]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/mac80211/tx.c
mac80211: rework the pending packets code
[mirror_ubuntu-hirsute-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 #define IEEE80211_TX_OK 0
36 #define IEEE80211_TX_AGAIN 1
37 #define IEEE80211_TX_PENDING 2
38
39 /* misc utils */
40
41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
42 int next_frag_len)
43 {
44 int rate, mrate, erp, dur, i;
45 struct ieee80211_rate *txrate;
46 struct ieee80211_local *local = tx->local;
47 struct ieee80211_supported_band *sband;
48 struct ieee80211_hdr *hdr;
49 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
50
51 /* assume HW handles this */
52 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
53 return 0;
54
55 /* uh huh? */
56 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
57 return 0;
58
59 sband = local->hw.wiphy->bands[tx->channel->band];
60 txrate = &sband->bitrates[info->control.rates[0].idx];
61
62 erp = txrate->flags & IEEE80211_RATE_ERP_G;
63
64 /*
65 * data and mgmt (except PS Poll):
66 * - during CFP: 32768
67 * - during contention period:
68 * if addr1 is group address: 0
69 * if more fragments = 0 and addr1 is individual address: time to
70 * transmit one ACK plus SIFS
71 * if more fragments = 1 and addr1 is individual address: time to
72 * transmit next fragment plus 2 x ACK plus 3 x SIFS
73 *
74 * IEEE 802.11, 9.6:
75 * - control response frame (CTS or ACK) shall be transmitted using the
76 * same rate as the immediately previous frame in the frame exchange
77 * sequence, if this rate belongs to the PHY mandatory rates, or else
78 * at the highest possible rate belonging to the PHY rates in the
79 * BSSBasicRateSet
80 */
81 hdr = (struct ieee80211_hdr *)tx->skb->data;
82 if (ieee80211_is_ctl(hdr->frame_control)) {
83 /* TODO: These control frames are not currently sent by
84 * mac80211, but should they be implemented, this function
85 * needs to be updated to support duration field calculation.
86 *
87 * RTS: time needed to transmit pending data/mgmt frame plus
88 * one CTS frame plus one ACK frame plus 3 x SIFS
89 * CTS: duration of immediately previous RTS minus time
90 * required to transmit CTS and its SIFS
91 * ACK: 0 if immediately previous directed data/mgmt had
92 * more=0, with more=1 duration in ACK frame is duration
93 * from previous frame minus time needed to transmit ACK
94 * and its SIFS
95 * PS Poll: BIT(15) | BIT(14) | aid
96 */
97 return 0;
98 }
99
100 /* data/mgmt */
101 if (0 /* FIX: data/mgmt during CFP */)
102 return cpu_to_le16(32768);
103
104 if (group_addr) /* Group address as the destination - no ACK */
105 return 0;
106
107 /* Individual destination address:
108 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
109 * CTS and ACK frames shall be transmitted using the highest rate in
110 * basic rate set that is less than or equal to the rate of the
111 * immediately previous frame and that is using the same modulation
112 * (CCK or OFDM). If no basic rate set matches with these requirements,
113 * the highest mandatory rate of the PHY that is less than or equal to
114 * the rate of the previous frame is used.
115 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
116 */
117 rate = -1;
118 /* use lowest available if everything fails */
119 mrate = sband->bitrates[0].bitrate;
120 for (i = 0; i < sband->n_bitrates; i++) {
121 struct ieee80211_rate *r = &sband->bitrates[i];
122
123 if (r->bitrate > txrate->bitrate)
124 break;
125
126 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
127 rate = r->bitrate;
128
129 switch (sband->band) {
130 case IEEE80211_BAND_2GHZ: {
131 u32 flag;
132 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
133 flag = IEEE80211_RATE_MANDATORY_G;
134 else
135 flag = IEEE80211_RATE_MANDATORY_B;
136 if (r->flags & flag)
137 mrate = r->bitrate;
138 break;
139 }
140 case IEEE80211_BAND_5GHZ:
141 if (r->flags & IEEE80211_RATE_MANDATORY_A)
142 mrate = r->bitrate;
143 break;
144 case IEEE80211_NUM_BANDS:
145 WARN_ON(1);
146 break;
147 }
148 }
149 if (rate == -1) {
150 /* No matching basic rate found; use highest suitable mandatory
151 * PHY rate */
152 rate = mrate;
153 }
154
155 /* Time needed to transmit ACK
156 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
157 * to closest integer */
158
159 dur = ieee80211_frame_duration(local, 10, rate, erp,
160 tx->sdata->vif.bss_conf.use_short_preamble);
161
162 if (next_frag_len) {
163 /* Frame is fragmented: duration increases with time needed to
164 * transmit next fragment plus ACK and 2 x SIFS. */
165 dur *= 2; /* ACK + SIFS */
166 /* next fragment */
167 dur += ieee80211_frame_duration(local, next_frag_len,
168 txrate->bitrate, erp,
169 tx->sdata->vif.bss_conf.use_short_preamble);
170 }
171
172 return cpu_to_le16(dur);
173 }
174
175 static int inline is_ieee80211_device(struct ieee80211_local *local,
176 struct net_device *dev)
177 {
178 return local == wdev_priv(dev->ieee80211_ptr);
179 }
180
181 /* tx handlers */
182
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
185 {
186
187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
189 u32 sta_flags;
190
191 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
192 return TX_CONTINUE;
193
194 if (unlikely(tx->local->sw_scanning) &&
195 !ieee80211_is_probe_req(hdr->frame_control) &&
196 !ieee80211_is_nullfunc(hdr->frame_control))
197 /*
198 * When software scanning only nullfunc frames (to notify
199 * the sleep state to the AP) and probe requests (for the
200 * active scan) are allowed, all other frames should not be
201 * sent and we should not get here, but if we do
202 * nonetheless, drop them to avoid sending them
203 * off-channel. See the link below and
204 * ieee80211_start_scan() for more.
205 *
206 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
207 */
208 return TX_DROP;
209
210 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
211 return TX_CONTINUE;
212
213 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
214 return TX_CONTINUE;
215
216 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
217
218 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
219 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
220 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
221 ieee80211_is_data(hdr->frame_control))) {
222 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
223 printk(KERN_DEBUG "%s: dropped data frame to not "
224 "associated station %pM\n",
225 tx->dev->name, hdr->addr1);
226 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
227 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
228 return TX_DROP;
229 }
230 } else {
231 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
232 tx->local->num_sta == 0 &&
233 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
234 /*
235 * No associated STAs - no need to send multicast
236 * frames.
237 */
238 return TX_DROP;
239 }
240 return TX_CONTINUE;
241 }
242
243 return TX_CONTINUE;
244 }
245
246 /* This function is called whenever the AP is about to exceed the maximum limit
247 * of buffered frames for power saving STAs. This situation should not really
248 * happen often during normal operation, so dropping the oldest buffered packet
249 * from each queue should be OK to make some room for new frames. */
250 static void purge_old_ps_buffers(struct ieee80211_local *local)
251 {
252 int total = 0, purged = 0;
253 struct sk_buff *skb;
254 struct ieee80211_sub_if_data *sdata;
255 struct sta_info *sta;
256
257 /*
258 * virtual interfaces are protected by RCU
259 */
260 rcu_read_lock();
261
262 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
263 struct ieee80211_if_ap *ap;
264 if (sdata->vif.type != NL80211_IFTYPE_AP)
265 continue;
266 ap = &sdata->u.ap;
267 skb = skb_dequeue(&ap->ps_bc_buf);
268 if (skb) {
269 purged++;
270 dev_kfree_skb(skb);
271 }
272 total += skb_queue_len(&ap->ps_bc_buf);
273 }
274
275 list_for_each_entry_rcu(sta, &local->sta_list, list) {
276 skb = skb_dequeue(&sta->ps_tx_buf);
277 if (skb) {
278 purged++;
279 dev_kfree_skb(skb);
280 }
281 total += skb_queue_len(&sta->ps_tx_buf);
282 }
283
284 rcu_read_unlock();
285
286 local->total_ps_buffered = total;
287 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
288 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
289 wiphy_name(local->hw.wiphy), purged);
290 #endif
291 }
292
293 static ieee80211_tx_result
294 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
295 {
296 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
298
299 /*
300 * broadcast/multicast frame
301 *
302 * If any of the associated stations is in power save mode,
303 * the frame is buffered to be sent after DTIM beacon frame.
304 * This is done either by the hardware or us.
305 */
306
307 /* powersaving STAs only in AP/VLAN mode */
308 if (!tx->sdata->bss)
309 return TX_CONTINUE;
310
311 /* no buffering for ordered frames */
312 if (ieee80211_has_order(hdr->frame_control))
313 return TX_CONTINUE;
314
315 /* no stations in PS mode */
316 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
317 return TX_CONTINUE;
318
319 /* buffered in mac80211 */
320 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
321 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
322 purge_old_ps_buffers(tx->local);
323 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
324 AP_MAX_BC_BUFFER) {
325 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
326 if (net_ratelimit()) {
327 printk(KERN_DEBUG "%s: BC TX buffer full - "
328 "dropping the oldest frame\n",
329 tx->dev->name);
330 }
331 #endif
332 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
333 } else
334 tx->local->total_ps_buffered++;
335 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
336 return TX_QUEUED;
337 }
338
339 /* buffered in hardware */
340 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
341
342 return TX_CONTINUE;
343 }
344
345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
346 struct sk_buff *skb)
347 {
348 if (!ieee80211_is_mgmt(fc))
349 return 0;
350
351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
352 return 0;
353
354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
355 skb->data))
356 return 0;
357
358 return 1;
359 }
360
361 static ieee80211_tx_result
362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
363 {
364 struct sta_info *sta = tx->sta;
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367 u32 staflags;
368
369 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
370 return TX_CONTINUE;
371
372 staflags = get_sta_flags(sta);
373
374 if (unlikely((staflags & WLAN_STA_PS) &&
375 !(staflags & WLAN_STA_PSPOLL))) {
376 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
377 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
378 "before %d)\n",
379 sta->sta.addr, sta->sta.aid,
380 skb_queue_len(&sta->ps_tx_buf));
381 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
382 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
383 purge_old_ps_buffers(tx->local);
384 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
385 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
386 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
387 if (net_ratelimit()) {
388 printk(KERN_DEBUG "%s: STA %pM TX "
389 "buffer full - dropping oldest frame\n",
390 tx->dev->name, sta->sta.addr);
391 }
392 #endif
393 dev_kfree_skb(old);
394 } else
395 tx->local->total_ps_buffered++;
396
397 /* Queue frame to be sent after STA sends an PS Poll frame */
398 if (skb_queue_empty(&sta->ps_tx_buf))
399 sta_info_set_tim_bit(sta);
400
401 info->control.jiffies = jiffies;
402 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
403 return TX_QUEUED;
404 }
405 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
406 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
407 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
408 "set -> send frame\n", tx->dev->name,
409 sta->sta.addr);
410 }
411 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
412 clear_sta_flags(sta, WLAN_STA_PSPOLL);
413
414 return TX_CONTINUE;
415 }
416
417 static ieee80211_tx_result debug_noinline
418 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
419 {
420 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
421 return TX_CONTINUE;
422
423 if (tx->flags & IEEE80211_TX_UNICAST)
424 return ieee80211_tx_h_unicast_ps_buf(tx);
425 else
426 return ieee80211_tx_h_multicast_ps_buf(tx);
427 }
428
429 static ieee80211_tx_result debug_noinline
430 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
431 {
432 struct ieee80211_key *key;
433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
435
436 if (unlikely(tx->skb->do_not_encrypt))
437 tx->key = NULL;
438 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
439 tx->key = key;
440 else if (ieee80211_is_mgmt(hdr->frame_control) &&
441 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
442 tx->key = key;
443 else if ((key = rcu_dereference(tx->sdata->default_key)))
444 tx->key = key;
445 else if (tx->sdata->drop_unencrypted &&
446 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
447 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
448 (!ieee80211_is_robust_mgmt_frame(hdr) ||
449 (ieee80211_is_action(hdr->frame_control) &&
450 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
451 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
452 return TX_DROP;
453 } else
454 tx->key = NULL;
455
456 if (tx->key) {
457 tx->key->tx_rx_count++;
458 /* TODO: add threshold stuff again */
459
460 switch (tx->key->conf.alg) {
461 case ALG_WEP:
462 if (ieee80211_is_auth(hdr->frame_control))
463 break;
464 case ALG_TKIP:
465 if (!ieee80211_is_data_present(hdr->frame_control))
466 tx->key = NULL;
467 break;
468 case ALG_CCMP:
469 if (!ieee80211_is_data_present(hdr->frame_control) &&
470 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
471 tx->skb))
472 tx->key = NULL;
473 break;
474 case ALG_AES_CMAC:
475 if (!ieee80211_is_mgmt(hdr->frame_control))
476 tx->key = NULL;
477 break;
478 }
479 }
480
481 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
482 tx->skb->do_not_encrypt = 1;
483
484 return TX_CONTINUE;
485 }
486
487 static ieee80211_tx_result debug_noinline
488 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
489 {
490 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
491 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
492 struct ieee80211_supported_band *sband;
493 struct ieee80211_rate *rate;
494 int i, len;
495 bool inval = false, rts = false, short_preamble = false;
496 struct ieee80211_tx_rate_control txrc;
497
498 memset(&txrc, 0, sizeof(txrc));
499
500 sband = tx->local->hw.wiphy->bands[tx->channel->band];
501
502 len = min_t(int, tx->skb->len + FCS_LEN,
503 tx->local->fragmentation_threshold);
504
505 /* set up the tx rate control struct we give the RC algo */
506 txrc.hw = local_to_hw(tx->local);
507 txrc.sband = sband;
508 txrc.bss_conf = &tx->sdata->vif.bss_conf;
509 txrc.skb = tx->skb;
510 txrc.reported_rate.idx = -1;
511 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
512
513 /* set up RTS protection if desired */
514 if (tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD &&
515 len > tx->local->rts_threshold) {
516 txrc.rts = rts = true;
517 }
518
519 /*
520 * Use short preamble if the BSS can handle it, but not for
521 * management frames unless we know the receiver can handle
522 * that -- the management frame might be to a station that
523 * just wants a probe response.
524 */
525 if (tx->sdata->vif.bss_conf.use_short_preamble &&
526 (ieee80211_is_data(hdr->frame_control) ||
527 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
528 txrc.short_preamble = short_preamble = true;
529
530
531 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
532
533 if (unlikely(info->control.rates[0].idx < 0))
534 return TX_DROP;
535
536 if (txrc.reported_rate.idx < 0)
537 txrc.reported_rate = info->control.rates[0];
538
539 if (tx->sta)
540 tx->sta->last_tx_rate = txrc.reported_rate;
541
542 if (unlikely(!info->control.rates[0].count))
543 info->control.rates[0].count = 1;
544
545 if (is_multicast_ether_addr(hdr->addr1)) {
546 /*
547 * XXX: verify the rate is in the basic rateset
548 */
549 return TX_CONTINUE;
550 }
551
552 /*
553 * set up the RTS/CTS rate as the fastest basic rate
554 * that is not faster than the data rate
555 *
556 * XXX: Should this check all retry rates?
557 */
558 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
559 s8 baserate = 0;
560
561 rate = &sband->bitrates[info->control.rates[0].idx];
562
563 for (i = 0; i < sband->n_bitrates; i++) {
564 /* must be a basic rate */
565 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
566 continue;
567 /* must not be faster than the data rate */
568 if (sband->bitrates[i].bitrate > rate->bitrate)
569 continue;
570 /* maximum */
571 if (sband->bitrates[baserate].bitrate <
572 sband->bitrates[i].bitrate)
573 baserate = i;
574 }
575
576 info->control.rts_cts_rate_idx = baserate;
577 }
578
579 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
580 /*
581 * make sure there's no valid rate following
582 * an invalid one, just in case drivers don't
583 * take the API seriously to stop at -1.
584 */
585 if (inval) {
586 info->control.rates[i].idx = -1;
587 continue;
588 }
589 if (info->control.rates[i].idx < 0) {
590 inval = true;
591 continue;
592 }
593
594 /*
595 * For now assume MCS is already set up correctly, this
596 * needs to be fixed.
597 */
598 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
599 WARN_ON(info->control.rates[i].idx > 76);
600 continue;
601 }
602
603 /* set up RTS protection if desired */
604 if (rts)
605 info->control.rates[i].flags |=
606 IEEE80211_TX_RC_USE_RTS_CTS;
607
608 /* RC is busted */
609 if (WARN_ON_ONCE(info->control.rates[i].idx >=
610 sband->n_bitrates)) {
611 info->control.rates[i].idx = -1;
612 continue;
613 }
614
615 rate = &sband->bitrates[info->control.rates[i].idx];
616
617 /* set up short preamble */
618 if (short_preamble &&
619 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
620 info->control.rates[i].flags |=
621 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
622
623 /* set up G protection */
624 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
625 rate->flags & IEEE80211_RATE_ERP_G)
626 info->control.rates[i].flags |=
627 IEEE80211_TX_RC_USE_CTS_PROTECT;
628 }
629
630 return TX_CONTINUE;
631 }
632
633 static ieee80211_tx_result debug_noinline
634 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
635 {
636 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
637
638 if (tx->sta)
639 info->control.sta = &tx->sta->sta;
640
641 return TX_CONTINUE;
642 }
643
644 static ieee80211_tx_result debug_noinline
645 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
646 {
647 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
648 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
649 u16 *seq;
650 u8 *qc;
651 int tid;
652
653 /*
654 * Packet injection may want to control the sequence
655 * number, if we have no matching interface then we
656 * neither assign one ourselves nor ask the driver to.
657 */
658 if (unlikely(!info->control.vif))
659 return TX_CONTINUE;
660
661 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
662 return TX_CONTINUE;
663
664 if (ieee80211_hdrlen(hdr->frame_control) < 24)
665 return TX_CONTINUE;
666
667 /*
668 * Anything but QoS data that has a sequence number field
669 * (is long enough) gets a sequence number from the global
670 * counter.
671 */
672 if (!ieee80211_is_data_qos(hdr->frame_control)) {
673 /* driver should assign sequence number */
674 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
675 /* for pure STA mode without beacons, we can do it */
676 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
677 tx->sdata->sequence_number += 0x10;
678 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
679 return TX_CONTINUE;
680 }
681
682 /*
683 * This should be true for injected/management frames only, for
684 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
685 * above since they are not QoS-data frames.
686 */
687 if (!tx->sta)
688 return TX_CONTINUE;
689
690 /* include per-STA, per-TID sequence counter */
691
692 qc = ieee80211_get_qos_ctl(hdr);
693 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
694 seq = &tx->sta->tid_seq[tid];
695
696 hdr->seq_ctrl = cpu_to_le16(*seq);
697
698 /* Increase the sequence number. */
699 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
700
701 return TX_CONTINUE;
702 }
703
704 static int ieee80211_fragment(struct ieee80211_local *local,
705 struct sk_buff *skb, int hdrlen,
706 int frag_threshold)
707 {
708 struct sk_buff *tail = skb, *tmp;
709 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
710 int pos = hdrlen + per_fragm;
711 int rem = skb->len - hdrlen - per_fragm;
712
713 if (WARN_ON(rem < 0))
714 return -EINVAL;
715
716 while (rem) {
717 int fraglen = per_fragm;
718
719 if (fraglen > rem)
720 fraglen = rem;
721 rem -= fraglen;
722 tmp = dev_alloc_skb(local->tx_headroom +
723 frag_threshold +
724 IEEE80211_ENCRYPT_HEADROOM +
725 IEEE80211_ENCRYPT_TAILROOM);
726 if (!tmp)
727 return -ENOMEM;
728 tail->next = tmp;
729 tail = tmp;
730 skb_reserve(tmp, local->tx_headroom +
731 IEEE80211_ENCRYPT_HEADROOM);
732 /* copy control information */
733 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
734 skb_copy_queue_mapping(tmp, skb);
735 tmp->priority = skb->priority;
736 tmp->do_not_encrypt = skb->do_not_encrypt;
737 tmp->dev = skb->dev;
738 tmp->iif = skb->iif;
739
740 /* copy header and data */
741 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
742 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
743
744 pos += fraglen;
745 }
746
747 skb->len = hdrlen + per_fragm;
748 return 0;
749 }
750
751 static ieee80211_tx_result debug_noinline
752 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
753 {
754 struct sk_buff *skb = tx->skb;
755 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
756 struct ieee80211_hdr *hdr = (void *)skb->data;
757 int frag_threshold = tx->local->fragmentation_threshold;
758 int hdrlen;
759 int fragnum;
760
761 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
762 return TX_CONTINUE;
763
764 /*
765 * Warn when submitting a fragmented A-MPDU frame and drop it.
766 * This scenario is handled in __ieee80211_tx_prepare but extra
767 * caution taken here as fragmented ampdu may cause Tx stop.
768 */
769 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
770 return TX_DROP;
771
772 hdrlen = ieee80211_hdrlen(hdr->frame_control);
773
774 /* internal error, why is TX_FRAGMENTED set? */
775 if (WARN_ON(skb->len <= frag_threshold))
776 return TX_DROP;
777
778 /*
779 * Now fragment the frame. This will allocate all the fragments and
780 * chain them (using skb as the first fragment) to skb->next.
781 * During transmission, we will remove the successfully transmitted
782 * fragments from this list. When the low-level driver rejects one
783 * of the fragments then we will simply pretend to accept the skb
784 * but store it away as pending.
785 */
786 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
787 return TX_DROP;
788
789 /* update duration/seq/flags of fragments */
790 fragnum = 0;
791 do {
792 int next_len;
793 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
794
795 hdr = (void *)skb->data;
796 info = IEEE80211_SKB_CB(skb);
797
798 if (skb->next) {
799 hdr->frame_control |= morefrags;
800 next_len = skb->next->len;
801 /*
802 * No multi-rate retries for fragmented frames, that
803 * would completely throw off the NAV at other STAs.
804 */
805 info->control.rates[1].idx = -1;
806 info->control.rates[2].idx = -1;
807 info->control.rates[3].idx = -1;
808 info->control.rates[4].idx = -1;
809 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
810 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
811 } else {
812 hdr->frame_control &= ~morefrags;
813 next_len = 0;
814 }
815 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
816 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
817 fragnum++;
818 } while ((skb = skb->next));
819
820 return TX_CONTINUE;
821 }
822
823 static ieee80211_tx_result debug_noinline
824 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
825 {
826 if (!tx->key)
827 return TX_CONTINUE;
828
829 switch (tx->key->conf.alg) {
830 case ALG_WEP:
831 return ieee80211_crypto_wep_encrypt(tx);
832 case ALG_TKIP:
833 return ieee80211_crypto_tkip_encrypt(tx);
834 case ALG_CCMP:
835 return ieee80211_crypto_ccmp_encrypt(tx);
836 case ALG_AES_CMAC:
837 return ieee80211_crypto_aes_cmac_encrypt(tx);
838 }
839
840 /* not reached */
841 WARN_ON(1);
842 return TX_DROP;
843 }
844
845 static ieee80211_tx_result debug_noinline
846 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
847 {
848 struct sk_buff *skb = tx->skb;
849 struct ieee80211_hdr *hdr;
850 int next_len;
851 bool group_addr;
852
853 do {
854 hdr = (void *) skb->data;
855 next_len = skb->next ? skb->next->len : 0;
856 group_addr = is_multicast_ether_addr(hdr->addr1);
857
858 hdr->duration_id =
859 ieee80211_duration(tx, group_addr, next_len);
860 } while ((skb = skb->next));
861
862 return TX_CONTINUE;
863 }
864
865 static ieee80211_tx_result debug_noinline
866 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
867 {
868 struct sk_buff *skb = tx->skb;
869
870 if (!tx->sta)
871 return TX_CONTINUE;
872
873 tx->sta->tx_packets++;
874 do {
875 tx->sta->tx_fragments++;
876 tx->sta->tx_bytes += skb->len;
877 } while ((skb = skb->next));
878
879 return TX_CONTINUE;
880 }
881
882 /* actual transmit path */
883
884 /*
885 * deal with packet injection down monitor interface
886 * with Radiotap Header -- only called for monitor mode interface
887 */
888 static ieee80211_tx_result
889 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
890 struct sk_buff *skb)
891 {
892 /*
893 * this is the moment to interpret and discard the radiotap header that
894 * must be at the start of the packet injected in Monitor mode
895 *
896 * Need to take some care with endian-ness since radiotap
897 * args are little-endian
898 */
899
900 struct ieee80211_radiotap_iterator iterator;
901 struct ieee80211_radiotap_header *rthdr =
902 (struct ieee80211_radiotap_header *) skb->data;
903 struct ieee80211_supported_band *sband;
904 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
905
906 sband = tx->local->hw.wiphy->bands[tx->channel->band];
907
908 skb->do_not_encrypt = 1;
909 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
910
911 /*
912 * for every radiotap entry that is present
913 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
914 * entries present, or -EINVAL on error)
915 */
916
917 while (!ret) {
918 ret = ieee80211_radiotap_iterator_next(&iterator);
919
920 if (ret)
921 continue;
922
923 /* see if this argument is something we can use */
924 switch (iterator.this_arg_index) {
925 /*
926 * You must take care when dereferencing iterator.this_arg
927 * for multibyte types... the pointer is not aligned. Use
928 * get_unaligned((type *)iterator.this_arg) to dereference
929 * iterator.this_arg for type "type" safely on all arches.
930 */
931 case IEEE80211_RADIOTAP_FLAGS:
932 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
933 /*
934 * this indicates that the skb we have been
935 * handed has the 32-bit FCS CRC at the end...
936 * we should react to that by snipping it off
937 * because it will be recomputed and added
938 * on transmission
939 */
940 if (skb->len < (iterator.max_length + FCS_LEN))
941 return TX_DROP;
942
943 skb_trim(skb, skb->len - FCS_LEN);
944 }
945 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
946 tx->skb->do_not_encrypt = 0;
947 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
948 tx->flags |= IEEE80211_TX_FRAGMENTED;
949 break;
950
951 /*
952 * Please update the file
953 * Documentation/networking/mac80211-injection.txt
954 * when parsing new fields here.
955 */
956
957 default:
958 break;
959 }
960 }
961
962 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
963 return TX_DROP;
964
965 /*
966 * remove the radiotap header
967 * iterator->max_length was sanity-checked against
968 * skb->len by iterator init
969 */
970 skb_pull(skb, iterator.max_length);
971
972 return TX_CONTINUE;
973 }
974
975 /*
976 * initialises @tx
977 */
978 static ieee80211_tx_result
979 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
980 struct sk_buff *skb,
981 struct net_device *dev)
982 {
983 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
984 struct ieee80211_hdr *hdr;
985 struct ieee80211_sub_if_data *sdata;
986 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
987
988 int hdrlen, tid;
989 u8 *qc, *state;
990
991 memset(tx, 0, sizeof(*tx));
992 tx->skb = skb;
993 tx->dev = dev; /* use original interface */
994 tx->local = local;
995 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
996 tx->channel = local->hw.conf.channel;
997 /*
998 * Set this flag (used below to indicate "automatic fragmentation"),
999 * it will be cleared/left by radiotap as desired.
1000 */
1001 tx->flags |= IEEE80211_TX_FRAGMENTED;
1002
1003 /* process and remove the injection radiotap header */
1004 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1005 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1006 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
1007 return TX_DROP;
1008
1009 /*
1010 * __ieee80211_parse_tx_radiotap has now removed
1011 * the radiotap header that was present and pre-filled
1012 * 'tx' with tx control information.
1013 */
1014 }
1015
1016 hdr = (struct ieee80211_hdr *) skb->data;
1017
1018 tx->sta = sta_info_get(local, hdr->addr1);
1019
1020 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control)) {
1021 unsigned long flags;
1022 qc = ieee80211_get_qos_ctl(hdr);
1023 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1024
1025 spin_lock_irqsave(&tx->sta->lock, flags);
1026 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1027 if (*state == HT_AGG_STATE_OPERATIONAL)
1028 info->flags |= IEEE80211_TX_CTL_AMPDU;
1029 spin_unlock_irqrestore(&tx->sta->lock, flags);
1030 }
1031
1032 if (is_multicast_ether_addr(hdr->addr1)) {
1033 tx->flags &= ~IEEE80211_TX_UNICAST;
1034 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1035 } else {
1036 tx->flags |= IEEE80211_TX_UNICAST;
1037 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1038 }
1039
1040 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1041 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1042 skb->len + FCS_LEN > local->fragmentation_threshold &&
1043 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1044 tx->flags |= IEEE80211_TX_FRAGMENTED;
1045 else
1046 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1047 }
1048
1049 if (!tx->sta)
1050 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1051 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1052 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1053
1054 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1055 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1056 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1057 tx->ethertype = (pos[0] << 8) | pos[1];
1058 }
1059 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1060
1061 return TX_CONTINUE;
1062 }
1063
1064 /*
1065 * NB: @tx is uninitialised when passed in here
1066 */
1067 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1068 struct ieee80211_tx_data *tx,
1069 struct sk_buff *skb)
1070 {
1071 struct net_device *dev;
1072
1073 dev = dev_get_by_index(&init_net, skb->iif);
1074 if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1075 dev_put(dev);
1076 dev = NULL;
1077 }
1078 if (unlikely(!dev))
1079 return -ENODEV;
1080 /* initialises tx with control */
1081 __ieee80211_tx_prepare(tx, skb, dev);
1082 dev_put(dev);
1083 return 0;
1084 }
1085
1086 static int __ieee80211_tx(struct ieee80211_local *local,
1087 struct ieee80211_tx_data *tx)
1088 {
1089 struct sk_buff *skb = tx->skb, *next;
1090 struct ieee80211_tx_info *info;
1091 int ret;
1092 bool fragm = false;
1093
1094 local->mdev->trans_start = jiffies;
1095
1096 while (skb) {
1097 if (ieee80211_queue_stopped(&local->hw,
1098 skb_get_queue_mapping(skb)))
1099 return IEEE80211_TX_PENDING;
1100
1101 info = IEEE80211_SKB_CB(skb);
1102
1103 if (fragm)
1104 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1105 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1106
1107 /*
1108 * Internally, we need to have the queue mapping point to
1109 * the real AC queue, not the virtual A-MPDU queue. This
1110 * now finally sets the queue to what the driver wants.
1111 * We will later move this down into the only driver that
1112 * needs it, iwlwifi.
1113 */
1114 if (tx->sta && local->hw.ampdu_queues &&
1115 info->flags & IEEE80211_TX_CTL_AMPDU) {
1116 unsigned long flags;
1117 u8 *qc = ieee80211_get_qos_ctl((void *) skb->data);
1118 int tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1119
1120 spin_lock_irqsave(&tx->sta->lock, flags);
1121 skb_set_queue_mapping(skb, local->hw.queues +
1122 tx->sta->tid_to_tx_q[tid]);
1123 spin_unlock_irqrestore(&tx->sta->lock, flags);
1124 }
1125
1126 next = skb->next;
1127 ret = local->ops->tx(local_to_hw(local), skb);
1128 if (ret != NETDEV_TX_OK)
1129 return IEEE80211_TX_AGAIN;
1130 tx->skb = skb = next;
1131 ieee80211_led_tx(local, 1);
1132 fragm = true;
1133 }
1134
1135 return IEEE80211_TX_OK;
1136 }
1137
1138 /*
1139 * Invoke TX handlers, return 0 on success and non-zero if the
1140 * frame was dropped or queued.
1141 */
1142 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1143 {
1144 struct sk_buff *skb = tx->skb;
1145 ieee80211_tx_result res = TX_DROP;
1146
1147 #define CALL_TXH(txh) \
1148 res = txh(tx); \
1149 if (res != TX_CONTINUE) \
1150 goto txh_done;
1151
1152 CALL_TXH(ieee80211_tx_h_check_assoc)
1153 CALL_TXH(ieee80211_tx_h_ps_buf)
1154 CALL_TXH(ieee80211_tx_h_select_key)
1155 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1156 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1157 CALL_TXH(ieee80211_tx_h_misc)
1158 CALL_TXH(ieee80211_tx_h_sequence)
1159 CALL_TXH(ieee80211_tx_h_fragment)
1160 /* handlers after fragment must be aware of tx info fragmentation! */
1161 CALL_TXH(ieee80211_tx_h_encrypt)
1162 CALL_TXH(ieee80211_tx_h_calculate_duration)
1163 CALL_TXH(ieee80211_tx_h_stats)
1164 #undef CALL_TXH
1165
1166 txh_done:
1167 if (unlikely(res == TX_DROP)) {
1168 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1169 while (skb) {
1170 struct sk_buff *next;
1171
1172 next = skb->next;
1173 dev_kfree_skb(skb);
1174 skb = next;
1175 }
1176 return -1;
1177 } else if (unlikely(res == TX_QUEUED)) {
1178 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1179 return -1;
1180 }
1181
1182 return 0;
1183 }
1184
1185 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb)
1186 {
1187 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1188 struct sta_info *sta;
1189 struct ieee80211_tx_data tx;
1190 ieee80211_tx_result res_prepare;
1191 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1192 struct sk_buff *next;
1193 unsigned long flags;
1194 int ret, retries;
1195 u16 queue;
1196
1197 queue = skb_get_queue_mapping(skb);
1198
1199 WARN_ON(!skb_queue_empty(&local->pending[queue]));
1200
1201 if (unlikely(skb->len < 10)) {
1202 dev_kfree_skb(skb);
1203 return 0;
1204 }
1205
1206 rcu_read_lock();
1207
1208 /* initialises tx */
1209 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1210
1211 if (res_prepare == TX_DROP) {
1212 dev_kfree_skb(skb);
1213 rcu_read_unlock();
1214 return 0;
1215 }
1216
1217 sta = tx.sta;
1218 tx.channel = local->hw.conf.channel;
1219 info->band = tx.channel->band;
1220
1221 if (invoke_tx_handlers(&tx))
1222 goto out;
1223
1224 retries = 0;
1225 retry:
1226 ret = __ieee80211_tx(local, &tx);
1227 switch (ret) {
1228 case IEEE80211_TX_OK:
1229 break;
1230 case IEEE80211_TX_AGAIN:
1231 /*
1232 * Since there are no fragmented frames on A-MPDU
1233 * queues, there's no reason for a driver to reject
1234 * a frame there, warn and drop it.
1235 */
1236 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1237 goto drop;
1238 /* fall through */
1239 case IEEE80211_TX_PENDING:
1240 skb = tx.skb;
1241
1242 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1243
1244 if (__netif_subqueue_stopped(local->mdev, queue)) {
1245 do {
1246 next = skb->next;
1247 skb->next = NULL;
1248 skb_queue_tail(&local->pending[queue], skb);
1249 } while ((skb = next));
1250
1251 /*
1252 * Make sure nobody will enable the queue on us
1253 * (without going through the tasklet) nor disable the
1254 * netdev queue underneath the pending handling code.
1255 */
1256 __set_bit(IEEE80211_QUEUE_STOP_REASON_PENDING,
1257 &local->queue_stop_reasons[queue]);
1258
1259 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1260 flags);
1261 } else {
1262 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1263 flags);
1264
1265 retries++;
1266 if (WARN(retries > 10, "tx refused but queue active"))
1267 goto drop;
1268 goto retry;
1269 }
1270 }
1271 out:
1272 rcu_read_unlock();
1273 return 0;
1274
1275 drop:
1276 rcu_read_unlock();
1277
1278 skb = tx.skb;
1279 while (skb) {
1280 next = skb->next;
1281 dev_kfree_skb(skb);
1282 skb = next;
1283 }
1284 return 0;
1285 }
1286
1287 /* device xmit handlers */
1288
1289 static int ieee80211_skb_resize(struct ieee80211_local *local,
1290 struct sk_buff *skb,
1291 int head_need, bool may_encrypt)
1292 {
1293 int tail_need = 0;
1294
1295 /*
1296 * This could be optimised, devices that do full hardware
1297 * crypto (including TKIP MMIC) need no tailroom... But we
1298 * have no drivers for such devices currently.
1299 */
1300 if (may_encrypt) {
1301 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1302 tail_need -= skb_tailroom(skb);
1303 tail_need = max_t(int, tail_need, 0);
1304 }
1305
1306 if (head_need || tail_need) {
1307 /* Sorry. Can't account for this any more */
1308 skb_orphan(skb);
1309 }
1310
1311 if (skb_header_cloned(skb))
1312 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1313 else
1314 I802_DEBUG_INC(local->tx_expand_skb_head);
1315
1316 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1317 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1318 wiphy_name(local->hw.wiphy));
1319 return -ENOMEM;
1320 }
1321
1322 /* update truesize too */
1323 skb->truesize += head_need + tail_need;
1324
1325 return 0;
1326 }
1327
1328 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1329 {
1330 struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1331 struct ieee80211_local *local = mpriv->local;
1332 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1333 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1334 struct net_device *odev = NULL;
1335 struct ieee80211_sub_if_data *osdata;
1336 int headroom;
1337 bool may_encrypt;
1338 enum {
1339 NOT_MONITOR,
1340 FOUND_SDATA,
1341 UNKNOWN_ADDRESS,
1342 } monitor_iface = NOT_MONITOR;
1343 int ret;
1344
1345 if (skb->iif)
1346 odev = dev_get_by_index(&init_net, skb->iif);
1347 if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1348 dev_put(odev);
1349 odev = NULL;
1350 }
1351 if (unlikely(!odev)) {
1352 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1353 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1354 "originating device\n", dev->name);
1355 #endif
1356 dev_kfree_skb(skb);
1357 return 0;
1358 }
1359
1360 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) &&
1361 local->hw.conf.dynamic_ps_timeout > 0) {
1362 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1363 ieee80211_stop_queues_by_reason(&local->hw,
1364 IEEE80211_QUEUE_STOP_REASON_PS);
1365 queue_work(local->hw.workqueue,
1366 &local->dynamic_ps_disable_work);
1367 }
1368
1369 mod_timer(&local->dynamic_ps_timer, jiffies +
1370 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1371 }
1372
1373 memset(info, 0, sizeof(*info));
1374
1375 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1376
1377 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1378
1379 if (ieee80211_vif_is_mesh(&osdata->vif) &&
1380 ieee80211_is_data(hdr->frame_control)) {
1381 if (is_multicast_ether_addr(hdr->addr3))
1382 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1383 else
1384 if (mesh_nexthop_lookup(skb, osdata)) {
1385 dev_put(odev);
1386 return 0;
1387 }
1388 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1389 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1390 fwded_frames);
1391 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1392 struct ieee80211_sub_if_data *sdata;
1393 int hdrlen;
1394 u16 len_rthdr;
1395
1396 info->flags |= IEEE80211_TX_CTL_INJECTED;
1397 monitor_iface = UNKNOWN_ADDRESS;
1398
1399 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1400 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr;
1401 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1402
1403 /* check the header is complete in the frame */
1404 if (likely(skb->len >= len_rthdr + hdrlen)) {
1405 /*
1406 * We process outgoing injected frames that have a
1407 * local address we handle as though they are our
1408 * own frames.
1409 * This code here isn't entirely correct, the local
1410 * MAC address is not necessarily enough to find
1411 * the interface to use; for that proper VLAN/WDS
1412 * support we will need a different mechanism.
1413 */
1414
1415 rcu_read_lock();
1416 list_for_each_entry_rcu(sdata, &local->interfaces,
1417 list) {
1418 if (!netif_running(sdata->dev))
1419 continue;
1420 if (sdata->vif.type != NL80211_IFTYPE_AP)
1421 continue;
1422 if (compare_ether_addr(sdata->dev->dev_addr,
1423 hdr->addr2)) {
1424 dev_hold(sdata->dev);
1425 dev_put(odev);
1426 osdata = sdata;
1427 odev = osdata->dev;
1428 skb->iif = sdata->dev->ifindex;
1429 monitor_iface = FOUND_SDATA;
1430 break;
1431 }
1432 }
1433 rcu_read_unlock();
1434 }
1435 }
1436
1437 may_encrypt = !skb->do_not_encrypt;
1438
1439 headroom = osdata->local->tx_headroom;
1440 if (may_encrypt)
1441 headroom += IEEE80211_ENCRYPT_HEADROOM;
1442 headroom -= skb_headroom(skb);
1443 headroom = max_t(int, 0, headroom);
1444
1445 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1446 dev_kfree_skb(skb);
1447 dev_put(odev);
1448 return 0;
1449 }
1450
1451 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1452 osdata = container_of(osdata->bss,
1453 struct ieee80211_sub_if_data,
1454 u.ap);
1455 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1456 info->control.vif = &osdata->vif;
1457 ret = ieee80211_tx(odev, skb);
1458 dev_put(odev);
1459
1460 return ret;
1461 }
1462
1463 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1464 struct net_device *dev)
1465 {
1466 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1467 struct ieee80211_channel *chan = local->hw.conf.channel;
1468 struct ieee80211_radiotap_header *prthdr =
1469 (struct ieee80211_radiotap_header *)skb->data;
1470 u16 len_rthdr;
1471
1472 /*
1473 * Frame injection is not allowed if beaconing is not allowed
1474 * or if we need radar detection. Beaconing is usually not allowed when
1475 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1476 * Passive scan is also used in world regulatory domains where
1477 * your country is not known and as such it should be treated as
1478 * NO TX unless the channel is explicitly allowed in which case
1479 * your current regulatory domain would not have the passive scan
1480 * flag.
1481 *
1482 * Since AP mode uses monitor interfaces to inject/TX management
1483 * frames we can make AP mode the exception to this rule once it
1484 * supports radar detection as its implementation can deal with
1485 * radar detection by itself. We can do that later by adding a
1486 * monitor flag interfaces used for AP support.
1487 */
1488 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1489 IEEE80211_CHAN_PASSIVE_SCAN)))
1490 goto fail;
1491
1492 /* check for not even having the fixed radiotap header part */
1493 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1494 goto fail; /* too short to be possibly valid */
1495
1496 /* is it a header version we can trust to find length from? */
1497 if (unlikely(prthdr->it_version))
1498 goto fail; /* only version 0 is supported */
1499
1500 /* then there must be a radiotap header with a length we can use */
1501 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1502
1503 /* does the skb contain enough to deliver on the alleged length? */
1504 if (unlikely(skb->len < len_rthdr))
1505 goto fail; /* skb too short for claimed rt header extent */
1506
1507 skb->dev = local->mdev;
1508
1509 /* needed because we set skb device to master */
1510 skb->iif = dev->ifindex;
1511
1512 /* sometimes we do encrypt injected frames, will be fixed
1513 * up in radiotap parser if not wanted */
1514 skb->do_not_encrypt = 0;
1515
1516 /*
1517 * fix up the pointers accounting for the radiotap
1518 * header still being in there. We are being given
1519 * a precooked IEEE80211 header so no need for
1520 * normal processing
1521 */
1522 skb_set_mac_header(skb, len_rthdr);
1523 /*
1524 * these are just fixed to the end of the rt area since we
1525 * don't have any better information and at this point, nobody cares
1526 */
1527 skb_set_network_header(skb, len_rthdr);
1528 skb_set_transport_header(skb, len_rthdr);
1529
1530 /* pass the radiotap header up to the next stage intact */
1531 dev_queue_xmit(skb);
1532 return NETDEV_TX_OK;
1533
1534 fail:
1535 dev_kfree_skb(skb);
1536 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1537 }
1538
1539 /**
1540 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1541 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1542 * @skb: packet to be sent
1543 * @dev: incoming interface
1544 *
1545 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1546 * not be freed, and caller is responsible for either retrying later or freeing
1547 * skb).
1548 *
1549 * This function takes in an Ethernet header and encapsulates it with suitable
1550 * IEEE 802.11 header based on which interface the packet is coming in. The
1551 * encapsulated packet will then be passed to master interface, wlan#.11, for
1552 * transmission (through low-level driver).
1553 */
1554 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1555 struct net_device *dev)
1556 {
1557 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1558 struct ieee80211_local *local = sdata->local;
1559 int ret = 1, head_need;
1560 u16 ethertype, hdrlen, meshhdrlen = 0;
1561 __le16 fc;
1562 struct ieee80211_hdr hdr;
1563 struct ieee80211s_hdr mesh_hdr;
1564 const u8 *encaps_data;
1565 int encaps_len, skip_header_bytes;
1566 int nh_pos, h_pos;
1567 struct sta_info *sta;
1568 u32 sta_flags = 0;
1569
1570 if (unlikely(skb->len < ETH_HLEN)) {
1571 ret = 0;
1572 goto fail;
1573 }
1574
1575 nh_pos = skb_network_header(skb) - skb->data;
1576 h_pos = skb_transport_header(skb) - skb->data;
1577
1578 /* convert Ethernet header to proper 802.11 header (based on
1579 * operation mode) */
1580 ethertype = (skb->data[12] << 8) | skb->data[13];
1581 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1582
1583 switch (sdata->vif.type) {
1584 case NL80211_IFTYPE_AP:
1585 case NL80211_IFTYPE_AP_VLAN:
1586 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1587 /* DA BSSID SA */
1588 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1589 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1590 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1591 hdrlen = 24;
1592 break;
1593 case NL80211_IFTYPE_WDS:
1594 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1595 /* RA TA DA SA */
1596 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1597 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1598 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1599 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1600 hdrlen = 30;
1601 break;
1602 #ifdef CONFIG_MAC80211_MESH
1603 case NL80211_IFTYPE_MESH_POINT:
1604 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1605 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1606 /* Do not send frames with mesh_ttl == 0 */
1607 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1608 ret = 0;
1609 goto fail;
1610 }
1611 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1612
1613 if (compare_ether_addr(dev->dev_addr,
1614 skb->data + ETH_ALEN) == 0) {
1615 /* RA TA DA SA */
1616 memset(hdr.addr1, 0, ETH_ALEN);
1617 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1618 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1619 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1620 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1621 } else {
1622 /* packet from other interface */
1623 struct mesh_path *mppath;
1624
1625 memset(hdr.addr1, 0, ETH_ALEN);
1626 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1627 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1628
1629 if (is_multicast_ether_addr(skb->data))
1630 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1631 else {
1632 rcu_read_lock();
1633 mppath = mpp_path_lookup(skb->data, sdata);
1634 if (mppath)
1635 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1636 else
1637 memset(hdr.addr3, 0xff, ETH_ALEN);
1638 rcu_read_unlock();
1639 }
1640
1641 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1642 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1643 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1644 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1645 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1646 sdata->u.mesh.mesh_seqnum++;
1647 meshhdrlen = 18;
1648 }
1649 hdrlen = 30;
1650 break;
1651 #endif
1652 case NL80211_IFTYPE_STATION:
1653 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1654 /* BSSID SA DA */
1655 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1656 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1657 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1658 hdrlen = 24;
1659 break;
1660 case NL80211_IFTYPE_ADHOC:
1661 /* DA SA BSSID */
1662 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1663 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1664 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1665 hdrlen = 24;
1666 break;
1667 default:
1668 ret = 0;
1669 goto fail;
1670 }
1671
1672 /*
1673 * There's no need to try to look up the destination
1674 * if it is a multicast address (which can only happen
1675 * in AP mode)
1676 */
1677 if (!is_multicast_ether_addr(hdr.addr1)) {
1678 rcu_read_lock();
1679 sta = sta_info_get(local, hdr.addr1);
1680 if (sta)
1681 sta_flags = get_sta_flags(sta);
1682 rcu_read_unlock();
1683 }
1684
1685 /* receiver and we are QoS enabled, use a QoS type frame */
1686 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1687 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1688 hdrlen += 2;
1689 }
1690
1691 /*
1692 * Drop unicast frames to unauthorised stations unless they are
1693 * EAPOL frames from the local station.
1694 */
1695 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1696 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1697 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1698 !(ethertype == ETH_P_PAE &&
1699 compare_ether_addr(dev->dev_addr,
1700 skb->data + ETH_ALEN) == 0))) {
1701 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1702 if (net_ratelimit())
1703 printk(KERN_DEBUG "%s: dropped frame to %pM"
1704 " (unauthorized port)\n", dev->name,
1705 hdr.addr1);
1706 #endif
1707
1708 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1709
1710 ret = 0;
1711 goto fail;
1712 }
1713
1714 hdr.frame_control = fc;
1715 hdr.duration_id = 0;
1716 hdr.seq_ctrl = 0;
1717
1718 skip_header_bytes = ETH_HLEN;
1719 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1720 encaps_data = bridge_tunnel_header;
1721 encaps_len = sizeof(bridge_tunnel_header);
1722 skip_header_bytes -= 2;
1723 } else if (ethertype >= 0x600) {
1724 encaps_data = rfc1042_header;
1725 encaps_len = sizeof(rfc1042_header);
1726 skip_header_bytes -= 2;
1727 } else {
1728 encaps_data = NULL;
1729 encaps_len = 0;
1730 }
1731
1732 skb_pull(skb, skip_header_bytes);
1733 nh_pos -= skip_header_bytes;
1734 h_pos -= skip_header_bytes;
1735
1736 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1737
1738 /*
1739 * So we need to modify the skb header and hence need a copy of
1740 * that. The head_need variable above doesn't, so far, include
1741 * the needed header space that we don't need right away. If we
1742 * can, then we don't reallocate right now but only after the
1743 * frame arrives at the master device (if it does...)
1744 *
1745 * If we cannot, however, then we will reallocate to include all
1746 * the ever needed space. Also, if we need to reallocate it anyway,
1747 * make it big enough for everything we may ever need.
1748 */
1749
1750 if (head_need > 0 || skb_cloned(skb)) {
1751 head_need += IEEE80211_ENCRYPT_HEADROOM;
1752 head_need += local->tx_headroom;
1753 head_need = max_t(int, 0, head_need);
1754 if (ieee80211_skb_resize(local, skb, head_need, true))
1755 goto fail;
1756 }
1757
1758 if (encaps_data) {
1759 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1760 nh_pos += encaps_len;
1761 h_pos += encaps_len;
1762 }
1763
1764 if (meshhdrlen > 0) {
1765 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1766 nh_pos += meshhdrlen;
1767 h_pos += meshhdrlen;
1768 }
1769
1770 if (ieee80211_is_data_qos(fc)) {
1771 __le16 *qos_control;
1772
1773 qos_control = (__le16*) skb_push(skb, 2);
1774 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1775 /*
1776 * Maybe we could actually set some fields here, for now just
1777 * initialise to zero to indicate no special operation.
1778 */
1779 *qos_control = 0;
1780 } else
1781 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1782
1783 nh_pos += hdrlen;
1784 h_pos += hdrlen;
1785
1786 skb->iif = dev->ifindex;
1787
1788 skb->dev = local->mdev;
1789 dev->stats.tx_packets++;
1790 dev->stats.tx_bytes += skb->len;
1791
1792 /* Update skb pointers to various headers since this modified frame
1793 * is going to go through Linux networking code that may potentially
1794 * need things like pointer to IP header. */
1795 skb_set_mac_header(skb, 0);
1796 skb_set_network_header(skb, nh_pos);
1797 skb_set_transport_header(skb, h_pos);
1798
1799 dev->trans_start = jiffies;
1800 dev_queue_xmit(skb);
1801
1802 return 0;
1803
1804 fail:
1805 if (!ret)
1806 dev_kfree_skb(skb);
1807
1808 return ret;
1809 }
1810
1811
1812 /*
1813 * ieee80211_clear_tx_pending may not be called in a context where
1814 * it is possible that it packets could come in again.
1815 */
1816 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1817 {
1818 int i;
1819
1820 for (i = 0; i < local->hw.queues; i++)
1821 skb_queue_purge(&local->pending[i]);
1822 }
1823
1824 /*
1825 * Transmit all pending packets. Called from tasklet, locks master device
1826 * TX lock so that no new packets can come in.
1827 */
1828 void ieee80211_tx_pending(unsigned long data)
1829 {
1830 struct ieee80211_local *local = (struct ieee80211_local *)data;
1831 struct net_device *dev = local->mdev;
1832 struct ieee80211_hdr *hdr;
1833 unsigned long flags;
1834 struct ieee80211_tx_data tx;
1835 int i, ret;
1836 bool next;
1837
1838 rcu_read_lock();
1839 netif_tx_lock_bh(dev);
1840
1841 for (i = 0; i < local->hw.queues; i++) {
1842 /*
1843 * If queue is stopped by something other than due to pending
1844 * frames, or we have no pending frames, proceed to next queue.
1845 */
1846 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1847 next = false;
1848 if (local->queue_stop_reasons[i] !=
1849 BIT(IEEE80211_QUEUE_STOP_REASON_PENDING) ||
1850 skb_queue_empty(&local->pending[i]))
1851 next = true;
1852 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1853
1854 if (next)
1855 continue;
1856
1857 /*
1858 * start the queue now to allow processing our packets,
1859 * we're under the tx lock here anyway so nothing will
1860 * happen as a result of this
1861 */
1862 netif_start_subqueue(local->mdev, i);
1863
1864 while (!skb_queue_empty(&local->pending[i])) {
1865 tx.flags = 0;
1866 tx.skb = skb_dequeue(&local->pending[i]);
1867 hdr = (struct ieee80211_hdr *)tx.skb->data;
1868 tx.sta = sta_info_get(local, hdr->addr1);
1869
1870 ret = __ieee80211_tx(local, &tx);
1871 if (ret != IEEE80211_TX_OK) {
1872 skb_queue_head(&local->pending[i], tx.skb);
1873 break;
1874 }
1875 }
1876
1877 /* Start regular packet processing again. */
1878 if (skb_queue_empty(&local->pending[i]))
1879 ieee80211_wake_queue_by_reason(&local->hw, i,
1880 IEEE80211_QUEUE_STOP_REASON_PENDING);
1881 }
1882
1883 netif_tx_unlock_bh(dev);
1884 rcu_read_unlock();
1885 }
1886
1887 /* functions for drivers to get certain frames */
1888
1889 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1890 struct sk_buff *skb,
1891 struct beacon_data *beacon)
1892 {
1893 u8 *pos, *tim;
1894 int aid0 = 0;
1895 int i, have_bits = 0, n1, n2;
1896
1897 /* Generate bitmap for TIM only if there are any STAs in power save
1898 * mode. */
1899 if (atomic_read(&bss->num_sta_ps) > 0)
1900 /* in the hope that this is faster than
1901 * checking byte-for-byte */
1902 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1903 IEEE80211_MAX_AID+1);
1904
1905 if (bss->dtim_count == 0)
1906 bss->dtim_count = beacon->dtim_period - 1;
1907 else
1908 bss->dtim_count--;
1909
1910 tim = pos = (u8 *) skb_put(skb, 6);
1911 *pos++ = WLAN_EID_TIM;
1912 *pos++ = 4;
1913 *pos++ = bss->dtim_count;
1914 *pos++ = beacon->dtim_period;
1915
1916 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1917 aid0 = 1;
1918
1919 if (have_bits) {
1920 /* Find largest even number N1 so that bits numbered 1 through
1921 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1922 * (N2 + 1) x 8 through 2007 are 0. */
1923 n1 = 0;
1924 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1925 if (bss->tim[i]) {
1926 n1 = i & 0xfe;
1927 break;
1928 }
1929 }
1930 n2 = n1;
1931 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1932 if (bss->tim[i]) {
1933 n2 = i;
1934 break;
1935 }
1936 }
1937
1938 /* Bitmap control */
1939 *pos++ = n1 | aid0;
1940 /* Part Virt Bitmap */
1941 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1942
1943 tim[1] = n2 - n1 + 4;
1944 skb_put(skb, n2 - n1);
1945 } else {
1946 *pos++ = aid0; /* Bitmap control */
1947 *pos++ = 0; /* Part Virt Bitmap */
1948 }
1949 }
1950
1951 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1952 struct ieee80211_vif *vif)
1953 {
1954 struct ieee80211_local *local = hw_to_local(hw);
1955 struct sk_buff *skb = NULL;
1956 struct ieee80211_tx_info *info;
1957 struct ieee80211_sub_if_data *sdata = NULL;
1958 struct ieee80211_if_ap *ap = NULL;
1959 struct beacon_data *beacon;
1960 struct ieee80211_supported_band *sband;
1961 enum ieee80211_band band = local->hw.conf.channel->band;
1962
1963 sband = local->hw.wiphy->bands[band];
1964
1965 rcu_read_lock();
1966
1967 sdata = vif_to_sdata(vif);
1968
1969 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1970 ap = &sdata->u.ap;
1971 beacon = rcu_dereference(ap->beacon);
1972 if (ap && beacon) {
1973 /*
1974 * headroom, head length,
1975 * tail length and maximum TIM length
1976 */
1977 skb = dev_alloc_skb(local->tx_headroom +
1978 beacon->head_len +
1979 beacon->tail_len + 256);
1980 if (!skb)
1981 goto out;
1982
1983 skb_reserve(skb, local->tx_headroom);
1984 memcpy(skb_put(skb, beacon->head_len), beacon->head,
1985 beacon->head_len);
1986
1987 /*
1988 * Not very nice, but we want to allow the driver to call
1989 * ieee80211_beacon_get() as a response to the set_tim()
1990 * callback. That, however, is already invoked under the
1991 * sta_lock to guarantee consistent and race-free update
1992 * of the tim bitmap in mac80211 and the driver.
1993 */
1994 if (local->tim_in_locked_section) {
1995 ieee80211_beacon_add_tim(ap, skb, beacon);
1996 } else {
1997 unsigned long flags;
1998
1999 spin_lock_irqsave(&local->sta_lock, flags);
2000 ieee80211_beacon_add_tim(ap, skb, beacon);
2001 spin_unlock_irqrestore(&local->sta_lock, flags);
2002 }
2003
2004 if (beacon->tail)
2005 memcpy(skb_put(skb, beacon->tail_len),
2006 beacon->tail, beacon->tail_len);
2007 } else
2008 goto out;
2009 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2010 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2011 struct ieee80211_hdr *hdr;
2012
2013 if (!ifibss->probe_resp)
2014 goto out;
2015
2016 skb = skb_copy(ifibss->probe_resp, GFP_ATOMIC);
2017 if (!skb)
2018 goto out;
2019
2020 hdr = (struct ieee80211_hdr *) skb->data;
2021 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2022 IEEE80211_STYPE_BEACON);
2023
2024 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2025 struct ieee80211_mgmt *mgmt;
2026 u8 *pos;
2027
2028 /* headroom, head length, tail length and maximum TIM length */
2029 skb = dev_alloc_skb(local->tx_headroom + 400);
2030 if (!skb)
2031 goto out;
2032
2033 skb_reserve(skb, local->hw.extra_tx_headroom);
2034 mgmt = (struct ieee80211_mgmt *)
2035 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2036 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2037 mgmt->frame_control =
2038 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2039 memset(mgmt->da, 0xff, ETH_ALEN);
2040 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2041 /* BSSID is left zeroed, wildcard value */
2042 mgmt->u.beacon.beacon_int =
2043 cpu_to_le16(local->hw.conf.beacon_int);
2044 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2045
2046 pos = skb_put(skb, 2);
2047 *pos++ = WLAN_EID_SSID;
2048 *pos++ = 0x0;
2049
2050 mesh_mgmt_ies_add(skb, sdata);
2051 } else {
2052 WARN_ON(1);
2053 goto out;
2054 }
2055
2056 info = IEEE80211_SKB_CB(skb);
2057
2058 skb->do_not_encrypt = 1;
2059
2060 info->band = band;
2061 /*
2062 * XXX: For now, always use the lowest rate
2063 */
2064 info->control.rates[0].idx = 0;
2065 info->control.rates[0].count = 1;
2066 info->control.rates[1].idx = -1;
2067 info->control.rates[2].idx = -1;
2068 info->control.rates[3].idx = -1;
2069 info->control.rates[4].idx = -1;
2070 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2071
2072 info->control.vif = vif;
2073
2074 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2075 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2076 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2077 out:
2078 rcu_read_unlock();
2079 return skb;
2080 }
2081 EXPORT_SYMBOL(ieee80211_beacon_get);
2082
2083 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2084 const void *frame, size_t frame_len,
2085 const struct ieee80211_tx_info *frame_txctl,
2086 struct ieee80211_rts *rts)
2087 {
2088 const struct ieee80211_hdr *hdr = frame;
2089
2090 rts->frame_control =
2091 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2092 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2093 frame_txctl);
2094 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2095 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2096 }
2097 EXPORT_SYMBOL(ieee80211_rts_get);
2098
2099 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2100 const void *frame, size_t frame_len,
2101 const struct ieee80211_tx_info *frame_txctl,
2102 struct ieee80211_cts *cts)
2103 {
2104 const struct ieee80211_hdr *hdr = frame;
2105
2106 cts->frame_control =
2107 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2108 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2109 frame_len, frame_txctl);
2110 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2111 }
2112 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2113
2114 struct sk_buff *
2115 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2116 struct ieee80211_vif *vif)
2117 {
2118 struct ieee80211_local *local = hw_to_local(hw);
2119 struct sk_buff *skb = NULL;
2120 struct sta_info *sta;
2121 struct ieee80211_tx_data tx;
2122 struct ieee80211_sub_if_data *sdata;
2123 struct ieee80211_if_ap *bss = NULL;
2124 struct beacon_data *beacon;
2125 struct ieee80211_tx_info *info;
2126
2127 sdata = vif_to_sdata(vif);
2128 bss = &sdata->u.ap;
2129
2130 if (!bss)
2131 return NULL;
2132
2133 rcu_read_lock();
2134 beacon = rcu_dereference(bss->beacon);
2135
2136 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2137 goto out;
2138
2139 if (bss->dtim_count != 0)
2140 goto out; /* send buffered bc/mc only after DTIM beacon */
2141
2142 while (1) {
2143 skb = skb_dequeue(&bss->ps_bc_buf);
2144 if (!skb)
2145 goto out;
2146 local->total_ps_buffered--;
2147
2148 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2149 struct ieee80211_hdr *hdr =
2150 (struct ieee80211_hdr *) skb->data;
2151 /* more buffered multicast/broadcast frames ==> set
2152 * MoreData flag in IEEE 802.11 header to inform PS
2153 * STAs */
2154 hdr->frame_control |=
2155 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2156 }
2157
2158 if (!ieee80211_tx_prepare(local, &tx, skb))
2159 break;
2160 dev_kfree_skb_any(skb);
2161 }
2162
2163 info = IEEE80211_SKB_CB(skb);
2164
2165 sta = tx.sta;
2166 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2167 tx.channel = local->hw.conf.channel;
2168 info->band = tx.channel->band;
2169
2170 if (invoke_tx_handlers(&tx))
2171 skb = NULL;
2172 out:
2173 rcu_read_unlock();
2174
2175 return skb;
2176 }
2177 EXPORT_SYMBOL(ieee80211_get_buffered_bc);