]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/mac80211/tx.c
mac80211: remove master netdev
[mirror_ubuntu-hirsute-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183
184 static ieee80211_tx_result debug_noinline
185 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
186 {
187
188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
190 u32 sta_flags;
191
192 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
193 return TX_CONTINUE;
194
195 if (unlikely(tx->local->sw_scanning) &&
196 !ieee80211_is_probe_req(hdr->frame_control) &&
197 !ieee80211_is_nullfunc(hdr->frame_control))
198 /*
199 * When software scanning only nullfunc frames (to notify
200 * the sleep state to the AP) and probe requests (for the
201 * active scan) are allowed, all other frames should not be
202 * sent and we should not get here, but if we do
203 * nonetheless, drop them to avoid sending them
204 * off-channel. See the link below and
205 * ieee80211_start_scan() for more.
206 *
207 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
208 */
209 return TX_DROP;
210
211 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
212 return TX_CONTINUE;
213
214 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
215 return TX_CONTINUE;
216
217 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
218
219 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
220 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
222 ieee80211_is_data(hdr->frame_control))) {
223 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
224 printk(KERN_DEBUG "%s: dropped data frame to not "
225 "associated station %pM\n",
226 tx->dev->name, hdr->addr1);
227 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
228 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
229 return TX_DROP;
230 }
231 } else {
232 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
233 tx->local->num_sta == 0 &&
234 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
235 /*
236 * No associated STAs - no need to send multicast
237 * frames.
238 */
239 return TX_DROP;
240 }
241 return TX_CONTINUE;
242 }
243
244 return TX_CONTINUE;
245 }
246
247 /* This function is called whenever the AP is about to exceed the maximum limit
248 * of buffered frames for power saving STAs. This situation should not really
249 * happen often during normal operation, so dropping the oldest buffered packet
250 * from each queue should be OK to make some room for new frames. */
251 static void purge_old_ps_buffers(struct ieee80211_local *local)
252 {
253 int total = 0, purged = 0;
254 struct sk_buff *skb;
255 struct ieee80211_sub_if_data *sdata;
256 struct sta_info *sta;
257
258 /*
259 * virtual interfaces are protected by RCU
260 */
261 rcu_read_lock();
262
263 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
264 struct ieee80211_if_ap *ap;
265 if (sdata->vif.type != NL80211_IFTYPE_AP)
266 continue;
267 ap = &sdata->u.ap;
268 skb = skb_dequeue(&ap->ps_bc_buf);
269 if (skb) {
270 purged++;
271 dev_kfree_skb(skb);
272 }
273 total += skb_queue_len(&ap->ps_bc_buf);
274 }
275
276 list_for_each_entry_rcu(sta, &local->sta_list, list) {
277 skb = skb_dequeue(&sta->ps_tx_buf);
278 if (skb) {
279 purged++;
280 dev_kfree_skb(skb);
281 }
282 total += skb_queue_len(&sta->ps_tx_buf);
283 }
284
285 rcu_read_unlock();
286
287 local->total_ps_buffered = total;
288 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
289 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
290 wiphy_name(local->hw.wiphy), purged);
291 #endif
292 }
293
294 static ieee80211_tx_result
295 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
296 {
297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
298 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
299
300 /*
301 * broadcast/multicast frame
302 *
303 * If any of the associated stations is in power save mode,
304 * the frame is buffered to be sent after DTIM beacon frame.
305 * This is done either by the hardware or us.
306 */
307
308 /* powersaving STAs only in AP/VLAN mode */
309 if (!tx->sdata->bss)
310 return TX_CONTINUE;
311
312 /* no buffering for ordered frames */
313 if (ieee80211_has_order(hdr->frame_control))
314 return TX_CONTINUE;
315
316 /* no stations in PS mode */
317 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
318 return TX_CONTINUE;
319
320 /* buffered in mac80211 */
321 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
322 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
323 purge_old_ps_buffers(tx->local);
324 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
325 AP_MAX_BC_BUFFER) {
326 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
327 if (net_ratelimit()) {
328 printk(KERN_DEBUG "%s: BC TX buffer full - "
329 "dropping the oldest frame\n",
330 tx->dev->name);
331 }
332 #endif
333 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
334 } else
335 tx->local->total_ps_buffered++;
336 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
337 return TX_QUEUED;
338 }
339
340 /* buffered in hardware */
341 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
342
343 return TX_CONTINUE;
344 }
345
346 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
347 struct sk_buff *skb)
348 {
349 if (!ieee80211_is_mgmt(fc))
350 return 0;
351
352 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
353 return 0;
354
355 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
356 skb->data))
357 return 0;
358
359 return 1;
360 }
361
362 static ieee80211_tx_result
363 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
364 {
365 struct sta_info *sta = tx->sta;
366 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
367 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
368 u32 staflags;
369
370 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
371 return TX_CONTINUE;
372
373 staflags = get_sta_flags(sta);
374
375 if (unlikely((staflags & WLAN_STA_PS) &&
376 !(staflags & WLAN_STA_PSPOLL))) {
377 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
378 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
379 "before %d)\n",
380 sta->sta.addr, sta->sta.aid,
381 skb_queue_len(&sta->ps_tx_buf));
382 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
383 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
384 purge_old_ps_buffers(tx->local);
385 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
386 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
387 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
388 if (net_ratelimit()) {
389 printk(KERN_DEBUG "%s: STA %pM TX "
390 "buffer full - dropping oldest frame\n",
391 tx->dev->name, sta->sta.addr);
392 }
393 #endif
394 dev_kfree_skb(old);
395 } else
396 tx->local->total_ps_buffered++;
397
398 /* Queue frame to be sent after STA sends an PS Poll frame */
399 if (skb_queue_empty(&sta->ps_tx_buf))
400 sta_info_set_tim_bit(sta);
401
402 info->control.jiffies = jiffies;
403 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
404 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
405 return TX_QUEUED;
406 }
407 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
408 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
409 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
410 "set -> send frame\n", tx->dev->name,
411 sta->sta.addr);
412 }
413 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
414 if (test_and_clear_sta_flags(sta, WLAN_STA_PSPOLL)) {
415 /*
416 * The sleeping station with pending data is now snoozing.
417 * It queried us for its buffered frames and will go back
418 * to deep sleep once it got everything.
419 *
420 * inform the driver, in case the hardware does powersave
421 * frame filtering and keeps a station blacklist on its own
422 * (e.g: p54), so that frames can be delivered unimpeded.
423 *
424 * Note: It should be safe to disable the filter now.
425 * As, it is really unlikely that we still have any pending
426 * frame for this station in the hw's buffers/fifos left,
427 * that is not rejected with a unsuccessful tx_status yet.
428 */
429
430 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
431 }
432 return TX_CONTINUE;
433 }
434
435 static ieee80211_tx_result debug_noinline
436 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
437 {
438 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
439 return TX_CONTINUE;
440
441 if (tx->flags & IEEE80211_TX_UNICAST)
442 return ieee80211_tx_h_unicast_ps_buf(tx);
443 else
444 return ieee80211_tx_h_multicast_ps_buf(tx);
445 }
446
447 static ieee80211_tx_result debug_noinline
448 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
449 {
450 struct ieee80211_key *key = NULL;
451 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
452 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
453
454 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
455 tx->key = NULL;
456 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
457 tx->key = key;
458 else if (ieee80211_is_mgmt(hdr->frame_control) &&
459 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
460 tx->key = key;
461 else if ((key = rcu_dereference(tx->sdata->default_key)))
462 tx->key = key;
463 else if (tx->sdata->drop_unencrypted &&
464 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
465 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
466 (!ieee80211_is_robust_mgmt_frame(hdr) ||
467 (ieee80211_is_action(hdr->frame_control) &&
468 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
469 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
470 return TX_DROP;
471 } else
472 tx->key = NULL;
473
474 if (tx->key) {
475 tx->key->tx_rx_count++;
476 /* TODO: add threshold stuff again */
477
478 switch (tx->key->conf.alg) {
479 case ALG_WEP:
480 if (ieee80211_is_auth(hdr->frame_control))
481 break;
482 case ALG_TKIP:
483 if (!ieee80211_is_data_present(hdr->frame_control))
484 tx->key = NULL;
485 break;
486 case ALG_CCMP:
487 if (!ieee80211_is_data_present(hdr->frame_control) &&
488 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
489 tx->skb))
490 tx->key = NULL;
491 break;
492 case ALG_AES_CMAC:
493 if (!ieee80211_is_mgmt(hdr->frame_control))
494 tx->key = NULL;
495 break;
496 }
497 }
498
499 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
500 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
501
502 return TX_CONTINUE;
503 }
504
505 static ieee80211_tx_result debug_noinline
506 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
507 {
508 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
509 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
510 struct ieee80211_supported_band *sband;
511 struct ieee80211_rate *rate;
512 int i, len;
513 bool inval = false, rts = false, short_preamble = false;
514 struct ieee80211_tx_rate_control txrc;
515 u32 sta_flags;
516
517 memset(&txrc, 0, sizeof(txrc));
518
519 sband = tx->local->hw.wiphy->bands[tx->channel->band];
520
521 len = min_t(int, tx->skb->len + FCS_LEN,
522 tx->local->hw.wiphy->frag_threshold);
523
524 /* set up the tx rate control struct we give the RC algo */
525 txrc.hw = local_to_hw(tx->local);
526 txrc.sband = sband;
527 txrc.bss_conf = &tx->sdata->vif.bss_conf;
528 txrc.skb = tx->skb;
529 txrc.reported_rate.idx = -1;
530 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
531
532 /* set up RTS protection if desired */
533 if (len > tx->local->hw.wiphy->rts_threshold) {
534 txrc.rts = rts = true;
535 }
536
537 /*
538 * Use short preamble if the BSS can handle it, but not for
539 * management frames unless we know the receiver can handle
540 * that -- the management frame might be to a station that
541 * just wants a probe response.
542 */
543 if (tx->sdata->vif.bss_conf.use_short_preamble &&
544 (ieee80211_is_data(hdr->frame_control) ||
545 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
546 txrc.short_preamble = short_preamble = true;
547
548 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
549
550 /*
551 * Lets not bother rate control if we're associated and cannot
552 * talk to the sta. This should not happen.
553 */
554 if (WARN((tx->local->sw_scanning) &&
555 (sta_flags & WLAN_STA_ASSOC) &&
556 !rate_usable_index_exists(sband, &tx->sta->sta),
557 "%s: Dropped data frame as no usable bitrate found while "
558 "scanning and associated. Target station: "
559 "%pM on %d GHz band\n",
560 tx->dev->name, hdr->addr1,
561 tx->channel->band ? 5 : 2))
562 return TX_DROP;
563
564 /*
565 * If we're associated with the sta at this point we know we can at
566 * least send the frame at the lowest bit rate.
567 */
568 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
569
570 if (unlikely(info->control.rates[0].idx < 0))
571 return TX_DROP;
572
573 if (txrc.reported_rate.idx < 0)
574 txrc.reported_rate = info->control.rates[0];
575
576 if (tx->sta)
577 tx->sta->last_tx_rate = txrc.reported_rate;
578
579 if (unlikely(!info->control.rates[0].count))
580 info->control.rates[0].count = 1;
581
582 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
583 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
584 info->control.rates[0].count = 1;
585
586 if (is_multicast_ether_addr(hdr->addr1)) {
587 /*
588 * XXX: verify the rate is in the basic rateset
589 */
590 return TX_CONTINUE;
591 }
592
593 /*
594 * set up the RTS/CTS rate as the fastest basic rate
595 * that is not faster than the data rate
596 *
597 * XXX: Should this check all retry rates?
598 */
599 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
600 s8 baserate = 0;
601
602 rate = &sband->bitrates[info->control.rates[0].idx];
603
604 for (i = 0; i < sband->n_bitrates; i++) {
605 /* must be a basic rate */
606 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
607 continue;
608 /* must not be faster than the data rate */
609 if (sband->bitrates[i].bitrate > rate->bitrate)
610 continue;
611 /* maximum */
612 if (sband->bitrates[baserate].bitrate <
613 sband->bitrates[i].bitrate)
614 baserate = i;
615 }
616
617 info->control.rts_cts_rate_idx = baserate;
618 }
619
620 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
621 /*
622 * make sure there's no valid rate following
623 * an invalid one, just in case drivers don't
624 * take the API seriously to stop at -1.
625 */
626 if (inval) {
627 info->control.rates[i].idx = -1;
628 continue;
629 }
630 if (info->control.rates[i].idx < 0) {
631 inval = true;
632 continue;
633 }
634
635 /*
636 * For now assume MCS is already set up correctly, this
637 * needs to be fixed.
638 */
639 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
640 WARN_ON(info->control.rates[i].idx > 76);
641 continue;
642 }
643
644 /* set up RTS protection if desired */
645 if (rts)
646 info->control.rates[i].flags |=
647 IEEE80211_TX_RC_USE_RTS_CTS;
648
649 /* RC is busted */
650 if (WARN_ON_ONCE(info->control.rates[i].idx >=
651 sband->n_bitrates)) {
652 info->control.rates[i].idx = -1;
653 continue;
654 }
655
656 rate = &sband->bitrates[info->control.rates[i].idx];
657
658 /* set up short preamble */
659 if (short_preamble &&
660 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
661 info->control.rates[i].flags |=
662 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
663
664 /* set up G protection */
665 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
666 rate->flags & IEEE80211_RATE_ERP_G)
667 info->control.rates[i].flags |=
668 IEEE80211_TX_RC_USE_CTS_PROTECT;
669 }
670
671 return TX_CONTINUE;
672 }
673
674 static ieee80211_tx_result debug_noinline
675 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
676 {
677 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
678
679 if (tx->sta)
680 info->control.sta = &tx->sta->sta;
681
682 return TX_CONTINUE;
683 }
684
685 static ieee80211_tx_result debug_noinline
686 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
687 {
688 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
689 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
690 u16 *seq;
691 u8 *qc;
692 int tid;
693
694 /*
695 * Packet injection may want to control the sequence
696 * number, if we have no matching interface then we
697 * neither assign one ourselves nor ask the driver to.
698 */
699 if (unlikely(!info->control.vif))
700 return TX_CONTINUE;
701
702 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
703 return TX_CONTINUE;
704
705 if (ieee80211_hdrlen(hdr->frame_control) < 24)
706 return TX_CONTINUE;
707
708 /*
709 * Anything but QoS data that has a sequence number field
710 * (is long enough) gets a sequence number from the global
711 * counter.
712 */
713 if (!ieee80211_is_data_qos(hdr->frame_control)) {
714 /* driver should assign sequence number */
715 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
716 /* for pure STA mode without beacons, we can do it */
717 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
718 tx->sdata->sequence_number += 0x10;
719 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
720 return TX_CONTINUE;
721 }
722
723 /*
724 * This should be true for injected/management frames only, for
725 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
726 * above since they are not QoS-data frames.
727 */
728 if (!tx->sta)
729 return TX_CONTINUE;
730
731 /* include per-STA, per-TID sequence counter */
732
733 qc = ieee80211_get_qos_ctl(hdr);
734 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
735 seq = &tx->sta->tid_seq[tid];
736
737 hdr->seq_ctrl = cpu_to_le16(*seq);
738
739 /* Increase the sequence number. */
740 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
741
742 return TX_CONTINUE;
743 }
744
745 static int ieee80211_fragment(struct ieee80211_local *local,
746 struct sk_buff *skb, int hdrlen,
747 int frag_threshold)
748 {
749 struct sk_buff *tail = skb, *tmp;
750 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
751 int pos = hdrlen + per_fragm;
752 int rem = skb->len - hdrlen - per_fragm;
753
754 if (WARN_ON(rem < 0))
755 return -EINVAL;
756
757 while (rem) {
758 int fraglen = per_fragm;
759
760 if (fraglen > rem)
761 fraglen = rem;
762 rem -= fraglen;
763 tmp = dev_alloc_skb(local->tx_headroom +
764 frag_threshold +
765 IEEE80211_ENCRYPT_HEADROOM +
766 IEEE80211_ENCRYPT_TAILROOM);
767 if (!tmp)
768 return -ENOMEM;
769 tail->next = tmp;
770 tail = tmp;
771 skb_reserve(tmp, local->tx_headroom +
772 IEEE80211_ENCRYPT_HEADROOM);
773 /* copy control information */
774 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
775 skb_copy_queue_mapping(tmp, skb);
776 tmp->priority = skb->priority;
777 tmp->dev = skb->dev;
778
779 /* copy header and data */
780 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
781 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
782
783 pos += fraglen;
784 }
785
786 skb->len = hdrlen + per_fragm;
787 return 0;
788 }
789
790 static ieee80211_tx_result debug_noinline
791 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
792 {
793 struct sk_buff *skb = tx->skb;
794 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
795 struct ieee80211_hdr *hdr = (void *)skb->data;
796 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
797 int hdrlen;
798 int fragnum;
799
800 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
801 return TX_CONTINUE;
802
803 /*
804 * Warn when submitting a fragmented A-MPDU frame and drop it.
805 * This scenario is handled in ieee80211_tx_prepare but extra
806 * caution taken here as fragmented ampdu may cause Tx stop.
807 */
808 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
809 return TX_DROP;
810
811 hdrlen = ieee80211_hdrlen(hdr->frame_control);
812
813 /* internal error, why is TX_FRAGMENTED set? */
814 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
815 return TX_DROP;
816
817 /*
818 * Now fragment the frame. This will allocate all the fragments and
819 * chain them (using skb as the first fragment) to skb->next.
820 * During transmission, we will remove the successfully transmitted
821 * fragments from this list. When the low-level driver rejects one
822 * of the fragments then we will simply pretend to accept the skb
823 * but store it away as pending.
824 */
825 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
826 return TX_DROP;
827
828 /* update duration/seq/flags of fragments */
829 fragnum = 0;
830 do {
831 int next_len;
832 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
833
834 hdr = (void *)skb->data;
835 info = IEEE80211_SKB_CB(skb);
836
837 if (skb->next) {
838 hdr->frame_control |= morefrags;
839 next_len = skb->next->len;
840 /*
841 * No multi-rate retries for fragmented frames, that
842 * would completely throw off the NAV at other STAs.
843 */
844 info->control.rates[1].idx = -1;
845 info->control.rates[2].idx = -1;
846 info->control.rates[3].idx = -1;
847 info->control.rates[4].idx = -1;
848 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
849 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
850 } else {
851 hdr->frame_control &= ~morefrags;
852 next_len = 0;
853 }
854 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
855 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
856 fragnum++;
857 } while ((skb = skb->next));
858
859 return TX_CONTINUE;
860 }
861
862 static ieee80211_tx_result debug_noinline
863 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
864 {
865 if (!tx->key)
866 return TX_CONTINUE;
867
868 switch (tx->key->conf.alg) {
869 case ALG_WEP:
870 return ieee80211_crypto_wep_encrypt(tx);
871 case ALG_TKIP:
872 return ieee80211_crypto_tkip_encrypt(tx);
873 case ALG_CCMP:
874 return ieee80211_crypto_ccmp_encrypt(tx);
875 case ALG_AES_CMAC:
876 return ieee80211_crypto_aes_cmac_encrypt(tx);
877 }
878
879 /* not reached */
880 WARN_ON(1);
881 return TX_DROP;
882 }
883
884 static ieee80211_tx_result debug_noinline
885 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
886 {
887 struct sk_buff *skb = tx->skb;
888 struct ieee80211_hdr *hdr;
889 int next_len;
890 bool group_addr;
891
892 do {
893 hdr = (void *) skb->data;
894 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
895 break; /* must not overwrite AID */
896 next_len = skb->next ? skb->next->len : 0;
897 group_addr = is_multicast_ether_addr(hdr->addr1);
898
899 hdr->duration_id =
900 ieee80211_duration(tx, group_addr, next_len);
901 } while ((skb = skb->next));
902
903 return TX_CONTINUE;
904 }
905
906 static ieee80211_tx_result debug_noinline
907 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
908 {
909 struct sk_buff *skb = tx->skb;
910
911 if (!tx->sta)
912 return TX_CONTINUE;
913
914 tx->sta->tx_packets++;
915 do {
916 tx->sta->tx_fragments++;
917 tx->sta->tx_bytes += skb->len;
918 } while ((skb = skb->next));
919
920 return TX_CONTINUE;
921 }
922
923 /* actual transmit path */
924
925 /*
926 * deal with packet injection down monitor interface
927 * with Radiotap Header -- only called for monitor mode interface
928 */
929 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
930 struct sk_buff *skb)
931 {
932 /*
933 * this is the moment to interpret and discard the radiotap header that
934 * must be at the start of the packet injected in Monitor mode
935 *
936 * Need to take some care with endian-ness since radiotap
937 * args are little-endian
938 */
939
940 struct ieee80211_radiotap_iterator iterator;
941 struct ieee80211_radiotap_header *rthdr =
942 (struct ieee80211_radiotap_header *) skb->data;
943 struct ieee80211_supported_band *sband;
944 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
945 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
946
947 sband = tx->local->hw.wiphy->bands[tx->channel->band];
948
949 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
950 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
951
952 /*
953 * for every radiotap entry that is present
954 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
955 * entries present, or -EINVAL on error)
956 */
957
958 while (!ret) {
959 ret = ieee80211_radiotap_iterator_next(&iterator);
960
961 if (ret)
962 continue;
963
964 /* see if this argument is something we can use */
965 switch (iterator.this_arg_index) {
966 /*
967 * You must take care when dereferencing iterator.this_arg
968 * for multibyte types... the pointer is not aligned. Use
969 * get_unaligned((type *)iterator.this_arg) to dereference
970 * iterator.this_arg for type "type" safely on all arches.
971 */
972 case IEEE80211_RADIOTAP_FLAGS:
973 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
974 /*
975 * this indicates that the skb we have been
976 * handed has the 32-bit FCS CRC at the end...
977 * we should react to that by snipping it off
978 * because it will be recomputed and added
979 * on transmission
980 */
981 if (skb->len < (iterator.max_length + FCS_LEN))
982 return false;
983
984 skb_trim(skb, skb->len - FCS_LEN);
985 }
986 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
987 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
988 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
989 tx->flags |= IEEE80211_TX_FRAGMENTED;
990 break;
991
992 /*
993 * Please update the file
994 * Documentation/networking/mac80211-injection.txt
995 * when parsing new fields here.
996 */
997
998 default:
999 break;
1000 }
1001 }
1002
1003 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1004 return false;
1005
1006 /*
1007 * remove the radiotap header
1008 * iterator->max_length was sanity-checked against
1009 * skb->len by iterator init
1010 */
1011 skb_pull(skb, iterator.max_length);
1012
1013 return true;
1014 }
1015
1016 /*
1017 * initialises @tx
1018 */
1019 static ieee80211_tx_result
1020 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1021 struct ieee80211_tx_data *tx,
1022 struct sk_buff *skb)
1023 {
1024 struct ieee80211_local *local = sdata->local;
1025 struct ieee80211_hdr *hdr;
1026 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1027 int hdrlen, tid;
1028 u8 *qc, *state;
1029 bool queued = false;
1030
1031 memset(tx, 0, sizeof(*tx));
1032 tx->skb = skb;
1033 tx->dev = sdata->dev; /* use original interface */
1034 tx->local = local;
1035 tx->sdata = sdata;
1036 tx->channel = local->hw.conf.channel;
1037 /*
1038 * Set this flag (used below to indicate "automatic fragmentation"),
1039 * it will be cleared/left by radiotap as desired.
1040 */
1041 tx->flags |= IEEE80211_TX_FRAGMENTED;
1042
1043 /* process and remove the injection radiotap header */
1044 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1045 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1046 return TX_DROP;
1047
1048 /*
1049 * __ieee80211_parse_tx_radiotap has now removed
1050 * the radiotap header that was present and pre-filled
1051 * 'tx' with tx control information.
1052 */
1053 }
1054
1055 /*
1056 * If this flag is set to true anywhere, and we get here,
1057 * we are doing the needed processing, so remove the flag
1058 * now.
1059 */
1060 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1061
1062 hdr = (struct ieee80211_hdr *) skb->data;
1063
1064 tx->sta = sta_info_get(local, hdr->addr1);
1065
1066 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1067 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1068 unsigned long flags;
1069 struct tid_ampdu_tx *tid_tx;
1070
1071 qc = ieee80211_get_qos_ctl(hdr);
1072 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1073
1074 spin_lock_irqsave(&tx->sta->lock, flags);
1075 /*
1076 * XXX: This spinlock could be fairly expensive, but see the
1077 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1078 * One way to solve this would be to do something RCU-like
1079 * for managing the tid_tx struct and using atomic bitops
1080 * for the actual state -- by introducing an actual
1081 * 'operational' bit that would be possible. It would
1082 * require changing ieee80211_agg_tx_operational() to
1083 * set that bit, and changing the way tid_tx is managed
1084 * everywhere, including races between that bit and
1085 * tid_tx going away (tid_tx being added can be easily
1086 * committed to memory before the 'operational' bit).
1087 */
1088 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1089 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1090 if (*state == HT_AGG_STATE_OPERATIONAL) {
1091 info->flags |= IEEE80211_TX_CTL_AMPDU;
1092 } else if (*state != HT_AGG_STATE_IDLE) {
1093 /* in progress */
1094 queued = true;
1095 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1096 __skb_queue_tail(&tid_tx->pending, skb);
1097 }
1098 spin_unlock_irqrestore(&tx->sta->lock, flags);
1099
1100 if (unlikely(queued))
1101 return TX_QUEUED;
1102 }
1103
1104 if (is_multicast_ether_addr(hdr->addr1)) {
1105 tx->flags &= ~IEEE80211_TX_UNICAST;
1106 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1107 } else {
1108 tx->flags |= IEEE80211_TX_UNICAST;
1109 if (unlikely(local->wifi_wme_noack_test))
1110 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1111 else
1112 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1113 }
1114
1115 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1116 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1117 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1118 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1119 tx->flags |= IEEE80211_TX_FRAGMENTED;
1120 else
1121 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1122 }
1123
1124 if (!tx->sta)
1125 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1126 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1127 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1128
1129 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1130 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1131 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1132 tx->ethertype = (pos[0] << 8) | pos[1];
1133 }
1134 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1135
1136 return TX_CONTINUE;
1137 }
1138
1139 static int __ieee80211_tx(struct ieee80211_local *local,
1140 struct sk_buff **skbp,
1141 struct sta_info *sta,
1142 bool txpending)
1143 {
1144 struct sk_buff *skb = *skbp, *next;
1145 struct ieee80211_tx_info *info;
1146 unsigned long flags;
1147 int ret, len;
1148 bool fragm = false;
1149
1150 while (skb) {
1151 int q = skb_get_queue_mapping(skb);
1152
1153 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1154 ret = IEEE80211_TX_OK;
1155 if (local->queue_stop_reasons[q] ||
1156 (!txpending && !skb_queue_empty(&local->pending[q])))
1157 ret = IEEE80211_TX_PENDING;
1158 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1159 if (ret != IEEE80211_TX_OK)
1160 return ret;
1161
1162 info = IEEE80211_SKB_CB(skb);
1163
1164 if (fragm)
1165 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1166 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1167
1168 next = skb->next;
1169 len = skb->len;
1170 ret = drv_tx(local, skb);
1171 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1172 dev_kfree_skb(skb);
1173 ret = NETDEV_TX_OK;
1174 }
1175 if (ret != NETDEV_TX_OK)
1176 return IEEE80211_TX_AGAIN;
1177 *skbp = skb = next;
1178 ieee80211_led_tx(local, 1);
1179 fragm = true;
1180 }
1181
1182 return IEEE80211_TX_OK;
1183 }
1184
1185 /*
1186 * Invoke TX handlers, return 0 on success and non-zero if the
1187 * frame was dropped or queued.
1188 */
1189 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1190 {
1191 struct sk_buff *skb = tx->skb;
1192 ieee80211_tx_result res = TX_DROP;
1193
1194 #define CALL_TXH(txh) \
1195 res = txh(tx); \
1196 if (res != TX_CONTINUE) \
1197 goto txh_done;
1198
1199 CALL_TXH(ieee80211_tx_h_check_assoc)
1200 CALL_TXH(ieee80211_tx_h_ps_buf)
1201 CALL_TXH(ieee80211_tx_h_select_key)
1202 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1203 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1204 CALL_TXH(ieee80211_tx_h_misc)
1205 CALL_TXH(ieee80211_tx_h_sequence)
1206 CALL_TXH(ieee80211_tx_h_fragment)
1207 /* handlers after fragment must be aware of tx info fragmentation! */
1208 CALL_TXH(ieee80211_tx_h_encrypt)
1209 CALL_TXH(ieee80211_tx_h_calculate_duration)
1210 CALL_TXH(ieee80211_tx_h_stats)
1211 #undef CALL_TXH
1212
1213 txh_done:
1214 if (unlikely(res == TX_DROP)) {
1215 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1216 while (skb) {
1217 struct sk_buff *next;
1218
1219 next = skb->next;
1220 dev_kfree_skb(skb);
1221 skb = next;
1222 }
1223 return -1;
1224 } else if (unlikely(res == TX_QUEUED)) {
1225 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1226 return -1;
1227 }
1228
1229 return 0;
1230 }
1231
1232 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1233 struct sk_buff *skb, bool txpending)
1234 {
1235 struct ieee80211_local *local = sdata->local;
1236 struct ieee80211_tx_data tx;
1237 ieee80211_tx_result res_prepare;
1238 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1239 struct sk_buff *next;
1240 unsigned long flags;
1241 int ret, retries;
1242 u16 queue;
1243
1244 queue = skb_get_queue_mapping(skb);
1245
1246 if (unlikely(skb->len < 10)) {
1247 dev_kfree_skb(skb);
1248 return;
1249 }
1250
1251 rcu_read_lock();
1252
1253 /* initialises tx */
1254 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1255
1256 if (unlikely(res_prepare == TX_DROP)) {
1257 dev_kfree_skb(skb);
1258 rcu_read_unlock();
1259 return;
1260 } else if (unlikely(res_prepare == TX_QUEUED)) {
1261 rcu_read_unlock();
1262 return;
1263 }
1264
1265 tx.channel = local->hw.conf.channel;
1266 info->band = tx.channel->band;
1267
1268 if (invoke_tx_handlers(&tx))
1269 goto out;
1270
1271 retries = 0;
1272 retry:
1273 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1274 switch (ret) {
1275 case IEEE80211_TX_OK:
1276 break;
1277 case IEEE80211_TX_AGAIN:
1278 /*
1279 * Since there are no fragmented frames on A-MPDU
1280 * queues, there's no reason for a driver to reject
1281 * a frame there, warn and drop it.
1282 */
1283 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1284 goto drop;
1285 /* fall through */
1286 case IEEE80211_TX_PENDING:
1287 skb = tx.skb;
1288
1289 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1290
1291 if (local->queue_stop_reasons[queue] ||
1292 !skb_queue_empty(&local->pending[queue])) {
1293 /*
1294 * if queue is stopped, queue up frames for later
1295 * transmission from the tasklet
1296 */
1297 do {
1298 next = skb->next;
1299 skb->next = NULL;
1300 if (unlikely(txpending))
1301 __skb_queue_head(&local->pending[queue],
1302 skb);
1303 else
1304 __skb_queue_tail(&local->pending[queue],
1305 skb);
1306 } while ((skb = next));
1307
1308 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1309 flags);
1310 } else {
1311 /*
1312 * otherwise retry, but this is a race condition or
1313 * a driver bug (which we warn about if it persists)
1314 */
1315 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1316 flags);
1317
1318 retries++;
1319 if (WARN(retries > 10, "tx refused but queue active\n"))
1320 goto drop;
1321 goto retry;
1322 }
1323 }
1324 out:
1325 rcu_read_unlock();
1326 return;
1327
1328 drop:
1329 rcu_read_unlock();
1330
1331 skb = tx.skb;
1332 while (skb) {
1333 next = skb->next;
1334 dev_kfree_skb(skb);
1335 skb = next;
1336 }
1337 }
1338
1339 /* device xmit handlers */
1340
1341 static int ieee80211_skb_resize(struct ieee80211_local *local,
1342 struct sk_buff *skb,
1343 int head_need, bool may_encrypt)
1344 {
1345 int tail_need = 0;
1346
1347 /*
1348 * This could be optimised, devices that do full hardware
1349 * crypto (including TKIP MMIC) need no tailroom... But we
1350 * have no drivers for such devices currently.
1351 */
1352 if (may_encrypt) {
1353 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1354 tail_need -= skb_tailroom(skb);
1355 tail_need = max_t(int, tail_need, 0);
1356 }
1357
1358 if (head_need || tail_need) {
1359 /* Sorry. Can't account for this any more */
1360 skb_orphan(skb);
1361 }
1362
1363 if (skb_header_cloned(skb))
1364 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1365 else
1366 I802_DEBUG_INC(local->tx_expand_skb_head);
1367
1368 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1369 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1370 wiphy_name(local->hw.wiphy));
1371 return -ENOMEM;
1372 }
1373
1374 /* update truesize too */
1375 skb->truesize += head_need + tail_need;
1376
1377 return 0;
1378 }
1379
1380 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1381 struct sk_buff *skb)
1382 {
1383 struct ieee80211_local *local = sdata->local;
1384 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1385 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1386 struct ieee80211_sub_if_data *tmp_sdata;
1387 int headroom;
1388 bool may_encrypt;
1389 enum {
1390 NOT_MONITOR,
1391 FOUND_SDATA,
1392 UNKNOWN_ADDRESS,
1393 } monitor_iface = NOT_MONITOR;
1394
1395 dev_hold(sdata->dev);
1396
1397 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) &&
1398 local->hw.conf.dynamic_ps_timeout > 0 &&
1399 !local->sw_scanning && !local->hw_scanning && local->ps_sdata) {
1400 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1401 ieee80211_stop_queues_by_reason(&local->hw,
1402 IEEE80211_QUEUE_STOP_REASON_PS);
1403 queue_work(local->hw.workqueue,
1404 &local->dynamic_ps_disable_work);
1405 }
1406
1407 mod_timer(&local->dynamic_ps_timer, jiffies +
1408 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1409 }
1410
1411 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1412
1413 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1414 ieee80211_is_data(hdr->frame_control)) {
1415 if (is_multicast_ether_addr(hdr->addr3))
1416 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1417 else
1418 if (mesh_nexthop_lookup(skb, sdata)) {
1419 dev_put(sdata->dev);
1420 return;
1421 }
1422 if (memcmp(sdata->dev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1423 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1424 fwded_frames);
1425 } else if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1426 int hdrlen;
1427 u16 len_rthdr;
1428
1429 info->flags |= IEEE80211_TX_CTL_INJECTED;
1430 monitor_iface = UNKNOWN_ADDRESS;
1431
1432 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1433 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1434 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1435
1436 /* check the header is complete in the frame */
1437 if (likely(skb->len >= len_rthdr + hdrlen)) {
1438 /*
1439 * We process outgoing injected frames that have a
1440 * local address we handle as though they are our
1441 * own frames.
1442 * This code here isn't entirely correct, the local
1443 * MAC address is not necessarily enough to find
1444 * the interface to use; for that proper VLAN/WDS
1445 * support we will need a different mechanism.
1446 */
1447
1448 rcu_read_lock();
1449 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1450 list) {
1451 if (!netif_running(tmp_sdata->dev))
1452 continue;
1453 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1454 continue;
1455 if (compare_ether_addr(tmp_sdata->dev->dev_addr,
1456 hdr->addr2)) {
1457 dev_hold(tmp_sdata->dev);
1458 dev_put(sdata->dev);
1459 sdata = tmp_sdata;
1460 monitor_iface = FOUND_SDATA;
1461 break;
1462 }
1463 }
1464 rcu_read_unlock();
1465 }
1466 }
1467
1468 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1469
1470 headroom = local->tx_headroom;
1471 if (may_encrypt)
1472 headroom += IEEE80211_ENCRYPT_HEADROOM;
1473 headroom -= skb_headroom(skb);
1474 headroom = max_t(int, 0, headroom);
1475
1476 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1477 dev_kfree_skb(skb);
1478 dev_put(sdata->dev);
1479 return;
1480 }
1481
1482 tmp_sdata = sdata;
1483 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1484 tmp_sdata = container_of(sdata->bss,
1485 struct ieee80211_sub_if_data,
1486 u.ap);
1487 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1488 info->control.vif = &tmp_sdata->vif;
1489
1490 ieee80211_select_queue(local, skb);
1491 ieee80211_tx(sdata, skb, false);
1492 dev_put(sdata->dev);
1493 }
1494
1495 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1496 struct net_device *dev)
1497 {
1498 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1499 struct ieee80211_channel *chan = local->hw.conf.channel;
1500 struct ieee80211_radiotap_header *prthdr =
1501 (struct ieee80211_radiotap_header *)skb->data;
1502 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1503 u16 len_rthdr;
1504
1505 /*
1506 * Frame injection is not allowed if beaconing is not allowed
1507 * or if we need radar detection. Beaconing is usually not allowed when
1508 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1509 * Passive scan is also used in world regulatory domains where
1510 * your country is not known and as such it should be treated as
1511 * NO TX unless the channel is explicitly allowed in which case
1512 * your current regulatory domain would not have the passive scan
1513 * flag.
1514 *
1515 * Since AP mode uses monitor interfaces to inject/TX management
1516 * frames we can make AP mode the exception to this rule once it
1517 * supports radar detection as its implementation can deal with
1518 * radar detection by itself. We can do that later by adding a
1519 * monitor flag interfaces used for AP support.
1520 */
1521 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1522 IEEE80211_CHAN_PASSIVE_SCAN)))
1523 goto fail;
1524
1525 /* check for not even having the fixed radiotap header part */
1526 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1527 goto fail; /* too short to be possibly valid */
1528
1529 /* is it a header version we can trust to find length from? */
1530 if (unlikely(prthdr->it_version))
1531 goto fail; /* only version 0 is supported */
1532
1533 /* then there must be a radiotap header with a length we can use */
1534 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1535
1536 /* does the skb contain enough to deliver on the alleged length? */
1537 if (unlikely(skb->len < len_rthdr))
1538 goto fail; /* skb too short for claimed rt header extent */
1539
1540 /* needed because we set skb device to master */
1541 skb->iif = dev->ifindex;
1542
1543 /*
1544 * fix up the pointers accounting for the radiotap
1545 * header still being in there. We are being given
1546 * a precooked IEEE80211 header so no need for
1547 * normal processing
1548 */
1549 skb_set_mac_header(skb, len_rthdr);
1550 /*
1551 * these are just fixed to the end of the rt area since we
1552 * don't have any better information and at this point, nobody cares
1553 */
1554 skb_set_network_header(skb, len_rthdr);
1555 skb_set_transport_header(skb, len_rthdr);
1556
1557 memset(info, 0, sizeof(*info));
1558
1559 /* pass the radiotap header up to xmit */
1560 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1561 return NETDEV_TX_OK;
1562
1563 fail:
1564 dev_kfree_skb(skb);
1565 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1566 }
1567
1568 /**
1569 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1570 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1571 * @skb: packet to be sent
1572 * @dev: incoming interface
1573 *
1574 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1575 * not be freed, and caller is responsible for either retrying later or freeing
1576 * skb).
1577 *
1578 * This function takes in an Ethernet header and encapsulates it with suitable
1579 * IEEE 802.11 header based on which interface the packet is coming in. The
1580 * encapsulated packet will then be passed to master interface, wlan#.11, for
1581 * transmission (through low-level driver).
1582 */
1583 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1584 struct net_device *dev)
1585 {
1586 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1587 struct ieee80211_local *local = sdata->local;
1588 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1589 int ret = NETDEV_TX_BUSY, head_need;
1590 u16 ethertype, hdrlen, meshhdrlen = 0;
1591 __le16 fc;
1592 struct ieee80211_hdr hdr;
1593 struct ieee80211s_hdr mesh_hdr;
1594 const u8 *encaps_data;
1595 int encaps_len, skip_header_bytes;
1596 int nh_pos, h_pos;
1597 struct sta_info *sta;
1598 u32 sta_flags = 0;
1599
1600 if (unlikely(skb->len < ETH_HLEN)) {
1601 ret = NETDEV_TX_OK;
1602 goto fail;
1603 }
1604
1605 nh_pos = skb_network_header(skb) - skb->data;
1606 h_pos = skb_transport_header(skb) - skb->data;
1607
1608 /* convert Ethernet header to proper 802.11 header (based on
1609 * operation mode) */
1610 ethertype = (skb->data[12] << 8) | skb->data[13];
1611 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1612
1613 switch (sdata->vif.type) {
1614 case NL80211_IFTYPE_AP:
1615 case NL80211_IFTYPE_AP_VLAN:
1616 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1617 /* DA BSSID SA */
1618 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1619 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1620 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1621 hdrlen = 24;
1622 break;
1623 case NL80211_IFTYPE_WDS:
1624 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1625 /* RA TA DA SA */
1626 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1627 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1628 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1629 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1630 hdrlen = 30;
1631 break;
1632 #ifdef CONFIG_MAC80211_MESH
1633 case NL80211_IFTYPE_MESH_POINT:
1634 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1635 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1636 /* Do not send frames with mesh_ttl == 0 */
1637 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1638 ret = NETDEV_TX_OK;
1639 goto fail;
1640 }
1641 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1642
1643 if (compare_ether_addr(dev->dev_addr,
1644 skb->data + ETH_ALEN) == 0) {
1645 /* RA TA DA SA */
1646 memset(hdr.addr1, 0, ETH_ALEN);
1647 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1648 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1649 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1650 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1651 } else {
1652 /* packet from other interface */
1653 struct mesh_path *mppath;
1654
1655 memset(hdr.addr1, 0, ETH_ALEN);
1656 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1657 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1658
1659 if (is_multicast_ether_addr(skb->data))
1660 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1661 else {
1662 rcu_read_lock();
1663 mppath = mpp_path_lookup(skb->data, sdata);
1664 if (mppath)
1665 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1666 else
1667 memset(hdr.addr3, 0xff, ETH_ALEN);
1668 rcu_read_unlock();
1669 }
1670
1671 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1672 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1673 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1674 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1675 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1676 sdata->u.mesh.mesh_seqnum++;
1677 meshhdrlen = 18;
1678 }
1679 hdrlen = 30;
1680 break;
1681 #endif
1682 case NL80211_IFTYPE_STATION:
1683 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1684 /* BSSID SA DA */
1685 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1686 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1687 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1688 hdrlen = 24;
1689 break;
1690 case NL80211_IFTYPE_ADHOC:
1691 /* DA SA BSSID */
1692 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1693 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1694 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1695 hdrlen = 24;
1696 break;
1697 default:
1698 ret = NETDEV_TX_OK;
1699 goto fail;
1700 }
1701
1702 /*
1703 * There's no need to try to look up the destination
1704 * if it is a multicast address (which can only happen
1705 * in AP mode)
1706 */
1707 if (!is_multicast_ether_addr(hdr.addr1)) {
1708 rcu_read_lock();
1709 sta = sta_info_get(local, hdr.addr1);
1710 if (sta)
1711 sta_flags = get_sta_flags(sta);
1712 rcu_read_unlock();
1713 }
1714
1715 /* receiver and we are QoS enabled, use a QoS type frame */
1716 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1717 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1718 hdrlen += 2;
1719 }
1720
1721 /*
1722 * Drop unicast frames to unauthorised stations unless they are
1723 * EAPOL frames from the local station.
1724 */
1725 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1726 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1727 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1728 !(ethertype == ETH_P_PAE &&
1729 compare_ether_addr(dev->dev_addr,
1730 skb->data + ETH_ALEN) == 0))) {
1731 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1732 if (net_ratelimit())
1733 printk(KERN_DEBUG "%s: dropped frame to %pM"
1734 " (unauthorized port)\n", dev->name,
1735 hdr.addr1);
1736 #endif
1737
1738 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1739
1740 ret = NETDEV_TX_OK;
1741 goto fail;
1742 }
1743
1744 hdr.frame_control = fc;
1745 hdr.duration_id = 0;
1746 hdr.seq_ctrl = 0;
1747
1748 skip_header_bytes = ETH_HLEN;
1749 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1750 encaps_data = bridge_tunnel_header;
1751 encaps_len = sizeof(bridge_tunnel_header);
1752 skip_header_bytes -= 2;
1753 } else if (ethertype >= 0x600) {
1754 encaps_data = rfc1042_header;
1755 encaps_len = sizeof(rfc1042_header);
1756 skip_header_bytes -= 2;
1757 } else {
1758 encaps_data = NULL;
1759 encaps_len = 0;
1760 }
1761
1762 skb_pull(skb, skip_header_bytes);
1763 nh_pos -= skip_header_bytes;
1764 h_pos -= skip_header_bytes;
1765
1766 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1767
1768 /*
1769 * So we need to modify the skb header and hence need a copy of
1770 * that. The head_need variable above doesn't, so far, include
1771 * the needed header space that we don't need right away. If we
1772 * can, then we don't reallocate right now but only after the
1773 * frame arrives at the master device (if it does...)
1774 *
1775 * If we cannot, however, then we will reallocate to include all
1776 * the ever needed space. Also, if we need to reallocate it anyway,
1777 * make it big enough for everything we may ever need.
1778 */
1779
1780 if (head_need > 0 || skb_cloned(skb)) {
1781 head_need += IEEE80211_ENCRYPT_HEADROOM;
1782 head_need += local->tx_headroom;
1783 head_need = max_t(int, 0, head_need);
1784 if (ieee80211_skb_resize(local, skb, head_need, true))
1785 goto fail;
1786 }
1787
1788 if (encaps_data) {
1789 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1790 nh_pos += encaps_len;
1791 h_pos += encaps_len;
1792 }
1793
1794 if (meshhdrlen > 0) {
1795 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1796 nh_pos += meshhdrlen;
1797 h_pos += meshhdrlen;
1798 }
1799
1800 if (ieee80211_is_data_qos(fc)) {
1801 __le16 *qos_control;
1802
1803 qos_control = (__le16*) skb_push(skb, 2);
1804 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1805 /*
1806 * Maybe we could actually set some fields here, for now just
1807 * initialise to zero to indicate no special operation.
1808 */
1809 *qos_control = 0;
1810 } else
1811 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1812
1813 nh_pos += hdrlen;
1814 h_pos += hdrlen;
1815
1816 skb->iif = dev->ifindex;
1817
1818 dev->stats.tx_packets++;
1819 dev->stats.tx_bytes += skb->len;
1820
1821 /* Update skb pointers to various headers since this modified frame
1822 * is going to go through Linux networking code that may potentially
1823 * need things like pointer to IP header. */
1824 skb_set_mac_header(skb, 0);
1825 skb_set_network_header(skb, nh_pos);
1826 skb_set_transport_header(skb, h_pos);
1827
1828 memset(info, 0, sizeof(*info));
1829
1830 dev->trans_start = jiffies;
1831 ieee80211_xmit(sdata, skb);
1832
1833 return NETDEV_TX_OK;
1834
1835 fail:
1836 if (ret == NETDEV_TX_OK)
1837 dev_kfree_skb(skb);
1838
1839 return ret;
1840 }
1841
1842
1843 /*
1844 * ieee80211_clear_tx_pending may not be called in a context where
1845 * it is possible that it packets could come in again.
1846 */
1847 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1848 {
1849 int i;
1850
1851 for (i = 0; i < local->hw.queues; i++)
1852 skb_queue_purge(&local->pending[i]);
1853 }
1854
1855 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1856 struct sk_buff *skb)
1857 {
1858 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1859 struct ieee80211_sub_if_data *sdata;
1860 struct sta_info *sta;
1861 struct ieee80211_hdr *hdr;
1862 struct net_device *dev;
1863 int ret;
1864 bool result = true;
1865
1866 /* does interface still exist? */
1867 dev = dev_get_by_index(&init_net, skb->iif);
1868 if (!dev) {
1869 dev_kfree_skb(skb);
1870 return true;
1871 }
1872
1873 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1874 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1875 sdata = container_of(sdata->bss,
1876 struct ieee80211_sub_if_data,
1877 u.ap);
1878
1879 if (unlikely(info->control.vif && info->control.vif != &sdata->vif)) {
1880 dev_kfree_skb(skb);
1881 result = true;
1882 goto out;
1883 }
1884
1885 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1886 /* do not use sdata, it may have been changed above */
1887 ieee80211_tx(IEEE80211_DEV_TO_SUB_IF(dev), skb, true);
1888 } else {
1889 hdr = (struct ieee80211_hdr *)skb->data;
1890 sta = sta_info_get(local, hdr->addr1);
1891
1892 ret = __ieee80211_tx(local, &skb, sta, true);
1893 if (ret != IEEE80211_TX_OK)
1894 result = false;
1895 }
1896
1897 out:
1898 dev_put(dev);
1899
1900 return result;
1901 }
1902
1903 /*
1904 * Transmit all pending packets. Called from tasklet.
1905 */
1906 void ieee80211_tx_pending(unsigned long data)
1907 {
1908 struct ieee80211_local *local = (struct ieee80211_local *)data;
1909 unsigned long flags;
1910 int i;
1911 bool txok;
1912
1913 rcu_read_lock();
1914
1915 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1916 for (i = 0; i < local->hw.queues; i++) {
1917 /*
1918 * If queue is stopped by something other than due to pending
1919 * frames, or we have no pending frames, proceed to next queue.
1920 */
1921 if (local->queue_stop_reasons[i] ||
1922 skb_queue_empty(&local->pending[i]))
1923 continue;
1924
1925 while (!skb_queue_empty(&local->pending[i])) {
1926 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
1927 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1928 flags);
1929
1930 txok = ieee80211_tx_pending_skb(local, skb);
1931 if (!txok)
1932 __skb_queue_head(&local->pending[i], skb);
1933 spin_lock_irqsave(&local->queue_stop_reason_lock,
1934 flags);
1935 if (!txok)
1936 break;
1937 }
1938 }
1939 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1940
1941 rcu_read_unlock();
1942 }
1943
1944 /* functions for drivers to get certain frames */
1945
1946 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1947 struct sk_buff *skb,
1948 struct beacon_data *beacon)
1949 {
1950 u8 *pos, *tim;
1951 int aid0 = 0;
1952 int i, have_bits = 0, n1, n2;
1953
1954 /* Generate bitmap for TIM only if there are any STAs in power save
1955 * mode. */
1956 if (atomic_read(&bss->num_sta_ps) > 0)
1957 /* in the hope that this is faster than
1958 * checking byte-for-byte */
1959 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1960 IEEE80211_MAX_AID+1);
1961
1962 if (bss->dtim_count == 0)
1963 bss->dtim_count = beacon->dtim_period - 1;
1964 else
1965 bss->dtim_count--;
1966
1967 tim = pos = (u8 *) skb_put(skb, 6);
1968 *pos++ = WLAN_EID_TIM;
1969 *pos++ = 4;
1970 *pos++ = bss->dtim_count;
1971 *pos++ = beacon->dtim_period;
1972
1973 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1974 aid0 = 1;
1975
1976 if (have_bits) {
1977 /* Find largest even number N1 so that bits numbered 1 through
1978 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1979 * (N2 + 1) x 8 through 2007 are 0. */
1980 n1 = 0;
1981 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1982 if (bss->tim[i]) {
1983 n1 = i & 0xfe;
1984 break;
1985 }
1986 }
1987 n2 = n1;
1988 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1989 if (bss->tim[i]) {
1990 n2 = i;
1991 break;
1992 }
1993 }
1994
1995 /* Bitmap control */
1996 *pos++ = n1 | aid0;
1997 /* Part Virt Bitmap */
1998 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1999
2000 tim[1] = n2 - n1 + 4;
2001 skb_put(skb, n2 - n1);
2002 } else {
2003 *pos++ = aid0; /* Bitmap control */
2004 *pos++ = 0; /* Part Virt Bitmap */
2005 }
2006 }
2007
2008 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2009 struct ieee80211_vif *vif)
2010 {
2011 struct ieee80211_local *local = hw_to_local(hw);
2012 struct sk_buff *skb = NULL;
2013 struct ieee80211_tx_info *info;
2014 struct ieee80211_sub_if_data *sdata = NULL;
2015 struct ieee80211_if_ap *ap = NULL;
2016 struct beacon_data *beacon;
2017 struct ieee80211_supported_band *sband;
2018 enum ieee80211_band band = local->hw.conf.channel->band;
2019
2020 sband = local->hw.wiphy->bands[band];
2021
2022 rcu_read_lock();
2023
2024 sdata = vif_to_sdata(vif);
2025
2026 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2027 ap = &sdata->u.ap;
2028 beacon = rcu_dereference(ap->beacon);
2029 if (ap && beacon) {
2030 /*
2031 * headroom, head length,
2032 * tail length and maximum TIM length
2033 */
2034 skb = dev_alloc_skb(local->tx_headroom +
2035 beacon->head_len +
2036 beacon->tail_len + 256);
2037 if (!skb)
2038 goto out;
2039
2040 skb_reserve(skb, local->tx_headroom);
2041 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2042 beacon->head_len);
2043
2044 /*
2045 * Not very nice, but we want to allow the driver to call
2046 * ieee80211_beacon_get() as a response to the set_tim()
2047 * callback. That, however, is already invoked under the
2048 * sta_lock to guarantee consistent and race-free update
2049 * of the tim bitmap in mac80211 and the driver.
2050 */
2051 if (local->tim_in_locked_section) {
2052 ieee80211_beacon_add_tim(ap, skb, beacon);
2053 } else {
2054 unsigned long flags;
2055
2056 spin_lock_irqsave(&local->sta_lock, flags);
2057 ieee80211_beacon_add_tim(ap, skb, beacon);
2058 spin_unlock_irqrestore(&local->sta_lock, flags);
2059 }
2060
2061 if (beacon->tail)
2062 memcpy(skb_put(skb, beacon->tail_len),
2063 beacon->tail, beacon->tail_len);
2064 } else
2065 goto out;
2066 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2067 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2068 struct ieee80211_hdr *hdr;
2069 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2070
2071 if (!presp)
2072 goto out;
2073
2074 skb = skb_copy(presp, GFP_ATOMIC);
2075 if (!skb)
2076 goto out;
2077
2078 hdr = (struct ieee80211_hdr *) skb->data;
2079 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2080 IEEE80211_STYPE_BEACON);
2081 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2082 struct ieee80211_mgmt *mgmt;
2083 u8 *pos;
2084
2085 /* headroom, head length, tail length and maximum TIM length */
2086 skb = dev_alloc_skb(local->tx_headroom + 400);
2087 if (!skb)
2088 goto out;
2089
2090 skb_reserve(skb, local->hw.extra_tx_headroom);
2091 mgmt = (struct ieee80211_mgmt *)
2092 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2093 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2094 mgmt->frame_control =
2095 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2096 memset(mgmt->da, 0xff, ETH_ALEN);
2097 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2098 /* BSSID is left zeroed, wildcard value */
2099 mgmt->u.beacon.beacon_int =
2100 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2101 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2102
2103 pos = skb_put(skb, 2);
2104 *pos++ = WLAN_EID_SSID;
2105 *pos++ = 0x0;
2106
2107 mesh_mgmt_ies_add(skb, sdata);
2108 } else {
2109 WARN_ON(1);
2110 goto out;
2111 }
2112
2113 info = IEEE80211_SKB_CB(skb);
2114
2115 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2116 info->band = band;
2117 /*
2118 * XXX: For now, always use the lowest rate
2119 */
2120 info->control.rates[0].idx = 0;
2121 info->control.rates[0].count = 1;
2122 info->control.rates[1].idx = -1;
2123 info->control.rates[2].idx = -1;
2124 info->control.rates[3].idx = -1;
2125 info->control.rates[4].idx = -1;
2126 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2127
2128 info->control.vif = vif;
2129
2130 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2131 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2132 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2133 out:
2134 rcu_read_unlock();
2135 return skb;
2136 }
2137 EXPORT_SYMBOL(ieee80211_beacon_get);
2138
2139 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2140 const void *frame, size_t frame_len,
2141 const struct ieee80211_tx_info *frame_txctl,
2142 struct ieee80211_rts *rts)
2143 {
2144 const struct ieee80211_hdr *hdr = frame;
2145
2146 rts->frame_control =
2147 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2148 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2149 frame_txctl);
2150 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2151 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2152 }
2153 EXPORT_SYMBOL(ieee80211_rts_get);
2154
2155 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2156 const void *frame, size_t frame_len,
2157 const struct ieee80211_tx_info *frame_txctl,
2158 struct ieee80211_cts *cts)
2159 {
2160 const struct ieee80211_hdr *hdr = frame;
2161
2162 cts->frame_control =
2163 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2164 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2165 frame_len, frame_txctl);
2166 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2167 }
2168 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2169
2170 struct sk_buff *
2171 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2172 struct ieee80211_vif *vif)
2173 {
2174 struct ieee80211_local *local = hw_to_local(hw);
2175 struct sk_buff *skb = NULL;
2176 struct sta_info *sta;
2177 struct ieee80211_tx_data tx;
2178 struct ieee80211_sub_if_data *sdata;
2179 struct ieee80211_if_ap *bss = NULL;
2180 struct beacon_data *beacon;
2181 struct ieee80211_tx_info *info;
2182
2183 sdata = vif_to_sdata(vif);
2184 bss = &sdata->u.ap;
2185
2186 rcu_read_lock();
2187 beacon = rcu_dereference(bss->beacon);
2188
2189 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2190 goto out;
2191
2192 if (bss->dtim_count != 0)
2193 goto out; /* send buffered bc/mc only after DTIM beacon */
2194
2195 while (1) {
2196 skb = skb_dequeue(&bss->ps_bc_buf);
2197 if (!skb)
2198 goto out;
2199 local->total_ps_buffered--;
2200
2201 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2202 struct ieee80211_hdr *hdr =
2203 (struct ieee80211_hdr *) skb->data;
2204 /* more buffered multicast/broadcast frames ==> set
2205 * MoreData flag in IEEE 802.11 header to inform PS
2206 * STAs */
2207 hdr->frame_control |=
2208 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2209 }
2210
2211 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2212 break;
2213 dev_kfree_skb_any(skb);
2214 }
2215
2216 info = IEEE80211_SKB_CB(skb);
2217
2218 sta = tx.sta;
2219 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2220 tx.channel = local->hw.conf.channel;
2221 info->band = tx.channel->band;
2222
2223 if (invoke_tx_handlers(&tx))
2224 skb = NULL;
2225 out:
2226 rcu_read_unlock();
2227
2228 return skb;
2229 }
2230 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2231
2232 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb,
2233 int encrypt)
2234 {
2235 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2236 skb_set_mac_header(skb, 0);
2237 skb_set_network_header(skb, 0);
2238 skb_set_transport_header(skb, 0);
2239
2240 skb->iif = sdata->dev->ifindex;
2241 if (!encrypt)
2242 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2243
2244 ieee80211_xmit(sdata, skb);
2245 }