]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/tx.c
7699e666457f43f50648e3ae6b0f1bb36f37f26e
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 /* misc utils */
37
38 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
39 int next_frag_len)
40 {
41 int rate, mrate, erp, dur, i;
42 struct ieee80211_rate *txrate;
43 struct ieee80211_local *local = tx->local;
44 struct ieee80211_supported_band *sband;
45 struct ieee80211_hdr *hdr;
46 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
47
48 /* assume HW handles this */
49 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
50 return 0;
51
52 /* uh huh? */
53 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
54 return 0;
55
56 sband = local->hw.wiphy->bands[tx->channel->band];
57 txrate = &sband->bitrates[info->control.rates[0].idx];
58
59 erp = txrate->flags & IEEE80211_RATE_ERP_G;
60
61 /*
62 * data and mgmt (except PS Poll):
63 * - during CFP: 32768
64 * - during contention period:
65 * if addr1 is group address: 0
66 * if more fragments = 0 and addr1 is individual address: time to
67 * transmit one ACK plus SIFS
68 * if more fragments = 1 and addr1 is individual address: time to
69 * transmit next fragment plus 2 x ACK plus 3 x SIFS
70 *
71 * IEEE 802.11, 9.6:
72 * - control response frame (CTS or ACK) shall be transmitted using the
73 * same rate as the immediately previous frame in the frame exchange
74 * sequence, if this rate belongs to the PHY mandatory rates, or else
75 * at the highest possible rate belonging to the PHY rates in the
76 * BSSBasicRateSet
77 */
78 hdr = (struct ieee80211_hdr *)tx->skb->data;
79 if (ieee80211_is_ctl(hdr->frame_control)) {
80 /* TODO: These control frames are not currently sent by
81 * mac80211, but should they be implemented, this function
82 * needs to be updated to support duration field calculation.
83 *
84 * RTS: time needed to transmit pending data/mgmt frame plus
85 * one CTS frame plus one ACK frame plus 3 x SIFS
86 * CTS: duration of immediately previous RTS minus time
87 * required to transmit CTS and its SIFS
88 * ACK: 0 if immediately previous directed data/mgmt had
89 * more=0, with more=1 duration in ACK frame is duration
90 * from previous frame minus time needed to transmit ACK
91 * and its SIFS
92 * PS Poll: BIT(15) | BIT(14) | aid
93 */
94 return 0;
95 }
96
97 /* data/mgmt */
98 if (0 /* FIX: data/mgmt during CFP */)
99 return cpu_to_le16(32768);
100
101 if (group_addr) /* Group address as the destination - no ACK */
102 return 0;
103
104 /* Individual destination address:
105 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
106 * CTS and ACK frames shall be transmitted using the highest rate in
107 * basic rate set that is less than or equal to the rate of the
108 * immediately previous frame and that is using the same modulation
109 * (CCK or OFDM). If no basic rate set matches with these requirements,
110 * the highest mandatory rate of the PHY that is less than or equal to
111 * the rate of the previous frame is used.
112 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
113 */
114 rate = -1;
115 /* use lowest available if everything fails */
116 mrate = sband->bitrates[0].bitrate;
117 for (i = 0; i < sband->n_bitrates; i++) {
118 struct ieee80211_rate *r = &sband->bitrates[i];
119
120 if (r->bitrate > txrate->bitrate)
121 break;
122
123 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
124 rate = r->bitrate;
125
126 switch (sband->band) {
127 case IEEE80211_BAND_2GHZ: {
128 u32 flag;
129 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
130 flag = IEEE80211_RATE_MANDATORY_G;
131 else
132 flag = IEEE80211_RATE_MANDATORY_B;
133 if (r->flags & flag)
134 mrate = r->bitrate;
135 break;
136 }
137 case IEEE80211_BAND_5GHZ:
138 if (r->flags & IEEE80211_RATE_MANDATORY_A)
139 mrate = r->bitrate;
140 break;
141 case IEEE80211_NUM_BANDS:
142 WARN_ON(1);
143 break;
144 }
145 }
146 if (rate == -1) {
147 /* No matching basic rate found; use highest suitable mandatory
148 * PHY rate */
149 rate = mrate;
150 }
151
152 /* Time needed to transmit ACK
153 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
154 * to closest integer */
155
156 dur = ieee80211_frame_duration(local, 10, rate, erp,
157 tx->sdata->vif.bss_conf.use_short_preamble);
158
159 if (next_frag_len) {
160 /* Frame is fragmented: duration increases with time needed to
161 * transmit next fragment plus ACK and 2 x SIFS. */
162 dur *= 2; /* ACK + SIFS */
163 /* next fragment */
164 dur += ieee80211_frame_duration(local, next_frag_len,
165 txrate->bitrate, erp,
166 tx->sdata->vif.bss_conf.use_short_preamble);
167 }
168
169 return cpu_to_le16(dur);
170 }
171
172 static inline int is_ieee80211_device(struct ieee80211_local *local,
173 struct net_device *dev)
174 {
175 return local == wdev_priv(dev->ieee80211_ptr);
176 }
177
178 /* tx handlers */
179 static ieee80211_tx_result debug_noinline
180 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
181 {
182 struct ieee80211_local *local = tx->local;
183 struct ieee80211_if_managed *ifmgd;
184
185 /* driver doesn't support power save */
186 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
187 return TX_CONTINUE;
188
189 /* hardware does dynamic power save */
190 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
191 return TX_CONTINUE;
192
193 /* dynamic power save disabled */
194 if (local->hw.conf.dynamic_ps_timeout <= 0)
195 return TX_CONTINUE;
196
197 /* we are scanning, don't enable power save */
198 if (local->scanning)
199 return TX_CONTINUE;
200
201 if (!local->ps_sdata)
202 return TX_CONTINUE;
203
204 /* No point if we're going to suspend */
205 if (local->quiescing)
206 return TX_CONTINUE;
207
208 /* dynamic ps is supported only in managed mode */
209 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
210 return TX_CONTINUE;
211
212 ifmgd = &tx->sdata->u.mgd;
213
214 /*
215 * Don't wakeup from power save if u-apsd is enabled, voip ac has
216 * u-apsd enabled and the frame is in voip class. This effectively
217 * means that even if all access categories have u-apsd enabled, in
218 * practise u-apsd is only used with the voip ac. This is a
219 * workaround for the case when received voip class packets do not
220 * have correct qos tag for some reason, due the network or the
221 * peer application.
222 *
223 * Note: local->uapsd_queues access is racy here. If the value is
224 * changed via debugfs, user needs to reassociate manually to have
225 * everything in sync.
226 */
227 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
228 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
229 && skb_get_queue_mapping(tx->skb) == 0)
230 return TX_CONTINUE;
231
232 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
233 ieee80211_stop_queues_by_reason(&local->hw,
234 IEEE80211_QUEUE_STOP_REASON_PS);
235 ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED;
236 ieee80211_queue_work(&local->hw,
237 &local->dynamic_ps_disable_work);
238 }
239
240 /* Don't restart the timer if we're not disassociated */
241 if (!ifmgd->associated)
242 return TX_CONTINUE;
243
244 mod_timer(&local->dynamic_ps_timer, jiffies +
245 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
246
247 return TX_CONTINUE;
248 }
249
250 static ieee80211_tx_result debug_noinline
251 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
252 {
253
254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
255 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
256 bool assoc = false;
257
258 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
259 return TX_CONTINUE;
260
261 if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) &&
262 test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) &&
263 !ieee80211_is_probe_req(hdr->frame_control) &&
264 !ieee80211_is_nullfunc(hdr->frame_control))
265 /*
266 * When software scanning only nullfunc frames (to notify
267 * the sleep state to the AP) and probe requests (for the
268 * active scan) are allowed, all other frames should not be
269 * sent and we should not get here, but if we do
270 * nonetheless, drop them to avoid sending them
271 * off-channel. See the link below and
272 * ieee80211_start_scan() for more.
273 *
274 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
275 */
276 return TX_DROP;
277
278 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS)
279 return TX_CONTINUE;
280
281 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
282 return TX_CONTINUE;
283
284 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
285 return TX_CONTINUE;
286
287 if (tx->sta)
288 assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC);
289
290 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
291 if (unlikely(!assoc &&
292 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
293 ieee80211_is_data(hdr->frame_control))) {
294 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
295 printk(KERN_DEBUG "%s: dropped data frame to not "
296 "associated station %pM\n",
297 tx->sdata->name, hdr->addr1);
298 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
299 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
300 return TX_DROP;
301 }
302 } else {
303 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
304 tx->local->num_sta == 0 &&
305 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
306 /*
307 * No associated STAs - no need to send multicast
308 * frames.
309 */
310 return TX_DROP;
311 }
312 return TX_CONTINUE;
313 }
314
315 return TX_CONTINUE;
316 }
317
318 /* This function is called whenever the AP is about to exceed the maximum limit
319 * of buffered frames for power saving STAs. This situation should not really
320 * happen often during normal operation, so dropping the oldest buffered packet
321 * from each queue should be OK to make some room for new frames. */
322 static void purge_old_ps_buffers(struct ieee80211_local *local)
323 {
324 int total = 0, purged = 0;
325 struct sk_buff *skb;
326 struct ieee80211_sub_if_data *sdata;
327 struct sta_info *sta;
328
329 /*
330 * virtual interfaces are protected by RCU
331 */
332 rcu_read_lock();
333
334 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
335 struct ieee80211_if_ap *ap;
336 if (sdata->vif.type != NL80211_IFTYPE_AP)
337 continue;
338 ap = &sdata->u.ap;
339 skb = skb_dequeue(&ap->ps_bc_buf);
340 if (skb) {
341 purged++;
342 dev_kfree_skb(skb);
343 }
344 total += skb_queue_len(&ap->ps_bc_buf);
345 }
346
347 /*
348 * Drop one frame from each station from the lowest-priority
349 * AC that has frames at all.
350 */
351 list_for_each_entry_rcu(sta, &local->sta_list, list) {
352 int ac;
353
354 for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) {
355 skb = skb_dequeue(&sta->ps_tx_buf[ac]);
356 total += skb_queue_len(&sta->ps_tx_buf[ac]);
357 if (skb) {
358 purged++;
359 dev_kfree_skb(skb);
360 break;
361 }
362 }
363 }
364
365 rcu_read_unlock();
366
367 local->total_ps_buffered = total;
368 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
369 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n",
370 purged);
371 #endif
372 }
373
374 static ieee80211_tx_result
375 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
376 {
377 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
379
380 /*
381 * broadcast/multicast frame
382 *
383 * If any of the associated stations is in power save mode,
384 * the frame is buffered to be sent after DTIM beacon frame.
385 * This is done either by the hardware or us.
386 */
387
388 /* powersaving STAs only in AP/VLAN mode */
389 if (!tx->sdata->bss)
390 return TX_CONTINUE;
391
392 /* no buffering for ordered frames */
393 if (ieee80211_has_order(hdr->frame_control))
394 return TX_CONTINUE;
395
396 /* no stations in PS mode */
397 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
398 return TX_CONTINUE;
399
400 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
401
402 /* device releases frame after DTIM beacon */
403 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
404 return TX_CONTINUE;
405
406 /* buffered in mac80211 */
407 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
408 purge_old_ps_buffers(tx->local);
409
410 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
411 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
412 if (net_ratelimit())
413 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
414 tx->sdata->name);
415 #endif
416 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
417 } else
418 tx->local->total_ps_buffered++;
419
420 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
421
422 return TX_QUEUED;
423 }
424
425 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
426 struct sk_buff *skb)
427 {
428 if (!ieee80211_is_mgmt(fc))
429 return 0;
430
431 if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP))
432 return 0;
433
434 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
435 skb->data))
436 return 0;
437
438 return 1;
439 }
440
441 static ieee80211_tx_result
442 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
443 {
444 struct sta_info *sta = tx->sta;
445 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
446 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
447 struct ieee80211_local *local = tx->local;
448
449 if (unlikely(!sta ||
450 ieee80211_is_probe_resp(hdr->frame_control) ||
451 ieee80211_is_auth(hdr->frame_control) ||
452 ieee80211_is_assoc_resp(hdr->frame_control) ||
453 ieee80211_is_reassoc_resp(hdr->frame_control)))
454 return TX_CONTINUE;
455
456 if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) ||
457 test_sta_flag(sta, WLAN_STA_PS_DRIVER)) &&
458 !(info->flags & IEEE80211_TX_CTL_POLL_RESPONSE))) {
459 int ac = skb_get_queue_mapping(tx->skb);
460
461 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
462 printk(KERN_DEBUG "STA %pM aid %d: PS buffer for AC %d\n",
463 sta->sta.addr, sta->sta.aid, ac);
464 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
465 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
466 purge_old_ps_buffers(tx->local);
467 if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) {
468 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]);
469 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
470 if (net_ratelimit())
471 printk(KERN_DEBUG "%s: STA %pM TX buffer for "
472 "AC %d full - dropping oldest frame\n",
473 tx->sdata->name, sta->sta.addr, ac);
474 #endif
475 dev_kfree_skb(old);
476 } else
477 tx->local->total_ps_buffered++;
478
479 info->control.jiffies = jiffies;
480 info->control.vif = &tx->sdata->vif;
481 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
482 skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb);
483
484 if (!timer_pending(&local->sta_cleanup))
485 mod_timer(&local->sta_cleanup,
486 round_jiffies(jiffies +
487 STA_INFO_CLEANUP_INTERVAL));
488
489 /*
490 * We queued up some frames, so the TIM bit might
491 * need to be set, recalculate it.
492 */
493 sta_info_recalc_tim(sta);
494
495 return TX_QUEUED;
496 }
497 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
498 else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) {
499 printk(KERN_DEBUG
500 "%s: STA %pM in PS mode, but polling/in SP -> send frame\n",
501 tx->sdata->name, sta->sta.addr);
502 }
503 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
504
505 return TX_CONTINUE;
506 }
507
508 static ieee80211_tx_result debug_noinline
509 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
510 {
511 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
512 return TX_CONTINUE;
513
514 if (tx->flags & IEEE80211_TX_UNICAST)
515 return ieee80211_tx_h_unicast_ps_buf(tx);
516 else
517 return ieee80211_tx_h_multicast_ps_buf(tx);
518 }
519
520 static ieee80211_tx_result debug_noinline
521 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx)
522 {
523 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
524
525 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol &&
526 tx->sdata->control_port_no_encrypt))
527 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
528
529 return TX_CONTINUE;
530 }
531
532 static ieee80211_tx_result debug_noinline
533 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
534 {
535 struct ieee80211_key *key = NULL;
536 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
537 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
538
539 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
540 tx->key = NULL;
541 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk)))
542 tx->key = key;
543 else if (ieee80211_is_mgmt(hdr->frame_control) &&
544 is_multicast_ether_addr(hdr->addr1) &&
545 ieee80211_is_robust_mgmt_frame(hdr) &&
546 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
547 tx->key = key;
548 else if (is_multicast_ether_addr(hdr->addr1) &&
549 (key = rcu_dereference(tx->sdata->default_multicast_key)))
550 tx->key = key;
551 else if (!is_multicast_ether_addr(hdr->addr1) &&
552 (key = rcu_dereference(tx->sdata->default_unicast_key)))
553 tx->key = key;
554 else if (tx->sdata->drop_unencrypted &&
555 (tx->skb->protocol != tx->sdata->control_port_protocol) &&
556 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
557 (!ieee80211_is_robust_mgmt_frame(hdr) ||
558 (ieee80211_is_action(hdr->frame_control) &&
559 tx->sta && test_sta_flag(tx->sta, WLAN_STA_MFP)))) {
560 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
561 return TX_DROP;
562 } else
563 tx->key = NULL;
564
565 if (tx->key) {
566 bool skip_hw = false;
567
568 tx->key->tx_rx_count++;
569 /* TODO: add threshold stuff again */
570
571 switch (tx->key->conf.cipher) {
572 case WLAN_CIPHER_SUITE_WEP40:
573 case WLAN_CIPHER_SUITE_WEP104:
574 if (ieee80211_is_auth(hdr->frame_control))
575 break;
576 case WLAN_CIPHER_SUITE_TKIP:
577 if (!ieee80211_is_data_present(hdr->frame_control))
578 tx->key = NULL;
579 break;
580 case WLAN_CIPHER_SUITE_CCMP:
581 if (!ieee80211_is_data_present(hdr->frame_control) &&
582 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
583 tx->skb))
584 tx->key = NULL;
585 else
586 skip_hw = (tx->key->conf.flags &
587 IEEE80211_KEY_FLAG_SW_MGMT) &&
588 ieee80211_is_mgmt(hdr->frame_control);
589 break;
590 case WLAN_CIPHER_SUITE_AES_CMAC:
591 if (!ieee80211_is_mgmt(hdr->frame_control))
592 tx->key = NULL;
593 break;
594 }
595
596 if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED))
597 return TX_DROP;
598
599 if (!skip_hw && tx->key &&
600 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
601 info->control.hw_key = &tx->key->conf;
602 }
603
604 return TX_CONTINUE;
605 }
606
607 static ieee80211_tx_result debug_noinline
608 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
609 {
610 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
611 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
612 struct ieee80211_supported_band *sband;
613 struct ieee80211_rate *rate;
614 int i;
615 u32 len;
616 bool inval = false, rts = false, short_preamble = false;
617 struct ieee80211_tx_rate_control txrc;
618 bool assoc = false;
619
620 memset(&txrc, 0, sizeof(txrc));
621
622 sband = tx->local->hw.wiphy->bands[tx->channel->band];
623
624 len = min_t(u32, tx->skb->len + FCS_LEN,
625 tx->local->hw.wiphy->frag_threshold);
626
627 /* set up the tx rate control struct we give the RC algo */
628 txrc.hw = local_to_hw(tx->local);
629 txrc.sband = sband;
630 txrc.bss_conf = &tx->sdata->vif.bss_conf;
631 txrc.skb = tx->skb;
632 txrc.reported_rate.idx = -1;
633 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
634 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
635 txrc.max_rate_idx = -1;
636 else
637 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
638 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP ||
639 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC);
640
641 /* set up RTS protection if desired */
642 if (len > tx->local->hw.wiphy->rts_threshold) {
643 txrc.rts = rts = true;
644 }
645
646 /*
647 * Use short preamble if the BSS can handle it, but not for
648 * management frames unless we know the receiver can handle
649 * that -- the management frame might be to a station that
650 * just wants a probe response.
651 */
652 if (tx->sdata->vif.bss_conf.use_short_preamble &&
653 (ieee80211_is_data(hdr->frame_control) ||
654 (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
655 txrc.short_preamble = short_preamble = true;
656
657 if (tx->sta)
658 assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC);
659
660 /*
661 * Lets not bother rate control if we're associated and cannot
662 * talk to the sta. This should not happen.
663 */
664 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc &&
665 !rate_usable_index_exists(sband, &tx->sta->sta),
666 "%s: Dropped data frame as no usable bitrate found while "
667 "scanning and associated. Target station: "
668 "%pM on %d GHz band\n",
669 tx->sdata->name, hdr->addr1,
670 tx->channel->band ? 5 : 2))
671 return TX_DROP;
672
673 /*
674 * If we're associated with the sta at this point we know we can at
675 * least send the frame at the lowest bit rate.
676 */
677 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
678
679 if (unlikely(info->control.rates[0].idx < 0))
680 return TX_DROP;
681
682 if (txrc.reported_rate.idx < 0) {
683 txrc.reported_rate = info->control.rates[0];
684 if (tx->sta && ieee80211_is_data(hdr->frame_control))
685 tx->sta->last_tx_rate = txrc.reported_rate;
686 } else if (tx->sta)
687 tx->sta->last_tx_rate = txrc.reported_rate;
688
689 if (unlikely(!info->control.rates[0].count))
690 info->control.rates[0].count = 1;
691
692 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
693 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
694 info->control.rates[0].count = 1;
695
696 if (is_multicast_ether_addr(hdr->addr1)) {
697 /*
698 * XXX: verify the rate is in the basic rateset
699 */
700 return TX_CONTINUE;
701 }
702
703 /*
704 * set up the RTS/CTS rate as the fastest basic rate
705 * that is not faster than the data rate
706 *
707 * XXX: Should this check all retry rates?
708 */
709 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
710 s8 baserate = 0;
711
712 rate = &sband->bitrates[info->control.rates[0].idx];
713
714 for (i = 0; i < sband->n_bitrates; i++) {
715 /* must be a basic rate */
716 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
717 continue;
718 /* must not be faster than the data rate */
719 if (sband->bitrates[i].bitrate > rate->bitrate)
720 continue;
721 /* maximum */
722 if (sband->bitrates[baserate].bitrate <
723 sband->bitrates[i].bitrate)
724 baserate = i;
725 }
726
727 info->control.rts_cts_rate_idx = baserate;
728 }
729
730 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
731 /*
732 * make sure there's no valid rate following
733 * an invalid one, just in case drivers don't
734 * take the API seriously to stop at -1.
735 */
736 if (inval) {
737 info->control.rates[i].idx = -1;
738 continue;
739 }
740 if (info->control.rates[i].idx < 0) {
741 inval = true;
742 continue;
743 }
744
745 /*
746 * For now assume MCS is already set up correctly, this
747 * needs to be fixed.
748 */
749 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
750 WARN_ON(info->control.rates[i].idx > 76);
751 continue;
752 }
753
754 /* set up RTS protection if desired */
755 if (rts)
756 info->control.rates[i].flags |=
757 IEEE80211_TX_RC_USE_RTS_CTS;
758
759 /* RC is busted */
760 if (WARN_ON_ONCE(info->control.rates[i].idx >=
761 sband->n_bitrates)) {
762 info->control.rates[i].idx = -1;
763 continue;
764 }
765
766 rate = &sband->bitrates[info->control.rates[i].idx];
767
768 /* set up short preamble */
769 if (short_preamble &&
770 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
771 info->control.rates[i].flags |=
772 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
773
774 /* set up G protection */
775 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
776 rate->flags & IEEE80211_RATE_ERP_G)
777 info->control.rates[i].flags |=
778 IEEE80211_TX_RC_USE_CTS_PROTECT;
779 }
780
781 return TX_CONTINUE;
782 }
783
784 static ieee80211_tx_result debug_noinline
785 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
786 {
787 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
788 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
789 u16 *seq;
790 u8 *qc;
791 int tid;
792
793 /*
794 * Packet injection may want to control the sequence
795 * number, if we have no matching interface then we
796 * neither assign one ourselves nor ask the driver to.
797 */
798 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
799 return TX_CONTINUE;
800
801 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
802 return TX_CONTINUE;
803
804 if (ieee80211_hdrlen(hdr->frame_control) < 24)
805 return TX_CONTINUE;
806
807 /*
808 * Anything but QoS data that has a sequence number field
809 * (is long enough) gets a sequence number from the global
810 * counter.
811 */
812 if (!ieee80211_is_data_qos(hdr->frame_control)) {
813 /* driver should assign sequence number */
814 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
815 /* for pure STA mode without beacons, we can do it */
816 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
817 tx->sdata->sequence_number += 0x10;
818 return TX_CONTINUE;
819 }
820
821 /*
822 * This should be true for injected/management frames only, for
823 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
824 * above since they are not QoS-data frames.
825 */
826 if (!tx->sta)
827 return TX_CONTINUE;
828
829 /* include per-STA, per-TID sequence counter */
830
831 qc = ieee80211_get_qos_ctl(hdr);
832 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
833 seq = &tx->sta->tid_seq[tid];
834
835 hdr->seq_ctrl = cpu_to_le16(*seq);
836
837 /* Increase the sequence number. */
838 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
839
840 return TX_CONTINUE;
841 }
842
843 static int ieee80211_fragment(struct ieee80211_local *local,
844 struct sk_buff *skb, int hdrlen,
845 int frag_threshold)
846 {
847 struct sk_buff *tail = skb, *tmp;
848 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
849 int pos = hdrlen + per_fragm;
850 int rem = skb->len - hdrlen - per_fragm;
851
852 if (WARN_ON(rem < 0))
853 return -EINVAL;
854
855 while (rem) {
856 int fraglen = per_fragm;
857
858 if (fraglen > rem)
859 fraglen = rem;
860 rem -= fraglen;
861 tmp = dev_alloc_skb(local->tx_headroom +
862 frag_threshold +
863 IEEE80211_ENCRYPT_HEADROOM +
864 IEEE80211_ENCRYPT_TAILROOM);
865 if (!tmp)
866 return -ENOMEM;
867 tail->next = tmp;
868 tail = tmp;
869 skb_reserve(tmp, local->tx_headroom +
870 IEEE80211_ENCRYPT_HEADROOM);
871 /* copy control information */
872 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
873 skb_copy_queue_mapping(tmp, skb);
874 tmp->priority = skb->priority;
875 tmp->dev = skb->dev;
876
877 /* copy header and data */
878 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
879 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
880
881 pos += fraglen;
882 }
883
884 skb->len = hdrlen + per_fragm;
885 return 0;
886 }
887
888 static ieee80211_tx_result debug_noinline
889 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
890 {
891 struct sk_buff *skb = tx->skb;
892 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
893 struct ieee80211_hdr *hdr = (void *)skb->data;
894 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
895 int hdrlen;
896 int fragnum;
897
898 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
899 return TX_CONTINUE;
900
901 /*
902 * Warn when submitting a fragmented A-MPDU frame and drop it.
903 * This scenario is handled in ieee80211_tx_prepare but extra
904 * caution taken here as fragmented ampdu may cause Tx stop.
905 */
906 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
907 return TX_DROP;
908
909 hdrlen = ieee80211_hdrlen(hdr->frame_control);
910
911 /* internal error, why is TX_FRAGMENTED set? */
912 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
913 return TX_DROP;
914
915 /*
916 * Now fragment the frame. This will allocate all the fragments and
917 * chain them (using skb as the first fragment) to skb->next.
918 * During transmission, we will remove the successfully transmitted
919 * fragments from this list. When the low-level driver rejects one
920 * of the fragments then we will simply pretend to accept the skb
921 * but store it away as pending.
922 */
923 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
924 return TX_DROP;
925
926 /* update duration/seq/flags of fragments */
927 fragnum = 0;
928 do {
929 int next_len;
930 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
931
932 hdr = (void *)skb->data;
933 info = IEEE80211_SKB_CB(skb);
934
935 if (skb->next) {
936 hdr->frame_control |= morefrags;
937 next_len = skb->next->len;
938 /*
939 * No multi-rate retries for fragmented frames, that
940 * would completely throw off the NAV at other STAs.
941 */
942 info->control.rates[1].idx = -1;
943 info->control.rates[2].idx = -1;
944 info->control.rates[3].idx = -1;
945 info->control.rates[4].idx = -1;
946 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
947 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
948 } else {
949 hdr->frame_control &= ~morefrags;
950 next_len = 0;
951 }
952 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
953 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
954 fragnum++;
955 } while ((skb = skb->next));
956
957 return TX_CONTINUE;
958 }
959
960 static ieee80211_tx_result debug_noinline
961 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
962 {
963 struct sk_buff *skb = tx->skb;
964
965 if (!tx->sta)
966 return TX_CONTINUE;
967
968 tx->sta->tx_packets++;
969 do {
970 tx->sta->tx_fragments++;
971 tx->sta->tx_bytes += skb->len;
972 } while ((skb = skb->next));
973
974 return TX_CONTINUE;
975 }
976
977 static ieee80211_tx_result debug_noinline
978 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
979 {
980 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
981
982 if (!tx->key)
983 return TX_CONTINUE;
984
985 switch (tx->key->conf.cipher) {
986 case WLAN_CIPHER_SUITE_WEP40:
987 case WLAN_CIPHER_SUITE_WEP104:
988 return ieee80211_crypto_wep_encrypt(tx);
989 case WLAN_CIPHER_SUITE_TKIP:
990 return ieee80211_crypto_tkip_encrypt(tx);
991 case WLAN_CIPHER_SUITE_CCMP:
992 return ieee80211_crypto_ccmp_encrypt(tx);
993 case WLAN_CIPHER_SUITE_AES_CMAC:
994 return ieee80211_crypto_aes_cmac_encrypt(tx);
995 default:
996 /* handle hw-only algorithm */
997 if (info->control.hw_key) {
998 ieee80211_tx_set_protected(tx);
999 return TX_CONTINUE;
1000 }
1001 break;
1002
1003 }
1004
1005 return TX_DROP;
1006 }
1007
1008 static ieee80211_tx_result debug_noinline
1009 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
1010 {
1011 struct sk_buff *skb = tx->skb;
1012 struct ieee80211_hdr *hdr;
1013 int next_len;
1014 bool group_addr;
1015
1016 do {
1017 hdr = (void *) skb->data;
1018 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
1019 break; /* must not overwrite AID */
1020 next_len = skb->next ? skb->next->len : 0;
1021 group_addr = is_multicast_ether_addr(hdr->addr1);
1022
1023 hdr->duration_id =
1024 ieee80211_duration(tx, group_addr, next_len);
1025 } while ((skb = skb->next));
1026
1027 return TX_CONTINUE;
1028 }
1029
1030 /* actual transmit path */
1031
1032 /*
1033 * deal with packet injection down monitor interface
1034 * with Radiotap Header -- only called for monitor mode interface
1035 */
1036 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
1037 struct sk_buff *skb)
1038 {
1039 /*
1040 * this is the moment to interpret and discard the radiotap header that
1041 * must be at the start of the packet injected in Monitor mode
1042 *
1043 * Need to take some care with endian-ness since radiotap
1044 * args are little-endian
1045 */
1046
1047 struct ieee80211_radiotap_iterator iterator;
1048 struct ieee80211_radiotap_header *rthdr =
1049 (struct ieee80211_radiotap_header *) skb->data;
1050 bool hw_frag;
1051 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1052 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len,
1053 NULL);
1054
1055 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1056 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1057
1058 /* packet is fragmented in HW if we have a non-NULL driver callback */
1059 hw_frag = (tx->local->ops->set_frag_threshold != NULL);
1060
1061 /*
1062 * for every radiotap entry that is present
1063 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1064 * entries present, or -EINVAL on error)
1065 */
1066
1067 while (!ret) {
1068 ret = ieee80211_radiotap_iterator_next(&iterator);
1069
1070 if (ret)
1071 continue;
1072
1073 /* see if this argument is something we can use */
1074 switch (iterator.this_arg_index) {
1075 /*
1076 * You must take care when dereferencing iterator.this_arg
1077 * for multibyte types... the pointer is not aligned. Use
1078 * get_unaligned((type *)iterator.this_arg) to dereference
1079 * iterator.this_arg for type "type" safely on all arches.
1080 */
1081 case IEEE80211_RADIOTAP_FLAGS:
1082 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1083 /*
1084 * this indicates that the skb we have been
1085 * handed has the 32-bit FCS CRC at the end...
1086 * we should react to that by snipping it off
1087 * because it will be recomputed and added
1088 * on transmission
1089 */
1090 if (skb->len < (iterator._max_length + FCS_LEN))
1091 return false;
1092
1093 skb_trim(skb, skb->len - FCS_LEN);
1094 }
1095 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1096 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1097 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) &&
1098 !hw_frag)
1099 tx->flags |= IEEE80211_TX_FRAGMENTED;
1100 break;
1101
1102 /*
1103 * Please update the file
1104 * Documentation/networking/mac80211-injection.txt
1105 * when parsing new fields here.
1106 */
1107
1108 default:
1109 break;
1110 }
1111 }
1112
1113 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1114 return false;
1115
1116 /*
1117 * remove the radiotap header
1118 * iterator->_max_length was sanity-checked against
1119 * skb->len by iterator init
1120 */
1121 skb_pull(skb, iterator._max_length);
1122
1123 return true;
1124 }
1125
1126 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx,
1127 struct sk_buff *skb,
1128 struct ieee80211_tx_info *info,
1129 struct tid_ampdu_tx *tid_tx,
1130 int tid)
1131 {
1132 bool queued = false;
1133
1134 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1135 info->flags |= IEEE80211_TX_CTL_AMPDU;
1136 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) {
1137 /*
1138 * nothing -- this aggregation session is being started
1139 * but that might still fail with the driver
1140 */
1141 } else {
1142 spin_lock(&tx->sta->lock);
1143 /*
1144 * Need to re-check now, because we may get here
1145 *
1146 * 1) in the window during which the setup is actually
1147 * already done, but not marked yet because not all
1148 * packets are spliced over to the driver pending
1149 * queue yet -- if this happened we acquire the lock
1150 * either before or after the splice happens, but
1151 * need to recheck which of these cases happened.
1152 *
1153 * 2) during session teardown, if the OPERATIONAL bit
1154 * was cleared due to the teardown but the pointer
1155 * hasn't been assigned NULL yet (or we loaded it
1156 * before it was assigned) -- in this case it may
1157 * now be NULL which means we should just let the
1158 * packet pass through because splicing the frames
1159 * back is already done.
1160 */
1161 tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid);
1162
1163 if (!tid_tx) {
1164 /* do nothing, let packet pass through */
1165 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) {
1166 info->flags |= IEEE80211_TX_CTL_AMPDU;
1167 } else {
1168 queued = true;
1169 info->control.vif = &tx->sdata->vif;
1170 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1171 __skb_queue_tail(&tid_tx->pending, skb);
1172 }
1173 spin_unlock(&tx->sta->lock);
1174 }
1175
1176 return queued;
1177 }
1178
1179 /*
1180 * initialises @tx
1181 */
1182 static ieee80211_tx_result
1183 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1184 struct ieee80211_tx_data *tx,
1185 struct sk_buff *skb)
1186 {
1187 struct ieee80211_local *local = sdata->local;
1188 struct ieee80211_hdr *hdr;
1189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1190 int hdrlen, tid;
1191 u8 *qc;
1192
1193 memset(tx, 0, sizeof(*tx));
1194 tx->skb = skb;
1195 tx->local = local;
1196 tx->sdata = sdata;
1197 tx->channel = local->hw.conf.channel;
1198 /*
1199 * Set this flag (used below to indicate "automatic fragmentation"),
1200 * it will be cleared/left by radiotap as desired.
1201 * Only valid when fragmentation is done by the stack.
1202 */
1203 if (!local->ops->set_frag_threshold)
1204 tx->flags |= IEEE80211_TX_FRAGMENTED;
1205
1206 /* process and remove the injection radiotap header */
1207 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1208 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1209 return TX_DROP;
1210
1211 /*
1212 * __ieee80211_parse_tx_radiotap has now removed
1213 * the radiotap header that was present and pre-filled
1214 * 'tx' with tx control information.
1215 */
1216 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1217 }
1218
1219 /*
1220 * If this flag is set to true anywhere, and we get here,
1221 * we are doing the needed processing, so remove the flag
1222 * now.
1223 */
1224 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1225
1226 hdr = (struct ieee80211_hdr *) skb->data;
1227
1228 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1229 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1230 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1231 return TX_DROP;
1232 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1233 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1234 }
1235 if (!tx->sta)
1236 tx->sta = sta_info_get(sdata, hdr->addr1);
1237
1238 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1239 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION) &&
1240 !(local->hw.flags & IEEE80211_HW_TX_AMPDU_SETUP_IN_HW)) {
1241 struct tid_ampdu_tx *tid_tx;
1242
1243 qc = ieee80211_get_qos_ctl(hdr);
1244 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1245
1246 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]);
1247 if (tid_tx) {
1248 bool queued;
1249
1250 queued = ieee80211_tx_prep_agg(tx, skb, info,
1251 tid_tx, tid);
1252
1253 if (unlikely(queued))
1254 return TX_QUEUED;
1255 }
1256 }
1257
1258 if (is_multicast_ether_addr(hdr->addr1)) {
1259 tx->flags &= ~IEEE80211_TX_UNICAST;
1260 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1261 } else {
1262 tx->flags |= IEEE80211_TX_UNICAST;
1263 if (unlikely(local->wifi_wme_noack_test))
1264 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1265 else
1266 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1267 }
1268
1269 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1270 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1271 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1272 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1273 tx->flags |= IEEE80211_TX_FRAGMENTED;
1274 else
1275 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1276 }
1277
1278 if (!tx->sta)
1279 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1280 else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1281 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1282
1283 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1284 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1285 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1286 tx->ethertype = (pos[0] << 8) | pos[1];
1287 }
1288 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1289
1290 return TX_CONTINUE;
1291 }
1292
1293 /*
1294 * Returns false if the frame couldn't be transmitted but was queued instead.
1295 */
1296 static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff **skbp,
1297 struct sta_info *sta, bool txpending)
1298 {
1299 struct sk_buff *skb = *skbp, *next;
1300 struct ieee80211_tx_info *info;
1301 struct ieee80211_sub_if_data *sdata;
1302 unsigned long flags;
1303 int len;
1304 bool fragm = false;
1305
1306 while (skb) {
1307 int q = skb_get_queue_mapping(skb);
1308 __le16 fc;
1309
1310 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1311 if (local->queue_stop_reasons[q] ||
1312 (!txpending && !skb_queue_empty(&local->pending[q]))) {
1313 /*
1314 * Since queue is stopped, queue up frames for later
1315 * transmission from the tx-pending tasklet when the
1316 * queue is woken again.
1317 */
1318
1319 do {
1320 next = skb->next;
1321 skb->next = NULL;
1322 /*
1323 * NB: If txpending is true, next must already
1324 * be NULL since we must've gone through this
1325 * loop before already; therefore we can just
1326 * queue the frame to the head without worrying
1327 * about reordering of fragments.
1328 */
1329 if (unlikely(txpending))
1330 __skb_queue_head(&local->pending[q],
1331 skb);
1332 else
1333 __skb_queue_tail(&local->pending[q],
1334 skb);
1335 } while ((skb = next));
1336
1337 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1338 flags);
1339 return false;
1340 }
1341 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1342
1343 info = IEEE80211_SKB_CB(skb);
1344
1345 if (fragm)
1346 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1347 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1348
1349 next = skb->next;
1350 len = skb->len;
1351
1352 if (next)
1353 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1354
1355 sdata = vif_to_sdata(info->control.vif);
1356
1357 switch (sdata->vif.type) {
1358 case NL80211_IFTYPE_MONITOR:
1359 info->control.vif = NULL;
1360 break;
1361 case NL80211_IFTYPE_AP_VLAN:
1362 info->control.vif = &container_of(sdata->bss,
1363 struct ieee80211_sub_if_data, u.ap)->vif;
1364 break;
1365 default:
1366 /* keep */
1367 break;
1368 }
1369
1370 if (sta && sta->uploaded)
1371 info->control.sta = &sta->sta;
1372 else
1373 info->control.sta = NULL;
1374
1375 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
1376 drv_tx(local, skb);
1377
1378 ieee80211_tpt_led_trig_tx(local, fc, len);
1379 *skbp = skb = next;
1380 ieee80211_led_tx(local, 1);
1381 fragm = true;
1382 }
1383
1384 return true;
1385 }
1386
1387 /*
1388 * Invoke TX handlers, return 0 on success and non-zero if the
1389 * frame was dropped or queued.
1390 */
1391 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1392 {
1393 struct sk_buff *skb = tx->skb;
1394 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1395 ieee80211_tx_result res = TX_DROP;
1396
1397 #define CALL_TXH(txh) \
1398 do { \
1399 res = txh(tx); \
1400 if (res != TX_CONTINUE) \
1401 goto txh_done; \
1402 } while (0)
1403
1404 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1405 CALL_TXH(ieee80211_tx_h_check_assoc);
1406 CALL_TXH(ieee80211_tx_h_ps_buf);
1407 CALL_TXH(ieee80211_tx_h_check_control_port_protocol);
1408 CALL_TXH(ieee80211_tx_h_select_key);
1409 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1410 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1411
1412 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1413 goto txh_done;
1414
1415 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1416 CALL_TXH(ieee80211_tx_h_sequence);
1417 CALL_TXH(ieee80211_tx_h_fragment);
1418 /* handlers after fragment must be aware of tx info fragmentation! */
1419 CALL_TXH(ieee80211_tx_h_stats);
1420 CALL_TXH(ieee80211_tx_h_encrypt);
1421 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1422 CALL_TXH(ieee80211_tx_h_calculate_duration);
1423 #undef CALL_TXH
1424
1425 txh_done:
1426 if (unlikely(res == TX_DROP)) {
1427 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1428 while (skb) {
1429 struct sk_buff *next;
1430
1431 next = skb->next;
1432 dev_kfree_skb(skb);
1433 skb = next;
1434 }
1435 return -1;
1436 } else if (unlikely(res == TX_QUEUED)) {
1437 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1438 return -1;
1439 }
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * Returns false if the frame couldn't be transmitted but was queued instead.
1446 */
1447 static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1448 struct sk_buff *skb, bool txpending)
1449 {
1450 struct ieee80211_local *local = sdata->local;
1451 struct ieee80211_tx_data tx;
1452 ieee80211_tx_result res_prepare;
1453 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1454 bool result = true;
1455
1456 if (unlikely(skb->len < 10)) {
1457 dev_kfree_skb(skb);
1458 return true;
1459 }
1460
1461 rcu_read_lock();
1462
1463 /* initialises tx */
1464 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1465
1466 if (unlikely(res_prepare == TX_DROP)) {
1467 dev_kfree_skb(skb);
1468 goto out;
1469 } else if (unlikely(res_prepare == TX_QUEUED)) {
1470 goto out;
1471 }
1472
1473 tx.channel = local->hw.conf.channel;
1474 info->band = tx.channel->band;
1475
1476 if (!invoke_tx_handlers(&tx))
1477 result = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1478 out:
1479 rcu_read_unlock();
1480 return result;
1481 }
1482
1483 /* device xmit handlers */
1484
1485 static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata,
1486 struct sk_buff *skb,
1487 int head_need, bool may_encrypt)
1488 {
1489 struct ieee80211_local *local = sdata->local;
1490 int tail_need = 0;
1491
1492 if (may_encrypt && sdata->crypto_tx_tailroom_needed_cnt) {
1493 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1494 tail_need -= skb_tailroom(skb);
1495 tail_need = max_t(int, tail_need, 0);
1496 }
1497
1498 if (head_need || tail_need) {
1499 /* Sorry. Can't account for this any more */
1500 skb_orphan(skb);
1501 }
1502
1503 if (skb_cloned(skb))
1504 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1505 else if (head_need || tail_need)
1506 I802_DEBUG_INC(local->tx_expand_skb_head);
1507 else
1508 return 0;
1509
1510 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1511 wiphy_debug(local->hw.wiphy,
1512 "failed to reallocate TX buffer\n");
1513 return -ENOMEM;
1514 }
1515
1516 /* update truesize too */
1517 skb->truesize += head_need + tail_need;
1518
1519 return 0;
1520 }
1521
1522 void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
1523 {
1524 struct ieee80211_local *local = sdata->local;
1525 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1526 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1527 struct ieee80211_sub_if_data *tmp_sdata;
1528 int headroom;
1529 bool may_encrypt;
1530
1531 rcu_read_lock();
1532
1533 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1534 int hdrlen;
1535 u16 len_rthdr;
1536
1537 info->flags |= IEEE80211_TX_CTL_INJECTED |
1538 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1539
1540 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1541 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1542 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1543
1544 /* check the header is complete in the frame */
1545 if (likely(skb->len >= len_rthdr + hdrlen)) {
1546 /*
1547 * We process outgoing injected frames that have a
1548 * local address we handle as though they are our
1549 * own frames.
1550 * This code here isn't entirely correct, the local
1551 * MAC address is not necessarily enough to find
1552 * the interface to use; for that proper VLAN/WDS
1553 * support we will need a different mechanism.
1554 */
1555
1556 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1557 list) {
1558 if (!ieee80211_sdata_running(tmp_sdata))
1559 continue;
1560 if (tmp_sdata->vif.type ==
1561 NL80211_IFTYPE_MONITOR ||
1562 tmp_sdata->vif.type ==
1563 NL80211_IFTYPE_AP_VLAN ||
1564 tmp_sdata->vif.type ==
1565 NL80211_IFTYPE_WDS)
1566 continue;
1567 if (compare_ether_addr(tmp_sdata->vif.addr,
1568 hdr->addr2) == 0) {
1569 sdata = tmp_sdata;
1570 break;
1571 }
1572 }
1573 }
1574 }
1575
1576 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1577
1578 headroom = local->tx_headroom;
1579 if (may_encrypt)
1580 headroom += IEEE80211_ENCRYPT_HEADROOM;
1581 headroom -= skb_headroom(skb);
1582 headroom = max_t(int, 0, headroom);
1583
1584 if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) {
1585 dev_kfree_skb(skb);
1586 rcu_read_unlock();
1587 return;
1588 }
1589
1590 hdr = (struct ieee80211_hdr *) skb->data;
1591 info->control.vif = &sdata->vif;
1592
1593 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1594 ieee80211_is_data(hdr->frame_control) &&
1595 !is_multicast_ether_addr(hdr->addr1))
1596 if (mesh_nexthop_lookup(skb, sdata)) {
1597 /* skb queued: don't free */
1598 rcu_read_unlock();
1599 return;
1600 }
1601
1602 ieee80211_set_qos_hdr(sdata, skb);
1603 ieee80211_tx(sdata, skb, false);
1604 rcu_read_unlock();
1605 }
1606
1607 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1608 struct net_device *dev)
1609 {
1610 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1611 struct ieee80211_channel *chan = local->hw.conf.channel;
1612 struct ieee80211_radiotap_header *prthdr =
1613 (struct ieee80211_radiotap_header *)skb->data;
1614 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1615 struct ieee80211_hdr *hdr;
1616 u16 len_rthdr;
1617 u8 *payload;
1618
1619 /*
1620 * Frame injection is not allowed if beaconing is not allowed
1621 * or if we need radar detection. Beaconing is usually not allowed when
1622 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1623 * Passive scan is also used in world regulatory domains where
1624 * your country is not known and as such it should be treated as
1625 * NO TX unless the channel is explicitly allowed in which case
1626 * your current regulatory domain would not have the passive scan
1627 * flag.
1628 *
1629 * Since AP mode uses monitor interfaces to inject/TX management
1630 * frames we can make AP mode the exception to this rule once it
1631 * supports radar detection as its implementation can deal with
1632 * radar detection by itself. We can do that later by adding a
1633 * monitor flag interfaces used for AP support.
1634 */
1635 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1636 IEEE80211_CHAN_PASSIVE_SCAN)))
1637 goto fail;
1638
1639 /* check for not even having the fixed radiotap header part */
1640 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1641 goto fail; /* too short to be possibly valid */
1642
1643 /* is it a header version we can trust to find length from? */
1644 if (unlikely(prthdr->it_version))
1645 goto fail; /* only version 0 is supported */
1646
1647 /* then there must be a radiotap header with a length we can use */
1648 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1649
1650 /* does the skb contain enough to deliver on the alleged length? */
1651 if (unlikely(skb->len < len_rthdr))
1652 goto fail; /* skb too short for claimed rt header extent */
1653
1654 /*
1655 * fix up the pointers accounting for the radiotap
1656 * header still being in there. We are being given
1657 * a precooked IEEE80211 header so no need for
1658 * normal processing
1659 */
1660 skb_set_mac_header(skb, len_rthdr);
1661 /*
1662 * these are just fixed to the end of the rt area since we
1663 * don't have any better information and at this point, nobody cares
1664 */
1665 skb_set_network_header(skb, len_rthdr);
1666 skb_set_transport_header(skb, len_rthdr);
1667
1668 /*
1669 * Initialize skb->protocol if the injected frame is a data frame
1670 * carrying a rfc1042 header
1671 */
1672 if (skb->len > len_rthdr + 2) {
1673 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1674 if (ieee80211_is_data(hdr->frame_control) &&
1675 skb->len >= len_rthdr +
1676 ieee80211_hdrlen(hdr->frame_control) +
1677 sizeof(rfc1042_header) + 2) {
1678 payload = (u8 *)hdr +
1679 ieee80211_hdrlen(hdr->frame_control);
1680 if (compare_ether_addr(payload, rfc1042_header) == 0)
1681 skb->protocol = cpu_to_be16((payload[6] << 8) |
1682 payload[7]);
1683 }
1684 }
1685
1686 memset(info, 0, sizeof(*info));
1687
1688 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1689
1690 /* pass the radiotap header up to xmit */
1691 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1692 return NETDEV_TX_OK;
1693
1694 fail:
1695 dev_kfree_skb(skb);
1696 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1697 }
1698
1699 /**
1700 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1701 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1702 * @skb: packet to be sent
1703 * @dev: incoming interface
1704 *
1705 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1706 * not be freed, and caller is responsible for either retrying later or freeing
1707 * skb).
1708 *
1709 * This function takes in an Ethernet header and encapsulates it with suitable
1710 * IEEE 802.11 header based on which interface the packet is coming in. The
1711 * encapsulated packet will then be passed to master interface, wlan#.11, for
1712 * transmission (through low-level driver).
1713 */
1714 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1715 struct net_device *dev)
1716 {
1717 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1718 struct ieee80211_local *local = sdata->local;
1719 struct ieee80211_tx_info *info;
1720 int ret = NETDEV_TX_BUSY, head_need;
1721 u16 ethertype, hdrlen, meshhdrlen = 0;
1722 __le16 fc;
1723 struct ieee80211_hdr hdr;
1724 struct ieee80211s_hdr mesh_hdr __maybe_unused;
1725 struct mesh_path __maybe_unused *mppath = NULL;
1726 const u8 *encaps_data;
1727 int encaps_len, skip_header_bytes;
1728 int nh_pos, h_pos;
1729 struct sta_info *sta = NULL;
1730 bool wme_sta = false, authorized = false, tdls_auth = false;
1731 struct sk_buff *tmp_skb;
1732 bool tdls_direct = false;
1733
1734 if (unlikely(skb->len < ETH_HLEN)) {
1735 ret = NETDEV_TX_OK;
1736 goto fail;
1737 }
1738
1739 /* convert Ethernet header to proper 802.11 header (based on
1740 * operation mode) */
1741 ethertype = (skb->data[12] << 8) | skb->data[13];
1742 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1743
1744 switch (sdata->vif.type) {
1745 case NL80211_IFTYPE_AP_VLAN:
1746 rcu_read_lock();
1747 sta = rcu_dereference(sdata->u.vlan.sta);
1748 if (sta) {
1749 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1750 /* RA TA DA SA */
1751 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1752 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1753 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1754 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1755 hdrlen = 30;
1756 authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
1757 wme_sta = test_sta_flag(sta, WLAN_STA_WME);
1758 }
1759 rcu_read_unlock();
1760 if (sta)
1761 break;
1762 /* fall through */
1763 case NL80211_IFTYPE_AP:
1764 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1765 /* DA BSSID SA */
1766 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1767 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1768 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1769 hdrlen = 24;
1770 break;
1771 case NL80211_IFTYPE_WDS:
1772 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1773 /* RA TA DA SA */
1774 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1775 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1776 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1777 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1778 hdrlen = 30;
1779 break;
1780 #ifdef CONFIG_MAC80211_MESH
1781 case NL80211_IFTYPE_MESH_POINT:
1782 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1783 /* Do not send frames with mesh_ttl == 0 */
1784 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1785 ret = NETDEV_TX_OK;
1786 goto fail;
1787 }
1788 rcu_read_lock();
1789 if (!is_multicast_ether_addr(skb->data))
1790 mppath = mpp_path_lookup(skb->data, sdata);
1791
1792 /*
1793 * Use address extension if it is a packet from
1794 * another interface or if we know the destination
1795 * is being proxied by a portal (i.e. portal address
1796 * differs from proxied address)
1797 */
1798 if (compare_ether_addr(sdata->vif.addr,
1799 skb->data + ETH_ALEN) == 0 &&
1800 !(mppath && compare_ether_addr(mppath->mpp, skb->data))) {
1801 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1802 skb->data, skb->data + ETH_ALEN);
1803 rcu_read_unlock();
1804 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1805 sdata, NULL, NULL);
1806 } else {
1807 int is_mesh_mcast = 1;
1808 const u8 *mesh_da;
1809
1810 if (is_multicast_ether_addr(skb->data))
1811 /* DA TA mSA AE:SA */
1812 mesh_da = skb->data;
1813 else {
1814 static const u8 bcast[ETH_ALEN] =
1815 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1816 if (mppath) {
1817 /* RA TA mDA mSA AE:DA SA */
1818 mesh_da = mppath->mpp;
1819 is_mesh_mcast = 0;
1820 } else {
1821 /* DA TA mSA AE:SA */
1822 mesh_da = bcast;
1823 }
1824 }
1825 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1826 mesh_da, sdata->vif.addr);
1827 rcu_read_unlock();
1828 if (is_mesh_mcast)
1829 meshhdrlen =
1830 ieee80211_new_mesh_header(&mesh_hdr,
1831 sdata,
1832 skb->data + ETH_ALEN,
1833 NULL);
1834 else
1835 meshhdrlen =
1836 ieee80211_new_mesh_header(&mesh_hdr,
1837 sdata,
1838 skb->data,
1839 skb->data + ETH_ALEN);
1840
1841 }
1842 break;
1843 #endif
1844 case NL80211_IFTYPE_STATION:
1845 if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) {
1846 bool tdls_peer = false;
1847
1848 rcu_read_lock();
1849 sta = sta_info_get(sdata, skb->data);
1850 if (sta) {
1851 authorized = test_sta_flag(sta,
1852 WLAN_STA_AUTHORIZED);
1853 wme_sta = test_sta_flag(sta, WLAN_STA_WME);
1854 tdls_peer = test_sta_flag(sta,
1855 WLAN_STA_TDLS_PEER);
1856 tdls_auth = test_sta_flag(sta,
1857 WLAN_STA_TDLS_PEER_AUTH);
1858 }
1859 rcu_read_unlock();
1860
1861 /*
1862 * If the TDLS link is enabled, send everything
1863 * directly. Otherwise, allow TDLS setup frames
1864 * to be transmitted indirectly.
1865 */
1866 tdls_direct = tdls_peer && (tdls_auth ||
1867 !(ethertype == ETH_P_TDLS && skb->len > 14 &&
1868 skb->data[14] == WLAN_TDLS_SNAP_RFTYPE));
1869 }
1870
1871 if (tdls_direct) {
1872 /* link during setup - throw out frames to peer */
1873 if (!tdls_auth) {
1874 ret = NETDEV_TX_OK;
1875 goto fail;
1876 }
1877
1878 /* DA SA BSSID */
1879 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1880 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1881 memcpy(hdr.addr3, sdata->u.mgd.bssid, ETH_ALEN);
1882 hdrlen = 24;
1883 } else if (sdata->u.mgd.use_4addr &&
1884 cpu_to_be16(ethertype) != sdata->control_port_protocol) {
1885 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS |
1886 IEEE80211_FCTL_TODS);
1887 /* RA TA DA SA */
1888 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1889 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1890 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1891 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1892 hdrlen = 30;
1893 } else {
1894 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1895 /* BSSID SA DA */
1896 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1897 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1898 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1899 hdrlen = 24;
1900 }
1901 break;
1902 case NL80211_IFTYPE_ADHOC:
1903 /* DA SA BSSID */
1904 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1905 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1906 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1907 hdrlen = 24;
1908 break;
1909 default:
1910 ret = NETDEV_TX_OK;
1911 goto fail;
1912 }
1913
1914 /*
1915 * There's no need to try to look up the destination
1916 * if it is a multicast address (which can only happen
1917 * in AP mode)
1918 */
1919 if (!is_multicast_ether_addr(hdr.addr1)) {
1920 rcu_read_lock();
1921 sta = sta_info_get(sdata, hdr.addr1);
1922 if (sta) {
1923 authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED);
1924 wme_sta = test_sta_flag(sta, WLAN_STA_WME);
1925 }
1926 rcu_read_unlock();
1927 }
1928
1929 /* For mesh, the use of the QoS header is mandatory */
1930 if (ieee80211_vif_is_mesh(&sdata->vif))
1931 wme_sta = true;
1932
1933 /* receiver and we are QoS enabled, use a QoS type frame */
1934 if (wme_sta && local->hw.queues >= 4) {
1935 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1936 hdrlen += 2;
1937 }
1938
1939 /*
1940 * Drop unicast frames to unauthorised stations unless they are
1941 * EAPOL frames from the local station.
1942 */
1943 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1944 unlikely(!is_multicast_ether_addr(hdr.addr1) && !authorized &&
1945 !(cpu_to_be16(ethertype) == sdata->control_port_protocol &&
1946 compare_ether_addr(sdata->vif.addr,
1947 skb->data + ETH_ALEN) == 0))) {
1948 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1949 if (net_ratelimit())
1950 printk(KERN_DEBUG "%s: dropped frame to %pM"
1951 " (unauthorized port)\n", dev->name,
1952 hdr.addr1);
1953 #endif
1954
1955 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1956
1957 ret = NETDEV_TX_OK;
1958 goto fail;
1959 }
1960
1961 /*
1962 * If the skb is shared we need to obtain our own copy.
1963 */
1964 if (skb_shared(skb)) {
1965 tmp_skb = skb;
1966 skb = skb_clone(skb, GFP_ATOMIC);
1967 kfree_skb(tmp_skb);
1968
1969 if (!skb) {
1970 ret = NETDEV_TX_OK;
1971 goto fail;
1972 }
1973 }
1974
1975 hdr.frame_control = fc;
1976 hdr.duration_id = 0;
1977 hdr.seq_ctrl = 0;
1978
1979 skip_header_bytes = ETH_HLEN;
1980 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1981 encaps_data = bridge_tunnel_header;
1982 encaps_len = sizeof(bridge_tunnel_header);
1983 skip_header_bytes -= 2;
1984 } else if (ethertype >= 0x600) {
1985 encaps_data = rfc1042_header;
1986 encaps_len = sizeof(rfc1042_header);
1987 skip_header_bytes -= 2;
1988 } else {
1989 encaps_data = NULL;
1990 encaps_len = 0;
1991 }
1992
1993 nh_pos = skb_network_header(skb) - skb->data;
1994 h_pos = skb_transport_header(skb) - skb->data;
1995
1996 skb_pull(skb, skip_header_bytes);
1997 nh_pos -= skip_header_bytes;
1998 h_pos -= skip_header_bytes;
1999
2000 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
2001
2002 /*
2003 * So we need to modify the skb header and hence need a copy of
2004 * that. The head_need variable above doesn't, so far, include
2005 * the needed header space that we don't need right away. If we
2006 * can, then we don't reallocate right now but only after the
2007 * frame arrives at the master device (if it does...)
2008 *
2009 * If we cannot, however, then we will reallocate to include all
2010 * the ever needed space. Also, if we need to reallocate it anyway,
2011 * make it big enough for everything we may ever need.
2012 */
2013
2014 if (head_need > 0 || skb_cloned(skb)) {
2015 head_need += IEEE80211_ENCRYPT_HEADROOM;
2016 head_need += local->tx_headroom;
2017 head_need = max_t(int, 0, head_need);
2018 if (ieee80211_skb_resize(sdata, skb, head_need, true))
2019 goto fail;
2020 }
2021
2022 if (encaps_data) {
2023 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
2024 nh_pos += encaps_len;
2025 h_pos += encaps_len;
2026 }
2027
2028 #ifdef CONFIG_MAC80211_MESH
2029 if (meshhdrlen > 0) {
2030 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
2031 nh_pos += meshhdrlen;
2032 h_pos += meshhdrlen;
2033 }
2034 #endif
2035
2036 if (ieee80211_is_data_qos(fc)) {
2037 __le16 *qos_control;
2038
2039 qos_control = (__le16*) skb_push(skb, 2);
2040 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
2041 /*
2042 * Maybe we could actually set some fields here, for now just
2043 * initialise to zero to indicate no special operation.
2044 */
2045 *qos_control = 0;
2046 } else
2047 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
2048
2049 nh_pos += hdrlen;
2050 h_pos += hdrlen;
2051
2052 dev->stats.tx_packets++;
2053 dev->stats.tx_bytes += skb->len;
2054
2055 /* Update skb pointers to various headers since this modified frame
2056 * is going to go through Linux networking code that may potentially
2057 * need things like pointer to IP header. */
2058 skb_set_mac_header(skb, 0);
2059 skb_set_network_header(skb, nh_pos);
2060 skb_set_transport_header(skb, h_pos);
2061
2062 info = IEEE80211_SKB_CB(skb);
2063 memset(info, 0, sizeof(*info));
2064
2065 dev->trans_start = jiffies;
2066 ieee80211_xmit(sdata, skb);
2067
2068 return NETDEV_TX_OK;
2069
2070 fail:
2071 if (ret == NETDEV_TX_OK)
2072 dev_kfree_skb(skb);
2073
2074 return ret;
2075 }
2076
2077
2078 /*
2079 * ieee80211_clear_tx_pending may not be called in a context where
2080 * it is possible that it packets could come in again.
2081 */
2082 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
2083 {
2084 int i;
2085
2086 for (i = 0; i < local->hw.queues; i++)
2087 skb_queue_purge(&local->pending[i]);
2088 }
2089
2090 /*
2091 * Returns false if the frame couldn't be transmitted but was queued instead,
2092 * which in this case means re-queued -- take as an indication to stop sending
2093 * more pending frames.
2094 */
2095 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
2096 struct sk_buff *skb)
2097 {
2098 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2099 struct ieee80211_sub_if_data *sdata;
2100 struct sta_info *sta;
2101 struct ieee80211_hdr *hdr;
2102 bool result;
2103
2104 sdata = vif_to_sdata(info->control.vif);
2105
2106 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
2107 result = ieee80211_tx(sdata, skb, true);
2108 } else {
2109 hdr = (struct ieee80211_hdr *)skb->data;
2110 sta = sta_info_get(sdata, hdr->addr1);
2111
2112 result = __ieee80211_tx(local, &skb, sta, true);
2113 }
2114
2115 return result;
2116 }
2117
2118 /*
2119 * Transmit all pending packets. Called from tasklet.
2120 */
2121 void ieee80211_tx_pending(unsigned long data)
2122 {
2123 struct ieee80211_local *local = (struct ieee80211_local *)data;
2124 struct ieee80211_sub_if_data *sdata;
2125 unsigned long flags;
2126 int i;
2127 bool txok;
2128
2129 rcu_read_lock();
2130
2131 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2132 for (i = 0; i < local->hw.queues; i++) {
2133 /*
2134 * If queue is stopped by something other than due to pending
2135 * frames, or we have no pending frames, proceed to next queue.
2136 */
2137 if (local->queue_stop_reasons[i] ||
2138 skb_queue_empty(&local->pending[i]))
2139 continue;
2140
2141 while (!skb_queue_empty(&local->pending[i])) {
2142 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2143 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2144
2145 if (WARN_ON(!info->control.vif)) {
2146 kfree_skb(skb);
2147 continue;
2148 }
2149
2150 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2151 flags);
2152
2153 txok = ieee80211_tx_pending_skb(local, skb);
2154 spin_lock_irqsave(&local->queue_stop_reason_lock,
2155 flags);
2156 if (!txok)
2157 break;
2158 }
2159
2160 if (skb_queue_empty(&local->pending[i]))
2161 list_for_each_entry_rcu(sdata, &local->interfaces, list)
2162 netif_wake_subqueue(sdata->dev, i);
2163 }
2164 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2165
2166 rcu_read_unlock();
2167 }
2168
2169 /* functions for drivers to get certain frames */
2170
2171 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2172 struct sk_buff *skb,
2173 struct beacon_data *beacon)
2174 {
2175 u8 *pos, *tim;
2176 int aid0 = 0;
2177 int i, have_bits = 0, n1, n2;
2178
2179 /* Generate bitmap for TIM only if there are any STAs in power save
2180 * mode. */
2181 if (atomic_read(&bss->num_sta_ps) > 0)
2182 /* in the hope that this is faster than
2183 * checking byte-for-byte */
2184 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2185 IEEE80211_MAX_AID+1);
2186
2187 if (bss->dtim_count == 0)
2188 bss->dtim_count = beacon->dtim_period - 1;
2189 else
2190 bss->dtim_count--;
2191
2192 tim = pos = (u8 *) skb_put(skb, 6);
2193 *pos++ = WLAN_EID_TIM;
2194 *pos++ = 4;
2195 *pos++ = bss->dtim_count;
2196 *pos++ = beacon->dtim_period;
2197
2198 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2199 aid0 = 1;
2200
2201 bss->dtim_bc_mc = aid0 == 1;
2202
2203 if (have_bits) {
2204 /* Find largest even number N1 so that bits numbered 1 through
2205 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2206 * (N2 + 1) x 8 through 2007 are 0. */
2207 n1 = 0;
2208 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2209 if (bss->tim[i]) {
2210 n1 = i & 0xfe;
2211 break;
2212 }
2213 }
2214 n2 = n1;
2215 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2216 if (bss->tim[i]) {
2217 n2 = i;
2218 break;
2219 }
2220 }
2221
2222 /* Bitmap control */
2223 *pos++ = n1 | aid0;
2224 /* Part Virt Bitmap */
2225 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2226
2227 tim[1] = n2 - n1 + 4;
2228 skb_put(skb, n2 - n1);
2229 } else {
2230 *pos++ = aid0; /* Bitmap control */
2231 *pos++ = 0; /* Part Virt Bitmap */
2232 }
2233 }
2234
2235 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2236 struct ieee80211_vif *vif,
2237 u16 *tim_offset, u16 *tim_length)
2238 {
2239 struct ieee80211_local *local = hw_to_local(hw);
2240 struct sk_buff *skb = NULL;
2241 struct ieee80211_tx_info *info;
2242 struct ieee80211_sub_if_data *sdata = NULL;
2243 struct ieee80211_if_ap *ap = NULL;
2244 struct beacon_data *beacon;
2245 struct ieee80211_supported_band *sband;
2246 enum ieee80211_band band = local->hw.conf.channel->band;
2247 struct ieee80211_tx_rate_control txrc;
2248
2249 sband = local->hw.wiphy->bands[band];
2250
2251 rcu_read_lock();
2252
2253 sdata = vif_to_sdata(vif);
2254
2255 if (!ieee80211_sdata_running(sdata))
2256 goto out;
2257
2258 if (tim_offset)
2259 *tim_offset = 0;
2260 if (tim_length)
2261 *tim_length = 0;
2262
2263 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2264 ap = &sdata->u.ap;
2265 beacon = rcu_dereference(ap->beacon);
2266 if (beacon) {
2267 /*
2268 * headroom, head length,
2269 * tail length and maximum TIM length
2270 */
2271 skb = dev_alloc_skb(local->tx_headroom +
2272 beacon->head_len +
2273 beacon->tail_len + 256);
2274 if (!skb)
2275 goto out;
2276
2277 skb_reserve(skb, local->tx_headroom);
2278 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2279 beacon->head_len);
2280
2281 /*
2282 * Not very nice, but we want to allow the driver to call
2283 * ieee80211_beacon_get() as a response to the set_tim()
2284 * callback. That, however, is already invoked under the
2285 * sta_lock to guarantee consistent and race-free update
2286 * of the tim bitmap in mac80211 and the driver.
2287 */
2288 if (local->tim_in_locked_section) {
2289 ieee80211_beacon_add_tim(ap, skb, beacon);
2290 } else {
2291 unsigned long flags;
2292
2293 spin_lock_irqsave(&local->sta_lock, flags);
2294 ieee80211_beacon_add_tim(ap, skb, beacon);
2295 spin_unlock_irqrestore(&local->sta_lock, flags);
2296 }
2297
2298 if (tim_offset)
2299 *tim_offset = beacon->head_len;
2300 if (tim_length)
2301 *tim_length = skb->len - beacon->head_len;
2302
2303 if (beacon->tail)
2304 memcpy(skb_put(skb, beacon->tail_len),
2305 beacon->tail, beacon->tail_len);
2306 } else
2307 goto out;
2308 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2309 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2310 struct ieee80211_hdr *hdr;
2311 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2312
2313 if (!presp)
2314 goto out;
2315
2316 skb = skb_copy(presp, GFP_ATOMIC);
2317 if (!skb)
2318 goto out;
2319
2320 hdr = (struct ieee80211_hdr *) skb->data;
2321 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2322 IEEE80211_STYPE_BEACON);
2323 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2324 struct ieee80211_mgmt *mgmt;
2325 u8 *pos;
2326
2327 #ifdef CONFIG_MAC80211_MESH
2328 if (!sdata->u.mesh.mesh_id_len)
2329 goto out;
2330 #endif
2331
2332 /* headroom, head length, tail length and maximum TIM length */
2333 skb = dev_alloc_skb(local->tx_headroom + 400 +
2334 sdata->u.mesh.ie_len);
2335 if (!skb)
2336 goto out;
2337
2338 skb_reserve(skb, local->hw.extra_tx_headroom);
2339 mgmt = (struct ieee80211_mgmt *)
2340 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2341 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2342 mgmt->frame_control =
2343 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2344 memset(mgmt->da, 0xff, ETH_ALEN);
2345 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2346 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2347 mgmt->u.beacon.beacon_int =
2348 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2349 mgmt->u.beacon.capab_info |= cpu_to_le16(
2350 sdata->u.mesh.security ? WLAN_CAPABILITY_PRIVACY : 0);
2351
2352 pos = skb_put(skb, 2);
2353 *pos++ = WLAN_EID_SSID;
2354 *pos++ = 0x0;
2355
2356 if (ieee80211_add_srates_ie(&sdata->vif, skb) ||
2357 mesh_add_ds_params_ie(skb, sdata) ||
2358 ieee80211_add_ext_srates_ie(&sdata->vif, skb) ||
2359 mesh_add_rsn_ie(skb, sdata) ||
2360 mesh_add_meshid_ie(skb, sdata) ||
2361 mesh_add_meshconf_ie(skb, sdata) ||
2362 mesh_add_vendor_ies(skb, sdata)) {
2363 pr_err("o11s: couldn't add ies!\n");
2364 goto out;
2365 }
2366 } else {
2367 WARN_ON(1);
2368 goto out;
2369 }
2370
2371 info = IEEE80211_SKB_CB(skb);
2372
2373 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2374 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2375 info->band = band;
2376
2377 memset(&txrc, 0, sizeof(txrc));
2378 txrc.hw = hw;
2379 txrc.sband = sband;
2380 txrc.bss_conf = &sdata->vif.bss_conf;
2381 txrc.skb = skb;
2382 txrc.reported_rate.idx = -1;
2383 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2384 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2385 txrc.max_rate_idx = -1;
2386 else
2387 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2388 txrc.bss = true;
2389 rate_control_get_rate(sdata, NULL, &txrc);
2390
2391 info->control.vif = vif;
2392
2393 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT |
2394 IEEE80211_TX_CTL_ASSIGN_SEQ |
2395 IEEE80211_TX_CTL_FIRST_FRAGMENT;
2396 out:
2397 rcu_read_unlock();
2398 return skb;
2399 }
2400 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2401
2402 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2403 struct ieee80211_vif *vif)
2404 {
2405 struct ieee80211_sub_if_data *sdata;
2406 struct ieee80211_if_managed *ifmgd;
2407 struct ieee80211_pspoll *pspoll;
2408 struct ieee80211_local *local;
2409 struct sk_buff *skb;
2410
2411 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2412 return NULL;
2413
2414 sdata = vif_to_sdata(vif);
2415 ifmgd = &sdata->u.mgd;
2416 local = sdata->local;
2417
2418 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2419 if (!skb)
2420 return NULL;
2421
2422 skb_reserve(skb, local->hw.extra_tx_headroom);
2423
2424 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2425 memset(pspoll, 0, sizeof(*pspoll));
2426 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2427 IEEE80211_STYPE_PSPOLL);
2428 pspoll->aid = cpu_to_le16(ifmgd->aid);
2429
2430 /* aid in PS-Poll has its two MSBs each set to 1 */
2431 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2432
2433 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2434 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2435
2436 return skb;
2437 }
2438 EXPORT_SYMBOL(ieee80211_pspoll_get);
2439
2440 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2441 struct ieee80211_vif *vif)
2442 {
2443 struct ieee80211_hdr_3addr *nullfunc;
2444 struct ieee80211_sub_if_data *sdata;
2445 struct ieee80211_if_managed *ifmgd;
2446 struct ieee80211_local *local;
2447 struct sk_buff *skb;
2448
2449 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2450 return NULL;
2451
2452 sdata = vif_to_sdata(vif);
2453 ifmgd = &sdata->u.mgd;
2454 local = sdata->local;
2455
2456 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2457 if (!skb)
2458 return NULL;
2459
2460 skb_reserve(skb, local->hw.extra_tx_headroom);
2461
2462 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2463 sizeof(*nullfunc));
2464 memset(nullfunc, 0, sizeof(*nullfunc));
2465 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2466 IEEE80211_STYPE_NULLFUNC |
2467 IEEE80211_FCTL_TODS);
2468 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2469 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2470 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2471
2472 return skb;
2473 }
2474 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2475
2476 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2477 struct ieee80211_vif *vif,
2478 const u8 *ssid, size_t ssid_len,
2479 const u8 *ie, size_t ie_len)
2480 {
2481 struct ieee80211_sub_if_data *sdata;
2482 struct ieee80211_local *local;
2483 struct ieee80211_hdr_3addr *hdr;
2484 struct sk_buff *skb;
2485 size_t ie_ssid_len;
2486 u8 *pos;
2487
2488 sdata = vif_to_sdata(vif);
2489 local = sdata->local;
2490 ie_ssid_len = 2 + ssid_len;
2491
2492 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2493 ie_ssid_len + ie_len);
2494 if (!skb)
2495 return NULL;
2496
2497 skb_reserve(skb, local->hw.extra_tx_headroom);
2498
2499 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2500 memset(hdr, 0, sizeof(*hdr));
2501 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2502 IEEE80211_STYPE_PROBE_REQ);
2503 memset(hdr->addr1, 0xff, ETH_ALEN);
2504 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2505 memset(hdr->addr3, 0xff, ETH_ALEN);
2506
2507 pos = skb_put(skb, ie_ssid_len);
2508 *pos++ = WLAN_EID_SSID;
2509 *pos++ = ssid_len;
2510 if (ssid)
2511 memcpy(pos, ssid, ssid_len);
2512 pos += ssid_len;
2513
2514 if (ie) {
2515 pos = skb_put(skb, ie_len);
2516 memcpy(pos, ie, ie_len);
2517 }
2518
2519 return skb;
2520 }
2521 EXPORT_SYMBOL(ieee80211_probereq_get);
2522
2523 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2524 const void *frame, size_t frame_len,
2525 const struct ieee80211_tx_info *frame_txctl,
2526 struct ieee80211_rts *rts)
2527 {
2528 const struct ieee80211_hdr *hdr = frame;
2529
2530 rts->frame_control =
2531 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2532 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2533 frame_txctl);
2534 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2535 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2536 }
2537 EXPORT_SYMBOL(ieee80211_rts_get);
2538
2539 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2540 const void *frame, size_t frame_len,
2541 const struct ieee80211_tx_info *frame_txctl,
2542 struct ieee80211_cts *cts)
2543 {
2544 const struct ieee80211_hdr *hdr = frame;
2545
2546 cts->frame_control =
2547 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2548 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2549 frame_len, frame_txctl);
2550 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2551 }
2552 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2553
2554 struct sk_buff *
2555 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2556 struct ieee80211_vif *vif)
2557 {
2558 struct ieee80211_local *local = hw_to_local(hw);
2559 struct sk_buff *skb = NULL;
2560 struct ieee80211_tx_data tx;
2561 struct ieee80211_sub_if_data *sdata;
2562 struct ieee80211_if_ap *bss = NULL;
2563 struct beacon_data *beacon;
2564 struct ieee80211_tx_info *info;
2565
2566 sdata = vif_to_sdata(vif);
2567 bss = &sdata->u.ap;
2568
2569 rcu_read_lock();
2570 beacon = rcu_dereference(bss->beacon);
2571
2572 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2573 goto out;
2574
2575 if (bss->dtim_count != 0 || !bss->dtim_bc_mc)
2576 goto out; /* send buffered bc/mc only after DTIM beacon */
2577
2578 while (1) {
2579 skb = skb_dequeue(&bss->ps_bc_buf);
2580 if (!skb)
2581 goto out;
2582 local->total_ps_buffered--;
2583
2584 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2585 struct ieee80211_hdr *hdr =
2586 (struct ieee80211_hdr *) skb->data;
2587 /* more buffered multicast/broadcast frames ==> set
2588 * MoreData flag in IEEE 802.11 header to inform PS
2589 * STAs */
2590 hdr->frame_control |=
2591 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2592 }
2593
2594 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2595 break;
2596 dev_kfree_skb_any(skb);
2597 }
2598
2599 info = IEEE80211_SKB_CB(skb);
2600
2601 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2602 tx.channel = local->hw.conf.channel;
2603 info->band = tx.channel->band;
2604
2605 if (invoke_tx_handlers(&tx))
2606 skb = NULL;
2607 out:
2608 rcu_read_unlock();
2609
2610 return skb;
2611 }
2612 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2613
2614 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2615 {
2616 skb_set_mac_header(skb, 0);
2617 skb_set_network_header(skb, 0);
2618 skb_set_transport_header(skb, 0);
2619
2620 /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */
2621 skb_set_queue_mapping(skb, IEEE80211_AC_VO);
2622 skb->priority = 7;
2623
2624 /*
2625 * The other path calling ieee80211_xmit is from the tasklet,
2626 * and while we can handle concurrent transmissions locking
2627 * requirements are that we do not come into tx with bhs on.
2628 */
2629 local_bh_disable();
2630 ieee80211_xmit(sdata, skb);
2631 local_bh_enable();
2632 }