr)) {
462 err = -EEXIST;
463 goto out_err;
464 }
465
466 /* notify driver */
467 err = sta_info_insert_drv_state(local, sdata, sta);
468 if (err)
469 goto out_err;
470
471 local->num_sta++;
472 local->sta_generation++;
473 smp_mb();
474
475 /* make the station visible */
476 sta_info_hash_add(local, sta);
477
478 list_add_rcu(&sta->list, &local->sta_list);
479
480 set_sta_flag(sta, WLAN_STA_INSERTED);
481
482 ieee80211_sta_debugfs_add(sta);
483 rate_control_add_sta_debugfs(sta);
484
485 memset(&sinfo, 0, sizeof(sinfo));
486 sinfo.filled = 0;
487 sinfo.generation = local->sta_generation;
488 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
489
490 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
491
492 /* move reference to rcu-protected */
493 rcu_read_lock();
494 mutex_unlock(&local->sta_mtx);
495
496 if (ieee80211_vif_is_mesh(&sdata->vif))
497 mesh_accept_plinks_update(sdata);
498
499 return 0;
500 out_err:
501 mutex_unlock(&local->sta_mtx);
502 rcu_read_lock();
503 return err;
504 }
505
506 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
507 {
508 struct ieee80211_local *local = sta->local;
509 int err = 0;
510
511 might_sleep();
512
513 err = sta_info_insert_check(sta);
514 if (err) {
515 rcu_read_lock();
516 goto out_free;
517 }
518
519 mutex_lock(&local->sta_mtx);
520
521 err = sta_info_insert_finish(sta);
522 if (err)
523 goto out_free;
524
525 return 0;
526 out_free:
527 BUG_ON(!err);
528 sta_info_free(local, sta);
529 return err;
530 }
531
532 int sta_info_insert(struct sta_info *sta)
533 {
534 int err = sta_info_insert_rcu(sta);
535
536 rcu_read_unlock();
537
538 return err;
539 }
540
541 static inline void __bss_tim_set(u8 *tim, u16 id)
542 {
543 /*
544 * This format has been mandated by the IEEE specifications,
545 * so this line may not be changed to use the __set_bit() format.
546 */
547 tim[id / 8] |= (1 << (id % 8));
548 }
549
550 static inline void __bss_tim_clear(u8 *tim, u16 id)
551 {
552 /*
553 * This format has been mandated by the IEEE specifications,
554 * so this line may not be changed to use the __clear_bit() format.
555 */
556 tim[id / 8] &= ~(1 << (id % 8));
557 }
558
559 static inline bool __bss_tim_get(u8 *tim, u16 id)
560 {
561 /*
562 * This format has been mandated by the IEEE specifications,
563 * so this line may not be changed to use the test_bit() format.
564 */
565 return tim[id / 8] & (1 << (id % 8));
566 }
567
568 static unsigned long ieee80211_tids_for_ac(int ac)
569 {
570 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
571 switch (ac) {
572 case IEEE80211_AC_VO:
573 return BIT(6) | BIT(7);
574 case IEEE80211_AC_VI:
575 return BIT(4) | BIT(5);
576 case IEEE80211_AC_BE:
577 return BIT(0) | BIT(3);
578 case IEEE80211_AC_BK:
579 return BIT(1) | BIT(2);
580 default:
581 WARN_ON(1);
582 return 0;
583 }
584 }
585
586 void sta_info_recalc_tim(struct sta_info *sta)
587 {
588 struct ieee80211_local *local = sta->local;
589 struct ps_data *ps;
590 bool indicate_tim = false;
591 u8 ignore_for_tim = sta->sta.uapsd_queues;
592 int ac;
593 u16 id;
594
595 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
596 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
597 if (WARN_ON_ONCE(!sta->sdata->bss))
598 return;
599
600 ps = &sta->sdata->bss->ps;
601 id = sta->sta.aid;
602 #ifdef CONFIG_MAC80211_MESH
603 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
604 ps = &sta->sdata->u.mesh.ps;
605 /* TIM map only for PLID <= IEEE80211_MAX_AID */
606 id = le16_to_cpu(sta->plid) % IEEE80211_MAX_AID;
607 #endif
608 } else {
609 return;
610 }
611
612 /* No need to do anything if the driver does all */
613 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
614 return;
615
616 if (sta->dead)
617 goto done;
618
619 /*
620 * If all ACs are delivery-enabled then we should build
621 * the TIM bit for all ACs anyway; if only some are then
622 * we ignore those and build the TIM bit using only the
623 * non-enabled ones.
624 */
625 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
626 ignore_for_tim = 0;
627
628 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
629 unsigned long tids;
630
631 if (ignore_for_tim & BIT(ac))
632 continue;
633
634 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
635 !skb_queue_empty(&sta->ps_tx_buf[ac]);
636 if (indicate_tim)
637 break;
638
639 tids = ieee80211_tids_for_ac(ac);
640
641 indicate_tim |=
642 sta->driver_buffered_tids & tids;
643 }
644
645 done:
646 spin_lock_bh(&local->tim_lock);
647
648 if (indicate_tim == __bss_tim_get(ps->tim, id))
649 goto out_unlock;
650
651 if (indicate_tim)
652 __bss_tim_set(ps->tim, id);
653 else
654 __bss_tim_clear(ps->tim, id);
655
656 if (local->ops->set_tim) {
657 local->tim_in_locked_section = true;
658 drv_set_tim(local, &sta->sta, indicate_tim);
659 local->tim_in_locked_section = false;
660 }
661
662 out_unlock:
663 spin_unlock_bh(&local->tim_lock);
664 }
665
666 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
667 {
668 struct ieee80211_tx_info *info;
669 int timeout;
670
671 if (!skb)
672 return false;
673
674 info = IEEE80211_SKB_CB(skb);
675
676 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
677 timeout = (sta->listen_interval *
678 sta->sdata->vif.bss_conf.beacon_int *
679 32 / 15625) * HZ;
680 if (timeout < STA_TX_BUFFER_EXPIRE)
681 timeout = STA_TX_BUFFER_EXPIRE;
682 return time_after(jiffies, info->control.jiffies + timeout);
683 }
684
685
686 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
687 struct sta_info *sta, int ac)
688 {
689 unsigned long flags;
690 struct sk_buff *skb;
691
692 /*
693 * First check for frames that should expire on the filtered
694 * queue. Frames here were rejected by the driver and are on
695 * a separate queue to avoid reordering with normal PS-buffered
696 * frames. They also aren't accounted for right now in the
697 * total_ps_buffered counter.
698 */
699 for (;;) {
700 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
701 skb = skb_peek(&sta->tx_filtered[ac]);
702 if (sta_info_buffer_expired(sta, skb))
703 skb = __skb_dequeue(&sta->tx_filtered[ac]);
704 else
705 skb = NULL;
706 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
707
708 /*
709 * Frames are queued in order, so if this one
710 * hasn't expired yet we can stop testing. If
711 * we actually reached the end of the queue we
712 * also need to stop, of course.
713 */
714 if (!skb)
715 break;
716 ieee80211_free_txskb(&local->hw, skb);
717 }
718
719 /*
720 * Now also check the normal PS-buffered queue, this will
721 * only find something if the filtered queue was emptied
722 * since the filtered frames are all before the normal PS
723 * buffered frames.
724 */
725 for (;;) {
726 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
727 skb = skb_peek(&sta->ps_tx_buf[ac]);
728 if (sta_info_buffer_expired(sta, skb))
729 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
730 else
731 skb = NULL;
732 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
733
734 /*
735 * frames are queued in order, so if this one
736 * hasn't expired yet (or we reached the end of
737 * the queue) we can stop testing
738 */
739 if (!skb)
740 break;
741
742 local->total_ps_buffered--;
743 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
744 sta->sta.addr);
745 ieee80211_free_txskb(&local->hw, skb);
746 }
747
748 /*
749 * Finally, recalculate the TIM bit for this station -- it might
750 * now be clear because the station was too slow to retrieve its
751 * frames.
752 */
753 sta_info_recalc_tim(sta);
754
755 /*
756 * Return whether there are any frames still buffered, this is
757 * used to check whether the cleanup timer still needs to run,
758 * if there are no frames we don't need to rearm the timer.
759 */
760 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
761 skb_queue_empty(&sta->tx_filtered[ac]));
762 }
763
764 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
765 struct sta_info *sta)
766 {
767 bool have_buffered = false;
768 int ac;
769
770 /* This is only necessary for stations on BSS/MBSS interfaces */
771 if (!sta->sdata->bss &&
772 !ieee80211_vif_is_mesh(&sta->sdata->vif))
773 return false;
774
775 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
776 have_buffered |=
777 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
778
779 return have_buffered;
780 }
781
782 int __must_check __sta_info_destroy(struct sta_info *sta)
783 {
784 struct ieee80211_local *local;
785 struct ieee80211_sub_if_data *sdata;
786 int ret, i;
787
788 might_sleep();
789
790 if (!sta)
791 return -ENOENT;
792
793 local = sta->local;
794 sdata = sta->sdata;
795
796 lockdep_assert_held(&local->sta_mtx);
797
798 /*
799 * Before removing the station from the driver and
800 * rate control, it might still start new aggregation
801 * sessions -- block that to make sure the tear-down
802 * will be sufficient.
803 */
804 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
805 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
806
807 ret = sta_info_hash_del(local, sta);
808 if (ret)
809 return ret;
810
811 list_del_rcu(&sta->list);
812
813 mutex_lock(&local->key_mtx);
814 for (i = 0; i < NUM_DEFAULT_KEYS; i++)
815 ieee80211_key_free(key_mtx_dereference(local, sta->gtk[i]),
816 true);
817 if (sta->ptk)
818 ieee80211_key_free(key_mtx_dereference(local, sta->ptk),
819 true);
820 mutex_unlock(&local->key_mtx);
821
822 sta->dead = true;
823
824 local->num_sta--;
825 local->sta_generation++;
826
827 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
828 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
829
830 while (sta->sta_state > IEEE80211_STA_NONE) {
831 ret = sta_info_move_state(sta, sta->sta_state - 1);
832 if (ret) {
833 WARN_ON_ONCE(1);
834 break;
835 }
836 }
837
838 if (sta->uploaded) {
839 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
840 IEEE80211_STA_NOTEXIST);
841 WARN_ON_ONCE(ret != 0);
842 }
843
844 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
845
846 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL);
847
848 rate_control_remove_sta_debugfs(sta);
849 ieee80211_sta_debugfs_remove(sta);
850
851 call_rcu(&sta->rcu_head, free_sta_rcu);
852
853 return 0;
854 }
855
856 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
857 {
858 struct sta_info *sta;
859 int ret;
860
861 mutex_lock(&sdata->local->sta_mtx);
862 sta = sta_info_get(sdata, addr);
863 ret = __sta_info_destroy(sta);
864 mutex_unlock(&sdata->local->sta_mtx);
865
866 return ret;
867 }
868
869 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
870 const u8 *addr)
871 {
872 struct sta_info *sta;
873 int ret;
874
875 mutex_lock(&sdata->local->sta_mtx);
876 sta = sta_info_get_bss(sdata, addr);
877 ret = __sta_info_destroy(sta);
878 mutex_unlock(&sdata->local->sta_mtx);
879
880 return ret;
881 }
882
883 static void sta_info_cleanup(unsigned long data)
884 {
885 struct ieee80211_local *local = (struct ieee80211_local *) data;
886 struct sta_info *sta;
887 bool timer_needed = false;
888
889 rcu_read_lock();
890 list_for_each_entry_rcu(sta, &local->sta_list, list)
891 if (sta_info_cleanup_expire_buffered(local, sta))
892 timer_needed = true;
893 rcu_read_unlock();
894
895 if (local->quiescing)
896 return;
897
898 if (!timer_needed)
899 return;
900
901 mod_timer(&local->sta_cleanup,
902 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
903 }
904
905 void sta_info_init(struct ieee80211_local *local)
906 {
907 spin_lock_init(&local->tim_lock);
908 mutex_init(&local->sta_mtx);
909 INIT_LIST_HEAD(&local->sta_list);
910
911 setup_timer(&local->sta_cleanup, sta_info_cleanup,
912 (unsigned long)local);
913 }
914
915 void sta_info_stop(struct ieee80211_local *local)
916 {
917 del_timer_sync(&local->sta_cleanup);
918 }
919
920
921 int sta_info_flush_defer(struct ieee80211_sub_if_data *sdata)
922 {
923 struct ieee80211_local *local = sdata->local;
924 struct sta_info *sta, *tmp;
925 int ret = 0;
926
927 might_sleep();
928
929 mutex_lock(&local->sta_mtx);
930 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
931 if (sdata == sta->sdata) {
932 WARN_ON(__sta_info_destroy(sta));
933 ret++;
934 }
935 }
936 mutex_unlock(&local->sta_mtx);
937
938 return ret;
939 }
940
941 void sta_info_flush_cleanup(struct ieee80211_sub_if_data *sdata)
942 {
943 ieee80211_cleanup_sdata_stas(sdata);
944 cancel_work_sync(&sdata->cleanup_stations_wk);
945 }
946
947 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
948 unsigned long exp_time)
949 {
950 struct ieee80211_local *local = sdata->local;
951 struct sta_info *sta, *tmp;
952
953 mutex_lock(&local->sta_mtx);
954
955 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
956 if (sdata != sta->sdata)
957 continue;
958
959 if (time_after(jiffies, sta->last_rx + exp_time)) {
960 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
961 sta->sta.addr);
962
963 if (ieee80211_vif_is_mesh(&sdata->vif) &&
964 test_sta_flag(sta, WLAN_STA_PS_STA))
965 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
966
967 WARN_ON(__sta_info_destroy(sta));
968 }
969 }
970
971 mutex_unlock(&local->sta_mtx);
972 }
973
974 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
975 const u8 *addr,
976 const u8 *localaddr)
977 {
978 struct sta_info *sta, *nxt;
979
980 /*
981 * Just return a random station if localaddr is NULL
982 * ... first in list.
983 */
984 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
985 if (localaddr &&
986 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
987 continue;
988 if (!sta->uploaded)
989 return NULL;
990 return &sta->sta;
991 }
992
993 return NULL;
994 }
995 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
996
997 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
998 const u8 *addr)
999 {
1000 struct sta_info *sta;
1001
1002 if (!vif)
1003 return NULL;
1004
1005 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1006 if (!sta)
1007 return NULL;
1008
1009 if (!sta->uploaded)
1010 return NULL;
1011
1012 return &sta->sta;
1013 }
1014 EXPORT_SYMBOL(ieee80211_find_sta);
1015
1016 static void clear_sta_ps_flags(void *_sta)
1017 {
1018 struct sta_info *sta = _sta;
1019 struct ieee80211_sub_if_data *sdata = sta->sdata;
1020 struct ps_data *ps;
1021
1022 if (sdata->vif.type == NL80211_IFTYPE_AP ||
1023 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1024 ps = &sdata->bss->ps;
1025 else if (ieee80211_vif_is_mesh(&sdata->vif))
1026 ps = &sdata->u.mesh.ps;
1027 else
1028 return;
1029
1030 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1031 if (test_and_clear_sta_flag(sta, WLAN_STA_PS_STA))
1032 atomic_dec(&ps->num_sta_ps);
1033 }
1034
1035 /* powersave support code */
1036 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1037 {
1038 struct ieee80211_sub_if_data *sdata = sta->sdata;
1039 struct ieee80211_local *local = sdata->local;
1040 struct sk_buff_head pending;
1041 int filtered = 0, buffered = 0, ac;
1042 unsigned long flags;
1043
1044 clear_sta_flag(sta, WLAN_STA_SP);
1045
1046 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1047 sta->driver_buffered_tids = 0;
1048
1049 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1050 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1051
1052 skb_queue_head_init(&pending);
1053
1054 /* Send all buffered frames to the station */
1055 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1056 int count = skb_queue_len(&pending), tmp;
1057
1058 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1059 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1060 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1061 tmp = skb_queue_len(&pending);
1062 filtered += tmp - count;
1063 count = tmp;
1064
1065 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1066 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1067 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1068 tmp = skb_queue_len(&pending);
1069 buffered += tmp - count;
1070 }
1071
1072 ieee80211_add_pending_skbs_fn(local, &pending, clear_sta_ps_flags, sta);
1073
1074 local->total_ps_buffered -= buffered;
1075
1076 sta_info_recalc_tim(sta);
1077
1078 ps_dbg(sdata,
1079 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1080 sta->sta.addr, sta->sta.aid, filtered, buffered);
1081 }
1082
1083 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1084 struct sta_info *sta, int tid,
1085 enum ieee80211_frame_release_type reason)
1086 {
1087 struct ieee80211_local *local = sdata->local;
1088 struct ieee80211_qos_hdr *nullfunc;
1089 struct sk_buff *skb;
1090 int size = sizeof(*nullfunc);
1091 __le16 fc;
1092 bool qos = test_sta_flag(sta, WLAN_STA_WME);
1093 struct ieee80211_tx_info *info;
1094 struct ieee80211_chanctx_conf *chanctx_conf;
1095
1096 if (qos) {
1097 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1098 IEEE80211_STYPE_QOS_NULLFUNC |
1099 IEEE80211_FCTL_FROMDS);
1100 } else {
1101 size -= 2;
1102 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1103 IEEE80211_STYPE_NULLFUNC |
1104 IEEE80211_FCTL_FROMDS);
1105 }
1106
1107 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1108 if (!skb)
1109 return;
1110
1111 skb_reserve(skb, local->hw.extra_tx_headroom);
1112
1113 nullfunc = (void *) skb_put(skb, size);
1114 nullfunc->frame_control = fc;
1115 nullfunc->duration_id = 0;
1116 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1117 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1118 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1119
1120 skb->priority = tid;
1121 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1122 if (qos) {
1123 nullfunc->qos_ctrl = cpu_to_le16(tid);
1124
1125 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1126 nullfunc->qos_ctrl |=
1127 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1128 }
1129
1130 info = IEEE80211_SKB_CB(skb);
1131
1132 /*
1133 * Tell TX path to send this frame even though the
1134 * STA may still remain is PS mode after this frame
1135 * exchange. Also set EOSP to indicate this packet
1136 * ends the poll/service period.
1137 */
1138 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1139 IEEE80211_TX_STATUS_EOSP |
1140 IEEE80211_TX_CTL_REQ_TX_STATUS;
1141
1142 drv_allow_buffered_frames(local, sta, BIT(tid), 1, reason, false);
1143
1144 skb->dev = sdata->dev;
1145
1146 rcu_read_lock();
1147 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1148 if (WARN_ON(!chanctx_conf)) {
1149 rcu_read_unlock();
1150 kfree_skb(skb);
1151 return;
1152 }
1153
1154 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band);
1155 rcu_read_unlock();
1156 }
1157
1158 static void
1159 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1160 int n_frames, u8 ignored_acs,
1161 enum ieee80211_frame_release_type reason)
1162 {
1163 struct ieee80211_sub_if_data *sdata = sta->sdata;
1164 struct ieee80211_local *local = sdata->local;
1165 bool found = false;
1166 bool more_data = false;
1167 int ac;
1168 unsigned long driver_release_tids = 0;
1169 struct sk_buff_head frames;
1170
1171 /* Service or PS-Poll period starts */
1172 set_sta_flag(sta, WLAN_STA_SP);
1173
1174 __skb_queue_head_init(&frames);
1175
1176 /*
1177 * Get response frame(s) and more data bit for it.
1178 */
1179 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1180 unsigned long tids;
1181
1182 if (ignored_acs & BIT(ac))
1183 continue;
1184
1185 tids = ieee80211_tids_for_ac(ac);
1186
1187 if (!found) {
1188 driver_release_tids = sta->driver_buffered_tids & tids;
1189 if (driver_release_tids) {
1190 found = true;
1191 } else {
1192 struct sk_buff *skb;
1193
1194 while (n_frames > 0) {
1195 skb = skb_dequeue(&sta->tx_filtered[ac]);
1196 if (!skb) {
1197 skb = skb_dequeue(
1198 &sta->ps_tx_buf[ac]);
1199 if (skb)
1200 local->total_ps_buffered--;
1201 }
1202 if (!skb)
1203 break;
1204 n_frames--;
1205 found = true;
1206 __skb_queue_tail(&frames, skb);
1207 }
1208 }
1209
1210 /*
1211 * If the driver has data on more than one TID then
1212 * certainly there's more data if we release just a
1213 * single frame now (from a single TID).
1214 */
1215 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1216 hweight16(driver_release_tids) > 1) {
1217 more_data = true;
1218 driver_release_tids =
1219 BIT(ffs(driver_release_tids) - 1);
1220 break;
1221 }
1222 }
1223
1224 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1225 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1226 more_data = true;
1227 break;
1228 }
1229 }
1230
1231 if (!found) {
1232 int tid;
1233
1234 /*
1235 * For PS-Poll, this can only happen due to a race condition
1236 * when we set the TIM bit and the station notices it, but
1237 * before it can poll for the frame we expire it.
1238 *
1239 * For uAPSD, this is said in the standard (11.2.1.5 h):
1240 * At each unscheduled SP for a non-AP STA, the AP shall
1241 * attempt to transmit at least one MSDU or MMPDU, but no
1242 * more than the value specified in the Max SP Length field
1243 * in the QoS Capability element from delivery-enabled ACs,
1244 * that are destined for the non-AP STA.
1245 *
1246 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1247 */
1248
1249 /* This will evaluate to 1, 3, 5 or 7. */
1250 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1251
1252 ieee80211_send_null_response(sdata, sta, tid, reason);
1253 return;
1254 }
1255
1256 if (!driver_release_tids) {
1257 struct sk_buff_head pending;
1258 struct sk_buff *skb;
1259 int num = 0;
1260 u16 tids = 0;
1261
1262 skb_queue_head_init(&pending);
1263
1264 while ((skb = __skb_dequeue(&frames))) {
1265 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1266 struct ieee80211_hdr *hdr = (void *) skb->data;
1267 u8 *qoshdr = NULL;
1268
1269 num++;
1270
1271 /*
1272 * Tell TX path to send this frame even though the
1273 * STA may still remain is PS mode after this frame
1274 * exchange.
1275 */
1276 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1277
1278 /*
1279 * Use MoreData flag to indicate whether there are
1280 * more buffered frames for this STA
1281 */
1282 if (more_data || !skb_queue_empty(&frames))
1283 hdr->frame_control |=
1284 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1285 else
1286 hdr->frame_control &=
1287 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1288
1289 if (ieee80211_is_data_qos(hdr->frame_control) ||
1290 ieee80211_is_qos_nullfunc(hdr->frame_control))
1291 qoshdr = ieee80211_get_qos_ctl(hdr);
1292
1293 /* end service period after last frame */
1294 if (skb_queue_empty(&frames)) {
1295 if (reason == IEEE80211_FRAME_RELEASE_UAPSD &&
1296 qoshdr)
1297 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1298
1299 info->flags |= IEEE80211_TX_STATUS_EOSP |
1300 IEEE80211_TX_CTL_REQ_TX_STATUS;
1301 }
1302
1303 if (qoshdr)
1304 tids |= BIT(*qoshdr & IEEE80211_QOS_CTL_TID_MASK);
1305 else
1306 tids |= BIT(0);
1307
1308 __skb_queue_tail(&pending, skb);
1309 }
1310
1311 drv_allow_buffered_frames(local, sta, tids, num,
1312 reason, more_data);
1313
1314 ieee80211_add_pending_skbs(local, &pending);
1315
1316 sta_info_recalc_tim(sta);
1317 } else {
1318 /*
1319 * We need to release a frame that is buffered somewhere in the
1320 * driver ... it'll have to handle that.
1321 * Note that, as per the comment above, it'll also have to see
1322 * if there is more than just one frame on the specific TID that
1323 * we're releasing from, and it needs to set the more-data bit
1324 * accordingly if we tell it that there's no more data. If we do
1325 * tell it there's more data, then of course the more-data bit
1326 * needs to be set anyway.
1327 */
1328 drv_release_buffered_frames(local, sta, driver_release_tids,
1329 n_frames, reason, more_data);
1330
1331 /*
1332 * Note that we don't recalculate the TIM bit here as it would
1333 * most likely have no effect at all unless the driver told us
1334 * that the TID became empty before returning here from the
1335 * release function.
1336 * Either way, however, when the driver tells us that the TID
1337 * became empty we'll do the TIM recalculation.
1338 */
1339 }
1340 }
1341
1342 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1343 {
1344 u8 ignore_for_response = sta->sta.uapsd_queues;
1345
1346 /*
1347 * If all ACs are delivery-enabled then we should reply
1348 * from any of them, if only some are enabled we reply
1349 * only from the non-enabled ones.
1350 */
1351 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1352 ignore_for_response = 0;
1353
1354 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1355 IEEE80211_FRAME_RELEASE_PSPOLL);
1356 }
1357
1358 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1359 {
1360 int n_frames = sta->sta.max_sp;
1361 u8 delivery_enabled = sta->sta.uapsd_queues;
1362
1363 /*
1364 * If we ever grow support for TSPEC this might happen if
1365 * the TSPEC update from hostapd comes in between a trigger
1366 * frame setting WLAN_STA_UAPSD in the RX path and this
1367 * actually getting called.
1368 */
1369 if (!delivery_enabled)
1370 return;
1371
1372 switch (sta->sta.max_sp) {
1373 case 1:
1374 n_frames = 2;
1375 break;
1376 case 2:
1377 n_frames = 4;
1378 break;
1379 case 3:
1380 n_frames = 6;
1381 break;
1382 case 0:
1383 /* XXX: what is a good value? */
1384 n_frames = 8;
1385 break;
1386 }
1387
1388 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1389 IEEE80211_FRAME_RELEASE_UAPSD);
1390 }
1391
1392 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1393 struct ieee80211_sta *pubsta, bool block)
1394 {
1395 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1396
1397 trace_api_sta_block_awake(sta->local, pubsta, block);
1398
1399 if (block)
1400 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1401 else if (test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1402 ieee80211_queue_work(hw, &sta->drv_unblock_wk);
1403 }
1404 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1405
1406 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1407 {
1408 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1409 struct ieee80211_local *local = sta->local;
1410
1411 trace_api_eosp(local, pubsta);
1412
1413 clear_sta_flag(sta, WLAN_STA_SP);
1414 }
1415 EXPORT_SYMBOL(ieee80211_sta_eosp);
1416
1417 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1418 u8 tid, bool buffered)
1419 {
1420 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1421
1422 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1423 return;
1424
1425 if (buffered)
1426 set_bit(tid, &sta->driver_buffered_tids);
1427 else
1428 clear_bit(tid, &sta->driver_buffered_tids);
1429
1430 sta_info_recalc_tim(sta);
1431 }
1432 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1433
1434 int sta_info_move_state(struct sta_info *sta,
1435 enum ieee80211_sta_state new_state)
1436 {
1437 might_sleep();
1438
1439 if (sta->sta_state == new_state)
1440 return 0;
1441
1442 /* check allowed transitions first */
1443
1444 switch (new_state) {
1445 case IEEE80211_STA_NONE:
1446 if (sta->sta_state != IEEE80211_STA_AUTH)
1447 return -EINVAL;
1448 break;
1449 case IEEE80211_STA_AUTH:
1450 if (sta->sta_state != IEEE80211_STA_NONE &&
1451 sta->sta_state != IEEE80211_STA_ASSOC)
1452 return -EINVAL;
1453 break;
1454 case IEEE80211_STA_ASSOC:
1455 if (sta->sta_state != IEEE80211_STA_AUTH &&
1456 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1457 return -EINVAL;
1458 break;
1459 case IEEE80211_STA_AUTHORIZED:
1460 if (sta->sta_state != IEEE80211_STA_ASSOC)
1461 return -EINVAL;
1462 break;
1463 default:
1464 WARN(1, "invalid state %d", new_state);
1465 return -EINVAL;
1466 }
1467
1468 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1469 sta->sta.addr, new_state);
1470
1471 /*
1472 * notify the driver before the actual changes so it can
1473 * fail the transition
1474 */
1475 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1476 int err = drv_sta_state(sta->local, sta->sdata, sta,
1477 sta->sta_state, new_state);
1478 if (err)
1479 return err;
1480 }
1481
1482 /* reflect the change in all state variables */
1483
1484 switch (new_state) {
1485 case IEEE80211_STA_NONE:
1486 if (sta->sta_state == IEEE80211_STA_AUTH)
1487 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1488 break;
1489 case IEEE80211_STA_AUTH:
1490 if (sta->sta_state == IEEE80211_STA_NONE)
1491 set_bit(WLAN_STA_AUTH, &sta->_flags);
1492 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1493 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1494 break;
1495 case IEEE80211_STA_ASSOC:
1496 if (sta->sta_state == IEEE80211_STA_AUTH) {
1497 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1498 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1499 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1500 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1501 !sta->sdata->u.vlan.sta))
1502 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1503 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1504 }
1505 break;
1506 case IEEE80211_STA_AUTHORIZED:
1507 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1508 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1509 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1510 !sta->sdata->u.vlan.sta))
1511 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1512 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1513 }
1514 break;
1515 default:
1516 break;
1517 }
1518
1519 sta->sta_state = new_state;
1520
1521 return 0;
1522 }