]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/mac80211/tx.c
mac80211: add functions to create PS Poll and Nullfunc templates
[mirror_ubuntu-hirsute-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183
184 static ieee80211_tx_result debug_noinline
185 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
186 {
187
188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
190 u32 sta_flags;
191
192 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
193 return TX_CONTINUE;
194
195 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
196 !ieee80211_is_probe_req(hdr->frame_control) &&
197 !ieee80211_is_nullfunc(hdr->frame_control))
198 /*
199 * When software scanning only nullfunc frames (to notify
200 * the sleep state to the AP) and probe requests (for the
201 * active scan) are allowed, all other frames should not be
202 * sent and we should not get here, but if we do
203 * nonetheless, drop them to avoid sending them
204 * off-channel. See the link below and
205 * ieee80211_start_scan() for more.
206 *
207 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
208 */
209 return TX_DROP;
210
211 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
212 return TX_CONTINUE;
213
214 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
215 return TX_CONTINUE;
216
217 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
218
219 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
220 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
222 ieee80211_is_data(hdr->frame_control))) {
223 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
224 printk(KERN_DEBUG "%s: dropped data frame to not "
225 "associated station %pM\n",
226 tx->sdata->name, hdr->addr1);
227 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
228 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
229 return TX_DROP;
230 }
231 } else {
232 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
233 tx->local->num_sta == 0 &&
234 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
235 /*
236 * No associated STAs - no need to send multicast
237 * frames.
238 */
239 return TX_DROP;
240 }
241 return TX_CONTINUE;
242 }
243
244 return TX_CONTINUE;
245 }
246
247 /* This function is called whenever the AP is about to exceed the maximum limit
248 * of buffered frames for power saving STAs. This situation should not really
249 * happen often during normal operation, so dropping the oldest buffered packet
250 * from each queue should be OK to make some room for new frames. */
251 static void purge_old_ps_buffers(struct ieee80211_local *local)
252 {
253 int total = 0, purged = 0;
254 struct sk_buff *skb;
255 struct ieee80211_sub_if_data *sdata;
256 struct sta_info *sta;
257
258 /*
259 * virtual interfaces are protected by RCU
260 */
261 rcu_read_lock();
262
263 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
264 struct ieee80211_if_ap *ap;
265 if (sdata->vif.type != NL80211_IFTYPE_AP)
266 continue;
267 ap = &sdata->u.ap;
268 skb = skb_dequeue(&ap->ps_bc_buf);
269 if (skb) {
270 purged++;
271 dev_kfree_skb(skb);
272 }
273 total += skb_queue_len(&ap->ps_bc_buf);
274 }
275
276 list_for_each_entry_rcu(sta, &local->sta_list, list) {
277 skb = skb_dequeue(&sta->ps_tx_buf);
278 if (skb) {
279 purged++;
280 dev_kfree_skb(skb);
281 }
282 total += skb_queue_len(&sta->ps_tx_buf);
283 }
284
285 rcu_read_unlock();
286
287 local->total_ps_buffered = total;
288 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
289 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
290 wiphy_name(local->hw.wiphy), purged);
291 #endif
292 }
293
294 static ieee80211_tx_result
295 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
296 {
297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
298 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
299
300 /*
301 * broadcast/multicast frame
302 *
303 * If any of the associated stations is in power save mode,
304 * the frame is buffered to be sent after DTIM beacon frame.
305 * This is done either by the hardware or us.
306 */
307
308 /* powersaving STAs only in AP/VLAN mode */
309 if (!tx->sdata->bss)
310 return TX_CONTINUE;
311
312 /* no buffering for ordered frames */
313 if (ieee80211_has_order(hdr->frame_control))
314 return TX_CONTINUE;
315
316 /* no stations in PS mode */
317 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
318 return TX_CONTINUE;
319
320 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
321
322 /* device releases frame after DTIM beacon */
323 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
324 return TX_CONTINUE;
325
326 /* buffered in mac80211 */
327 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
328 purge_old_ps_buffers(tx->local);
329
330 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
331 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
332 if (net_ratelimit())
333 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
334 tx->sdata->name);
335 #endif
336 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
337 } else
338 tx->local->total_ps_buffered++;
339
340 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
341
342 return TX_QUEUED;
343 }
344
345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
346 struct sk_buff *skb)
347 {
348 if (!ieee80211_is_mgmt(fc))
349 return 0;
350
351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
352 return 0;
353
354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
355 skb->data))
356 return 0;
357
358 return 1;
359 }
360
361 static ieee80211_tx_result
362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
363 {
364 struct sta_info *sta = tx->sta;
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367 u32 staflags;
368
369 if (unlikely(!sta ||
370 ieee80211_is_probe_resp(hdr->frame_control) ||
371 ieee80211_is_auth(hdr->frame_control) ||
372 ieee80211_is_assoc_resp(hdr->frame_control) ||
373 ieee80211_is_reassoc_resp(hdr->frame_control)))
374 return TX_CONTINUE;
375
376 staflags = get_sta_flags(sta);
377
378 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
379 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
380 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
381 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
382 "before %d)\n",
383 sta->sta.addr, sta->sta.aid,
384 skb_queue_len(&sta->ps_tx_buf));
385 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
386 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
387 purge_old_ps_buffers(tx->local);
388 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
389 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
390 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
391 if (net_ratelimit()) {
392 printk(KERN_DEBUG "%s: STA %pM TX "
393 "buffer full - dropping oldest frame\n",
394 tx->sdata->name, sta->sta.addr);
395 }
396 #endif
397 dev_kfree_skb(old);
398 } else
399 tx->local->total_ps_buffered++;
400
401 /*
402 * Queue frame to be sent after STA wakes up/polls,
403 * but don't set the TIM bit if the driver is blocking
404 * wakeup or poll response transmissions anyway.
405 */
406 if (skb_queue_empty(&sta->ps_tx_buf) &&
407 !(staflags & WLAN_STA_PS_DRIVER))
408 sta_info_set_tim_bit(sta);
409
410 info->control.jiffies = jiffies;
411 info->control.vif = &tx->sdata->vif;
412 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
413 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
414 return TX_QUEUED;
415 }
416 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
417 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
418 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
419 "set -> send frame\n", tx->sdata->name,
420 sta->sta.addr);
421 }
422 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
423
424 return TX_CONTINUE;
425 }
426
427 static ieee80211_tx_result debug_noinline
428 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
429 {
430 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
431 return TX_CONTINUE;
432
433 if (tx->flags & IEEE80211_TX_UNICAST)
434 return ieee80211_tx_h_unicast_ps_buf(tx);
435 else
436 return ieee80211_tx_h_multicast_ps_buf(tx);
437 }
438
439 static ieee80211_tx_result debug_noinline
440 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
441 {
442 struct ieee80211_key *key = NULL;
443 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
445
446 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
447 tx->key = NULL;
448 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
449 tx->key = key;
450 else if (ieee80211_is_mgmt(hdr->frame_control) &&
451 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
452 tx->key = key;
453 else if ((key = rcu_dereference(tx->sdata->default_key)))
454 tx->key = key;
455 else if (tx->sdata->drop_unencrypted &&
456 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
457 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
458 (!ieee80211_is_robust_mgmt_frame(hdr) ||
459 (ieee80211_is_action(hdr->frame_control) &&
460 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
461 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
462 return TX_DROP;
463 } else
464 tx->key = NULL;
465
466 if (tx->key) {
467 tx->key->tx_rx_count++;
468 /* TODO: add threshold stuff again */
469
470 switch (tx->key->conf.alg) {
471 case ALG_WEP:
472 if (ieee80211_is_auth(hdr->frame_control))
473 break;
474 case ALG_TKIP:
475 if (!ieee80211_is_data_present(hdr->frame_control))
476 tx->key = NULL;
477 break;
478 case ALG_CCMP:
479 if (!ieee80211_is_data_present(hdr->frame_control) &&
480 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
481 tx->skb))
482 tx->key = NULL;
483 break;
484 case ALG_AES_CMAC:
485 if (!ieee80211_is_mgmt(hdr->frame_control))
486 tx->key = NULL;
487 break;
488 }
489 }
490
491 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
492 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
493
494 return TX_CONTINUE;
495 }
496
497 static ieee80211_tx_result debug_noinline
498 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
499 {
500 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
501 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
502 struct ieee80211_supported_band *sband;
503 struct ieee80211_rate *rate;
504 int i, len;
505 bool inval = false, rts = false, short_preamble = false;
506 struct ieee80211_tx_rate_control txrc;
507 u32 sta_flags;
508
509 memset(&txrc, 0, sizeof(txrc));
510
511 sband = tx->local->hw.wiphy->bands[tx->channel->band];
512
513 len = min_t(int, tx->skb->len + FCS_LEN,
514 tx->local->hw.wiphy->frag_threshold);
515
516 /* set up the tx rate control struct we give the RC algo */
517 txrc.hw = local_to_hw(tx->local);
518 txrc.sband = sband;
519 txrc.bss_conf = &tx->sdata->vif.bss_conf;
520 txrc.skb = tx->skb;
521 txrc.reported_rate.idx = -1;
522 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
523 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
524 txrc.max_rate_idx = -1;
525 else
526 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
527 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
528
529 /* set up RTS protection if desired */
530 if (len > tx->local->hw.wiphy->rts_threshold) {
531 txrc.rts = rts = true;
532 }
533
534 /*
535 * Use short preamble if the BSS can handle it, but not for
536 * management frames unless we know the receiver can handle
537 * that -- the management frame might be to a station that
538 * just wants a probe response.
539 */
540 if (tx->sdata->vif.bss_conf.use_short_preamble &&
541 (ieee80211_is_data(hdr->frame_control) ||
542 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
543 txrc.short_preamble = short_preamble = true;
544
545 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
546
547 /*
548 * Lets not bother rate control if we're associated and cannot
549 * talk to the sta. This should not happen.
550 */
551 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
552 (sta_flags & WLAN_STA_ASSOC) &&
553 !rate_usable_index_exists(sband, &tx->sta->sta),
554 "%s: Dropped data frame as no usable bitrate found while "
555 "scanning and associated. Target station: "
556 "%pM on %d GHz band\n",
557 tx->sdata->name, hdr->addr1,
558 tx->channel->band ? 5 : 2))
559 return TX_DROP;
560
561 /*
562 * If we're associated with the sta at this point we know we can at
563 * least send the frame at the lowest bit rate.
564 */
565 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
566
567 if (unlikely(info->control.rates[0].idx < 0))
568 return TX_DROP;
569
570 if (txrc.reported_rate.idx < 0)
571 txrc.reported_rate = info->control.rates[0];
572
573 if (tx->sta)
574 tx->sta->last_tx_rate = txrc.reported_rate;
575
576 if (unlikely(!info->control.rates[0].count))
577 info->control.rates[0].count = 1;
578
579 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
580 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
581 info->control.rates[0].count = 1;
582
583 if (is_multicast_ether_addr(hdr->addr1)) {
584 /*
585 * XXX: verify the rate is in the basic rateset
586 */
587 return TX_CONTINUE;
588 }
589
590 /*
591 * set up the RTS/CTS rate as the fastest basic rate
592 * that is not faster than the data rate
593 *
594 * XXX: Should this check all retry rates?
595 */
596 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
597 s8 baserate = 0;
598
599 rate = &sband->bitrates[info->control.rates[0].idx];
600
601 for (i = 0; i < sband->n_bitrates; i++) {
602 /* must be a basic rate */
603 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
604 continue;
605 /* must not be faster than the data rate */
606 if (sband->bitrates[i].bitrate > rate->bitrate)
607 continue;
608 /* maximum */
609 if (sband->bitrates[baserate].bitrate <
610 sband->bitrates[i].bitrate)
611 baserate = i;
612 }
613
614 info->control.rts_cts_rate_idx = baserate;
615 }
616
617 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
618 /*
619 * make sure there's no valid rate following
620 * an invalid one, just in case drivers don't
621 * take the API seriously to stop at -1.
622 */
623 if (inval) {
624 info->control.rates[i].idx = -1;
625 continue;
626 }
627 if (info->control.rates[i].idx < 0) {
628 inval = true;
629 continue;
630 }
631
632 /*
633 * For now assume MCS is already set up correctly, this
634 * needs to be fixed.
635 */
636 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
637 WARN_ON(info->control.rates[i].idx > 76);
638 continue;
639 }
640
641 /* set up RTS protection if desired */
642 if (rts)
643 info->control.rates[i].flags |=
644 IEEE80211_TX_RC_USE_RTS_CTS;
645
646 /* RC is busted */
647 if (WARN_ON_ONCE(info->control.rates[i].idx >=
648 sband->n_bitrates)) {
649 info->control.rates[i].idx = -1;
650 continue;
651 }
652
653 rate = &sband->bitrates[info->control.rates[i].idx];
654
655 /* set up short preamble */
656 if (short_preamble &&
657 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
658 info->control.rates[i].flags |=
659 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
660
661 /* set up G protection */
662 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
663 rate->flags & IEEE80211_RATE_ERP_G)
664 info->control.rates[i].flags |=
665 IEEE80211_TX_RC_USE_CTS_PROTECT;
666 }
667
668 return TX_CONTINUE;
669 }
670
671 static ieee80211_tx_result debug_noinline
672 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
673 {
674 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
675
676 if (tx->sta)
677 info->control.sta = &tx->sta->sta;
678
679 return TX_CONTINUE;
680 }
681
682 static ieee80211_tx_result debug_noinline
683 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
684 {
685 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
686 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
687 u16 *seq;
688 u8 *qc;
689 int tid;
690
691 /*
692 * Packet injection may want to control the sequence
693 * number, if we have no matching interface then we
694 * neither assign one ourselves nor ask the driver to.
695 */
696 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
697 return TX_CONTINUE;
698
699 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
700 return TX_CONTINUE;
701
702 if (ieee80211_hdrlen(hdr->frame_control) < 24)
703 return TX_CONTINUE;
704
705 /*
706 * Anything but QoS data that has a sequence number field
707 * (is long enough) gets a sequence number from the global
708 * counter.
709 */
710 if (!ieee80211_is_data_qos(hdr->frame_control)) {
711 /* driver should assign sequence number */
712 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
713 /* for pure STA mode without beacons, we can do it */
714 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
715 tx->sdata->sequence_number += 0x10;
716 return TX_CONTINUE;
717 }
718
719 /*
720 * This should be true for injected/management frames only, for
721 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
722 * above since they are not QoS-data frames.
723 */
724 if (!tx->sta)
725 return TX_CONTINUE;
726
727 /* include per-STA, per-TID sequence counter */
728
729 qc = ieee80211_get_qos_ctl(hdr);
730 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
731 seq = &tx->sta->tid_seq[tid];
732
733 hdr->seq_ctrl = cpu_to_le16(*seq);
734
735 /* Increase the sequence number. */
736 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
737
738 return TX_CONTINUE;
739 }
740
741 static int ieee80211_fragment(struct ieee80211_local *local,
742 struct sk_buff *skb, int hdrlen,
743 int frag_threshold)
744 {
745 struct sk_buff *tail = skb, *tmp;
746 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
747 int pos = hdrlen + per_fragm;
748 int rem = skb->len - hdrlen - per_fragm;
749
750 if (WARN_ON(rem < 0))
751 return -EINVAL;
752
753 while (rem) {
754 int fraglen = per_fragm;
755
756 if (fraglen > rem)
757 fraglen = rem;
758 rem -= fraglen;
759 tmp = dev_alloc_skb(local->tx_headroom +
760 frag_threshold +
761 IEEE80211_ENCRYPT_HEADROOM +
762 IEEE80211_ENCRYPT_TAILROOM);
763 if (!tmp)
764 return -ENOMEM;
765 tail->next = tmp;
766 tail = tmp;
767 skb_reserve(tmp, local->tx_headroom +
768 IEEE80211_ENCRYPT_HEADROOM);
769 /* copy control information */
770 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
771 skb_copy_queue_mapping(tmp, skb);
772 tmp->priority = skb->priority;
773 tmp->dev = skb->dev;
774
775 /* copy header and data */
776 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
777 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
778
779 pos += fraglen;
780 }
781
782 skb->len = hdrlen + per_fragm;
783 return 0;
784 }
785
786 static ieee80211_tx_result debug_noinline
787 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
788 {
789 struct sk_buff *skb = tx->skb;
790 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
791 struct ieee80211_hdr *hdr = (void *)skb->data;
792 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
793 int hdrlen;
794 int fragnum;
795
796 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
797 return TX_CONTINUE;
798
799 /*
800 * Warn when submitting a fragmented A-MPDU frame and drop it.
801 * This scenario is handled in ieee80211_tx_prepare but extra
802 * caution taken here as fragmented ampdu may cause Tx stop.
803 */
804 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
805 return TX_DROP;
806
807 hdrlen = ieee80211_hdrlen(hdr->frame_control);
808
809 /* internal error, why is TX_FRAGMENTED set? */
810 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
811 return TX_DROP;
812
813 /*
814 * Now fragment the frame. This will allocate all the fragments and
815 * chain them (using skb as the first fragment) to skb->next.
816 * During transmission, we will remove the successfully transmitted
817 * fragments from this list. When the low-level driver rejects one
818 * of the fragments then we will simply pretend to accept the skb
819 * but store it away as pending.
820 */
821 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
822 return TX_DROP;
823
824 /* update duration/seq/flags of fragments */
825 fragnum = 0;
826 do {
827 int next_len;
828 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
829
830 hdr = (void *)skb->data;
831 info = IEEE80211_SKB_CB(skb);
832
833 if (skb->next) {
834 hdr->frame_control |= morefrags;
835 next_len = skb->next->len;
836 /*
837 * No multi-rate retries for fragmented frames, that
838 * would completely throw off the NAV at other STAs.
839 */
840 info->control.rates[1].idx = -1;
841 info->control.rates[2].idx = -1;
842 info->control.rates[3].idx = -1;
843 info->control.rates[4].idx = -1;
844 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
845 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
846 } else {
847 hdr->frame_control &= ~morefrags;
848 next_len = 0;
849 }
850 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
851 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
852 fragnum++;
853 } while ((skb = skb->next));
854
855 return TX_CONTINUE;
856 }
857
858 static ieee80211_tx_result debug_noinline
859 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
860 {
861 struct sk_buff *skb = tx->skb;
862
863 if (!tx->sta)
864 return TX_CONTINUE;
865
866 tx->sta->tx_packets++;
867 do {
868 tx->sta->tx_fragments++;
869 tx->sta->tx_bytes += skb->len;
870 } while ((skb = skb->next));
871
872 return TX_CONTINUE;
873 }
874
875 static ieee80211_tx_result debug_noinline
876 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
877 {
878 if (!tx->key)
879 return TX_CONTINUE;
880
881 switch (tx->key->conf.alg) {
882 case ALG_WEP:
883 return ieee80211_crypto_wep_encrypt(tx);
884 case ALG_TKIP:
885 return ieee80211_crypto_tkip_encrypt(tx);
886 case ALG_CCMP:
887 return ieee80211_crypto_ccmp_encrypt(tx);
888 case ALG_AES_CMAC:
889 return ieee80211_crypto_aes_cmac_encrypt(tx);
890 }
891
892 /* not reached */
893 WARN_ON(1);
894 return TX_DROP;
895 }
896
897 static ieee80211_tx_result debug_noinline
898 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
899 {
900 struct sk_buff *skb = tx->skb;
901 struct ieee80211_hdr *hdr;
902 int next_len;
903 bool group_addr;
904
905 do {
906 hdr = (void *) skb->data;
907 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
908 break; /* must not overwrite AID */
909 next_len = skb->next ? skb->next->len : 0;
910 group_addr = is_multicast_ether_addr(hdr->addr1);
911
912 hdr->duration_id =
913 ieee80211_duration(tx, group_addr, next_len);
914 } while ((skb = skb->next));
915
916 return TX_CONTINUE;
917 }
918
919 /* actual transmit path */
920
921 /*
922 * deal with packet injection down monitor interface
923 * with Radiotap Header -- only called for monitor mode interface
924 */
925 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
926 struct sk_buff *skb)
927 {
928 /*
929 * this is the moment to interpret and discard the radiotap header that
930 * must be at the start of the packet injected in Monitor mode
931 *
932 * Need to take some care with endian-ness since radiotap
933 * args are little-endian
934 */
935
936 struct ieee80211_radiotap_iterator iterator;
937 struct ieee80211_radiotap_header *rthdr =
938 (struct ieee80211_radiotap_header *) skb->data;
939 struct ieee80211_supported_band *sband;
940 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
941 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
942
943 sband = tx->local->hw.wiphy->bands[tx->channel->band];
944
945 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
946 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
947
948 /*
949 * for every radiotap entry that is present
950 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
951 * entries present, or -EINVAL on error)
952 */
953
954 while (!ret) {
955 ret = ieee80211_radiotap_iterator_next(&iterator);
956
957 if (ret)
958 continue;
959
960 /* see if this argument is something we can use */
961 switch (iterator.this_arg_index) {
962 /*
963 * You must take care when dereferencing iterator.this_arg
964 * for multibyte types... the pointer is not aligned. Use
965 * get_unaligned((type *)iterator.this_arg) to dereference
966 * iterator.this_arg for type "type" safely on all arches.
967 */
968 case IEEE80211_RADIOTAP_FLAGS:
969 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
970 /*
971 * this indicates that the skb we have been
972 * handed has the 32-bit FCS CRC at the end...
973 * we should react to that by snipping it off
974 * because it will be recomputed and added
975 * on transmission
976 */
977 if (skb->len < (iterator.max_length + FCS_LEN))
978 return false;
979
980 skb_trim(skb, skb->len - FCS_LEN);
981 }
982 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
983 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
984 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
985 tx->flags |= IEEE80211_TX_FRAGMENTED;
986 break;
987
988 /*
989 * Please update the file
990 * Documentation/networking/mac80211-injection.txt
991 * when parsing new fields here.
992 */
993
994 default:
995 break;
996 }
997 }
998
999 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1000 return false;
1001
1002 /*
1003 * remove the radiotap header
1004 * iterator->max_length was sanity-checked against
1005 * skb->len by iterator init
1006 */
1007 skb_pull(skb, iterator.max_length);
1008
1009 return true;
1010 }
1011
1012 /*
1013 * initialises @tx
1014 */
1015 static ieee80211_tx_result
1016 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1017 struct ieee80211_tx_data *tx,
1018 struct sk_buff *skb)
1019 {
1020 struct ieee80211_local *local = sdata->local;
1021 struct ieee80211_hdr *hdr;
1022 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1023 int hdrlen, tid;
1024 u8 *qc, *state;
1025 bool queued = false;
1026
1027 memset(tx, 0, sizeof(*tx));
1028 tx->skb = skb;
1029 tx->local = local;
1030 tx->sdata = sdata;
1031 tx->channel = local->hw.conf.channel;
1032 /*
1033 * Set this flag (used below to indicate "automatic fragmentation"),
1034 * it will be cleared/left by radiotap as desired.
1035 */
1036 tx->flags |= IEEE80211_TX_FRAGMENTED;
1037
1038 /* process and remove the injection radiotap header */
1039 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1040 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1041 return TX_DROP;
1042
1043 /*
1044 * __ieee80211_parse_tx_radiotap has now removed
1045 * the radiotap header that was present and pre-filled
1046 * 'tx' with tx control information.
1047 */
1048 }
1049
1050 /*
1051 * If this flag is set to true anywhere, and we get here,
1052 * we are doing the needed processing, so remove the flag
1053 * now.
1054 */
1055 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1056
1057 hdr = (struct ieee80211_hdr *) skb->data;
1058
1059 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1060 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1061 if (!tx->sta)
1062 tx->sta = sta_info_get(sdata, hdr->addr1);
1063
1064 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1065 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1066 unsigned long flags;
1067 struct tid_ampdu_tx *tid_tx;
1068
1069 qc = ieee80211_get_qos_ctl(hdr);
1070 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1071
1072 spin_lock_irqsave(&tx->sta->lock, flags);
1073 /*
1074 * XXX: This spinlock could be fairly expensive, but see the
1075 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1076 * One way to solve this would be to do something RCU-like
1077 * for managing the tid_tx struct and using atomic bitops
1078 * for the actual state -- by introducing an actual
1079 * 'operational' bit that would be possible. It would
1080 * require changing ieee80211_agg_tx_operational() to
1081 * set that bit, and changing the way tid_tx is managed
1082 * everywhere, including races between that bit and
1083 * tid_tx going away (tid_tx being added can be easily
1084 * committed to memory before the 'operational' bit).
1085 */
1086 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1087 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1088 if (*state == HT_AGG_STATE_OPERATIONAL) {
1089 info->flags |= IEEE80211_TX_CTL_AMPDU;
1090 } else if (*state != HT_AGG_STATE_IDLE) {
1091 /* in progress */
1092 queued = true;
1093 info->control.vif = &sdata->vif;
1094 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1095 __skb_queue_tail(&tid_tx->pending, skb);
1096 }
1097 spin_unlock_irqrestore(&tx->sta->lock, flags);
1098
1099 if (unlikely(queued))
1100 return TX_QUEUED;
1101 }
1102
1103 if (is_multicast_ether_addr(hdr->addr1)) {
1104 tx->flags &= ~IEEE80211_TX_UNICAST;
1105 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1106 } else {
1107 tx->flags |= IEEE80211_TX_UNICAST;
1108 if (unlikely(local->wifi_wme_noack_test))
1109 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1110 else
1111 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1112 }
1113
1114 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1115 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1116 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1117 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1118 tx->flags |= IEEE80211_TX_FRAGMENTED;
1119 else
1120 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1121 }
1122
1123 if (!tx->sta)
1124 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1125 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1126 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1127
1128 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1129 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1130 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1131 tx->ethertype = (pos[0] << 8) | pos[1];
1132 }
1133 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1134
1135 return TX_CONTINUE;
1136 }
1137
1138 static int __ieee80211_tx(struct ieee80211_local *local,
1139 struct sk_buff **skbp,
1140 struct sta_info *sta,
1141 bool txpending)
1142 {
1143 struct sk_buff *skb = *skbp, *next;
1144 struct ieee80211_tx_info *info;
1145 struct ieee80211_sub_if_data *sdata;
1146 unsigned long flags;
1147 int ret, len;
1148 bool fragm = false;
1149
1150 while (skb) {
1151 int q = skb_get_queue_mapping(skb);
1152
1153 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1154 ret = IEEE80211_TX_OK;
1155 if (local->queue_stop_reasons[q] ||
1156 (!txpending && !skb_queue_empty(&local->pending[q])))
1157 ret = IEEE80211_TX_PENDING;
1158 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1159 if (ret != IEEE80211_TX_OK)
1160 return ret;
1161
1162 info = IEEE80211_SKB_CB(skb);
1163
1164 if (fragm)
1165 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1166 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1167
1168 next = skb->next;
1169 len = skb->len;
1170
1171 if (next)
1172 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1173
1174 sdata = vif_to_sdata(info->control.vif);
1175
1176 switch (sdata->vif.type) {
1177 case NL80211_IFTYPE_MONITOR:
1178 info->control.vif = NULL;
1179 break;
1180 case NL80211_IFTYPE_AP_VLAN:
1181 info->control.vif = &container_of(sdata->bss,
1182 struct ieee80211_sub_if_data, u.ap)->vif;
1183 break;
1184 default:
1185 /* keep */
1186 break;
1187 }
1188
1189 ret = drv_tx(local, skb);
1190 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1191 dev_kfree_skb(skb);
1192 ret = NETDEV_TX_OK;
1193 }
1194 if (ret != NETDEV_TX_OK) {
1195 info->control.vif = &sdata->vif;
1196 return IEEE80211_TX_AGAIN;
1197 }
1198
1199 *skbp = skb = next;
1200 ieee80211_led_tx(local, 1);
1201 fragm = true;
1202 }
1203
1204 return IEEE80211_TX_OK;
1205 }
1206
1207 /*
1208 * Invoke TX handlers, return 0 on success and non-zero if the
1209 * frame was dropped or queued.
1210 */
1211 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1212 {
1213 struct sk_buff *skb = tx->skb;
1214 ieee80211_tx_result res = TX_DROP;
1215
1216 #define CALL_TXH(txh) \
1217 do { \
1218 res = txh(tx); \
1219 if (res != TX_CONTINUE) \
1220 goto txh_done; \
1221 } while (0)
1222
1223 CALL_TXH(ieee80211_tx_h_check_assoc);
1224 CALL_TXH(ieee80211_tx_h_ps_buf);
1225 CALL_TXH(ieee80211_tx_h_select_key);
1226 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1227 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1228 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1229 CALL_TXH(ieee80211_tx_h_misc);
1230 CALL_TXH(ieee80211_tx_h_sequence);
1231 CALL_TXH(ieee80211_tx_h_fragment);
1232 /* handlers after fragment must be aware of tx info fragmentation! */
1233 CALL_TXH(ieee80211_tx_h_stats);
1234 CALL_TXH(ieee80211_tx_h_encrypt);
1235 CALL_TXH(ieee80211_tx_h_calculate_duration);
1236 #undef CALL_TXH
1237
1238 txh_done:
1239 if (unlikely(res == TX_DROP)) {
1240 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1241 while (skb) {
1242 struct sk_buff *next;
1243
1244 next = skb->next;
1245 dev_kfree_skb(skb);
1246 skb = next;
1247 }
1248 return -1;
1249 } else if (unlikely(res == TX_QUEUED)) {
1250 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1251 return -1;
1252 }
1253
1254 return 0;
1255 }
1256
1257 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1258 struct sk_buff *skb, bool txpending)
1259 {
1260 struct ieee80211_local *local = sdata->local;
1261 struct ieee80211_tx_data tx;
1262 ieee80211_tx_result res_prepare;
1263 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1264 struct sk_buff *next;
1265 unsigned long flags;
1266 int ret, retries;
1267 u16 queue;
1268
1269 queue = skb_get_queue_mapping(skb);
1270
1271 if (unlikely(skb->len < 10)) {
1272 dev_kfree_skb(skb);
1273 return;
1274 }
1275
1276 rcu_read_lock();
1277
1278 /* initialises tx */
1279 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1280
1281 if (unlikely(res_prepare == TX_DROP)) {
1282 dev_kfree_skb(skb);
1283 rcu_read_unlock();
1284 return;
1285 } else if (unlikely(res_prepare == TX_QUEUED)) {
1286 rcu_read_unlock();
1287 return;
1288 }
1289
1290 tx.channel = local->hw.conf.channel;
1291 info->band = tx.channel->band;
1292
1293 if (invoke_tx_handlers(&tx))
1294 goto out;
1295
1296 retries = 0;
1297 retry:
1298 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1299 switch (ret) {
1300 case IEEE80211_TX_OK:
1301 break;
1302 case IEEE80211_TX_AGAIN:
1303 /*
1304 * Since there are no fragmented frames on A-MPDU
1305 * queues, there's no reason for a driver to reject
1306 * a frame there, warn and drop it.
1307 */
1308 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1309 goto drop;
1310 /* fall through */
1311 case IEEE80211_TX_PENDING:
1312 skb = tx.skb;
1313
1314 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1315
1316 if (local->queue_stop_reasons[queue] ||
1317 !skb_queue_empty(&local->pending[queue])) {
1318 /*
1319 * if queue is stopped, queue up frames for later
1320 * transmission from the tasklet
1321 */
1322 do {
1323 next = skb->next;
1324 skb->next = NULL;
1325 if (unlikely(txpending))
1326 __skb_queue_head(&local->pending[queue],
1327 skb);
1328 else
1329 __skb_queue_tail(&local->pending[queue],
1330 skb);
1331 } while ((skb = next));
1332
1333 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1334 flags);
1335 } else {
1336 /*
1337 * otherwise retry, but this is a race condition or
1338 * a driver bug (which we warn about if it persists)
1339 */
1340 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1341 flags);
1342
1343 retries++;
1344 if (WARN(retries > 10, "tx refused but queue active\n"))
1345 goto drop;
1346 goto retry;
1347 }
1348 }
1349 out:
1350 rcu_read_unlock();
1351 return;
1352
1353 drop:
1354 rcu_read_unlock();
1355
1356 skb = tx.skb;
1357 while (skb) {
1358 next = skb->next;
1359 dev_kfree_skb(skb);
1360 skb = next;
1361 }
1362 }
1363
1364 /* device xmit handlers */
1365
1366 static int ieee80211_skb_resize(struct ieee80211_local *local,
1367 struct sk_buff *skb,
1368 int head_need, bool may_encrypt)
1369 {
1370 int tail_need = 0;
1371
1372 /*
1373 * This could be optimised, devices that do full hardware
1374 * crypto (including TKIP MMIC) need no tailroom... But we
1375 * have no drivers for such devices currently.
1376 */
1377 if (may_encrypt) {
1378 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1379 tail_need -= skb_tailroom(skb);
1380 tail_need = max_t(int, tail_need, 0);
1381 }
1382
1383 if (head_need || tail_need) {
1384 /* Sorry. Can't account for this any more */
1385 skb_orphan(skb);
1386 }
1387
1388 if (skb_header_cloned(skb))
1389 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1390 else
1391 I802_DEBUG_INC(local->tx_expand_skb_head);
1392
1393 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1394 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1395 wiphy_name(local->hw.wiphy));
1396 return -ENOMEM;
1397 }
1398
1399 /* update truesize too */
1400 skb->truesize += head_need + tail_need;
1401
1402 return 0;
1403 }
1404
1405 static bool need_dynamic_ps(struct ieee80211_local *local)
1406 {
1407 /* driver doesn't support power save */
1408 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
1409 return false;
1410
1411 /* hardware does dynamic power save */
1412 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
1413 return false;
1414
1415 /* dynamic power save disabled */
1416 if (local->hw.conf.dynamic_ps_timeout <= 0)
1417 return false;
1418
1419 /* we are scanning, don't enable power save */
1420 if (local->scanning)
1421 return false;
1422
1423 if (!local->ps_sdata)
1424 return false;
1425
1426 /* No point if we're going to suspend */
1427 if (local->quiescing)
1428 return false;
1429
1430 return true;
1431 }
1432
1433 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1434 struct sk_buff *skb)
1435 {
1436 struct ieee80211_local *local = sdata->local;
1437 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1439 struct ieee80211_sub_if_data *tmp_sdata;
1440 int headroom;
1441 bool may_encrypt;
1442
1443 if (need_dynamic_ps(local)) {
1444 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1445 ieee80211_stop_queues_by_reason(&local->hw,
1446 IEEE80211_QUEUE_STOP_REASON_PS);
1447 ieee80211_queue_work(&local->hw,
1448 &local->dynamic_ps_disable_work);
1449 }
1450
1451 mod_timer(&local->dynamic_ps_timer, jiffies +
1452 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1453 }
1454
1455 rcu_read_lock();
1456
1457 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1458 int hdrlen;
1459 u16 len_rthdr;
1460
1461 info->flags |= IEEE80211_TX_CTL_INJECTED;
1462
1463 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1464 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1465 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1466
1467 /* check the header is complete in the frame */
1468 if (likely(skb->len >= len_rthdr + hdrlen)) {
1469 /*
1470 * We process outgoing injected frames that have a
1471 * local address we handle as though they are our
1472 * own frames.
1473 * This code here isn't entirely correct, the local
1474 * MAC address is not necessarily enough to find
1475 * the interface to use; for that proper VLAN/WDS
1476 * support we will need a different mechanism.
1477 */
1478
1479 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1480 list) {
1481 if (!ieee80211_sdata_running(tmp_sdata))
1482 continue;
1483 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1484 continue;
1485 if (compare_ether_addr(tmp_sdata->vif.addr,
1486 hdr->addr2) == 0) {
1487 sdata = tmp_sdata;
1488 break;
1489 }
1490 }
1491 }
1492 }
1493
1494 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1495
1496 headroom = local->tx_headroom;
1497 if (may_encrypt)
1498 headroom += IEEE80211_ENCRYPT_HEADROOM;
1499 headroom -= skb_headroom(skb);
1500 headroom = max_t(int, 0, headroom);
1501
1502 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1503 dev_kfree_skb(skb);
1504 rcu_read_unlock();
1505 return;
1506 }
1507
1508 info->control.vif = &sdata->vif;
1509
1510 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1511 ieee80211_is_data(hdr->frame_control) &&
1512 !is_multicast_ether_addr(hdr->addr1))
1513 if (mesh_nexthop_lookup(skb, sdata)) {
1514 /* skb queued: don't free */
1515 rcu_read_unlock();
1516 return;
1517 }
1518
1519 ieee80211_set_qos_hdr(local, skb);
1520 ieee80211_tx(sdata, skb, false);
1521 rcu_read_unlock();
1522 }
1523
1524 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1525 struct net_device *dev)
1526 {
1527 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1528 struct ieee80211_channel *chan = local->hw.conf.channel;
1529 struct ieee80211_radiotap_header *prthdr =
1530 (struct ieee80211_radiotap_header *)skb->data;
1531 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1532 u16 len_rthdr;
1533
1534 /*
1535 * Frame injection is not allowed if beaconing is not allowed
1536 * or if we need radar detection. Beaconing is usually not allowed when
1537 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1538 * Passive scan is also used in world regulatory domains where
1539 * your country is not known and as such it should be treated as
1540 * NO TX unless the channel is explicitly allowed in which case
1541 * your current regulatory domain would not have the passive scan
1542 * flag.
1543 *
1544 * Since AP mode uses monitor interfaces to inject/TX management
1545 * frames we can make AP mode the exception to this rule once it
1546 * supports radar detection as its implementation can deal with
1547 * radar detection by itself. We can do that later by adding a
1548 * monitor flag interfaces used for AP support.
1549 */
1550 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1551 IEEE80211_CHAN_PASSIVE_SCAN)))
1552 goto fail;
1553
1554 /* check for not even having the fixed radiotap header part */
1555 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1556 goto fail; /* too short to be possibly valid */
1557
1558 /* is it a header version we can trust to find length from? */
1559 if (unlikely(prthdr->it_version))
1560 goto fail; /* only version 0 is supported */
1561
1562 /* then there must be a radiotap header with a length we can use */
1563 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1564
1565 /* does the skb contain enough to deliver on the alleged length? */
1566 if (unlikely(skb->len < len_rthdr))
1567 goto fail; /* skb too short for claimed rt header extent */
1568
1569 /*
1570 * fix up the pointers accounting for the radiotap
1571 * header still being in there. We are being given
1572 * a precooked IEEE80211 header so no need for
1573 * normal processing
1574 */
1575 skb_set_mac_header(skb, len_rthdr);
1576 /*
1577 * these are just fixed to the end of the rt area since we
1578 * don't have any better information and at this point, nobody cares
1579 */
1580 skb_set_network_header(skb, len_rthdr);
1581 skb_set_transport_header(skb, len_rthdr);
1582
1583 memset(info, 0, sizeof(*info));
1584
1585 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1586
1587 /* pass the radiotap header up to xmit */
1588 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1589 return NETDEV_TX_OK;
1590
1591 fail:
1592 dev_kfree_skb(skb);
1593 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1594 }
1595
1596 /**
1597 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1598 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1599 * @skb: packet to be sent
1600 * @dev: incoming interface
1601 *
1602 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1603 * not be freed, and caller is responsible for either retrying later or freeing
1604 * skb).
1605 *
1606 * This function takes in an Ethernet header and encapsulates it with suitable
1607 * IEEE 802.11 header based on which interface the packet is coming in. The
1608 * encapsulated packet will then be passed to master interface, wlan#.11, for
1609 * transmission (through low-level driver).
1610 */
1611 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1612 struct net_device *dev)
1613 {
1614 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1615 struct ieee80211_local *local = sdata->local;
1616 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1617 int ret = NETDEV_TX_BUSY, head_need;
1618 u16 ethertype, hdrlen, meshhdrlen = 0;
1619 __le16 fc;
1620 struct ieee80211_hdr hdr;
1621 struct ieee80211s_hdr mesh_hdr;
1622 const u8 *encaps_data;
1623 int encaps_len, skip_header_bytes;
1624 int nh_pos, h_pos;
1625 struct sta_info *sta = NULL;
1626 u32 sta_flags = 0;
1627
1628 if (unlikely(skb->len < ETH_HLEN)) {
1629 ret = NETDEV_TX_OK;
1630 goto fail;
1631 }
1632
1633 nh_pos = skb_network_header(skb) - skb->data;
1634 h_pos = skb_transport_header(skb) - skb->data;
1635
1636 /* convert Ethernet header to proper 802.11 header (based on
1637 * operation mode) */
1638 ethertype = (skb->data[12] << 8) | skb->data[13];
1639 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1640
1641 switch (sdata->vif.type) {
1642 case NL80211_IFTYPE_AP_VLAN:
1643 rcu_read_lock();
1644 sta = rcu_dereference(sdata->u.vlan.sta);
1645 if (sta) {
1646 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1647 /* RA TA DA SA */
1648 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1649 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1650 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1651 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1652 hdrlen = 30;
1653 sta_flags = get_sta_flags(sta);
1654 }
1655 rcu_read_unlock();
1656 if (sta)
1657 break;
1658 /* fall through */
1659 case NL80211_IFTYPE_AP:
1660 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1661 /* DA BSSID SA */
1662 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1663 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1664 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1665 hdrlen = 24;
1666 break;
1667 case NL80211_IFTYPE_WDS:
1668 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1669 /* RA TA DA SA */
1670 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1671 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1672 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1673 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1674 hdrlen = 30;
1675 break;
1676 #ifdef CONFIG_MAC80211_MESH
1677 case NL80211_IFTYPE_MESH_POINT:
1678 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1679 /* Do not send frames with mesh_ttl == 0 */
1680 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1681 ret = NETDEV_TX_OK;
1682 goto fail;
1683 }
1684
1685 if (compare_ether_addr(sdata->vif.addr,
1686 skb->data + ETH_ALEN) == 0) {
1687 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1688 skb->data, skb->data + ETH_ALEN);
1689 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1690 sdata, NULL, NULL, NULL);
1691 } else {
1692 /* packet from other interface */
1693 struct mesh_path *mppath;
1694 int is_mesh_mcast = 1;
1695 const u8 *mesh_da;
1696
1697 rcu_read_lock();
1698 if (is_multicast_ether_addr(skb->data))
1699 /* DA TA mSA AE:SA */
1700 mesh_da = skb->data;
1701 else {
1702 static const u8 bcast[ETH_ALEN] =
1703 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1704
1705 mppath = mpp_path_lookup(skb->data, sdata);
1706 if (mppath) {
1707 /* RA TA mDA mSA AE:DA SA */
1708 mesh_da = mppath->mpp;
1709 is_mesh_mcast = 0;
1710 } else {
1711 /* DA TA mSA AE:SA */
1712 mesh_da = bcast;
1713 }
1714 }
1715 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1716 mesh_da, sdata->vif.addr);
1717 rcu_read_unlock();
1718 if (is_mesh_mcast)
1719 meshhdrlen =
1720 ieee80211_new_mesh_header(&mesh_hdr,
1721 sdata,
1722 skb->data + ETH_ALEN,
1723 NULL,
1724 NULL);
1725 else
1726 meshhdrlen =
1727 ieee80211_new_mesh_header(&mesh_hdr,
1728 sdata,
1729 NULL,
1730 skb->data,
1731 skb->data + ETH_ALEN);
1732
1733 }
1734 break;
1735 #endif
1736 case NL80211_IFTYPE_STATION:
1737 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1738 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1739 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1740 /* RA TA DA SA */
1741 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1742 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1743 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1744 hdrlen = 30;
1745 } else {
1746 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1747 /* BSSID SA DA */
1748 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1749 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1750 hdrlen = 24;
1751 }
1752 break;
1753 case NL80211_IFTYPE_ADHOC:
1754 /* DA SA BSSID */
1755 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1756 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1757 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1758 hdrlen = 24;
1759 break;
1760 default:
1761 ret = NETDEV_TX_OK;
1762 goto fail;
1763 }
1764
1765 /*
1766 * There's no need to try to look up the destination
1767 * if it is a multicast address (which can only happen
1768 * in AP mode)
1769 */
1770 if (!is_multicast_ether_addr(hdr.addr1)) {
1771 rcu_read_lock();
1772 sta = sta_info_get(sdata, hdr.addr1);
1773 if (sta)
1774 sta_flags = get_sta_flags(sta);
1775 rcu_read_unlock();
1776 }
1777
1778 /* receiver and we are QoS enabled, use a QoS type frame */
1779 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1780 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1781 hdrlen += 2;
1782 }
1783
1784 /*
1785 * Drop unicast frames to unauthorised stations unless they are
1786 * EAPOL frames from the local station.
1787 */
1788 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1789 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1790 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1791 !(ethertype == ETH_P_PAE &&
1792 compare_ether_addr(sdata->vif.addr,
1793 skb->data + ETH_ALEN) == 0))) {
1794 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1795 if (net_ratelimit())
1796 printk(KERN_DEBUG "%s: dropped frame to %pM"
1797 " (unauthorized port)\n", dev->name,
1798 hdr.addr1);
1799 #endif
1800
1801 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1802
1803 ret = NETDEV_TX_OK;
1804 goto fail;
1805 }
1806
1807 hdr.frame_control = fc;
1808 hdr.duration_id = 0;
1809 hdr.seq_ctrl = 0;
1810
1811 skip_header_bytes = ETH_HLEN;
1812 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1813 encaps_data = bridge_tunnel_header;
1814 encaps_len = sizeof(bridge_tunnel_header);
1815 skip_header_bytes -= 2;
1816 } else if (ethertype >= 0x600) {
1817 encaps_data = rfc1042_header;
1818 encaps_len = sizeof(rfc1042_header);
1819 skip_header_bytes -= 2;
1820 } else {
1821 encaps_data = NULL;
1822 encaps_len = 0;
1823 }
1824
1825 skb_pull(skb, skip_header_bytes);
1826 nh_pos -= skip_header_bytes;
1827 h_pos -= skip_header_bytes;
1828
1829 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1830
1831 /*
1832 * So we need to modify the skb header and hence need a copy of
1833 * that. The head_need variable above doesn't, so far, include
1834 * the needed header space that we don't need right away. If we
1835 * can, then we don't reallocate right now but only after the
1836 * frame arrives at the master device (if it does...)
1837 *
1838 * If we cannot, however, then we will reallocate to include all
1839 * the ever needed space. Also, if we need to reallocate it anyway,
1840 * make it big enough for everything we may ever need.
1841 */
1842
1843 if (head_need > 0 || skb_cloned(skb)) {
1844 head_need += IEEE80211_ENCRYPT_HEADROOM;
1845 head_need += local->tx_headroom;
1846 head_need = max_t(int, 0, head_need);
1847 if (ieee80211_skb_resize(local, skb, head_need, true))
1848 goto fail;
1849 }
1850
1851 if (encaps_data) {
1852 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1853 nh_pos += encaps_len;
1854 h_pos += encaps_len;
1855 }
1856
1857 if (meshhdrlen > 0) {
1858 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1859 nh_pos += meshhdrlen;
1860 h_pos += meshhdrlen;
1861 }
1862
1863 if (ieee80211_is_data_qos(fc)) {
1864 __le16 *qos_control;
1865
1866 qos_control = (__le16*) skb_push(skb, 2);
1867 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1868 /*
1869 * Maybe we could actually set some fields here, for now just
1870 * initialise to zero to indicate no special operation.
1871 */
1872 *qos_control = 0;
1873 } else
1874 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1875
1876 nh_pos += hdrlen;
1877 h_pos += hdrlen;
1878
1879 dev->stats.tx_packets++;
1880 dev->stats.tx_bytes += skb->len;
1881
1882 /* Update skb pointers to various headers since this modified frame
1883 * is going to go through Linux networking code that may potentially
1884 * need things like pointer to IP header. */
1885 skb_set_mac_header(skb, 0);
1886 skb_set_network_header(skb, nh_pos);
1887 skb_set_transport_header(skb, h_pos);
1888
1889 memset(info, 0, sizeof(*info));
1890
1891 dev->trans_start = jiffies;
1892 ieee80211_xmit(sdata, skb);
1893
1894 return NETDEV_TX_OK;
1895
1896 fail:
1897 if (ret == NETDEV_TX_OK)
1898 dev_kfree_skb(skb);
1899
1900 return ret;
1901 }
1902
1903
1904 /*
1905 * ieee80211_clear_tx_pending may not be called in a context where
1906 * it is possible that it packets could come in again.
1907 */
1908 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1909 {
1910 int i;
1911
1912 for (i = 0; i < local->hw.queues; i++)
1913 skb_queue_purge(&local->pending[i]);
1914 }
1915
1916 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1917 struct sk_buff *skb)
1918 {
1919 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1920 struct ieee80211_sub_if_data *sdata;
1921 struct sta_info *sta;
1922 struct ieee80211_hdr *hdr;
1923 int ret;
1924 bool result = true;
1925
1926 sdata = vif_to_sdata(info->control.vif);
1927
1928 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1929 ieee80211_tx(sdata, skb, true);
1930 } else {
1931 hdr = (struct ieee80211_hdr *)skb->data;
1932 sta = sta_info_get(sdata, hdr->addr1);
1933
1934 ret = __ieee80211_tx(local, &skb, sta, true);
1935 if (ret != IEEE80211_TX_OK)
1936 result = false;
1937 }
1938
1939 return result;
1940 }
1941
1942 /*
1943 * Transmit all pending packets. Called from tasklet.
1944 */
1945 void ieee80211_tx_pending(unsigned long data)
1946 {
1947 struct ieee80211_local *local = (struct ieee80211_local *)data;
1948 unsigned long flags;
1949 int i;
1950 bool txok;
1951
1952 rcu_read_lock();
1953
1954 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1955 for (i = 0; i < local->hw.queues; i++) {
1956 /*
1957 * If queue is stopped by something other than due to pending
1958 * frames, or we have no pending frames, proceed to next queue.
1959 */
1960 if (local->queue_stop_reasons[i] ||
1961 skb_queue_empty(&local->pending[i]))
1962 continue;
1963
1964 while (!skb_queue_empty(&local->pending[i])) {
1965 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
1966 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1967 struct ieee80211_sub_if_data *sdata;
1968
1969 if (WARN_ON(!info->control.vif)) {
1970 kfree_skb(skb);
1971 continue;
1972 }
1973
1974 sdata = vif_to_sdata(info->control.vif);
1975 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1976 flags);
1977
1978 txok = ieee80211_tx_pending_skb(local, skb);
1979 if (!txok)
1980 __skb_queue_head(&local->pending[i], skb);
1981 spin_lock_irqsave(&local->queue_stop_reason_lock,
1982 flags);
1983 if (!txok)
1984 break;
1985 }
1986 }
1987 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1988
1989 rcu_read_unlock();
1990 }
1991
1992 /* functions for drivers to get certain frames */
1993
1994 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1995 struct sk_buff *skb,
1996 struct beacon_data *beacon)
1997 {
1998 u8 *pos, *tim;
1999 int aid0 = 0;
2000 int i, have_bits = 0, n1, n2;
2001
2002 /* Generate bitmap for TIM only if there are any STAs in power save
2003 * mode. */
2004 if (atomic_read(&bss->num_sta_ps) > 0)
2005 /* in the hope that this is faster than
2006 * checking byte-for-byte */
2007 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2008 IEEE80211_MAX_AID+1);
2009
2010 if (bss->dtim_count == 0)
2011 bss->dtim_count = beacon->dtim_period - 1;
2012 else
2013 bss->dtim_count--;
2014
2015 tim = pos = (u8 *) skb_put(skb, 6);
2016 *pos++ = WLAN_EID_TIM;
2017 *pos++ = 4;
2018 *pos++ = bss->dtim_count;
2019 *pos++ = beacon->dtim_period;
2020
2021 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2022 aid0 = 1;
2023
2024 if (have_bits) {
2025 /* Find largest even number N1 so that bits numbered 1 through
2026 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2027 * (N2 + 1) x 8 through 2007 are 0. */
2028 n1 = 0;
2029 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2030 if (bss->tim[i]) {
2031 n1 = i & 0xfe;
2032 break;
2033 }
2034 }
2035 n2 = n1;
2036 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2037 if (bss->tim[i]) {
2038 n2 = i;
2039 break;
2040 }
2041 }
2042
2043 /* Bitmap control */
2044 *pos++ = n1 | aid0;
2045 /* Part Virt Bitmap */
2046 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2047
2048 tim[1] = n2 - n1 + 4;
2049 skb_put(skb, n2 - n1);
2050 } else {
2051 *pos++ = aid0; /* Bitmap control */
2052 *pos++ = 0; /* Part Virt Bitmap */
2053 }
2054 }
2055
2056 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2057 struct ieee80211_vif *vif,
2058 u16 *tim_offset, u16 *tim_length)
2059 {
2060 struct ieee80211_local *local = hw_to_local(hw);
2061 struct sk_buff *skb = NULL;
2062 struct ieee80211_tx_info *info;
2063 struct ieee80211_sub_if_data *sdata = NULL;
2064 struct ieee80211_if_ap *ap = NULL;
2065 struct beacon_data *beacon;
2066 struct ieee80211_supported_band *sband;
2067 enum ieee80211_band band = local->hw.conf.channel->band;
2068 struct ieee80211_tx_rate_control txrc;
2069
2070 sband = local->hw.wiphy->bands[band];
2071
2072 rcu_read_lock();
2073
2074 sdata = vif_to_sdata(vif);
2075
2076 if (tim_offset)
2077 *tim_offset = 0;
2078 if (tim_length)
2079 *tim_length = 0;
2080
2081 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2082 ap = &sdata->u.ap;
2083 beacon = rcu_dereference(ap->beacon);
2084 if (ap && beacon) {
2085 /*
2086 * headroom, head length,
2087 * tail length and maximum TIM length
2088 */
2089 skb = dev_alloc_skb(local->tx_headroom +
2090 beacon->head_len +
2091 beacon->tail_len + 256);
2092 if (!skb)
2093 goto out;
2094
2095 skb_reserve(skb, local->tx_headroom);
2096 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2097 beacon->head_len);
2098
2099 /*
2100 * Not very nice, but we want to allow the driver to call
2101 * ieee80211_beacon_get() as a response to the set_tim()
2102 * callback. That, however, is already invoked under the
2103 * sta_lock to guarantee consistent and race-free update
2104 * of the tim bitmap in mac80211 and the driver.
2105 */
2106 if (local->tim_in_locked_section) {
2107 ieee80211_beacon_add_tim(ap, skb, beacon);
2108 } else {
2109 unsigned long flags;
2110
2111 spin_lock_irqsave(&local->sta_lock, flags);
2112 ieee80211_beacon_add_tim(ap, skb, beacon);
2113 spin_unlock_irqrestore(&local->sta_lock, flags);
2114 }
2115
2116 if (tim_offset)
2117 *tim_offset = beacon->head_len;
2118 if (tim_length)
2119 *tim_length = skb->len - beacon->head_len;
2120
2121 if (beacon->tail)
2122 memcpy(skb_put(skb, beacon->tail_len),
2123 beacon->tail, beacon->tail_len);
2124 } else
2125 goto out;
2126 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2127 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2128 struct ieee80211_hdr *hdr;
2129 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2130
2131 if (!presp)
2132 goto out;
2133
2134 skb = skb_copy(presp, GFP_ATOMIC);
2135 if (!skb)
2136 goto out;
2137
2138 hdr = (struct ieee80211_hdr *) skb->data;
2139 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2140 IEEE80211_STYPE_BEACON);
2141 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2142 struct ieee80211_mgmt *mgmt;
2143 u8 *pos;
2144
2145 /* headroom, head length, tail length and maximum TIM length */
2146 skb = dev_alloc_skb(local->tx_headroom + 400);
2147 if (!skb)
2148 goto out;
2149
2150 skb_reserve(skb, local->hw.extra_tx_headroom);
2151 mgmt = (struct ieee80211_mgmt *)
2152 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2153 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2154 mgmt->frame_control =
2155 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2156 memset(mgmt->da, 0xff, ETH_ALEN);
2157 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2158 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2159 mgmt->u.beacon.beacon_int =
2160 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2161 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2162
2163 pos = skb_put(skb, 2);
2164 *pos++ = WLAN_EID_SSID;
2165 *pos++ = 0x0;
2166
2167 mesh_mgmt_ies_add(skb, sdata);
2168 } else {
2169 WARN_ON(1);
2170 goto out;
2171 }
2172
2173 info = IEEE80211_SKB_CB(skb);
2174
2175 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2176 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2177 info->band = band;
2178
2179 memset(&txrc, 0, sizeof(txrc));
2180 txrc.hw = hw;
2181 txrc.sband = sband;
2182 txrc.bss_conf = &sdata->vif.bss_conf;
2183 txrc.skb = skb;
2184 txrc.reported_rate.idx = -1;
2185 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2186 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2187 txrc.max_rate_idx = -1;
2188 else
2189 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2190 txrc.ap = true;
2191 rate_control_get_rate(sdata, NULL, &txrc);
2192
2193 info->control.vif = vif;
2194
2195 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2196 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2197 out:
2198 rcu_read_unlock();
2199 return skb;
2200 }
2201 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2202
2203 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2204 struct ieee80211_vif *vif)
2205 {
2206 struct ieee80211_sub_if_data *sdata;
2207 struct ieee80211_if_managed *ifmgd;
2208 struct ieee80211_pspoll *pspoll;
2209 struct ieee80211_local *local;
2210 struct sk_buff *skb;
2211
2212 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2213 return NULL;
2214
2215 sdata = vif_to_sdata(vif);
2216 ifmgd = &sdata->u.mgd;
2217 local = sdata->local;
2218
2219 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2220 if (!skb) {
2221 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2222 "pspoll template\n", sdata->name);
2223 return NULL;
2224 }
2225 skb_reserve(skb, local->hw.extra_tx_headroom);
2226
2227 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2228 memset(pspoll, 0, sizeof(*pspoll));
2229 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2230 IEEE80211_STYPE_PSPOLL);
2231 pspoll->aid = cpu_to_le16(ifmgd->aid);
2232
2233 /* aid in PS-Poll has its two MSBs each set to 1 */
2234 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2235
2236 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2237 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2238
2239 return skb;
2240 }
2241 EXPORT_SYMBOL(ieee80211_pspoll_get);
2242
2243 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2244 struct ieee80211_vif *vif)
2245 {
2246 struct ieee80211_hdr_3addr *nullfunc;
2247 struct ieee80211_sub_if_data *sdata;
2248 struct ieee80211_if_managed *ifmgd;
2249 struct ieee80211_local *local;
2250 struct sk_buff *skb;
2251
2252 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2253 return NULL;
2254
2255 sdata = vif_to_sdata(vif);
2256 ifmgd = &sdata->u.mgd;
2257 local = sdata->local;
2258
2259 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2260 if (!skb) {
2261 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2262 "template\n", sdata->name);
2263 return NULL;
2264 }
2265 skb_reserve(skb, local->hw.extra_tx_headroom);
2266
2267 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2268 sizeof(*nullfunc));
2269 memset(nullfunc, 0, sizeof(*nullfunc));
2270 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2271 IEEE80211_STYPE_NULLFUNC |
2272 IEEE80211_FCTL_TODS);
2273 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2274 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2275 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2276
2277 return skb;
2278 }
2279 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2280
2281 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2282 const void *frame, size_t frame_len,
2283 const struct ieee80211_tx_info *frame_txctl,
2284 struct ieee80211_rts *rts)
2285 {
2286 const struct ieee80211_hdr *hdr = frame;
2287
2288 rts->frame_control =
2289 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2290 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2291 frame_txctl);
2292 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2293 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2294 }
2295 EXPORT_SYMBOL(ieee80211_rts_get);
2296
2297 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2298 const void *frame, size_t frame_len,
2299 const struct ieee80211_tx_info *frame_txctl,
2300 struct ieee80211_cts *cts)
2301 {
2302 const struct ieee80211_hdr *hdr = frame;
2303
2304 cts->frame_control =
2305 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2306 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2307 frame_len, frame_txctl);
2308 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2309 }
2310 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2311
2312 struct sk_buff *
2313 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2314 struct ieee80211_vif *vif)
2315 {
2316 struct ieee80211_local *local = hw_to_local(hw);
2317 struct sk_buff *skb = NULL;
2318 struct sta_info *sta;
2319 struct ieee80211_tx_data tx;
2320 struct ieee80211_sub_if_data *sdata;
2321 struct ieee80211_if_ap *bss = NULL;
2322 struct beacon_data *beacon;
2323 struct ieee80211_tx_info *info;
2324
2325 sdata = vif_to_sdata(vif);
2326 bss = &sdata->u.ap;
2327
2328 rcu_read_lock();
2329 beacon = rcu_dereference(bss->beacon);
2330
2331 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2332 goto out;
2333
2334 if (bss->dtim_count != 0)
2335 goto out; /* send buffered bc/mc only after DTIM beacon */
2336
2337 while (1) {
2338 skb = skb_dequeue(&bss->ps_bc_buf);
2339 if (!skb)
2340 goto out;
2341 local->total_ps_buffered--;
2342
2343 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2344 struct ieee80211_hdr *hdr =
2345 (struct ieee80211_hdr *) skb->data;
2346 /* more buffered multicast/broadcast frames ==> set
2347 * MoreData flag in IEEE 802.11 header to inform PS
2348 * STAs */
2349 hdr->frame_control |=
2350 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2351 }
2352
2353 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2354 break;
2355 dev_kfree_skb_any(skb);
2356 }
2357
2358 info = IEEE80211_SKB_CB(skb);
2359
2360 sta = tx.sta;
2361 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2362 tx.channel = local->hw.conf.channel;
2363 info->band = tx.channel->band;
2364
2365 if (invoke_tx_handlers(&tx))
2366 skb = NULL;
2367 out:
2368 rcu_read_unlock();
2369
2370 return skb;
2371 }
2372 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2373
2374 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2375 {
2376 skb_set_mac_header(skb, 0);
2377 skb_set_network_header(skb, 0);
2378 skb_set_transport_header(skb, 0);
2379
2380 /* send all internal mgmt frames on VO */
2381 skb_set_queue_mapping(skb, 0);
2382
2383 /*
2384 * The other path calling ieee80211_xmit is from the tasklet,
2385 * and while we can handle concurrent transmissions locking
2386 * requirements are that we do not come into tx with bhs on.
2387 */
2388 local_bh_disable();
2389 ieee80211_xmit(sdata, skb);
2390 local_bh_enable();
2391 }