]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/tx.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
185 {
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
188
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
192
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
196
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
200
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
204
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
207
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
211
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
215
216 ifmgd = &tx->sdata->u.mgd;
217
218 /*
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
226 *
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
230 */
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
235
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
241 }
242
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
245
246 return TX_CONTINUE;
247 }
248
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
251 {
252
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
256
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
259
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
263 /*
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
271 *
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
273 */
274 return TX_DROP;
275
276 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
277 return TX_CONTINUE;
278
279 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
280 return TX_CONTINUE;
281
282 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
283
284 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
285 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
287 ieee80211_is_data(hdr->frame_control))) {
288 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
289 printk(KERN_DEBUG "%s: dropped data frame to not "
290 "associated station %pM\n",
291 tx->sdata->name, hdr->addr1);
292 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
293 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
294 return TX_DROP;
295 }
296 } else {
297 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
298 tx->local->num_sta == 0 &&
299 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
300 /*
301 * No associated STAs - no need to send multicast
302 * frames.
303 */
304 return TX_DROP;
305 }
306 return TX_CONTINUE;
307 }
308
309 return TX_CONTINUE;
310 }
311
312 /* This function is called whenever the AP is about to exceed the maximum limit
313 * of buffered frames for power saving STAs. This situation should not really
314 * happen often during normal operation, so dropping the oldest buffered packet
315 * from each queue should be OK to make some room for new frames. */
316 static void purge_old_ps_buffers(struct ieee80211_local *local)
317 {
318 int total = 0, purged = 0;
319 struct sk_buff *skb;
320 struct ieee80211_sub_if_data *sdata;
321 struct sta_info *sta;
322
323 /*
324 * virtual interfaces are protected by RCU
325 */
326 rcu_read_lock();
327
328 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
329 struct ieee80211_if_ap *ap;
330 if (sdata->vif.type != NL80211_IFTYPE_AP)
331 continue;
332 ap = &sdata->u.ap;
333 skb = skb_dequeue(&ap->ps_bc_buf);
334 if (skb) {
335 purged++;
336 dev_kfree_skb(skb);
337 }
338 total += skb_queue_len(&ap->ps_bc_buf);
339 }
340
341 list_for_each_entry_rcu(sta, &local->sta_list, list) {
342 skb = skb_dequeue(&sta->ps_tx_buf);
343 if (skb) {
344 purged++;
345 dev_kfree_skb(skb);
346 }
347 total += skb_queue_len(&sta->ps_tx_buf);
348 }
349
350 rcu_read_unlock();
351
352 local->total_ps_buffered = total;
353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
354 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
355 wiphy_name(local->hw.wiphy), purged);
356 #endif
357 }
358
359 static ieee80211_tx_result
360 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
361 {
362 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
364
365 /*
366 * broadcast/multicast frame
367 *
368 * If any of the associated stations is in power save mode,
369 * the frame is buffered to be sent after DTIM beacon frame.
370 * This is done either by the hardware or us.
371 */
372
373 /* powersaving STAs only in AP/VLAN mode */
374 if (!tx->sdata->bss)
375 return TX_CONTINUE;
376
377 /* no buffering for ordered frames */
378 if (ieee80211_has_order(hdr->frame_control))
379 return TX_CONTINUE;
380
381 /* no stations in PS mode */
382 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
383 return TX_CONTINUE;
384
385 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
386
387 /* device releases frame after DTIM beacon */
388 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
389 return TX_CONTINUE;
390
391 /* buffered in mac80211 */
392 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
393 purge_old_ps_buffers(tx->local);
394
395 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
396 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
397 if (net_ratelimit())
398 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
399 tx->sdata->name);
400 #endif
401 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
402 } else
403 tx->local->total_ps_buffered++;
404
405 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
406
407 return TX_QUEUED;
408 }
409
410 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
411 struct sk_buff *skb)
412 {
413 if (!ieee80211_is_mgmt(fc))
414 return 0;
415
416 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
417 return 0;
418
419 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
420 skb->data))
421 return 0;
422
423 return 1;
424 }
425
426 static ieee80211_tx_result
427 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
428 {
429 struct sta_info *sta = tx->sta;
430 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
432 u32 staflags;
433
434 if (unlikely(!sta ||
435 ieee80211_is_probe_resp(hdr->frame_control) ||
436 ieee80211_is_auth(hdr->frame_control) ||
437 ieee80211_is_assoc_resp(hdr->frame_control) ||
438 ieee80211_is_reassoc_resp(hdr->frame_control)))
439 return TX_CONTINUE;
440
441 staflags = get_sta_flags(sta);
442
443 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
444 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
445 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
446 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
447 "before %d)\n",
448 sta->sta.addr, sta->sta.aid,
449 skb_queue_len(&sta->ps_tx_buf));
450 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
451 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
452 purge_old_ps_buffers(tx->local);
453 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
454 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
455 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
456 if (net_ratelimit()) {
457 printk(KERN_DEBUG "%s: STA %pM TX "
458 "buffer full - dropping oldest frame\n",
459 tx->sdata->name, sta->sta.addr);
460 }
461 #endif
462 dev_kfree_skb(old);
463 } else
464 tx->local->total_ps_buffered++;
465
466 /*
467 * Queue frame to be sent after STA wakes up/polls,
468 * but don't set the TIM bit if the driver is blocking
469 * wakeup or poll response transmissions anyway.
470 */
471 if (skb_queue_empty(&sta->ps_tx_buf) &&
472 !(staflags & WLAN_STA_PS_DRIVER))
473 sta_info_set_tim_bit(sta);
474
475 info->control.jiffies = jiffies;
476 info->control.vif = &tx->sdata->vif;
477 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
478 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
479 return TX_QUEUED;
480 }
481 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
482 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
483 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
484 "set -> send frame\n", tx->sdata->name,
485 sta->sta.addr);
486 }
487 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
488
489 return TX_CONTINUE;
490 }
491
492 static ieee80211_tx_result debug_noinline
493 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
494 {
495 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
496 return TX_CONTINUE;
497
498 if (tx->flags & IEEE80211_TX_UNICAST)
499 return ieee80211_tx_h_unicast_ps_buf(tx);
500 else
501 return ieee80211_tx_h_multicast_ps_buf(tx);
502 }
503
504 static ieee80211_tx_result debug_noinline
505 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
506 {
507 struct ieee80211_key *key = NULL;
508 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
509 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
510
511 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
512 tx->key = NULL;
513 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
514 tx->key = key;
515 else if (ieee80211_is_mgmt(hdr->frame_control) &&
516 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
517 tx->key = key;
518 else if ((key = rcu_dereference(tx->sdata->default_key)))
519 tx->key = key;
520 else if (tx->sdata->drop_unencrypted &&
521 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
522 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
523 (!ieee80211_is_robust_mgmt_frame(hdr) ||
524 (ieee80211_is_action(hdr->frame_control) &&
525 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
526 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
527 return TX_DROP;
528 } else
529 tx->key = NULL;
530
531 if (tx->key) {
532 tx->key->tx_rx_count++;
533 /* TODO: add threshold stuff again */
534
535 switch (tx->key->conf.alg) {
536 case ALG_WEP:
537 if (ieee80211_is_auth(hdr->frame_control))
538 break;
539 case ALG_TKIP:
540 if (!ieee80211_is_data_present(hdr->frame_control))
541 tx->key = NULL;
542 break;
543 case ALG_CCMP:
544 if (!ieee80211_is_data_present(hdr->frame_control) &&
545 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
546 tx->skb))
547 tx->key = NULL;
548 break;
549 case ALG_AES_CMAC:
550 if (!ieee80211_is_mgmt(hdr->frame_control))
551 tx->key = NULL;
552 break;
553 }
554 }
555
556 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
557 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
558
559 return TX_CONTINUE;
560 }
561
562 static ieee80211_tx_result debug_noinline
563 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
564 {
565 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
566 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
567 struct ieee80211_supported_band *sband;
568 struct ieee80211_rate *rate;
569 int i, len;
570 bool inval = false, rts = false, short_preamble = false;
571 struct ieee80211_tx_rate_control txrc;
572 u32 sta_flags;
573
574 memset(&txrc, 0, sizeof(txrc));
575
576 sband = tx->local->hw.wiphy->bands[tx->channel->band];
577
578 len = min_t(int, tx->skb->len + FCS_LEN,
579 tx->local->hw.wiphy->frag_threshold);
580
581 /* set up the tx rate control struct we give the RC algo */
582 txrc.hw = local_to_hw(tx->local);
583 txrc.sband = sband;
584 txrc.bss_conf = &tx->sdata->vif.bss_conf;
585 txrc.skb = tx->skb;
586 txrc.reported_rate.idx = -1;
587 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
588 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
589 txrc.max_rate_idx = -1;
590 else
591 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
592 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
593
594 /* set up RTS protection if desired */
595 if (len > tx->local->hw.wiphy->rts_threshold) {
596 txrc.rts = rts = true;
597 }
598
599 /*
600 * Use short preamble if the BSS can handle it, but not for
601 * management frames unless we know the receiver can handle
602 * that -- the management frame might be to a station that
603 * just wants a probe response.
604 */
605 if (tx->sdata->vif.bss_conf.use_short_preamble &&
606 (ieee80211_is_data(hdr->frame_control) ||
607 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
608 txrc.short_preamble = short_preamble = true;
609
610 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
611
612 /*
613 * Lets not bother rate control if we're associated and cannot
614 * talk to the sta. This should not happen.
615 */
616 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
617 (sta_flags & WLAN_STA_ASSOC) &&
618 !rate_usable_index_exists(sband, &tx->sta->sta),
619 "%s: Dropped data frame as no usable bitrate found while "
620 "scanning and associated. Target station: "
621 "%pM on %d GHz band\n",
622 tx->sdata->name, hdr->addr1,
623 tx->channel->band ? 5 : 2))
624 return TX_DROP;
625
626 /*
627 * If we're associated with the sta at this point we know we can at
628 * least send the frame at the lowest bit rate.
629 */
630 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
631
632 if (unlikely(info->control.rates[0].idx < 0))
633 return TX_DROP;
634
635 if (txrc.reported_rate.idx < 0)
636 txrc.reported_rate = info->control.rates[0];
637
638 if (tx->sta)
639 tx->sta->last_tx_rate = txrc.reported_rate;
640
641 if (unlikely(!info->control.rates[0].count))
642 info->control.rates[0].count = 1;
643
644 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
645 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
646 info->control.rates[0].count = 1;
647
648 if (is_multicast_ether_addr(hdr->addr1)) {
649 /*
650 * XXX: verify the rate is in the basic rateset
651 */
652 return TX_CONTINUE;
653 }
654
655 /*
656 * set up the RTS/CTS rate as the fastest basic rate
657 * that is not faster than the data rate
658 *
659 * XXX: Should this check all retry rates?
660 */
661 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
662 s8 baserate = 0;
663
664 rate = &sband->bitrates[info->control.rates[0].idx];
665
666 for (i = 0; i < sband->n_bitrates; i++) {
667 /* must be a basic rate */
668 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
669 continue;
670 /* must not be faster than the data rate */
671 if (sband->bitrates[i].bitrate > rate->bitrate)
672 continue;
673 /* maximum */
674 if (sband->bitrates[baserate].bitrate <
675 sband->bitrates[i].bitrate)
676 baserate = i;
677 }
678
679 info->control.rts_cts_rate_idx = baserate;
680 }
681
682 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
683 /*
684 * make sure there's no valid rate following
685 * an invalid one, just in case drivers don't
686 * take the API seriously to stop at -1.
687 */
688 if (inval) {
689 info->control.rates[i].idx = -1;
690 continue;
691 }
692 if (info->control.rates[i].idx < 0) {
693 inval = true;
694 continue;
695 }
696
697 /*
698 * For now assume MCS is already set up correctly, this
699 * needs to be fixed.
700 */
701 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
702 WARN_ON(info->control.rates[i].idx > 76);
703 continue;
704 }
705
706 /* set up RTS protection if desired */
707 if (rts)
708 info->control.rates[i].flags |=
709 IEEE80211_TX_RC_USE_RTS_CTS;
710
711 /* RC is busted */
712 if (WARN_ON_ONCE(info->control.rates[i].idx >=
713 sband->n_bitrates)) {
714 info->control.rates[i].idx = -1;
715 continue;
716 }
717
718 rate = &sband->bitrates[info->control.rates[i].idx];
719
720 /* set up short preamble */
721 if (short_preamble &&
722 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
723 info->control.rates[i].flags |=
724 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
725
726 /* set up G protection */
727 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
728 rate->flags & IEEE80211_RATE_ERP_G)
729 info->control.rates[i].flags |=
730 IEEE80211_TX_RC_USE_CTS_PROTECT;
731 }
732
733 return TX_CONTINUE;
734 }
735
736 static ieee80211_tx_result debug_noinline
737 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
738 {
739 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
740
741 if (tx->sta)
742 info->control.sta = &tx->sta->sta;
743
744 return TX_CONTINUE;
745 }
746
747 static ieee80211_tx_result debug_noinline
748 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
749 {
750 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
751 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
752 u16 *seq;
753 u8 *qc;
754 int tid;
755
756 /*
757 * Packet injection may want to control the sequence
758 * number, if we have no matching interface then we
759 * neither assign one ourselves nor ask the driver to.
760 */
761 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
762 return TX_CONTINUE;
763
764 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
765 return TX_CONTINUE;
766
767 if (ieee80211_hdrlen(hdr->frame_control) < 24)
768 return TX_CONTINUE;
769
770 /*
771 * Anything but QoS data that has a sequence number field
772 * (is long enough) gets a sequence number from the global
773 * counter.
774 */
775 if (!ieee80211_is_data_qos(hdr->frame_control)) {
776 /* driver should assign sequence number */
777 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
778 /* for pure STA mode without beacons, we can do it */
779 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
780 tx->sdata->sequence_number += 0x10;
781 return TX_CONTINUE;
782 }
783
784 /*
785 * This should be true for injected/management frames only, for
786 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
787 * above since they are not QoS-data frames.
788 */
789 if (!tx->sta)
790 return TX_CONTINUE;
791
792 /* include per-STA, per-TID sequence counter */
793
794 qc = ieee80211_get_qos_ctl(hdr);
795 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
796 seq = &tx->sta->tid_seq[tid];
797
798 hdr->seq_ctrl = cpu_to_le16(*seq);
799
800 /* Increase the sequence number. */
801 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
802
803 return TX_CONTINUE;
804 }
805
806 static int ieee80211_fragment(struct ieee80211_local *local,
807 struct sk_buff *skb, int hdrlen,
808 int frag_threshold)
809 {
810 struct sk_buff *tail = skb, *tmp;
811 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
812 int pos = hdrlen + per_fragm;
813 int rem = skb->len - hdrlen - per_fragm;
814
815 if (WARN_ON(rem < 0))
816 return -EINVAL;
817
818 while (rem) {
819 int fraglen = per_fragm;
820
821 if (fraglen > rem)
822 fraglen = rem;
823 rem -= fraglen;
824 tmp = dev_alloc_skb(local->tx_headroom +
825 frag_threshold +
826 IEEE80211_ENCRYPT_HEADROOM +
827 IEEE80211_ENCRYPT_TAILROOM);
828 if (!tmp)
829 return -ENOMEM;
830 tail->next = tmp;
831 tail = tmp;
832 skb_reserve(tmp, local->tx_headroom +
833 IEEE80211_ENCRYPT_HEADROOM);
834 /* copy control information */
835 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
836 skb_copy_queue_mapping(tmp, skb);
837 tmp->priority = skb->priority;
838 tmp->dev = skb->dev;
839
840 /* copy header and data */
841 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
842 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
843
844 pos += fraglen;
845 }
846
847 skb->len = hdrlen + per_fragm;
848 return 0;
849 }
850
851 static ieee80211_tx_result debug_noinline
852 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
853 {
854 struct sk_buff *skb = tx->skb;
855 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
856 struct ieee80211_hdr *hdr = (void *)skb->data;
857 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
858 int hdrlen;
859 int fragnum;
860
861 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
862 return TX_CONTINUE;
863
864 /*
865 * Warn when submitting a fragmented A-MPDU frame and drop it.
866 * This scenario is handled in ieee80211_tx_prepare but extra
867 * caution taken here as fragmented ampdu may cause Tx stop.
868 */
869 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
870 return TX_DROP;
871
872 hdrlen = ieee80211_hdrlen(hdr->frame_control);
873
874 /* internal error, why is TX_FRAGMENTED set? */
875 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
876 return TX_DROP;
877
878 /*
879 * Now fragment the frame. This will allocate all the fragments and
880 * chain them (using skb as the first fragment) to skb->next.
881 * During transmission, we will remove the successfully transmitted
882 * fragments from this list. When the low-level driver rejects one
883 * of the fragments then we will simply pretend to accept the skb
884 * but store it away as pending.
885 */
886 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
887 return TX_DROP;
888
889 /* update duration/seq/flags of fragments */
890 fragnum = 0;
891 do {
892 int next_len;
893 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
894
895 hdr = (void *)skb->data;
896 info = IEEE80211_SKB_CB(skb);
897
898 if (skb->next) {
899 hdr->frame_control |= morefrags;
900 next_len = skb->next->len;
901 /*
902 * No multi-rate retries for fragmented frames, that
903 * would completely throw off the NAV at other STAs.
904 */
905 info->control.rates[1].idx = -1;
906 info->control.rates[2].idx = -1;
907 info->control.rates[3].idx = -1;
908 info->control.rates[4].idx = -1;
909 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
910 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
911 } else {
912 hdr->frame_control &= ~morefrags;
913 next_len = 0;
914 }
915 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
916 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
917 fragnum++;
918 } while ((skb = skb->next));
919
920 return TX_CONTINUE;
921 }
922
923 static ieee80211_tx_result debug_noinline
924 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
925 {
926 struct sk_buff *skb = tx->skb;
927
928 if (!tx->sta)
929 return TX_CONTINUE;
930
931 tx->sta->tx_packets++;
932 do {
933 tx->sta->tx_fragments++;
934 tx->sta->tx_bytes += skb->len;
935 } while ((skb = skb->next));
936
937 return TX_CONTINUE;
938 }
939
940 static ieee80211_tx_result debug_noinline
941 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
942 {
943 if (!tx->key)
944 return TX_CONTINUE;
945
946 switch (tx->key->conf.alg) {
947 case ALG_WEP:
948 return ieee80211_crypto_wep_encrypt(tx);
949 case ALG_TKIP:
950 return ieee80211_crypto_tkip_encrypt(tx);
951 case ALG_CCMP:
952 return ieee80211_crypto_ccmp_encrypt(tx);
953 case ALG_AES_CMAC:
954 return ieee80211_crypto_aes_cmac_encrypt(tx);
955 }
956
957 /* not reached */
958 WARN_ON(1);
959 return TX_DROP;
960 }
961
962 static ieee80211_tx_result debug_noinline
963 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
964 {
965 struct sk_buff *skb = tx->skb;
966 struct ieee80211_hdr *hdr;
967 int next_len;
968 bool group_addr;
969
970 do {
971 hdr = (void *) skb->data;
972 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
973 break; /* must not overwrite AID */
974 next_len = skb->next ? skb->next->len : 0;
975 group_addr = is_multicast_ether_addr(hdr->addr1);
976
977 hdr->duration_id =
978 ieee80211_duration(tx, group_addr, next_len);
979 } while ((skb = skb->next));
980
981 return TX_CONTINUE;
982 }
983
984 /* actual transmit path */
985
986 /*
987 * deal with packet injection down monitor interface
988 * with Radiotap Header -- only called for monitor mode interface
989 */
990 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
991 struct sk_buff *skb)
992 {
993 /*
994 * this is the moment to interpret and discard the radiotap header that
995 * must be at the start of the packet injected in Monitor mode
996 *
997 * Need to take some care with endian-ness since radiotap
998 * args are little-endian
999 */
1000
1001 struct ieee80211_radiotap_iterator iterator;
1002 struct ieee80211_radiotap_header *rthdr =
1003 (struct ieee80211_radiotap_header *) skb->data;
1004 struct ieee80211_supported_band *sband;
1005 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1006 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
1007
1008 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1009
1010 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1011 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1012
1013 /*
1014 * for every radiotap entry that is present
1015 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1016 * entries present, or -EINVAL on error)
1017 */
1018
1019 while (!ret) {
1020 ret = ieee80211_radiotap_iterator_next(&iterator);
1021
1022 if (ret)
1023 continue;
1024
1025 /* see if this argument is something we can use */
1026 switch (iterator.this_arg_index) {
1027 /*
1028 * You must take care when dereferencing iterator.this_arg
1029 * for multibyte types... the pointer is not aligned. Use
1030 * get_unaligned((type *)iterator.this_arg) to dereference
1031 * iterator.this_arg for type "type" safely on all arches.
1032 */
1033 case IEEE80211_RADIOTAP_FLAGS:
1034 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1035 /*
1036 * this indicates that the skb we have been
1037 * handed has the 32-bit FCS CRC at the end...
1038 * we should react to that by snipping it off
1039 * because it will be recomputed and added
1040 * on transmission
1041 */
1042 if (skb->len < (iterator.max_length + FCS_LEN))
1043 return false;
1044
1045 skb_trim(skb, skb->len - FCS_LEN);
1046 }
1047 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1048 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1049 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1050 tx->flags |= IEEE80211_TX_FRAGMENTED;
1051 break;
1052
1053 /*
1054 * Please update the file
1055 * Documentation/networking/mac80211-injection.txt
1056 * when parsing new fields here.
1057 */
1058
1059 default:
1060 break;
1061 }
1062 }
1063
1064 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1065 return false;
1066
1067 /*
1068 * remove the radiotap header
1069 * iterator->max_length was sanity-checked against
1070 * skb->len by iterator init
1071 */
1072 skb_pull(skb, iterator.max_length);
1073
1074 return true;
1075 }
1076
1077 /*
1078 * initialises @tx
1079 */
1080 static ieee80211_tx_result
1081 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1082 struct ieee80211_tx_data *tx,
1083 struct sk_buff *skb)
1084 {
1085 struct ieee80211_local *local = sdata->local;
1086 struct ieee80211_hdr *hdr;
1087 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1088 int hdrlen, tid;
1089 u8 *qc, *state;
1090 bool queued = false;
1091
1092 memset(tx, 0, sizeof(*tx));
1093 tx->skb = skb;
1094 tx->local = local;
1095 tx->sdata = sdata;
1096 tx->channel = local->hw.conf.channel;
1097 /*
1098 * Set this flag (used below to indicate "automatic fragmentation"),
1099 * it will be cleared/left by radiotap as desired.
1100 */
1101 tx->flags |= IEEE80211_TX_FRAGMENTED;
1102
1103 /* process and remove the injection radiotap header */
1104 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1105 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1106 return TX_DROP;
1107
1108 /*
1109 * __ieee80211_parse_tx_radiotap has now removed
1110 * the radiotap header that was present and pre-filled
1111 * 'tx' with tx control information.
1112 */
1113 }
1114
1115 /*
1116 * If this flag is set to true anywhere, and we get here,
1117 * we are doing the needed processing, so remove the flag
1118 * now.
1119 */
1120 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1121
1122 hdr = (struct ieee80211_hdr *) skb->data;
1123
1124 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1125 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1126 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1127 return TX_DROP;
1128 }
1129 if (!tx->sta)
1130 tx->sta = sta_info_get(sdata, hdr->addr1);
1131
1132 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1133 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1134 unsigned long flags;
1135 struct tid_ampdu_tx *tid_tx;
1136
1137 qc = ieee80211_get_qos_ctl(hdr);
1138 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1139
1140 spin_lock_irqsave(&tx->sta->lock, flags);
1141 /*
1142 * XXX: This spinlock could be fairly expensive, but see the
1143 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1144 * One way to solve this would be to do something RCU-like
1145 * for managing the tid_tx struct and using atomic bitops
1146 * for the actual state -- by introducing an actual
1147 * 'operational' bit that would be possible. It would
1148 * require changing ieee80211_agg_tx_operational() to
1149 * set that bit, and changing the way tid_tx is managed
1150 * everywhere, including races between that bit and
1151 * tid_tx going away (tid_tx being added can be easily
1152 * committed to memory before the 'operational' bit).
1153 */
1154 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1155 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1156 if (*state == HT_AGG_STATE_OPERATIONAL) {
1157 info->flags |= IEEE80211_TX_CTL_AMPDU;
1158 } else if (*state != HT_AGG_STATE_IDLE) {
1159 /* in progress */
1160 queued = true;
1161 info->control.vif = &sdata->vif;
1162 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1163 __skb_queue_tail(&tid_tx->pending, skb);
1164 }
1165 spin_unlock_irqrestore(&tx->sta->lock, flags);
1166
1167 if (unlikely(queued))
1168 return TX_QUEUED;
1169 }
1170
1171 if (is_multicast_ether_addr(hdr->addr1)) {
1172 tx->flags &= ~IEEE80211_TX_UNICAST;
1173 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1174 } else {
1175 tx->flags |= IEEE80211_TX_UNICAST;
1176 if (unlikely(local->wifi_wme_noack_test))
1177 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1178 else
1179 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1180 }
1181
1182 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1183 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1184 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1185 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1186 tx->flags |= IEEE80211_TX_FRAGMENTED;
1187 else
1188 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1189 }
1190
1191 if (!tx->sta)
1192 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1193 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1194 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1195
1196 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1197 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1198 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1199 tx->ethertype = (pos[0] << 8) | pos[1];
1200 }
1201 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1202
1203 return TX_CONTINUE;
1204 }
1205
1206 static int __ieee80211_tx(struct ieee80211_local *local,
1207 struct sk_buff **skbp,
1208 struct sta_info *sta,
1209 bool txpending)
1210 {
1211 struct sk_buff *skb = *skbp, *next;
1212 struct ieee80211_tx_info *info;
1213 struct ieee80211_sub_if_data *sdata;
1214 unsigned long flags;
1215 int ret, len;
1216 bool fragm = false;
1217
1218 while (skb) {
1219 int q = skb_get_queue_mapping(skb);
1220
1221 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1222 ret = IEEE80211_TX_OK;
1223 if (local->queue_stop_reasons[q] ||
1224 (!txpending && !skb_queue_empty(&local->pending[q])))
1225 ret = IEEE80211_TX_PENDING;
1226 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1227 if (ret != IEEE80211_TX_OK)
1228 return ret;
1229
1230 info = IEEE80211_SKB_CB(skb);
1231
1232 if (fragm)
1233 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1234 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1235
1236 next = skb->next;
1237 len = skb->len;
1238
1239 if (next)
1240 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1241
1242 sdata = vif_to_sdata(info->control.vif);
1243
1244 switch (sdata->vif.type) {
1245 case NL80211_IFTYPE_MONITOR:
1246 info->control.vif = NULL;
1247 break;
1248 case NL80211_IFTYPE_AP_VLAN:
1249 info->control.vif = &container_of(sdata->bss,
1250 struct ieee80211_sub_if_data, u.ap)->vif;
1251 break;
1252 default:
1253 /* keep */
1254 break;
1255 }
1256
1257 ret = drv_tx(local, skb);
1258 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1259 dev_kfree_skb(skb);
1260 ret = NETDEV_TX_OK;
1261 }
1262 if (ret != NETDEV_TX_OK) {
1263 info->control.vif = &sdata->vif;
1264 return IEEE80211_TX_AGAIN;
1265 }
1266
1267 *skbp = skb = next;
1268 ieee80211_led_tx(local, 1);
1269 fragm = true;
1270 }
1271
1272 return IEEE80211_TX_OK;
1273 }
1274
1275 /*
1276 * Invoke TX handlers, return 0 on success and non-zero if the
1277 * frame was dropped or queued.
1278 */
1279 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1280 {
1281 struct sk_buff *skb = tx->skb;
1282 ieee80211_tx_result res = TX_DROP;
1283
1284 #define CALL_TXH(txh) \
1285 do { \
1286 res = txh(tx); \
1287 if (res != TX_CONTINUE) \
1288 goto txh_done; \
1289 } while (0)
1290
1291 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1292 CALL_TXH(ieee80211_tx_h_check_assoc);
1293 CALL_TXH(ieee80211_tx_h_ps_buf);
1294 CALL_TXH(ieee80211_tx_h_select_key);
1295 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1296 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1297 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1298 CALL_TXH(ieee80211_tx_h_misc);
1299 CALL_TXH(ieee80211_tx_h_sequence);
1300 CALL_TXH(ieee80211_tx_h_fragment);
1301 /* handlers after fragment must be aware of tx info fragmentation! */
1302 CALL_TXH(ieee80211_tx_h_stats);
1303 CALL_TXH(ieee80211_tx_h_encrypt);
1304 CALL_TXH(ieee80211_tx_h_calculate_duration);
1305 #undef CALL_TXH
1306
1307 txh_done:
1308 if (unlikely(res == TX_DROP)) {
1309 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1310 while (skb) {
1311 struct sk_buff *next;
1312
1313 next = skb->next;
1314 dev_kfree_skb(skb);
1315 skb = next;
1316 }
1317 return -1;
1318 } else if (unlikely(res == TX_QUEUED)) {
1319 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1320 return -1;
1321 }
1322
1323 return 0;
1324 }
1325
1326 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1327 struct sk_buff *skb, bool txpending)
1328 {
1329 struct ieee80211_local *local = sdata->local;
1330 struct ieee80211_tx_data tx;
1331 ieee80211_tx_result res_prepare;
1332 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1333 struct sk_buff *next;
1334 unsigned long flags;
1335 int ret, retries;
1336 u16 queue;
1337
1338 queue = skb_get_queue_mapping(skb);
1339
1340 if (unlikely(skb->len < 10)) {
1341 dev_kfree_skb(skb);
1342 return;
1343 }
1344
1345 rcu_read_lock();
1346
1347 /* initialises tx */
1348 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1349
1350 if (unlikely(res_prepare == TX_DROP)) {
1351 dev_kfree_skb(skb);
1352 rcu_read_unlock();
1353 return;
1354 } else if (unlikely(res_prepare == TX_QUEUED)) {
1355 rcu_read_unlock();
1356 return;
1357 }
1358
1359 tx.channel = local->hw.conf.channel;
1360 info->band = tx.channel->band;
1361
1362 if (invoke_tx_handlers(&tx))
1363 goto out;
1364
1365 retries = 0;
1366 retry:
1367 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1368 switch (ret) {
1369 case IEEE80211_TX_OK:
1370 break;
1371 case IEEE80211_TX_AGAIN:
1372 /*
1373 * Since there are no fragmented frames on A-MPDU
1374 * queues, there's no reason for a driver to reject
1375 * a frame there, warn and drop it.
1376 */
1377 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1378 goto drop;
1379 /* fall through */
1380 case IEEE80211_TX_PENDING:
1381 skb = tx.skb;
1382
1383 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1384
1385 if (local->queue_stop_reasons[queue] ||
1386 !skb_queue_empty(&local->pending[queue])) {
1387 /*
1388 * if queue is stopped, queue up frames for later
1389 * transmission from the tasklet
1390 */
1391 do {
1392 next = skb->next;
1393 skb->next = NULL;
1394 if (unlikely(txpending))
1395 __skb_queue_head(&local->pending[queue],
1396 skb);
1397 else
1398 __skb_queue_tail(&local->pending[queue],
1399 skb);
1400 } while ((skb = next));
1401
1402 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1403 flags);
1404 } else {
1405 /*
1406 * otherwise retry, but this is a race condition or
1407 * a driver bug (which we warn about if it persists)
1408 */
1409 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1410 flags);
1411
1412 retries++;
1413 if (WARN(retries > 10, "tx refused but queue active\n"))
1414 goto drop;
1415 goto retry;
1416 }
1417 }
1418 out:
1419 rcu_read_unlock();
1420 return;
1421
1422 drop:
1423 rcu_read_unlock();
1424
1425 skb = tx.skb;
1426 while (skb) {
1427 next = skb->next;
1428 dev_kfree_skb(skb);
1429 skb = next;
1430 }
1431 }
1432
1433 /* device xmit handlers */
1434
1435 static int ieee80211_skb_resize(struct ieee80211_local *local,
1436 struct sk_buff *skb,
1437 int head_need, bool may_encrypt)
1438 {
1439 int tail_need = 0;
1440
1441 /*
1442 * This could be optimised, devices that do full hardware
1443 * crypto (including TKIP MMIC) need no tailroom... But we
1444 * have no drivers for such devices currently.
1445 */
1446 if (may_encrypt) {
1447 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1448 tail_need -= skb_tailroom(skb);
1449 tail_need = max_t(int, tail_need, 0);
1450 }
1451
1452 if (head_need || tail_need) {
1453 /* Sorry. Can't account for this any more */
1454 skb_orphan(skb);
1455 }
1456
1457 if (skb_header_cloned(skb))
1458 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1459 else
1460 I802_DEBUG_INC(local->tx_expand_skb_head);
1461
1462 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1463 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1464 wiphy_name(local->hw.wiphy));
1465 return -ENOMEM;
1466 }
1467
1468 /* update truesize too */
1469 skb->truesize += head_need + tail_need;
1470
1471 return 0;
1472 }
1473
1474 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1475 struct sk_buff *skb)
1476 {
1477 struct ieee80211_local *local = sdata->local;
1478 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1480 struct ieee80211_sub_if_data *tmp_sdata;
1481 int headroom;
1482 bool may_encrypt;
1483
1484 rcu_read_lock();
1485
1486 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1487 int hdrlen;
1488 u16 len_rthdr;
1489
1490 info->flags |= IEEE80211_TX_CTL_INJECTED;
1491
1492 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1493 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1494 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1495
1496 /* check the header is complete in the frame */
1497 if (likely(skb->len >= len_rthdr + hdrlen)) {
1498 /*
1499 * We process outgoing injected frames that have a
1500 * local address we handle as though they are our
1501 * own frames.
1502 * This code here isn't entirely correct, the local
1503 * MAC address is not necessarily enough to find
1504 * the interface to use; for that proper VLAN/WDS
1505 * support we will need a different mechanism.
1506 */
1507
1508 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1509 list) {
1510 if (!ieee80211_sdata_running(tmp_sdata))
1511 continue;
1512 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1513 continue;
1514 if (compare_ether_addr(tmp_sdata->vif.addr,
1515 hdr->addr2) == 0) {
1516 sdata = tmp_sdata;
1517 break;
1518 }
1519 }
1520 }
1521 }
1522
1523 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1524
1525 headroom = local->tx_headroom;
1526 if (may_encrypt)
1527 headroom += IEEE80211_ENCRYPT_HEADROOM;
1528 headroom -= skb_headroom(skb);
1529 headroom = max_t(int, 0, headroom);
1530
1531 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1532 dev_kfree_skb(skb);
1533 rcu_read_unlock();
1534 return;
1535 }
1536
1537 info->control.vif = &sdata->vif;
1538
1539 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1540 ieee80211_is_data(hdr->frame_control) &&
1541 !is_multicast_ether_addr(hdr->addr1))
1542 if (mesh_nexthop_lookup(skb, sdata)) {
1543 /* skb queued: don't free */
1544 rcu_read_unlock();
1545 return;
1546 }
1547
1548 ieee80211_set_qos_hdr(local, skb);
1549 ieee80211_tx(sdata, skb, false);
1550 rcu_read_unlock();
1551 }
1552
1553 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1554 struct net_device *dev)
1555 {
1556 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1557 struct ieee80211_channel *chan = local->hw.conf.channel;
1558 struct ieee80211_radiotap_header *prthdr =
1559 (struct ieee80211_radiotap_header *)skb->data;
1560 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1561 u16 len_rthdr;
1562
1563 /*
1564 * Frame injection is not allowed if beaconing is not allowed
1565 * or if we need radar detection. Beaconing is usually not allowed when
1566 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1567 * Passive scan is also used in world regulatory domains where
1568 * your country is not known and as such it should be treated as
1569 * NO TX unless the channel is explicitly allowed in which case
1570 * your current regulatory domain would not have the passive scan
1571 * flag.
1572 *
1573 * Since AP mode uses monitor interfaces to inject/TX management
1574 * frames we can make AP mode the exception to this rule once it
1575 * supports radar detection as its implementation can deal with
1576 * radar detection by itself. We can do that later by adding a
1577 * monitor flag interfaces used for AP support.
1578 */
1579 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1580 IEEE80211_CHAN_PASSIVE_SCAN)))
1581 goto fail;
1582
1583 /* check for not even having the fixed radiotap header part */
1584 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1585 goto fail; /* too short to be possibly valid */
1586
1587 /* is it a header version we can trust to find length from? */
1588 if (unlikely(prthdr->it_version))
1589 goto fail; /* only version 0 is supported */
1590
1591 /* then there must be a radiotap header with a length we can use */
1592 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1593
1594 /* does the skb contain enough to deliver on the alleged length? */
1595 if (unlikely(skb->len < len_rthdr))
1596 goto fail; /* skb too short for claimed rt header extent */
1597
1598 /*
1599 * fix up the pointers accounting for the radiotap
1600 * header still being in there. We are being given
1601 * a precooked IEEE80211 header so no need for
1602 * normal processing
1603 */
1604 skb_set_mac_header(skb, len_rthdr);
1605 /*
1606 * these are just fixed to the end of the rt area since we
1607 * don't have any better information and at this point, nobody cares
1608 */
1609 skb_set_network_header(skb, len_rthdr);
1610 skb_set_transport_header(skb, len_rthdr);
1611
1612 memset(info, 0, sizeof(*info));
1613
1614 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1615
1616 /* pass the radiotap header up to xmit */
1617 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1618 return NETDEV_TX_OK;
1619
1620 fail:
1621 dev_kfree_skb(skb);
1622 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1623 }
1624
1625 /**
1626 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1627 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1628 * @skb: packet to be sent
1629 * @dev: incoming interface
1630 *
1631 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1632 * not be freed, and caller is responsible for either retrying later or freeing
1633 * skb).
1634 *
1635 * This function takes in an Ethernet header and encapsulates it with suitable
1636 * IEEE 802.11 header based on which interface the packet is coming in. The
1637 * encapsulated packet will then be passed to master interface, wlan#.11, for
1638 * transmission (through low-level driver).
1639 */
1640 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1641 struct net_device *dev)
1642 {
1643 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1644 struct ieee80211_local *local = sdata->local;
1645 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1646 int ret = NETDEV_TX_BUSY, head_need;
1647 u16 ethertype, hdrlen, meshhdrlen = 0;
1648 __le16 fc;
1649 struct ieee80211_hdr hdr;
1650 struct ieee80211s_hdr mesh_hdr;
1651 const u8 *encaps_data;
1652 int encaps_len, skip_header_bytes;
1653 int nh_pos, h_pos;
1654 struct sta_info *sta = NULL;
1655 u32 sta_flags = 0;
1656
1657 if (unlikely(skb->len < ETH_HLEN)) {
1658 ret = NETDEV_TX_OK;
1659 goto fail;
1660 }
1661
1662 nh_pos = skb_network_header(skb) - skb->data;
1663 h_pos = skb_transport_header(skb) - skb->data;
1664
1665 /* convert Ethernet header to proper 802.11 header (based on
1666 * operation mode) */
1667 ethertype = (skb->data[12] << 8) | skb->data[13];
1668 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1669
1670 switch (sdata->vif.type) {
1671 case NL80211_IFTYPE_AP_VLAN:
1672 rcu_read_lock();
1673 sta = rcu_dereference(sdata->u.vlan.sta);
1674 if (sta) {
1675 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1676 /* RA TA DA SA */
1677 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1678 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1679 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1680 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1681 hdrlen = 30;
1682 sta_flags = get_sta_flags(sta);
1683 }
1684 rcu_read_unlock();
1685 if (sta)
1686 break;
1687 /* fall through */
1688 case NL80211_IFTYPE_AP:
1689 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1690 /* DA BSSID SA */
1691 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1692 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1693 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1694 hdrlen = 24;
1695 break;
1696 case NL80211_IFTYPE_WDS:
1697 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1698 /* RA TA DA SA */
1699 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1700 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1701 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1702 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1703 hdrlen = 30;
1704 break;
1705 #ifdef CONFIG_MAC80211_MESH
1706 case NL80211_IFTYPE_MESH_POINT:
1707 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1708 /* Do not send frames with mesh_ttl == 0 */
1709 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1710 ret = NETDEV_TX_OK;
1711 goto fail;
1712 }
1713
1714 if (compare_ether_addr(sdata->vif.addr,
1715 skb->data + ETH_ALEN) == 0) {
1716 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1717 skb->data, skb->data + ETH_ALEN);
1718 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1719 sdata, NULL, NULL, NULL);
1720 } else {
1721 /* packet from other interface */
1722 struct mesh_path *mppath;
1723 int is_mesh_mcast = 1;
1724 const u8 *mesh_da;
1725
1726 rcu_read_lock();
1727 if (is_multicast_ether_addr(skb->data))
1728 /* DA TA mSA AE:SA */
1729 mesh_da = skb->data;
1730 else {
1731 static const u8 bcast[ETH_ALEN] =
1732 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1733
1734 mppath = mpp_path_lookup(skb->data, sdata);
1735 if (mppath) {
1736 /* RA TA mDA mSA AE:DA SA */
1737 mesh_da = mppath->mpp;
1738 is_mesh_mcast = 0;
1739 } else {
1740 /* DA TA mSA AE:SA */
1741 mesh_da = bcast;
1742 }
1743 }
1744 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1745 mesh_da, sdata->vif.addr);
1746 rcu_read_unlock();
1747 if (is_mesh_mcast)
1748 meshhdrlen =
1749 ieee80211_new_mesh_header(&mesh_hdr,
1750 sdata,
1751 skb->data + ETH_ALEN,
1752 NULL,
1753 NULL);
1754 else
1755 meshhdrlen =
1756 ieee80211_new_mesh_header(&mesh_hdr,
1757 sdata,
1758 NULL,
1759 skb->data,
1760 skb->data + ETH_ALEN);
1761
1762 }
1763 break;
1764 #endif
1765 case NL80211_IFTYPE_STATION:
1766 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1767 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1768 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1769 /* RA TA DA SA */
1770 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1771 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1772 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1773 hdrlen = 30;
1774 } else {
1775 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1776 /* BSSID SA DA */
1777 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1778 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1779 hdrlen = 24;
1780 }
1781 break;
1782 case NL80211_IFTYPE_ADHOC:
1783 /* DA SA BSSID */
1784 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1785 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1786 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1787 hdrlen = 24;
1788 break;
1789 default:
1790 ret = NETDEV_TX_OK;
1791 goto fail;
1792 }
1793
1794 /*
1795 * There's no need to try to look up the destination
1796 * if it is a multicast address (which can only happen
1797 * in AP mode)
1798 */
1799 if (!is_multicast_ether_addr(hdr.addr1)) {
1800 rcu_read_lock();
1801 sta = sta_info_get(sdata, hdr.addr1);
1802 if (sta)
1803 sta_flags = get_sta_flags(sta);
1804 rcu_read_unlock();
1805 }
1806
1807 /* receiver and we are QoS enabled, use a QoS type frame */
1808 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1809 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1810 hdrlen += 2;
1811 }
1812
1813 /*
1814 * Drop unicast frames to unauthorised stations unless they are
1815 * EAPOL frames from the local station.
1816 */
1817 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1818 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1819 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1820 !(ethertype == ETH_P_PAE &&
1821 compare_ether_addr(sdata->vif.addr,
1822 skb->data + ETH_ALEN) == 0))) {
1823 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1824 if (net_ratelimit())
1825 printk(KERN_DEBUG "%s: dropped frame to %pM"
1826 " (unauthorized port)\n", dev->name,
1827 hdr.addr1);
1828 #endif
1829
1830 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1831
1832 ret = NETDEV_TX_OK;
1833 goto fail;
1834 }
1835
1836 hdr.frame_control = fc;
1837 hdr.duration_id = 0;
1838 hdr.seq_ctrl = 0;
1839
1840 skip_header_bytes = ETH_HLEN;
1841 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1842 encaps_data = bridge_tunnel_header;
1843 encaps_len = sizeof(bridge_tunnel_header);
1844 skip_header_bytes -= 2;
1845 } else if (ethertype >= 0x600) {
1846 encaps_data = rfc1042_header;
1847 encaps_len = sizeof(rfc1042_header);
1848 skip_header_bytes -= 2;
1849 } else {
1850 encaps_data = NULL;
1851 encaps_len = 0;
1852 }
1853
1854 skb_pull(skb, skip_header_bytes);
1855 nh_pos -= skip_header_bytes;
1856 h_pos -= skip_header_bytes;
1857
1858 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1859
1860 /*
1861 * So we need to modify the skb header and hence need a copy of
1862 * that. The head_need variable above doesn't, so far, include
1863 * the needed header space that we don't need right away. If we
1864 * can, then we don't reallocate right now but only after the
1865 * frame arrives at the master device (if it does...)
1866 *
1867 * If we cannot, however, then we will reallocate to include all
1868 * the ever needed space. Also, if we need to reallocate it anyway,
1869 * make it big enough for everything we may ever need.
1870 */
1871
1872 if (head_need > 0 || skb_cloned(skb)) {
1873 head_need += IEEE80211_ENCRYPT_HEADROOM;
1874 head_need += local->tx_headroom;
1875 head_need = max_t(int, 0, head_need);
1876 if (ieee80211_skb_resize(local, skb, head_need, true))
1877 goto fail;
1878 }
1879
1880 if (encaps_data) {
1881 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1882 nh_pos += encaps_len;
1883 h_pos += encaps_len;
1884 }
1885
1886 if (meshhdrlen > 0) {
1887 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1888 nh_pos += meshhdrlen;
1889 h_pos += meshhdrlen;
1890 }
1891
1892 if (ieee80211_is_data_qos(fc)) {
1893 __le16 *qos_control;
1894
1895 qos_control = (__le16*) skb_push(skb, 2);
1896 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1897 /*
1898 * Maybe we could actually set some fields here, for now just
1899 * initialise to zero to indicate no special operation.
1900 */
1901 *qos_control = 0;
1902 } else
1903 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1904
1905 nh_pos += hdrlen;
1906 h_pos += hdrlen;
1907
1908 dev->stats.tx_packets++;
1909 dev->stats.tx_bytes += skb->len;
1910
1911 /* Update skb pointers to various headers since this modified frame
1912 * is going to go through Linux networking code that may potentially
1913 * need things like pointer to IP header. */
1914 skb_set_mac_header(skb, 0);
1915 skb_set_network_header(skb, nh_pos);
1916 skb_set_transport_header(skb, h_pos);
1917
1918 memset(info, 0, sizeof(*info));
1919
1920 dev->trans_start = jiffies;
1921 ieee80211_xmit(sdata, skb);
1922
1923 return NETDEV_TX_OK;
1924
1925 fail:
1926 if (ret == NETDEV_TX_OK)
1927 dev_kfree_skb(skb);
1928
1929 return ret;
1930 }
1931
1932
1933 /*
1934 * ieee80211_clear_tx_pending may not be called in a context where
1935 * it is possible that it packets could come in again.
1936 */
1937 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1938 {
1939 int i;
1940
1941 for (i = 0; i < local->hw.queues; i++)
1942 skb_queue_purge(&local->pending[i]);
1943 }
1944
1945 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1946 struct sk_buff *skb)
1947 {
1948 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1949 struct ieee80211_sub_if_data *sdata;
1950 struct sta_info *sta;
1951 struct ieee80211_hdr *hdr;
1952 int ret;
1953 bool result = true;
1954
1955 sdata = vif_to_sdata(info->control.vif);
1956
1957 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1958 ieee80211_tx(sdata, skb, true);
1959 } else {
1960 hdr = (struct ieee80211_hdr *)skb->data;
1961 sta = sta_info_get(sdata, hdr->addr1);
1962
1963 ret = __ieee80211_tx(local, &skb, sta, true);
1964 if (ret != IEEE80211_TX_OK)
1965 result = false;
1966 }
1967
1968 return result;
1969 }
1970
1971 /*
1972 * Transmit all pending packets. Called from tasklet.
1973 */
1974 void ieee80211_tx_pending(unsigned long data)
1975 {
1976 struct ieee80211_local *local = (struct ieee80211_local *)data;
1977 unsigned long flags;
1978 int i;
1979 bool txok;
1980
1981 rcu_read_lock();
1982
1983 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1984 for (i = 0; i < local->hw.queues; i++) {
1985 /*
1986 * If queue is stopped by something other than due to pending
1987 * frames, or we have no pending frames, proceed to next queue.
1988 */
1989 if (local->queue_stop_reasons[i] ||
1990 skb_queue_empty(&local->pending[i]))
1991 continue;
1992
1993 while (!skb_queue_empty(&local->pending[i])) {
1994 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
1995 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1996 struct ieee80211_sub_if_data *sdata;
1997
1998 if (WARN_ON(!info->control.vif)) {
1999 kfree_skb(skb);
2000 continue;
2001 }
2002
2003 sdata = vif_to_sdata(info->control.vif);
2004 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2005 flags);
2006
2007 txok = ieee80211_tx_pending_skb(local, skb);
2008 if (!txok)
2009 __skb_queue_head(&local->pending[i], skb);
2010 spin_lock_irqsave(&local->queue_stop_reason_lock,
2011 flags);
2012 if (!txok)
2013 break;
2014 }
2015 }
2016 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2017
2018 rcu_read_unlock();
2019 }
2020
2021 /* functions for drivers to get certain frames */
2022
2023 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2024 struct sk_buff *skb,
2025 struct beacon_data *beacon)
2026 {
2027 u8 *pos, *tim;
2028 int aid0 = 0;
2029 int i, have_bits = 0, n1, n2;
2030
2031 /* Generate bitmap for TIM only if there are any STAs in power save
2032 * mode. */
2033 if (atomic_read(&bss->num_sta_ps) > 0)
2034 /* in the hope that this is faster than
2035 * checking byte-for-byte */
2036 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2037 IEEE80211_MAX_AID+1);
2038
2039 if (bss->dtim_count == 0)
2040 bss->dtim_count = beacon->dtim_period - 1;
2041 else
2042 bss->dtim_count--;
2043
2044 tim = pos = (u8 *) skb_put(skb, 6);
2045 *pos++ = WLAN_EID_TIM;
2046 *pos++ = 4;
2047 *pos++ = bss->dtim_count;
2048 *pos++ = beacon->dtim_period;
2049
2050 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2051 aid0 = 1;
2052
2053 if (have_bits) {
2054 /* Find largest even number N1 so that bits numbered 1 through
2055 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2056 * (N2 + 1) x 8 through 2007 are 0. */
2057 n1 = 0;
2058 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2059 if (bss->tim[i]) {
2060 n1 = i & 0xfe;
2061 break;
2062 }
2063 }
2064 n2 = n1;
2065 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2066 if (bss->tim[i]) {
2067 n2 = i;
2068 break;
2069 }
2070 }
2071
2072 /* Bitmap control */
2073 *pos++ = n1 | aid0;
2074 /* Part Virt Bitmap */
2075 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2076
2077 tim[1] = n2 - n1 + 4;
2078 skb_put(skb, n2 - n1);
2079 } else {
2080 *pos++ = aid0; /* Bitmap control */
2081 *pos++ = 0; /* Part Virt Bitmap */
2082 }
2083 }
2084
2085 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2086 struct ieee80211_vif *vif,
2087 u16 *tim_offset, u16 *tim_length)
2088 {
2089 struct ieee80211_local *local = hw_to_local(hw);
2090 struct sk_buff *skb = NULL;
2091 struct ieee80211_tx_info *info;
2092 struct ieee80211_sub_if_data *sdata = NULL;
2093 struct ieee80211_if_ap *ap = NULL;
2094 struct beacon_data *beacon;
2095 struct ieee80211_supported_band *sband;
2096 enum ieee80211_band band = local->hw.conf.channel->band;
2097 struct ieee80211_tx_rate_control txrc;
2098
2099 sband = local->hw.wiphy->bands[band];
2100
2101 rcu_read_lock();
2102
2103 sdata = vif_to_sdata(vif);
2104
2105 if (tim_offset)
2106 *tim_offset = 0;
2107 if (tim_length)
2108 *tim_length = 0;
2109
2110 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2111 ap = &sdata->u.ap;
2112 beacon = rcu_dereference(ap->beacon);
2113 if (ap && beacon) {
2114 /*
2115 * headroom, head length,
2116 * tail length and maximum TIM length
2117 */
2118 skb = dev_alloc_skb(local->tx_headroom +
2119 beacon->head_len +
2120 beacon->tail_len + 256);
2121 if (!skb)
2122 goto out;
2123
2124 skb_reserve(skb, local->tx_headroom);
2125 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2126 beacon->head_len);
2127
2128 /*
2129 * Not very nice, but we want to allow the driver to call
2130 * ieee80211_beacon_get() as a response to the set_tim()
2131 * callback. That, however, is already invoked under the
2132 * sta_lock to guarantee consistent and race-free update
2133 * of the tim bitmap in mac80211 and the driver.
2134 */
2135 if (local->tim_in_locked_section) {
2136 ieee80211_beacon_add_tim(ap, skb, beacon);
2137 } else {
2138 unsigned long flags;
2139
2140 spin_lock_irqsave(&local->sta_lock, flags);
2141 ieee80211_beacon_add_tim(ap, skb, beacon);
2142 spin_unlock_irqrestore(&local->sta_lock, flags);
2143 }
2144
2145 if (tim_offset)
2146 *tim_offset = beacon->head_len;
2147 if (tim_length)
2148 *tim_length = skb->len - beacon->head_len;
2149
2150 if (beacon->tail)
2151 memcpy(skb_put(skb, beacon->tail_len),
2152 beacon->tail, beacon->tail_len);
2153 } else
2154 goto out;
2155 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2156 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2157 struct ieee80211_hdr *hdr;
2158 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2159
2160 if (!presp)
2161 goto out;
2162
2163 skb = skb_copy(presp, GFP_ATOMIC);
2164 if (!skb)
2165 goto out;
2166
2167 hdr = (struct ieee80211_hdr *) skb->data;
2168 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2169 IEEE80211_STYPE_BEACON);
2170 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2171 struct ieee80211_mgmt *mgmt;
2172 u8 *pos;
2173
2174 /* headroom, head length, tail length and maximum TIM length */
2175 skb = dev_alloc_skb(local->tx_headroom + 400);
2176 if (!skb)
2177 goto out;
2178
2179 skb_reserve(skb, local->hw.extra_tx_headroom);
2180 mgmt = (struct ieee80211_mgmt *)
2181 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2182 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2183 mgmt->frame_control =
2184 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2185 memset(mgmt->da, 0xff, ETH_ALEN);
2186 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2187 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2188 mgmt->u.beacon.beacon_int =
2189 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2190 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2191
2192 pos = skb_put(skb, 2);
2193 *pos++ = WLAN_EID_SSID;
2194 *pos++ = 0x0;
2195
2196 mesh_mgmt_ies_add(skb, sdata);
2197 } else {
2198 WARN_ON(1);
2199 goto out;
2200 }
2201
2202 info = IEEE80211_SKB_CB(skb);
2203
2204 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2205 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2206 info->band = band;
2207
2208 memset(&txrc, 0, sizeof(txrc));
2209 txrc.hw = hw;
2210 txrc.sband = sband;
2211 txrc.bss_conf = &sdata->vif.bss_conf;
2212 txrc.skb = skb;
2213 txrc.reported_rate.idx = -1;
2214 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2215 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2216 txrc.max_rate_idx = -1;
2217 else
2218 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2219 txrc.ap = true;
2220 rate_control_get_rate(sdata, NULL, &txrc);
2221
2222 info->control.vif = vif;
2223
2224 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2225 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2226 out:
2227 rcu_read_unlock();
2228 return skb;
2229 }
2230 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2231
2232 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2233 struct ieee80211_vif *vif)
2234 {
2235 struct ieee80211_sub_if_data *sdata;
2236 struct ieee80211_if_managed *ifmgd;
2237 struct ieee80211_pspoll *pspoll;
2238 struct ieee80211_local *local;
2239 struct sk_buff *skb;
2240
2241 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2242 return NULL;
2243
2244 sdata = vif_to_sdata(vif);
2245 ifmgd = &sdata->u.mgd;
2246 local = sdata->local;
2247
2248 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2249 if (!skb) {
2250 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2251 "pspoll template\n", sdata->name);
2252 return NULL;
2253 }
2254 skb_reserve(skb, local->hw.extra_tx_headroom);
2255
2256 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2257 memset(pspoll, 0, sizeof(*pspoll));
2258 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2259 IEEE80211_STYPE_PSPOLL);
2260 pspoll->aid = cpu_to_le16(ifmgd->aid);
2261
2262 /* aid in PS-Poll has its two MSBs each set to 1 */
2263 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2264
2265 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2266 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2267
2268 return skb;
2269 }
2270 EXPORT_SYMBOL(ieee80211_pspoll_get);
2271
2272 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2273 struct ieee80211_vif *vif)
2274 {
2275 struct ieee80211_hdr_3addr *nullfunc;
2276 struct ieee80211_sub_if_data *sdata;
2277 struct ieee80211_if_managed *ifmgd;
2278 struct ieee80211_local *local;
2279 struct sk_buff *skb;
2280
2281 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2282 return NULL;
2283
2284 sdata = vif_to_sdata(vif);
2285 ifmgd = &sdata->u.mgd;
2286 local = sdata->local;
2287
2288 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2289 if (!skb) {
2290 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2291 "template\n", sdata->name);
2292 return NULL;
2293 }
2294 skb_reserve(skb, local->hw.extra_tx_headroom);
2295
2296 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2297 sizeof(*nullfunc));
2298 memset(nullfunc, 0, sizeof(*nullfunc));
2299 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2300 IEEE80211_STYPE_NULLFUNC |
2301 IEEE80211_FCTL_TODS);
2302 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2303 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2304 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2305
2306 return skb;
2307 }
2308 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2309
2310 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2311 struct ieee80211_vif *vif,
2312 const u8 *ssid, size_t ssid_len,
2313 const u8 *ie, size_t ie_len)
2314 {
2315 struct ieee80211_sub_if_data *sdata;
2316 struct ieee80211_local *local;
2317 struct ieee80211_hdr_3addr *hdr;
2318 struct sk_buff *skb;
2319 size_t ie_ssid_len;
2320 u8 *pos;
2321
2322 sdata = vif_to_sdata(vif);
2323 local = sdata->local;
2324 ie_ssid_len = 2 + ssid_len;
2325
2326 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2327 ie_ssid_len + ie_len);
2328 if (!skb) {
2329 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2330 "request template\n", sdata->name);
2331 return NULL;
2332 }
2333
2334 skb_reserve(skb, local->hw.extra_tx_headroom);
2335
2336 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2337 memset(hdr, 0, sizeof(*hdr));
2338 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2339 IEEE80211_STYPE_PROBE_REQ);
2340 memset(hdr->addr1, 0xff, ETH_ALEN);
2341 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2342 memset(hdr->addr3, 0xff, ETH_ALEN);
2343
2344 pos = skb_put(skb, ie_ssid_len);
2345 *pos++ = WLAN_EID_SSID;
2346 *pos++ = ssid_len;
2347 if (ssid)
2348 memcpy(pos, ssid, ssid_len);
2349 pos += ssid_len;
2350
2351 if (ie) {
2352 pos = skb_put(skb, ie_len);
2353 memcpy(pos, ie, ie_len);
2354 }
2355
2356 return skb;
2357 }
2358 EXPORT_SYMBOL(ieee80211_probereq_get);
2359
2360 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2361 const void *frame, size_t frame_len,
2362 const struct ieee80211_tx_info *frame_txctl,
2363 struct ieee80211_rts *rts)
2364 {
2365 const struct ieee80211_hdr *hdr = frame;
2366
2367 rts->frame_control =
2368 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2369 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2370 frame_txctl);
2371 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2372 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2373 }
2374 EXPORT_SYMBOL(ieee80211_rts_get);
2375
2376 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2377 const void *frame, size_t frame_len,
2378 const struct ieee80211_tx_info *frame_txctl,
2379 struct ieee80211_cts *cts)
2380 {
2381 const struct ieee80211_hdr *hdr = frame;
2382
2383 cts->frame_control =
2384 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2385 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2386 frame_len, frame_txctl);
2387 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2388 }
2389 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2390
2391 struct sk_buff *
2392 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2393 struct ieee80211_vif *vif)
2394 {
2395 struct ieee80211_local *local = hw_to_local(hw);
2396 struct sk_buff *skb = NULL;
2397 struct sta_info *sta;
2398 struct ieee80211_tx_data tx;
2399 struct ieee80211_sub_if_data *sdata;
2400 struct ieee80211_if_ap *bss = NULL;
2401 struct beacon_data *beacon;
2402 struct ieee80211_tx_info *info;
2403
2404 sdata = vif_to_sdata(vif);
2405 bss = &sdata->u.ap;
2406
2407 rcu_read_lock();
2408 beacon = rcu_dereference(bss->beacon);
2409
2410 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2411 goto out;
2412
2413 if (bss->dtim_count != 0)
2414 goto out; /* send buffered bc/mc only after DTIM beacon */
2415
2416 while (1) {
2417 skb = skb_dequeue(&bss->ps_bc_buf);
2418 if (!skb)
2419 goto out;
2420 local->total_ps_buffered--;
2421
2422 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2423 struct ieee80211_hdr *hdr =
2424 (struct ieee80211_hdr *) skb->data;
2425 /* more buffered multicast/broadcast frames ==> set
2426 * MoreData flag in IEEE 802.11 header to inform PS
2427 * STAs */
2428 hdr->frame_control |=
2429 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2430 }
2431
2432 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2433 break;
2434 dev_kfree_skb_any(skb);
2435 }
2436
2437 info = IEEE80211_SKB_CB(skb);
2438
2439 sta = tx.sta;
2440 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2441 tx.channel = local->hw.conf.channel;
2442 info->band = tx.channel->band;
2443
2444 if (invoke_tx_handlers(&tx))
2445 skb = NULL;
2446 out:
2447 rcu_read_unlock();
2448
2449 return skb;
2450 }
2451 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2452
2453 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2454 {
2455 skb_set_mac_header(skb, 0);
2456 skb_set_network_header(skb, 0);
2457 skb_set_transport_header(skb, 0);
2458
2459 /* send all internal mgmt frames on VO */
2460 skb_set_queue_mapping(skb, 0);
2461
2462 /*
2463 * The other path calling ieee80211_xmit is from the tasklet,
2464 * and while we can handle concurrent transmissions locking
2465 * requirements are that we do not come into tx with bhs on.
2466 */
2467 local_bh_disable();
2468 ieee80211_xmit(sdata, skb);
2469 local_bh_enable();
2470 }