]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/tx.c
wireless: fix a few sparse warnings
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 #define IEEE80211_TX_OK 0
36 #define IEEE80211_TX_AGAIN 1
37 #define IEEE80211_TX_FRAG_AGAIN 2
38
39 /* misc utils */
40
41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
42 int next_frag_len)
43 {
44 int rate, mrate, erp, dur, i;
45 struct ieee80211_rate *txrate;
46 struct ieee80211_local *local = tx->local;
47 struct ieee80211_supported_band *sband;
48 struct ieee80211_hdr *hdr;
49 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
50
51 /* assume HW handles this */
52 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
53 return 0;
54
55 /* uh huh? */
56 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
57 return 0;
58
59 sband = local->hw.wiphy->bands[tx->channel->band];
60 txrate = &sband->bitrates[info->control.rates[0].idx];
61
62 erp = txrate->flags & IEEE80211_RATE_ERP_G;
63
64 /*
65 * data and mgmt (except PS Poll):
66 * - during CFP: 32768
67 * - during contention period:
68 * if addr1 is group address: 0
69 * if more fragments = 0 and addr1 is individual address: time to
70 * transmit one ACK plus SIFS
71 * if more fragments = 1 and addr1 is individual address: time to
72 * transmit next fragment plus 2 x ACK plus 3 x SIFS
73 *
74 * IEEE 802.11, 9.6:
75 * - control response frame (CTS or ACK) shall be transmitted using the
76 * same rate as the immediately previous frame in the frame exchange
77 * sequence, if this rate belongs to the PHY mandatory rates, or else
78 * at the highest possible rate belonging to the PHY rates in the
79 * BSSBasicRateSet
80 */
81 hdr = (struct ieee80211_hdr *)tx->skb->data;
82 if (ieee80211_is_ctl(hdr->frame_control)) {
83 /* TODO: These control frames are not currently sent by
84 * mac80211, but should they be implemented, this function
85 * needs to be updated to support duration field calculation.
86 *
87 * RTS: time needed to transmit pending data/mgmt frame plus
88 * one CTS frame plus one ACK frame plus 3 x SIFS
89 * CTS: duration of immediately previous RTS minus time
90 * required to transmit CTS and its SIFS
91 * ACK: 0 if immediately previous directed data/mgmt had
92 * more=0, with more=1 duration in ACK frame is duration
93 * from previous frame minus time needed to transmit ACK
94 * and its SIFS
95 * PS Poll: BIT(15) | BIT(14) | aid
96 */
97 return 0;
98 }
99
100 /* data/mgmt */
101 if (0 /* FIX: data/mgmt during CFP */)
102 return cpu_to_le16(32768);
103
104 if (group_addr) /* Group address as the destination - no ACK */
105 return 0;
106
107 /* Individual destination address:
108 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
109 * CTS and ACK frames shall be transmitted using the highest rate in
110 * basic rate set that is less than or equal to the rate of the
111 * immediately previous frame and that is using the same modulation
112 * (CCK or OFDM). If no basic rate set matches with these requirements,
113 * the highest mandatory rate of the PHY that is less than or equal to
114 * the rate of the previous frame is used.
115 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
116 */
117 rate = -1;
118 /* use lowest available if everything fails */
119 mrate = sband->bitrates[0].bitrate;
120 for (i = 0; i < sband->n_bitrates; i++) {
121 struct ieee80211_rate *r = &sband->bitrates[i];
122
123 if (r->bitrate > txrate->bitrate)
124 break;
125
126 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
127 rate = r->bitrate;
128
129 switch (sband->band) {
130 case IEEE80211_BAND_2GHZ: {
131 u32 flag;
132 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
133 flag = IEEE80211_RATE_MANDATORY_G;
134 else
135 flag = IEEE80211_RATE_MANDATORY_B;
136 if (r->flags & flag)
137 mrate = r->bitrate;
138 break;
139 }
140 case IEEE80211_BAND_5GHZ:
141 if (r->flags & IEEE80211_RATE_MANDATORY_A)
142 mrate = r->bitrate;
143 break;
144 case IEEE80211_NUM_BANDS:
145 WARN_ON(1);
146 break;
147 }
148 }
149 if (rate == -1) {
150 /* No matching basic rate found; use highest suitable mandatory
151 * PHY rate */
152 rate = mrate;
153 }
154
155 /* Time needed to transmit ACK
156 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
157 * to closest integer */
158
159 dur = ieee80211_frame_duration(local, 10, rate, erp,
160 tx->sdata->vif.bss_conf.use_short_preamble);
161
162 if (next_frag_len) {
163 /* Frame is fragmented: duration increases with time needed to
164 * transmit next fragment plus ACK and 2 x SIFS. */
165 dur *= 2; /* ACK + SIFS */
166 /* next fragment */
167 dur += ieee80211_frame_duration(local, next_frag_len,
168 txrate->bitrate, erp,
169 tx->sdata->vif.bss_conf.use_short_preamble);
170 }
171
172 return cpu_to_le16(dur);
173 }
174
175 static int inline is_ieee80211_device(struct ieee80211_local *local,
176 struct net_device *dev)
177 {
178 return local == wdev_priv(dev->ieee80211_ptr);
179 }
180
181 /* tx handlers */
182
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
185 {
186
187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
189 u32 sta_flags;
190
191 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
192 return TX_CONTINUE;
193
194 if (unlikely(tx->local->sw_scanning) &&
195 !ieee80211_is_probe_req(hdr->frame_control))
196 return TX_DROP;
197
198 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
199 return TX_CONTINUE;
200
201 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
202 return TX_CONTINUE;
203
204 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
205
206 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
207 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
208 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
209 ieee80211_is_data(hdr->frame_control))) {
210 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
211 printk(KERN_DEBUG "%s: dropped data frame to not "
212 "associated station %pM\n",
213 tx->dev->name, hdr->addr1);
214 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
215 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
216 return TX_DROP;
217 }
218 } else {
219 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
220 tx->local->num_sta == 0 &&
221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
222 /*
223 * No associated STAs - no need to send multicast
224 * frames.
225 */
226 return TX_DROP;
227 }
228 return TX_CONTINUE;
229 }
230
231 return TX_CONTINUE;
232 }
233
234 /* This function is called whenever the AP is about to exceed the maximum limit
235 * of buffered frames for power saving STAs. This situation should not really
236 * happen often during normal operation, so dropping the oldest buffered packet
237 * from each queue should be OK to make some room for new frames. */
238 static void purge_old_ps_buffers(struct ieee80211_local *local)
239 {
240 int total = 0, purged = 0;
241 struct sk_buff *skb;
242 struct ieee80211_sub_if_data *sdata;
243 struct sta_info *sta;
244
245 /*
246 * virtual interfaces are protected by RCU
247 */
248 rcu_read_lock();
249
250 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
251 struct ieee80211_if_ap *ap;
252 if (sdata->vif.type != NL80211_IFTYPE_AP)
253 continue;
254 ap = &sdata->u.ap;
255 skb = skb_dequeue(&ap->ps_bc_buf);
256 if (skb) {
257 purged++;
258 dev_kfree_skb(skb);
259 }
260 total += skb_queue_len(&ap->ps_bc_buf);
261 }
262
263 list_for_each_entry_rcu(sta, &local->sta_list, list) {
264 skb = skb_dequeue(&sta->ps_tx_buf);
265 if (skb) {
266 purged++;
267 dev_kfree_skb(skb);
268 }
269 total += skb_queue_len(&sta->ps_tx_buf);
270 }
271
272 rcu_read_unlock();
273
274 local->total_ps_buffered = total;
275 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
276 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
277 wiphy_name(local->hw.wiphy), purged);
278 #endif
279 }
280
281 static ieee80211_tx_result
282 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
283 {
284 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
285 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
286
287 /*
288 * broadcast/multicast frame
289 *
290 * If any of the associated stations is in power save mode,
291 * the frame is buffered to be sent after DTIM beacon frame.
292 * This is done either by the hardware or us.
293 */
294
295 /* powersaving STAs only in AP/VLAN mode */
296 if (!tx->sdata->bss)
297 return TX_CONTINUE;
298
299 /* no buffering for ordered frames */
300 if (ieee80211_has_order(hdr->frame_control))
301 return TX_CONTINUE;
302
303 /* no stations in PS mode */
304 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
305 return TX_CONTINUE;
306
307 /* buffered in mac80211 */
308 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
309 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
310 purge_old_ps_buffers(tx->local);
311 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
312 AP_MAX_BC_BUFFER) {
313 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
314 if (net_ratelimit()) {
315 printk(KERN_DEBUG "%s: BC TX buffer full - "
316 "dropping the oldest frame\n",
317 tx->dev->name);
318 }
319 #endif
320 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
321 } else
322 tx->local->total_ps_buffered++;
323 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
324 return TX_QUEUED;
325 }
326
327 /* buffered in hardware */
328 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
329
330 return TX_CONTINUE;
331 }
332
333 static ieee80211_tx_result
334 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
335 {
336 struct sta_info *sta = tx->sta;
337 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
338 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
339 u32 staflags;
340
341 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
342 return TX_CONTINUE;
343
344 staflags = get_sta_flags(sta);
345
346 if (unlikely((staflags & WLAN_STA_PS) &&
347 !(staflags & WLAN_STA_PSPOLL))) {
348 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
349 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
350 "before %d)\n",
351 sta->sta.addr, sta->sta.aid,
352 skb_queue_len(&sta->ps_tx_buf));
353 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
354 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
355 purge_old_ps_buffers(tx->local);
356 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
357 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
358 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
359 if (net_ratelimit()) {
360 printk(KERN_DEBUG "%s: STA %pM TX "
361 "buffer full - dropping oldest frame\n",
362 tx->dev->name, sta->sta.addr);
363 }
364 #endif
365 dev_kfree_skb(old);
366 } else
367 tx->local->total_ps_buffered++;
368
369 /* Queue frame to be sent after STA sends an PS Poll frame */
370 if (skb_queue_empty(&sta->ps_tx_buf))
371 sta_info_set_tim_bit(sta);
372
373 info->control.jiffies = jiffies;
374 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
375 return TX_QUEUED;
376 }
377 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
378 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
379 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
380 "set -> send frame\n", tx->dev->name,
381 sta->sta.addr);
382 }
383 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
384 clear_sta_flags(sta, WLAN_STA_PSPOLL);
385
386 return TX_CONTINUE;
387 }
388
389 static ieee80211_tx_result debug_noinline
390 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
391 {
392 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
393 return TX_CONTINUE;
394
395 if (tx->flags & IEEE80211_TX_UNICAST)
396 return ieee80211_tx_h_unicast_ps_buf(tx);
397 else
398 return ieee80211_tx_h_multicast_ps_buf(tx);
399 }
400
401 static ieee80211_tx_result debug_noinline
402 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
403 {
404 struct ieee80211_key *key;
405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
406 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
407
408 if (unlikely(tx->skb->do_not_encrypt))
409 tx->key = NULL;
410 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
411 tx->key = key;
412 else if ((key = rcu_dereference(tx->sdata->default_key)))
413 tx->key = key;
414 else if (tx->sdata->drop_unencrypted &&
415 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
416 !(info->flags & IEEE80211_TX_CTL_INJECTED)) {
417 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
418 return TX_DROP;
419 } else
420 tx->key = NULL;
421
422 if (tx->key) {
423 tx->key->tx_rx_count++;
424 /* TODO: add threshold stuff again */
425
426 switch (tx->key->conf.alg) {
427 case ALG_WEP:
428 if (ieee80211_is_auth(hdr->frame_control))
429 break;
430 case ALG_TKIP:
431 case ALG_CCMP:
432 if (!ieee80211_is_data_present(hdr->frame_control))
433 tx->key = NULL;
434 break;
435 }
436 }
437
438 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
439 tx->skb->do_not_encrypt = 1;
440
441 return TX_CONTINUE;
442 }
443
444 static ieee80211_tx_result debug_noinline
445 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
446 {
447 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
448 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
449 struct ieee80211_supported_band *sband;
450 struct ieee80211_rate *rate;
451 int i, len;
452 bool inval = false, rts = false, short_preamble = false;
453 struct ieee80211_tx_rate_control txrc;
454
455 memset(&txrc, 0, sizeof(txrc));
456
457 sband = tx->local->hw.wiphy->bands[tx->channel->band];
458
459 len = min_t(int, tx->skb->len + FCS_LEN,
460 tx->local->fragmentation_threshold);
461
462 /* set up the tx rate control struct we give the RC algo */
463 txrc.hw = local_to_hw(tx->local);
464 txrc.sband = sband;
465 txrc.bss_conf = &tx->sdata->vif.bss_conf;
466 txrc.skb = tx->skb;
467 txrc.reported_rate.idx = -1;
468 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
469
470 /* set up RTS protection if desired */
471 if (tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD &&
472 len > tx->local->rts_threshold) {
473 txrc.rts = rts = true;
474 }
475
476 /*
477 * Use short preamble if the BSS can handle it, but not for
478 * management frames unless we know the receiver can handle
479 * that -- the management frame might be to a station that
480 * just wants a probe response.
481 */
482 if (tx->sdata->vif.bss_conf.use_short_preamble &&
483 (ieee80211_is_data(hdr->frame_control) ||
484 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
485 txrc.short_preamble = short_preamble = true;
486
487
488 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
489
490 if (unlikely(info->control.rates[0].idx < 0))
491 return TX_DROP;
492
493 if (txrc.reported_rate.idx < 0)
494 txrc.reported_rate = info->control.rates[0];
495
496 if (tx->sta)
497 tx->sta->last_tx_rate = txrc.reported_rate;
498
499 if (unlikely(!info->control.rates[0].count))
500 info->control.rates[0].count = 1;
501
502 if (is_multicast_ether_addr(hdr->addr1)) {
503 /*
504 * XXX: verify the rate is in the basic rateset
505 */
506 return TX_CONTINUE;
507 }
508
509 /*
510 * set up the RTS/CTS rate as the fastest basic rate
511 * that is not faster than the data rate
512 *
513 * XXX: Should this check all retry rates?
514 */
515 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
516 s8 baserate = 0;
517
518 rate = &sband->bitrates[info->control.rates[0].idx];
519
520 for (i = 0; i < sband->n_bitrates; i++) {
521 /* must be a basic rate */
522 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
523 continue;
524 /* must not be faster than the data rate */
525 if (sband->bitrates[i].bitrate > rate->bitrate)
526 continue;
527 /* maximum */
528 if (sband->bitrates[baserate].bitrate <
529 sband->bitrates[i].bitrate)
530 baserate = i;
531 }
532
533 info->control.rts_cts_rate_idx = baserate;
534 }
535
536 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
537 /*
538 * make sure there's no valid rate following
539 * an invalid one, just in case drivers don't
540 * take the API seriously to stop at -1.
541 */
542 if (inval) {
543 info->control.rates[i].idx = -1;
544 continue;
545 }
546 if (info->control.rates[i].idx < 0) {
547 inval = true;
548 continue;
549 }
550
551 /*
552 * For now assume MCS is already set up correctly, this
553 * needs to be fixed.
554 */
555 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
556 WARN_ON(info->control.rates[i].idx > 76);
557 continue;
558 }
559
560 /* set up RTS protection if desired */
561 if (rts)
562 info->control.rates[i].flags |=
563 IEEE80211_TX_RC_USE_RTS_CTS;
564
565 /* RC is busted */
566 if (WARN_ON_ONCE(info->control.rates[i].idx >=
567 sband->n_bitrates)) {
568 info->control.rates[i].idx = -1;
569 continue;
570 }
571
572 rate = &sband->bitrates[info->control.rates[i].idx];
573
574 /* set up short preamble */
575 if (short_preamble &&
576 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
577 info->control.rates[i].flags |=
578 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
579
580 /* set up G protection */
581 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
582 rate->flags & IEEE80211_RATE_ERP_G)
583 info->control.rates[i].flags |=
584 IEEE80211_TX_RC_USE_CTS_PROTECT;
585 }
586
587 return TX_CONTINUE;
588 }
589
590 static ieee80211_tx_result debug_noinline
591 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
592 {
593 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
594
595 if (tx->sta)
596 info->control.sta = &tx->sta->sta;
597
598 return TX_CONTINUE;
599 }
600
601 static ieee80211_tx_result debug_noinline
602 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
603 {
604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
605 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
606 u16 *seq;
607 u8 *qc;
608 int tid;
609
610 /*
611 * Packet injection may want to control the sequence
612 * number, if we have no matching interface then we
613 * neither assign one ourselves nor ask the driver to.
614 */
615 if (unlikely(!info->control.vif))
616 return TX_CONTINUE;
617
618 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
619 return TX_CONTINUE;
620
621 if (ieee80211_hdrlen(hdr->frame_control) < 24)
622 return TX_CONTINUE;
623
624 /*
625 * Anything but QoS data that has a sequence number field
626 * (is long enough) gets a sequence number from the global
627 * counter.
628 */
629 if (!ieee80211_is_data_qos(hdr->frame_control)) {
630 /* driver should assign sequence number */
631 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
632 /* for pure STA mode without beacons, we can do it */
633 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
634 tx->sdata->sequence_number += 0x10;
635 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
636 return TX_CONTINUE;
637 }
638
639 /*
640 * This should be true for injected/management frames only, for
641 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
642 * above since they are not QoS-data frames.
643 */
644 if (!tx->sta)
645 return TX_CONTINUE;
646
647 /* include per-STA, per-TID sequence counter */
648
649 qc = ieee80211_get_qos_ctl(hdr);
650 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
651 seq = &tx->sta->tid_seq[tid];
652
653 hdr->seq_ctrl = cpu_to_le16(*seq);
654
655 /* Increase the sequence number. */
656 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
657
658 return TX_CONTINUE;
659 }
660
661 static ieee80211_tx_result debug_noinline
662 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
663 {
664 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
665 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
666 size_t hdrlen, per_fragm, num_fragm, payload_len, left;
667 struct sk_buff **frags, *first, *frag;
668 int i;
669 u16 seq;
670 u8 *pos;
671 int frag_threshold = tx->local->fragmentation_threshold;
672
673 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
674 return TX_CONTINUE;
675
676 /*
677 * Warn when submitting a fragmented A-MPDU frame and drop it.
678 * This scenario is handled in __ieee80211_tx_prepare but extra
679 * caution taken here as fragmented ampdu may cause Tx stop.
680 */
681 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
682 return TX_DROP;
683
684 first = tx->skb;
685
686 hdrlen = ieee80211_hdrlen(hdr->frame_control);
687 payload_len = first->len - hdrlen;
688 per_fragm = frag_threshold - hdrlen - FCS_LEN;
689 num_fragm = DIV_ROUND_UP(payload_len, per_fragm);
690
691 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
692 if (!frags)
693 goto fail;
694
695 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
696 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
697 pos = first->data + hdrlen + per_fragm;
698 left = payload_len - per_fragm;
699 for (i = 0; i < num_fragm - 1; i++) {
700 struct ieee80211_hdr *fhdr;
701 size_t copylen;
702
703 if (left <= 0)
704 goto fail;
705
706 /* reserve enough extra head and tail room for possible
707 * encryption */
708 frag = frags[i] =
709 dev_alloc_skb(tx->local->tx_headroom +
710 frag_threshold +
711 IEEE80211_ENCRYPT_HEADROOM +
712 IEEE80211_ENCRYPT_TAILROOM);
713 if (!frag)
714 goto fail;
715
716 /* Make sure that all fragments use the same priority so
717 * that they end up using the same TX queue */
718 frag->priority = first->priority;
719
720 skb_reserve(frag, tx->local->tx_headroom +
721 IEEE80211_ENCRYPT_HEADROOM);
722
723 /* copy TX information */
724 info = IEEE80211_SKB_CB(frag);
725 memcpy(info, first->cb, sizeof(frag->cb));
726
727 /* copy/fill in 802.11 header */
728 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
729 memcpy(fhdr, first->data, hdrlen);
730 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
731
732 if (i == num_fragm - 2) {
733 /* clear MOREFRAGS bit for the last fragment */
734 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
735 } else {
736 /*
737 * No multi-rate retries for fragmented frames, that
738 * would completely throw off the NAV at other STAs.
739 */
740 info->control.rates[1].idx = -1;
741 info->control.rates[2].idx = -1;
742 info->control.rates[3].idx = -1;
743 info->control.rates[4].idx = -1;
744 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
745 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
746 }
747
748 /* copy data */
749 copylen = left > per_fragm ? per_fragm : left;
750 memcpy(skb_put(frag, copylen), pos, copylen);
751
752 skb_copy_queue_mapping(frag, first);
753
754 frag->do_not_encrypt = first->do_not_encrypt;
755
756 pos += copylen;
757 left -= copylen;
758 }
759 skb_trim(first, hdrlen + per_fragm);
760
761 tx->num_extra_frag = num_fragm - 1;
762 tx->extra_frag = frags;
763
764 return TX_CONTINUE;
765
766 fail:
767 if (frags) {
768 for (i = 0; i < num_fragm - 1; i++)
769 if (frags[i])
770 dev_kfree_skb(frags[i]);
771 kfree(frags);
772 }
773 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
774 return TX_DROP;
775 }
776
777 static ieee80211_tx_result debug_noinline
778 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
779 {
780 if (!tx->key)
781 return TX_CONTINUE;
782
783 switch (tx->key->conf.alg) {
784 case ALG_WEP:
785 return ieee80211_crypto_wep_encrypt(tx);
786 case ALG_TKIP:
787 return ieee80211_crypto_tkip_encrypt(tx);
788 case ALG_CCMP:
789 return ieee80211_crypto_ccmp_encrypt(tx);
790 }
791
792 /* not reached */
793 WARN_ON(1);
794 return TX_DROP;
795 }
796
797 static ieee80211_tx_result debug_noinline
798 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
799 {
800 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
801 int next_len, i;
802 int group_addr = is_multicast_ether_addr(hdr->addr1);
803
804 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) {
805 hdr->duration_id = ieee80211_duration(tx, group_addr, 0);
806 return TX_CONTINUE;
807 }
808
809 hdr->duration_id = ieee80211_duration(tx, group_addr,
810 tx->extra_frag[0]->len);
811
812 for (i = 0; i < tx->num_extra_frag; i++) {
813 if (i + 1 < tx->num_extra_frag)
814 next_len = tx->extra_frag[i + 1]->len;
815 else
816 next_len = 0;
817
818 hdr = (struct ieee80211_hdr *)tx->extra_frag[i]->data;
819 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
820 }
821
822 return TX_CONTINUE;
823 }
824
825 static ieee80211_tx_result debug_noinline
826 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
827 {
828 int i;
829
830 if (!tx->sta)
831 return TX_CONTINUE;
832
833 tx->sta->tx_packets++;
834 tx->sta->tx_fragments++;
835 tx->sta->tx_bytes += tx->skb->len;
836 if (tx->extra_frag) {
837 tx->sta->tx_fragments += tx->num_extra_frag;
838 for (i = 0; i < tx->num_extra_frag; i++)
839 tx->sta->tx_bytes += tx->extra_frag[i]->len;
840 }
841
842 return TX_CONTINUE;
843 }
844
845
846 /* actual transmit path */
847
848 /*
849 * deal with packet injection down monitor interface
850 * with Radiotap Header -- only called for monitor mode interface
851 */
852 static ieee80211_tx_result
853 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
854 struct sk_buff *skb)
855 {
856 /*
857 * this is the moment to interpret and discard the radiotap header that
858 * must be at the start of the packet injected in Monitor mode
859 *
860 * Need to take some care with endian-ness since radiotap
861 * args are little-endian
862 */
863
864 struct ieee80211_radiotap_iterator iterator;
865 struct ieee80211_radiotap_header *rthdr =
866 (struct ieee80211_radiotap_header *) skb->data;
867 struct ieee80211_supported_band *sband;
868 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
869
870 sband = tx->local->hw.wiphy->bands[tx->channel->band];
871
872 skb->do_not_encrypt = 1;
873 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
874
875 /*
876 * for every radiotap entry that is present
877 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
878 * entries present, or -EINVAL on error)
879 */
880
881 while (!ret) {
882 ret = ieee80211_radiotap_iterator_next(&iterator);
883
884 if (ret)
885 continue;
886
887 /* see if this argument is something we can use */
888 switch (iterator.this_arg_index) {
889 /*
890 * You must take care when dereferencing iterator.this_arg
891 * for multibyte types... the pointer is not aligned. Use
892 * get_unaligned((type *)iterator.this_arg) to dereference
893 * iterator.this_arg for type "type" safely on all arches.
894 */
895 case IEEE80211_RADIOTAP_FLAGS:
896 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
897 /*
898 * this indicates that the skb we have been
899 * handed has the 32-bit FCS CRC at the end...
900 * we should react to that by snipping it off
901 * because it will be recomputed and added
902 * on transmission
903 */
904 if (skb->len < (iterator.max_length + FCS_LEN))
905 return TX_DROP;
906
907 skb_trim(skb, skb->len - FCS_LEN);
908 }
909 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
910 tx->skb->do_not_encrypt = 0;
911 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
912 tx->flags |= IEEE80211_TX_FRAGMENTED;
913 break;
914
915 /*
916 * Please update the file
917 * Documentation/networking/mac80211-injection.txt
918 * when parsing new fields here.
919 */
920
921 default:
922 break;
923 }
924 }
925
926 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
927 return TX_DROP;
928
929 /*
930 * remove the radiotap header
931 * iterator->max_length was sanity-checked against
932 * skb->len by iterator init
933 */
934 skb_pull(skb, iterator.max_length);
935
936 return TX_CONTINUE;
937 }
938
939 /*
940 * initialises @tx
941 */
942 static ieee80211_tx_result
943 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
944 struct sk_buff *skb,
945 struct net_device *dev)
946 {
947 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
948 struct ieee80211_hdr *hdr;
949 struct ieee80211_sub_if_data *sdata;
950 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
951
952 int hdrlen, tid;
953 u8 *qc, *state;
954
955 memset(tx, 0, sizeof(*tx));
956 tx->skb = skb;
957 tx->dev = dev; /* use original interface */
958 tx->local = local;
959 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
960 tx->channel = local->hw.conf.channel;
961 /*
962 * Set this flag (used below to indicate "automatic fragmentation"),
963 * it will be cleared/left by radiotap as desired.
964 */
965 tx->flags |= IEEE80211_TX_FRAGMENTED;
966
967 /* process and remove the injection radiotap header */
968 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
969 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
970 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
971 return TX_DROP;
972
973 /*
974 * __ieee80211_parse_tx_radiotap has now removed
975 * the radiotap header that was present and pre-filled
976 * 'tx' with tx control information.
977 */
978 }
979
980 hdr = (struct ieee80211_hdr *) skb->data;
981
982 tx->sta = sta_info_get(local, hdr->addr1);
983
984 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control)) {
985 qc = ieee80211_get_qos_ctl(hdr);
986 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
987
988 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
989 if (*state == HT_AGG_STATE_OPERATIONAL)
990 info->flags |= IEEE80211_TX_CTL_AMPDU;
991 }
992
993 if (is_multicast_ether_addr(hdr->addr1)) {
994 tx->flags &= ~IEEE80211_TX_UNICAST;
995 info->flags |= IEEE80211_TX_CTL_NO_ACK;
996 } else {
997 tx->flags |= IEEE80211_TX_UNICAST;
998 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
999 }
1000
1001 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1002 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1003 skb->len + FCS_LEN > local->fragmentation_threshold &&
1004 !local->ops->set_frag_threshold &&
1005 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1006 tx->flags |= IEEE80211_TX_FRAGMENTED;
1007 else
1008 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1009 }
1010
1011 if (!tx->sta)
1012 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1013 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1014 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1015
1016 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1017 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1018 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1019 tx->ethertype = (pos[0] << 8) | pos[1];
1020 }
1021 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1022
1023 return TX_CONTINUE;
1024 }
1025
1026 /*
1027 * NB: @tx is uninitialised when passed in here
1028 */
1029 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1030 struct ieee80211_tx_data *tx,
1031 struct sk_buff *skb)
1032 {
1033 struct net_device *dev;
1034
1035 dev = dev_get_by_index(&init_net, skb->iif);
1036 if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1037 dev_put(dev);
1038 dev = NULL;
1039 }
1040 if (unlikely(!dev))
1041 return -ENODEV;
1042 /* initialises tx with control */
1043 __ieee80211_tx_prepare(tx, skb, dev);
1044 dev_put(dev);
1045 return 0;
1046 }
1047
1048 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
1049 struct ieee80211_tx_data *tx)
1050 {
1051 struct ieee80211_tx_info *info;
1052 int ret, i;
1053
1054 if (skb) {
1055 if (netif_subqueue_stopped(local->mdev, skb))
1056 return IEEE80211_TX_AGAIN;
1057 info = IEEE80211_SKB_CB(skb);
1058
1059 ret = local->ops->tx(local_to_hw(local), skb);
1060 if (ret)
1061 return IEEE80211_TX_AGAIN;
1062 local->mdev->trans_start = jiffies;
1063 ieee80211_led_tx(local, 1);
1064 }
1065 if (tx->extra_frag) {
1066 for (i = 0; i < tx->num_extra_frag; i++) {
1067 if (!tx->extra_frag[i])
1068 continue;
1069 info = IEEE80211_SKB_CB(tx->extra_frag[i]);
1070 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1071 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1072 if (netif_subqueue_stopped(local->mdev,
1073 tx->extra_frag[i]))
1074 return IEEE80211_TX_FRAG_AGAIN;
1075
1076 ret = local->ops->tx(local_to_hw(local),
1077 tx->extra_frag[i]);
1078 if (ret)
1079 return IEEE80211_TX_FRAG_AGAIN;
1080 local->mdev->trans_start = jiffies;
1081 ieee80211_led_tx(local, 1);
1082 tx->extra_frag[i] = NULL;
1083 }
1084 kfree(tx->extra_frag);
1085 tx->extra_frag = NULL;
1086 }
1087 return IEEE80211_TX_OK;
1088 }
1089
1090 /*
1091 * Invoke TX handlers, return 0 on success and non-zero if the
1092 * frame was dropped or queued.
1093 */
1094 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1095 {
1096 struct sk_buff *skb = tx->skb;
1097 ieee80211_tx_result res = TX_DROP;
1098 int i;
1099
1100 #define CALL_TXH(txh) \
1101 res = txh(tx); \
1102 if (res != TX_CONTINUE) \
1103 goto txh_done;
1104
1105 CALL_TXH(ieee80211_tx_h_check_assoc)
1106 CALL_TXH(ieee80211_tx_h_ps_buf)
1107 CALL_TXH(ieee80211_tx_h_select_key)
1108 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1109 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1110 CALL_TXH(ieee80211_tx_h_misc)
1111 CALL_TXH(ieee80211_tx_h_sequence)
1112 CALL_TXH(ieee80211_tx_h_fragment)
1113 /* handlers after fragment must be aware of tx info fragmentation! */
1114 CALL_TXH(ieee80211_tx_h_encrypt)
1115 CALL_TXH(ieee80211_tx_h_calculate_duration)
1116 CALL_TXH(ieee80211_tx_h_stats)
1117 #undef CALL_TXH
1118
1119 txh_done:
1120 if (unlikely(res == TX_DROP)) {
1121 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1122 dev_kfree_skb(skb);
1123 for (i = 0; i < tx->num_extra_frag; i++)
1124 if (tx->extra_frag[i])
1125 dev_kfree_skb(tx->extra_frag[i]);
1126 kfree(tx->extra_frag);
1127 return -1;
1128 } else if (unlikely(res == TX_QUEUED)) {
1129 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1130 return -1;
1131 }
1132
1133 return 0;
1134 }
1135
1136 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb)
1137 {
1138 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1139 struct sta_info *sta;
1140 struct ieee80211_tx_data tx;
1141 ieee80211_tx_result res_prepare;
1142 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1143 int ret, i;
1144 u16 queue;
1145
1146 queue = skb_get_queue_mapping(skb);
1147
1148 WARN_ON(test_bit(queue, local->queues_pending));
1149
1150 if (unlikely(skb->len < 10)) {
1151 dev_kfree_skb(skb);
1152 return 0;
1153 }
1154
1155 rcu_read_lock();
1156
1157 /* initialises tx */
1158 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1159
1160 if (res_prepare == TX_DROP) {
1161 dev_kfree_skb(skb);
1162 rcu_read_unlock();
1163 return 0;
1164 }
1165
1166 sta = tx.sta;
1167 tx.channel = local->hw.conf.channel;
1168 info->band = tx.channel->band;
1169
1170 if (invoke_tx_handlers(&tx))
1171 goto out;
1172
1173 retry:
1174 ret = __ieee80211_tx(local, skb, &tx);
1175 if (ret) {
1176 struct ieee80211_tx_stored_packet *store;
1177
1178 /*
1179 * Since there are no fragmented frames on A-MPDU
1180 * queues, there's no reason for a driver to reject
1181 * a frame there, warn and drop it.
1182 */
1183 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1184 goto drop;
1185
1186 store = &local->pending_packet[queue];
1187
1188 if (ret == IEEE80211_TX_FRAG_AGAIN)
1189 skb = NULL;
1190
1191 set_bit(queue, local->queues_pending);
1192 smp_mb();
1193 /*
1194 * When the driver gets out of buffers during sending of
1195 * fragments and calls ieee80211_stop_queue, the netif
1196 * subqueue is stopped. There is, however, a small window
1197 * in which the PENDING bit is not yet set. If a buffer
1198 * gets available in that window (i.e. driver calls
1199 * ieee80211_wake_queue), we would end up with ieee80211_tx
1200 * called with the PENDING bit still set. Prevent this by
1201 * continuing transmitting here when that situation is
1202 * possible to have happened.
1203 */
1204 if (!__netif_subqueue_stopped(local->mdev, queue)) {
1205 clear_bit(queue, local->queues_pending);
1206 goto retry;
1207 }
1208 store->skb = skb;
1209 store->extra_frag = tx.extra_frag;
1210 store->num_extra_frag = tx.num_extra_frag;
1211 }
1212 out:
1213 rcu_read_unlock();
1214 return 0;
1215
1216 drop:
1217 if (skb)
1218 dev_kfree_skb(skb);
1219 for (i = 0; i < tx.num_extra_frag; i++)
1220 if (tx.extra_frag[i])
1221 dev_kfree_skb(tx.extra_frag[i]);
1222 kfree(tx.extra_frag);
1223 rcu_read_unlock();
1224 return 0;
1225 }
1226
1227 /* device xmit handlers */
1228
1229 static int ieee80211_skb_resize(struct ieee80211_local *local,
1230 struct sk_buff *skb,
1231 int head_need, bool may_encrypt)
1232 {
1233 int tail_need = 0;
1234
1235 /*
1236 * This could be optimised, devices that do full hardware
1237 * crypto (including TKIP MMIC) need no tailroom... But we
1238 * have no drivers for such devices currently.
1239 */
1240 if (may_encrypt) {
1241 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1242 tail_need -= skb_tailroom(skb);
1243 tail_need = max_t(int, tail_need, 0);
1244 }
1245
1246 if (head_need || tail_need) {
1247 /* Sorry. Can't account for this any more */
1248 skb_orphan(skb);
1249 }
1250
1251 if (skb_header_cloned(skb))
1252 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1253 else
1254 I802_DEBUG_INC(local->tx_expand_skb_head);
1255
1256 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1257 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1258 wiphy_name(local->hw.wiphy));
1259 return -ENOMEM;
1260 }
1261
1262 /* update truesize too */
1263 skb->truesize += head_need + tail_need;
1264
1265 return 0;
1266 }
1267
1268 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1269 {
1270 struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1271 struct ieee80211_local *local = mpriv->local;
1272 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1273 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1274 struct net_device *odev = NULL;
1275 struct ieee80211_sub_if_data *osdata;
1276 int headroom;
1277 bool may_encrypt;
1278 enum {
1279 NOT_MONITOR,
1280 FOUND_SDATA,
1281 UNKNOWN_ADDRESS,
1282 } monitor_iface = NOT_MONITOR;
1283 int ret;
1284
1285 if (skb->iif)
1286 odev = dev_get_by_index(&init_net, skb->iif);
1287 if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1288 dev_put(odev);
1289 odev = NULL;
1290 }
1291 if (unlikely(!odev)) {
1292 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1293 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1294 "originating device\n", dev->name);
1295 #endif
1296 dev_kfree_skb(skb);
1297 return 0;
1298 }
1299
1300 memset(info, 0, sizeof(*info));
1301
1302 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1303
1304 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1305
1306 if (ieee80211_vif_is_mesh(&osdata->vif) &&
1307 ieee80211_is_data(hdr->frame_control)) {
1308 if (is_multicast_ether_addr(hdr->addr3))
1309 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1310 else
1311 if (mesh_nexthop_lookup(skb, osdata))
1312 return 0;
1313 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1314 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1315 fwded_frames);
1316 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1317 struct ieee80211_sub_if_data *sdata;
1318 int hdrlen;
1319 u16 len_rthdr;
1320
1321 info->flags |= IEEE80211_TX_CTL_INJECTED;
1322 monitor_iface = UNKNOWN_ADDRESS;
1323
1324 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1325 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr;
1326 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1327
1328 /* check the header is complete in the frame */
1329 if (likely(skb->len >= len_rthdr + hdrlen)) {
1330 /*
1331 * We process outgoing injected frames that have a
1332 * local address we handle as though they are our
1333 * own frames.
1334 * This code here isn't entirely correct, the local
1335 * MAC address is not necessarily enough to find
1336 * the interface to use; for that proper VLAN/WDS
1337 * support we will need a different mechanism.
1338 */
1339
1340 rcu_read_lock();
1341 list_for_each_entry_rcu(sdata, &local->interfaces,
1342 list) {
1343 if (!netif_running(sdata->dev))
1344 continue;
1345 if (compare_ether_addr(sdata->dev->dev_addr,
1346 hdr->addr2)) {
1347 dev_hold(sdata->dev);
1348 dev_put(odev);
1349 osdata = sdata;
1350 odev = osdata->dev;
1351 skb->iif = sdata->dev->ifindex;
1352 monitor_iface = FOUND_SDATA;
1353 break;
1354 }
1355 }
1356 rcu_read_unlock();
1357 }
1358 }
1359
1360 may_encrypt = !skb->do_not_encrypt;
1361
1362 headroom = osdata->local->tx_headroom;
1363 if (may_encrypt)
1364 headroom += IEEE80211_ENCRYPT_HEADROOM;
1365 headroom -= skb_headroom(skb);
1366 headroom = max_t(int, 0, headroom);
1367
1368 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1369 dev_kfree_skb(skb);
1370 dev_put(odev);
1371 return 0;
1372 }
1373
1374 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1375 osdata = container_of(osdata->bss,
1376 struct ieee80211_sub_if_data,
1377 u.ap);
1378 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1379 info->control.vif = &osdata->vif;
1380 ret = ieee80211_tx(odev, skb);
1381 dev_put(odev);
1382
1383 return ret;
1384 }
1385
1386 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1387 struct net_device *dev)
1388 {
1389 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1390 struct ieee80211_radiotap_header *prthdr =
1391 (struct ieee80211_radiotap_header *)skb->data;
1392 u16 len_rthdr;
1393
1394 /* check for not even having the fixed radiotap header part */
1395 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1396 goto fail; /* too short to be possibly valid */
1397
1398 /* is it a header version we can trust to find length from? */
1399 if (unlikely(prthdr->it_version))
1400 goto fail; /* only version 0 is supported */
1401
1402 /* then there must be a radiotap header with a length we can use */
1403 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1404
1405 /* does the skb contain enough to deliver on the alleged length? */
1406 if (unlikely(skb->len < len_rthdr))
1407 goto fail; /* skb too short for claimed rt header extent */
1408
1409 skb->dev = local->mdev;
1410
1411 /* needed because we set skb device to master */
1412 skb->iif = dev->ifindex;
1413
1414 /* sometimes we do encrypt injected frames, will be fixed
1415 * up in radiotap parser if not wanted */
1416 skb->do_not_encrypt = 0;
1417
1418 /*
1419 * fix up the pointers accounting for the radiotap
1420 * header still being in there. We are being given
1421 * a precooked IEEE80211 header so no need for
1422 * normal processing
1423 */
1424 skb_set_mac_header(skb, len_rthdr);
1425 /*
1426 * these are just fixed to the end of the rt area since we
1427 * don't have any better information and at this point, nobody cares
1428 */
1429 skb_set_network_header(skb, len_rthdr);
1430 skb_set_transport_header(skb, len_rthdr);
1431
1432 /* pass the radiotap header up to the next stage intact */
1433 dev_queue_xmit(skb);
1434 return NETDEV_TX_OK;
1435
1436 fail:
1437 dev_kfree_skb(skb);
1438 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1439 }
1440
1441 /**
1442 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1443 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1444 * @skb: packet to be sent
1445 * @dev: incoming interface
1446 *
1447 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1448 * not be freed, and caller is responsible for either retrying later or freeing
1449 * skb).
1450 *
1451 * This function takes in an Ethernet header and encapsulates it with suitable
1452 * IEEE 802.11 header based on which interface the packet is coming in. The
1453 * encapsulated packet will then be passed to master interface, wlan#.11, for
1454 * transmission (through low-level driver).
1455 */
1456 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1457 struct net_device *dev)
1458 {
1459 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1460 struct ieee80211_local *local = sdata->local;
1461 int ret = 1, head_need;
1462 u16 ethertype, hdrlen, meshhdrlen = 0;
1463 __le16 fc;
1464 struct ieee80211_hdr hdr;
1465 struct ieee80211s_hdr mesh_hdr;
1466 const u8 *encaps_data;
1467 int encaps_len, skip_header_bytes;
1468 int nh_pos, h_pos;
1469 struct sta_info *sta;
1470 u32 sta_flags = 0;
1471
1472 if (unlikely(skb->len < ETH_HLEN)) {
1473 ret = 0;
1474 goto fail;
1475 }
1476
1477 nh_pos = skb_network_header(skb) - skb->data;
1478 h_pos = skb_transport_header(skb) - skb->data;
1479
1480 /* convert Ethernet header to proper 802.11 header (based on
1481 * operation mode) */
1482 ethertype = (skb->data[12] << 8) | skb->data[13];
1483 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1484
1485 switch (sdata->vif.type) {
1486 case NL80211_IFTYPE_AP:
1487 case NL80211_IFTYPE_AP_VLAN:
1488 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1489 /* DA BSSID SA */
1490 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1491 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1492 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1493 hdrlen = 24;
1494 break;
1495 case NL80211_IFTYPE_WDS:
1496 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1497 /* RA TA DA SA */
1498 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1499 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1500 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1501 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1502 hdrlen = 30;
1503 break;
1504 #ifdef CONFIG_MAC80211_MESH
1505 case NL80211_IFTYPE_MESH_POINT:
1506 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1507 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1508 /* Do not send frames with mesh_ttl == 0 */
1509 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1510 ret = 0;
1511 goto fail;
1512 }
1513 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1514
1515 if (compare_ether_addr(dev->dev_addr,
1516 skb->data + ETH_ALEN) == 0) {
1517 /* RA TA DA SA */
1518 memset(hdr.addr1, 0, ETH_ALEN);
1519 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1520 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1521 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1522 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1523 } else {
1524 /* packet from other interface */
1525 struct mesh_path *mppath;
1526
1527 memset(hdr.addr1, 0, ETH_ALEN);
1528 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1529 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1530
1531 if (is_multicast_ether_addr(skb->data))
1532 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1533 else {
1534 rcu_read_lock();
1535 mppath = mpp_path_lookup(skb->data, sdata);
1536 if (mppath)
1537 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1538 else
1539 memset(hdr.addr3, 0xff, ETH_ALEN);
1540 rcu_read_unlock();
1541 }
1542
1543 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1544 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1545 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1546 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1547 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1548 sdata->u.mesh.mesh_seqnum++;
1549 meshhdrlen = 18;
1550 }
1551 hdrlen = 30;
1552 break;
1553 #endif
1554 case NL80211_IFTYPE_STATION:
1555 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1556 /* BSSID SA DA */
1557 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
1558 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1559 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1560 hdrlen = 24;
1561 break;
1562 case NL80211_IFTYPE_ADHOC:
1563 /* DA SA BSSID */
1564 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1565 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1566 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
1567 hdrlen = 24;
1568 break;
1569 default:
1570 ret = 0;
1571 goto fail;
1572 }
1573
1574 /*
1575 * There's no need to try to look up the destination
1576 * if it is a multicast address (which can only happen
1577 * in AP mode)
1578 */
1579 if (!is_multicast_ether_addr(hdr.addr1)) {
1580 rcu_read_lock();
1581 sta = sta_info_get(local, hdr.addr1);
1582 if (sta)
1583 sta_flags = get_sta_flags(sta);
1584 rcu_read_unlock();
1585 }
1586
1587 /* receiver and we are QoS enabled, use a QoS type frame */
1588 if (sta_flags & WLAN_STA_WME &&
1589 ieee80211_num_regular_queues(&local->hw) >= 4) {
1590 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1591 hdrlen += 2;
1592 }
1593
1594 /*
1595 * Drop unicast frames to unauthorised stations unless they are
1596 * EAPOL frames from the local station.
1597 */
1598 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1599 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1600 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1601 !(ethertype == ETH_P_PAE &&
1602 compare_ether_addr(dev->dev_addr,
1603 skb->data + ETH_ALEN) == 0))) {
1604 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1605 if (net_ratelimit())
1606 printk(KERN_DEBUG "%s: dropped frame to %pM"
1607 " (unauthorized port)\n", dev->name,
1608 hdr.addr1);
1609 #endif
1610
1611 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1612
1613 ret = 0;
1614 goto fail;
1615 }
1616
1617 hdr.frame_control = fc;
1618 hdr.duration_id = 0;
1619 hdr.seq_ctrl = 0;
1620
1621 skip_header_bytes = ETH_HLEN;
1622 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1623 encaps_data = bridge_tunnel_header;
1624 encaps_len = sizeof(bridge_tunnel_header);
1625 skip_header_bytes -= 2;
1626 } else if (ethertype >= 0x600) {
1627 encaps_data = rfc1042_header;
1628 encaps_len = sizeof(rfc1042_header);
1629 skip_header_bytes -= 2;
1630 } else {
1631 encaps_data = NULL;
1632 encaps_len = 0;
1633 }
1634
1635 skb_pull(skb, skip_header_bytes);
1636 nh_pos -= skip_header_bytes;
1637 h_pos -= skip_header_bytes;
1638
1639 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1640
1641 /*
1642 * So we need to modify the skb header and hence need a copy of
1643 * that. The head_need variable above doesn't, so far, include
1644 * the needed header space that we don't need right away. If we
1645 * can, then we don't reallocate right now but only after the
1646 * frame arrives at the master device (if it does...)
1647 *
1648 * If we cannot, however, then we will reallocate to include all
1649 * the ever needed space. Also, if we need to reallocate it anyway,
1650 * make it big enough for everything we may ever need.
1651 */
1652
1653 if (head_need > 0 || skb_cloned(skb)) {
1654 head_need += IEEE80211_ENCRYPT_HEADROOM;
1655 head_need += local->tx_headroom;
1656 head_need = max_t(int, 0, head_need);
1657 if (ieee80211_skb_resize(local, skb, head_need, true))
1658 goto fail;
1659 }
1660
1661 if (encaps_data) {
1662 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1663 nh_pos += encaps_len;
1664 h_pos += encaps_len;
1665 }
1666
1667 if (meshhdrlen > 0) {
1668 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1669 nh_pos += meshhdrlen;
1670 h_pos += meshhdrlen;
1671 }
1672
1673 if (ieee80211_is_data_qos(fc)) {
1674 __le16 *qos_control;
1675
1676 qos_control = (__le16*) skb_push(skb, 2);
1677 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1678 /*
1679 * Maybe we could actually set some fields here, for now just
1680 * initialise to zero to indicate no special operation.
1681 */
1682 *qos_control = 0;
1683 } else
1684 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1685
1686 nh_pos += hdrlen;
1687 h_pos += hdrlen;
1688
1689 skb->iif = dev->ifindex;
1690
1691 skb->dev = local->mdev;
1692 dev->stats.tx_packets++;
1693 dev->stats.tx_bytes += skb->len;
1694
1695 /* Update skb pointers to various headers since this modified frame
1696 * is going to go through Linux networking code that may potentially
1697 * need things like pointer to IP header. */
1698 skb_set_mac_header(skb, 0);
1699 skb_set_network_header(skb, nh_pos);
1700 skb_set_transport_header(skb, h_pos);
1701
1702 dev->trans_start = jiffies;
1703 dev_queue_xmit(skb);
1704
1705 return 0;
1706
1707 fail:
1708 if (!ret)
1709 dev_kfree_skb(skb);
1710
1711 return ret;
1712 }
1713
1714
1715 /*
1716 * ieee80211_clear_tx_pending may not be called in a context where
1717 * it is possible that it packets could come in again.
1718 */
1719 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1720 {
1721 int i, j;
1722 struct ieee80211_tx_stored_packet *store;
1723
1724 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) {
1725 if (!test_bit(i, local->queues_pending))
1726 continue;
1727 store = &local->pending_packet[i];
1728 kfree_skb(store->skb);
1729 for (j = 0; j < store->num_extra_frag; j++)
1730 kfree_skb(store->extra_frag[j]);
1731 kfree(store->extra_frag);
1732 clear_bit(i, local->queues_pending);
1733 }
1734 }
1735
1736 /*
1737 * Transmit all pending packets. Called from tasklet, locks master device
1738 * TX lock so that no new packets can come in.
1739 */
1740 void ieee80211_tx_pending(unsigned long data)
1741 {
1742 struct ieee80211_local *local = (struct ieee80211_local *)data;
1743 struct net_device *dev = local->mdev;
1744 struct ieee80211_tx_stored_packet *store;
1745 struct ieee80211_tx_data tx;
1746 int i, ret;
1747
1748 netif_tx_lock_bh(dev);
1749 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) {
1750 /* Check that this queue is ok */
1751 if (__netif_subqueue_stopped(local->mdev, i) &&
1752 !test_bit(i, local->queues_pending_run))
1753 continue;
1754
1755 if (!test_bit(i, local->queues_pending)) {
1756 clear_bit(i, local->queues_pending_run);
1757 ieee80211_wake_queue(&local->hw, i);
1758 continue;
1759 }
1760
1761 clear_bit(i, local->queues_pending_run);
1762 netif_start_subqueue(local->mdev, i);
1763
1764 store = &local->pending_packet[i];
1765 tx.extra_frag = store->extra_frag;
1766 tx.num_extra_frag = store->num_extra_frag;
1767 tx.flags = 0;
1768 ret = __ieee80211_tx(local, store->skb, &tx);
1769 if (ret) {
1770 if (ret == IEEE80211_TX_FRAG_AGAIN)
1771 store->skb = NULL;
1772 } else {
1773 clear_bit(i, local->queues_pending);
1774 ieee80211_wake_queue(&local->hw, i);
1775 }
1776 }
1777 netif_tx_unlock_bh(dev);
1778 }
1779
1780 /* functions for drivers to get certain frames */
1781
1782 static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
1783 struct ieee80211_if_ap *bss,
1784 struct sk_buff *skb,
1785 struct beacon_data *beacon)
1786 {
1787 u8 *pos, *tim;
1788 int aid0 = 0;
1789 int i, have_bits = 0, n1, n2;
1790
1791 /* Generate bitmap for TIM only if there are any STAs in power save
1792 * mode. */
1793 if (atomic_read(&bss->num_sta_ps) > 0)
1794 /* in the hope that this is faster than
1795 * checking byte-for-byte */
1796 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1797 IEEE80211_MAX_AID+1);
1798
1799 if (bss->dtim_count == 0)
1800 bss->dtim_count = beacon->dtim_period - 1;
1801 else
1802 bss->dtim_count--;
1803
1804 tim = pos = (u8 *) skb_put(skb, 6);
1805 *pos++ = WLAN_EID_TIM;
1806 *pos++ = 4;
1807 *pos++ = bss->dtim_count;
1808 *pos++ = beacon->dtim_period;
1809
1810 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1811 aid0 = 1;
1812
1813 if (have_bits) {
1814 /* Find largest even number N1 so that bits numbered 1 through
1815 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1816 * (N2 + 1) x 8 through 2007 are 0. */
1817 n1 = 0;
1818 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1819 if (bss->tim[i]) {
1820 n1 = i & 0xfe;
1821 break;
1822 }
1823 }
1824 n2 = n1;
1825 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1826 if (bss->tim[i]) {
1827 n2 = i;
1828 break;
1829 }
1830 }
1831
1832 /* Bitmap control */
1833 *pos++ = n1 | aid0;
1834 /* Part Virt Bitmap */
1835 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1836
1837 tim[1] = n2 - n1 + 4;
1838 skb_put(skb, n2 - n1);
1839 } else {
1840 *pos++ = aid0; /* Bitmap control */
1841 *pos++ = 0; /* Part Virt Bitmap */
1842 }
1843 }
1844
1845 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1846 struct ieee80211_vif *vif)
1847 {
1848 struct ieee80211_local *local = hw_to_local(hw);
1849 struct sk_buff *skb = NULL;
1850 struct ieee80211_tx_info *info;
1851 struct net_device *bdev;
1852 struct ieee80211_sub_if_data *sdata = NULL;
1853 struct ieee80211_if_ap *ap = NULL;
1854 struct ieee80211_if_sta *ifsta = NULL;
1855 struct beacon_data *beacon;
1856 struct ieee80211_supported_band *sband;
1857 enum ieee80211_band band = local->hw.conf.channel->band;
1858
1859 sband = local->hw.wiphy->bands[band];
1860
1861 rcu_read_lock();
1862
1863 sdata = vif_to_sdata(vif);
1864 bdev = sdata->dev;
1865
1866 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1867 ap = &sdata->u.ap;
1868 beacon = rcu_dereference(ap->beacon);
1869 if (ap && beacon) {
1870 /*
1871 * headroom, head length,
1872 * tail length and maximum TIM length
1873 */
1874 skb = dev_alloc_skb(local->tx_headroom +
1875 beacon->head_len +
1876 beacon->tail_len + 256);
1877 if (!skb)
1878 goto out;
1879
1880 skb_reserve(skb, local->tx_headroom);
1881 memcpy(skb_put(skb, beacon->head_len), beacon->head,
1882 beacon->head_len);
1883
1884 /*
1885 * Not very nice, but we want to allow the driver to call
1886 * ieee80211_beacon_get() as a response to the set_tim()
1887 * callback. That, however, is already invoked under the
1888 * sta_lock to guarantee consistent and race-free update
1889 * of the tim bitmap in mac80211 and the driver.
1890 */
1891 if (local->tim_in_locked_section) {
1892 ieee80211_beacon_add_tim(local, ap, skb, beacon);
1893 } else {
1894 unsigned long flags;
1895
1896 spin_lock_irqsave(&local->sta_lock, flags);
1897 ieee80211_beacon_add_tim(local, ap, skb, beacon);
1898 spin_unlock_irqrestore(&local->sta_lock, flags);
1899 }
1900
1901 if (beacon->tail)
1902 memcpy(skb_put(skb, beacon->tail_len),
1903 beacon->tail, beacon->tail_len);
1904 } else
1905 goto out;
1906 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1907 struct ieee80211_hdr *hdr;
1908 ifsta = &sdata->u.sta;
1909
1910 if (!ifsta->probe_resp)
1911 goto out;
1912
1913 skb = skb_copy(ifsta->probe_resp, GFP_ATOMIC);
1914 if (!skb)
1915 goto out;
1916
1917 hdr = (struct ieee80211_hdr *) skb->data;
1918 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1919 IEEE80211_STYPE_BEACON);
1920
1921 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
1922 struct ieee80211_mgmt *mgmt;
1923 u8 *pos;
1924
1925 /* headroom, head length, tail length and maximum TIM length */
1926 skb = dev_alloc_skb(local->tx_headroom + 400);
1927 if (!skb)
1928 goto out;
1929
1930 skb_reserve(skb, local->hw.extra_tx_headroom);
1931 mgmt = (struct ieee80211_mgmt *)
1932 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
1933 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
1934 mgmt->frame_control =
1935 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
1936 memset(mgmt->da, 0xff, ETH_ALEN);
1937 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
1938 /* BSSID is left zeroed, wildcard value */
1939 mgmt->u.beacon.beacon_int =
1940 cpu_to_le16(local->hw.conf.beacon_int);
1941 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
1942
1943 pos = skb_put(skb, 2);
1944 *pos++ = WLAN_EID_SSID;
1945 *pos++ = 0x0;
1946
1947 mesh_mgmt_ies_add(skb, sdata);
1948 } else {
1949 WARN_ON(1);
1950 goto out;
1951 }
1952
1953 info = IEEE80211_SKB_CB(skb);
1954
1955 skb->do_not_encrypt = 1;
1956
1957 info->band = band;
1958 /*
1959 * XXX: For now, always use the lowest rate
1960 */
1961 info->control.rates[0].idx = 0;
1962 info->control.rates[0].count = 1;
1963 info->control.rates[1].idx = -1;
1964 info->control.rates[2].idx = -1;
1965 info->control.rates[3].idx = -1;
1966 info->control.rates[4].idx = -1;
1967 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
1968
1969 info->control.vif = vif;
1970
1971 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1972 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1973 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
1974 out:
1975 rcu_read_unlock();
1976 return skb;
1977 }
1978 EXPORT_SYMBOL(ieee80211_beacon_get);
1979
1980 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1981 const void *frame, size_t frame_len,
1982 const struct ieee80211_tx_info *frame_txctl,
1983 struct ieee80211_rts *rts)
1984 {
1985 const struct ieee80211_hdr *hdr = frame;
1986
1987 rts->frame_control =
1988 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
1989 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
1990 frame_txctl);
1991 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
1992 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
1993 }
1994 EXPORT_SYMBOL(ieee80211_rts_get);
1995
1996 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1997 const void *frame, size_t frame_len,
1998 const struct ieee80211_tx_info *frame_txctl,
1999 struct ieee80211_cts *cts)
2000 {
2001 const struct ieee80211_hdr *hdr = frame;
2002
2003 cts->frame_control =
2004 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2005 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2006 frame_len, frame_txctl);
2007 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2008 }
2009 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2010
2011 struct sk_buff *
2012 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2013 struct ieee80211_vif *vif)
2014 {
2015 struct ieee80211_local *local = hw_to_local(hw);
2016 struct sk_buff *skb = NULL;
2017 struct sta_info *sta;
2018 struct ieee80211_tx_data tx;
2019 struct net_device *bdev;
2020 struct ieee80211_sub_if_data *sdata;
2021 struct ieee80211_if_ap *bss = NULL;
2022 struct beacon_data *beacon;
2023 struct ieee80211_tx_info *info;
2024
2025 sdata = vif_to_sdata(vif);
2026 bdev = sdata->dev;
2027 bss = &sdata->u.ap;
2028
2029 if (!bss)
2030 return NULL;
2031
2032 rcu_read_lock();
2033 beacon = rcu_dereference(bss->beacon);
2034
2035 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2036 goto out;
2037
2038 if (bss->dtim_count != 0)
2039 goto out; /* send buffered bc/mc only after DTIM beacon */
2040
2041 while (1) {
2042 skb = skb_dequeue(&bss->ps_bc_buf);
2043 if (!skb)
2044 goto out;
2045 local->total_ps_buffered--;
2046
2047 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2048 struct ieee80211_hdr *hdr =
2049 (struct ieee80211_hdr *) skb->data;
2050 /* more buffered multicast/broadcast frames ==> set
2051 * MoreData flag in IEEE 802.11 header to inform PS
2052 * STAs */
2053 hdr->frame_control |=
2054 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2055 }
2056
2057 if (!ieee80211_tx_prepare(local, &tx, skb))
2058 break;
2059 dev_kfree_skb_any(skb);
2060 }
2061
2062 info = IEEE80211_SKB_CB(skb);
2063
2064 sta = tx.sta;
2065 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2066 tx.channel = local->hw.conf.channel;
2067 info->band = tx.channel->band;
2068
2069 if (invoke_tx_handlers(&tx))
2070 skb = NULL;
2071 out:
2072 rcu_read_unlock();
2073
2074 return skb;
2075 }
2076 EXPORT_SYMBOL(ieee80211_get_buffered_bc);