]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/tx.c
mac80211: fix sta lookup with AP VLAN interfaces and injected frames
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
35
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
39
40 /* misc utils */
41
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
44 {
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
51
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
55
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
59
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
62
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
64
65 /*
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
74 *
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
81 */
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
87 *
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
97 */
98 return 0;
99 }
100
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
104
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
107
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
117 */
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
123
124 if (r->bitrate > txrate->bitrate)
125 break;
126
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
129
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
140 }
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
148 }
149 }
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
154 }
155
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
159
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
162
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
171 }
172
173 return cpu_to_le16(dur);
174 }
175
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
178 {
179 return local == wdev_priv(dev->ieee80211_ptr);
180 }
181
182 /* tx handlers */
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx)
185 {
186 struct ieee80211_local *local = tx->local;
187 struct ieee80211_if_managed *ifmgd;
188
189 /* driver doesn't support power save */
190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS))
191 return TX_CONTINUE;
192
193 /* hardware does dynamic power save */
194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS)
195 return TX_CONTINUE;
196
197 /* dynamic power save disabled */
198 if (local->hw.conf.dynamic_ps_timeout <= 0)
199 return TX_CONTINUE;
200
201 /* we are scanning, don't enable power save */
202 if (local->scanning)
203 return TX_CONTINUE;
204
205 if (!local->ps_sdata)
206 return TX_CONTINUE;
207
208 /* No point if we're going to suspend */
209 if (local->quiescing)
210 return TX_CONTINUE;
211
212 /* dynamic ps is supported only in managed mode */
213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION)
214 return TX_CONTINUE;
215
216 ifmgd = &tx->sdata->u.mgd;
217
218 /*
219 * Don't wakeup from power save if u-apsd is enabled, voip ac has
220 * u-apsd enabled and the frame is in voip class. This effectively
221 * means that even if all access categories have u-apsd enabled, in
222 * practise u-apsd is only used with the voip ac. This is a
223 * workaround for the case when received voip class packets do not
224 * have correct qos tag for some reason, due the network or the
225 * peer application.
226 *
227 * Note: local->uapsd_queues access is racy here. If the value is
228 * changed via debugfs, user needs to reassociate manually to have
229 * everything in sync.
230 */
231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED)
232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
233 && skb_get_queue_mapping(tx->skb) == 0)
234 return TX_CONTINUE;
235
236 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
237 ieee80211_stop_queues_by_reason(&local->hw,
238 IEEE80211_QUEUE_STOP_REASON_PS);
239 ieee80211_queue_work(&local->hw,
240 &local->dynamic_ps_disable_work);
241 }
242
243 mod_timer(&local->dynamic_ps_timer, jiffies +
244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
245
246 return TX_CONTINUE;
247 }
248
249 static ieee80211_tx_result debug_noinline
250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
251 {
252
253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
255 u32 sta_flags;
256
257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
258 return TX_CONTINUE;
259
260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) &&
261 !ieee80211_is_probe_req(hdr->frame_control) &&
262 !ieee80211_is_nullfunc(hdr->frame_control))
263 /*
264 * When software scanning only nullfunc frames (to notify
265 * the sleep state to the AP) and probe requests (for the
266 * active scan) are allowed, all other frames should not be
267 * sent and we should not get here, but if we do
268 * nonetheless, drop them to avoid sending them
269 * off-channel. See the link below and
270 * ieee80211_start_scan() for more.
271 *
272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
273 */
274 return TX_DROP;
275
276 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
277 return TX_CONTINUE;
278
279 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
280 return TX_CONTINUE;
281
282 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
283
284 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
285 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
287 ieee80211_is_data(hdr->frame_control))) {
288 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
289 printk(KERN_DEBUG "%s: dropped data frame to not "
290 "associated station %pM\n",
291 tx->sdata->name, hdr->addr1);
292 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
293 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
294 return TX_DROP;
295 }
296 } else {
297 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
298 tx->local->num_sta == 0 &&
299 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
300 /*
301 * No associated STAs - no need to send multicast
302 * frames.
303 */
304 return TX_DROP;
305 }
306 return TX_CONTINUE;
307 }
308
309 return TX_CONTINUE;
310 }
311
312 /* This function is called whenever the AP is about to exceed the maximum limit
313 * of buffered frames for power saving STAs. This situation should not really
314 * happen often during normal operation, so dropping the oldest buffered packet
315 * from each queue should be OK to make some room for new frames. */
316 static void purge_old_ps_buffers(struct ieee80211_local *local)
317 {
318 int total = 0, purged = 0;
319 struct sk_buff *skb;
320 struct ieee80211_sub_if_data *sdata;
321 struct sta_info *sta;
322
323 /*
324 * virtual interfaces are protected by RCU
325 */
326 rcu_read_lock();
327
328 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
329 struct ieee80211_if_ap *ap;
330 if (sdata->vif.type != NL80211_IFTYPE_AP)
331 continue;
332 ap = &sdata->u.ap;
333 skb = skb_dequeue(&ap->ps_bc_buf);
334 if (skb) {
335 purged++;
336 dev_kfree_skb(skb);
337 }
338 total += skb_queue_len(&ap->ps_bc_buf);
339 }
340
341 list_for_each_entry_rcu(sta, &local->sta_list, list) {
342 skb = skb_dequeue(&sta->ps_tx_buf);
343 if (skb) {
344 purged++;
345 dev_kfree_skb(skb);
346 }
347 total += skb_queue_len(&sta->ps_tx_buf);
348 }
349
350 rcu_read_unlock();
351
352 local->total_ps_buffered = total;
353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
354 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
355 wiphy_name(local->hw.wiphy), purged);
356 #endif
357 }
358
359 static ieee80211_tx_result
360 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
361 {
362 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
364
365 /*
366 * broadcast/multicast frame
367 *
368 * If any of the associated stations is in power save mode,
369 * the frame is buffered to be sent after DTIM beacon frame.
370 * This is done either by the hardware or us.
371 */
372
373 /* powersaving STAs only in AP/VLAN mode */
374 if (!tx->sdata->bss)
375 return TX_CONTINUE;
376
377 /* no buffering for ordered frames */
378 if (ieee80211_has_order(hdr->frame_control))
379 return TX_CONTINUE;
380
381 /* no stations in PS mode */
382 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
383 return TX_CONTINUE;
384
385 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
386
387 /* device releases frame after DTIM beacon */
388 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING))
389 return TX_CONTINUE;
390
391 /* buffered in mac80211 */
392 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
393 purge_old_ps_buffers(tx->local);
394
395 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) {
396 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
397 if (net_ratelimit())
398 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n",
399 tx->sdata->name);
400 #endif
401 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
402 } else
403 tx->local->total_ps_buffered++;
404
405 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
406
407 return TX_QUEUED;
408 }
409
410 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
411 struct sk_buff *skb)
412 {
413 if (!ieee80211_is_mgmt(fc))
414 return 0;
415
416 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
417 return 0;
418
419 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
420 skb->data))
421 return 0;
422
423 return 1;
424 }
425
426 static ieee80211_tx_result
427 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
428 {
429 struct sta_info *sta = tx->sta;
430 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
432 u32 staflags;
433
434 if (unlikely(!sta ||
435 ieee80211_is_probe_resp(hdr->frame_control) ||
436 ieee80211_is_auth(hdr->frame_control) ||
437 ieee80211_is_assoc_resp(hdr->frame_control) ||
438 ieee80211_is_reassoc_resp(hdr->frame_control)))
439 return TX_CONTINUE;
440
441 staflags = get_sta_flags(sta);
442
443 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) &&
444 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) {
445 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
446 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
447 "before %d)\n",
448 sta->sta.addr, sta->sta.aid,
449 skb_queue_len(&sta->ps_tx_buf));
450 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
451 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
452 purge_old_ps_buffers(tx->local);
453 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
454 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
455 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
456 if (net_ratelimit()) {
457 printk(KERN_DEBUG "%s: STA %pM TX "
458 "buffer full - dropping oldest frame\n",
459 tx->sdata->name, sta->sta.addr);
460 }
461 #endif
462 dev_kfree_skb(old);
463 } else
464 tx->local->total_ps_buffered++;
465
466 /*
467 * Queue frame to be sent after STA wakes up/polls,
468 * but don't set the TIM bit if the driver is blocking
469 * wakeup or poll response transmissions anyway.
470 */
471 if (skb_queue_empty(&sta->ps_tx_buf) &&
472 !(staflags & WLAN_STA_PS_DRIVER))
473 sta_info_set_tim_bit(sta);
474
475 info->control.jiffies = jiffies;
476 info->control.vif = &tx->sdata->vif;
477 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
478 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
479 return TX_QUEUED;
480 }
481 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
482 else if (unlikely(staflags & WLAN_STA_PS_STA)) {
483 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
484 "set -> send frame\n", tx->sdata->name,
485 sta->sta.addr);
486 }
487 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
488
489 return TX_CONTINUE;
490 }
491
492 static ieee80211_tx_result debug_noinline
493 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
494 {
495 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
496 return TX_CONTINUE;
497
498 if (tx->flags & IEEE80211_TX_UNICAST)
499 return ieee80211_tx_h_unicast_ps_buf(tx);
500 else
501 return ieee80211_tx_h_multicast_ps_buf(tx);
502 }
503
504 static ieee80211_tx_result debug_noinline
505 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
506 {
507 struct ieee80211_key *key = NULL;
508 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
509 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
510
511 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT))
512 tx->key = NULL;
513 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
514 tx->key = key;
515 else if (ieee80211_is_mgmt(hdr->frame_control) &&
516 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
517 tx->key = key;
518 else if ((key = rcu_dereference(tx->sdata->default_key)))
519 tx->key = key;
520 else if (tx->sdata->drop_unencrypted &&
521 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
522 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
523 (!ieee80211_is_robust_mgmt_frame(hdr) ||
524 (ieee80211_is_action(hdr->frame_control) &&
525 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
526 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
527 return TX_DROP;
528 } else
529 tx->key = NULL;
530
531 if (tx->key) {
532 bool skip_hw = false;
533
534 tx->key->tx_rx_count++;
535 /* TODO: add threshold stuff again */
536
537 switch (tx->key->conf.alg) {
538 case ALG_WEP:
539 if (ieee80211_is_auth(hdr->frame_control))
540 break;
541 case ALG_TKIP:
542 if (!ieee80211_is_data_present(hdr->frame_control))
543 tx->key = NULL;
544 break;
545 case ALG_CCMP:
546 if (!ieee80211_is_data_present(hdr->frame_control) &&
547 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
548 tx->skb))
549 tx->key = NULL;
550 else
551 skip_hw = (tx->key->conf.flags &
552 IEEE80211_KEY_FLAG_SW_MGMT) &&
553 ieee80211_is_mgmt(hdr->frame_control);
554 break;
555 case ALG_AES_CMAC:
556 if (!ieee80211_is_mgmt(hdr->frame_control))
557 tx->key = NULL;
558 break;
559 }
560
561 if (!skip_hw && tx->key &&
562 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)
563 info->control.hw_key = &tx->key->conf;
564 }
565
566 return TX_CONTINUE;
567 }
568
569 static ieee80211_tx_result debug_noinline
570 ieee80211_tx_h_sta(struct ieee80211_tx_data *tx)
571 {
572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
573
574 if (tx->sta)
575 info->control.sta = &tx->sta->sta;
576
577 return TX_CONTINUE;
578 }
579
580 static ieee80211_tx_result debug_noinline
581 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
582 {
583 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
584 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
585 struct ieee80211_supported_band *sband;
586 struct ieee80211_rate *rate;
587 int i, len;
588 bool inval = false, rts = false, short_preamble = false;
589 struct ieee80211_tx_rate_control txrc;
590 u32 sta_flags;
591
592 memset(&txrc, 0, sizeof(txrc));
593
594 sband = tx->local->hw.wiphy->bands[tx->channel->band];
595
596 len = min_t(int, tx->skb->len + FCS_LEN,
597 tx->local->hw.wiphy->frag_threshold);
598
599 /* set up the tx rate control struct we give the RC algo */
600 txrc.hw = local_to_hw(tx->local);
601 txrc.sband = sband;
602 txrc.bss_conf = &tx->sdata->vif.bss_conf;
603 txrc.skb = tx->skb;
604 txrc.reported_rate.idx = -1;
605 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band];
606 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
607 txrc.max_rate_idx = -1;
608 else
609 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
610 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP;
611
612 /* set up RTS protection if desired */
613 if (len > tx->local->hw.wiphy->rts_threshold) {
614 txrc.rts = rts = true;
615 }
616
617 /*
618 * Use short preamble if the BSS can handle it, but not for
619 * management frames unless we know the receiver can handle
620 * that -- the management frame might be to a station that
621 * just wants a probe response.
622 */
623 if (tx->sdata->vif.bss_conf.use_short_preamble &&
624 (ieee80211_is_data(hdr->frame_control) ||
625 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
626 txrc.short_preamble = short_preamble = true;
627
628 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
629
630 /*
631 * Lets not bother rate control if we're associated and cannot
632 * talk to the sta. This should not happen.
633 */
634 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) &&
635 (sta_flags & WLAN_STA_ASSOC) &&
636 !rate_usable_index_exists(sband, &tx->sta->sta),
637 "%s: Dropped data frame as no usable bitrate found while "
638 "scanning and associated. Target station: "
639 "%pM on %d GHz band\n",
640 tx->sdata->name, hdr->addr1,
641 tx->channel->band ? 5 : 2))
642 return TX_DROP;
643
644 /*
645 * If we're associated with the sta at this point we know we can at
646 * least send the frame at the lowest bit rate.
647 */
648 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
649
650 if (unlikely(info->control.rates[0].idx < 0))
651 return TX_DROP;
652
653 if (txrc.reported_rate.idx < 0)
654 txrc.reported_rate = info->control.rates[0];
655
656 if (tx->sta)
657 tx->sta->last_tx_rate = txrc.reported_rate;
658
659 if (unlikely(!info->control.rates[0].count))
660 info->control.rates[0].count = 1;
661
662 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
663 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
664 info->control.rates[0].count = 1;
665
666 if (is_multicast_ether_addr(hdr->addr1)) {
667 /*
668 * XXX: verify the rate is in the basic rateset
669 */
670 return TX_CONTINUE;
671 }
672
673 /*
674 * set up the RTS/CTS rate as the fastest basic rate
675 * that is not faster than the data rate
676 *
677 * XXX: Should this check all retry rates?
678 */
679 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
680 s8 baserate = 0;
681
682 rate = &sband->bitrates[info->control.rates[0].idx];
683
684 for (i = 0; i < sband->n_bitrates; i++) {
685 /* must be a basic rate */
686 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
687 continue;
688 /* must not be faster than the data rate */
689 if (sband->bitrates[i].bitrate > rate->bitrate)
690 continue;
691 /* maximum */
692 if (sband->bitrates[baserate].bitrate <
693 sband->bitrates[i].bitrate)
694 baserate = i;
695 }
696
697 info->control.rts_cts_rate_idx = baserate;
698 }
699
700 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
701 /*
702 * make sure there's no valid rate following
703 * an invalid one, just in case drivers don't
704 * take the API seriously to stop at -1.
705 */
706 if (inval) {
707 info->control.rates[i].idx = -1;
708 continue;
709 }
710 if (info->control.rates[i].idx < 0) {
711 inval = true;
712 continue;
713 }
714
715 /*
716 * For now assume MCS is already set up correctly, this
717 * needs to be fixed.
718 */
719 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
720 WARN_ON(info->control.rates[i].idx > 76);
721 continue;
722 }
723
724 /* set up RTS protection if desired */
725 if (rts)
726 info->control.rates[i].flags |=
727 IEEE80211_TX_RC_USE_RTS_CTS;
728
729 /* RC is busted */
730 if (WARN_ON_ONCE(info->control.rates[i].idx >=
731 sband->n_bitrates)) {
732 info->control.rates[i].idx = -1;
733 continue;
734 }
735
736 rate = &sband->bitrates[info->control.rates[i].idx];
737
738 /* set up short preamble */
739 if (short_preamble &&
740 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
741 info->control.rates[i].flags |=
742 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
743
744 /* set up G protection */
745 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
746 rate->flags & IEEE80211_RATE_ERP_G)
747 info->control.rates[i].flags |=
748 IEEE80211_TX_RC_USE_CTS_PROTECT;
749 }
750
751 return TX_CONTINUE;
752 }
753
754 static ieee80211_tx_result debug_noinline
755 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
756 {
757 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
758 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
759 u16 *seq;
760 u8 *qc;
761 int tid;
762
763 /*
764 * Packet injection may want to control the sequence
765 * number, if we have no matching interface then we
766 * neither assign one ourselves nor ask the driver to.
767 */
768 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR))
769 return TX_CONTINUE;
770
771 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
772 return TX_CONTINUE;
773
774 if (ieee80211_hdrlen(hdr->frame_control) < 24)
775 return TX_CONTINUE;
776
777 /*
778 * Anything but QoS data that has a sequence number field
779 * (is long enough) gets a sequence number from the global
780 * counter.
781 */
782 if (!ieee80211_is_data_qos(hdr->frame_control)) {
783 /* driver should assign sequence number */
784 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
785 /* for pure STA mode without beacons, we can do it */
786 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
787 tx->sdata->sequence_number += 0x10;
788 return TX_CONTINUE;
789 }
790
791 /*
792 * This should be true for injected/management frames only, for
793 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
794 * above since they are not QoS-data frames.
795 */
796 if (!tx->sta)
797 return TX_CONTINUE;
798
799 /* include per-STA, per-TID sequence counter */
800
801 qc = ieee80211_get_qos_ctl(hdr);
802 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
803 seq = &tx->sta->tid_seq[tid];
804
805 hdr->seq_ctrl = cpu_to_le16(*seq);
806
807 /* Increase the sequence number. */
808 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
809
810 return TX_CONTINUE;
811 }
812
813 static int ieee80211_fragment(struct ieee80211_local *local,
814 struct sk_buff *skb, int hdrlen,
815 int frag_threshold)
816 {
817 struct sk_buff *tail = skb, *tmp;
818 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
819 int pos = hdrlen + per_fragm;
820 int rem = skb->len - hdrlen - per_fragm;
821
822 if (WARN_ON(rem < 0))
823 return -EINVAL;
824
825 while (rem) {
826 int fraglen = per_fragm;
827
828 if (fraglen > rem)
829 fraglen = rem;
830 rem -= fraglen;
831 tmp = dev_alloc_skb(local->tx_headroom +
832 frag_threshold +
833 IEEE80211_ENCRYPT_HEADROOM +
834 IEEE80211_ENCRYPT_TAILROOM);
835 if (!tmp)
836 return -ENOMEM;
837 tail->next = tmp;
838 tail = tmp;
839 skb_reserve(tmp, local->tx_headroom +
840 IEEE80211_ENCRYPT_HEADROOM);
841 /* copy control information */
842 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
843 skb_copy_queue_mapping(tmp, skb);
844 tmp->priority = skb->priority;
845 tmp->dev = skb->dev;
846
847 /* copy header and data */
848 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
849 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
850
851 pos += fraglen;
852 }
853
854 skb->len = hdrlen + per_fragm;
855 return 0;
856 }
857
858 static ieee80211_tx_result debug_noinline
859 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
860 {
861 struct sk_buff *skb = tx->skb;
862 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
863 struct ieee80211_hdr *hdr = (void *)skb->data;
864 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
865 int hdrlen;
866 int fragnum;
867
868 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
869 return TX_CONTINUE;
870
871 /*
872 * Warn when submitting a fragmented A-MPDU frame and drop it.
873 * This scenario is handled in ieee80211_tx_prepare but extra
874 * caution taken here as fragmented ampdu may cause Tx stop.
875 */
876 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
877 return TX_DROP;
878
879 hdrlen = ieee80211_hdrlen(hdr->frame_control);
880
881 /* internal error, why is TX_FRAGMENTED set? */
882 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
883 return TX_DROP;
884
885 /*
886 * Now fragment the frame. This will allocate all the fragments and
887 * chain them (using skb as the first fragment) to skb->next.
888 * During transmission, we will remove the successfully transmitted
889 * fragments from this list. When the low-level driver rejects one
890 * of the fragments then we will simply pretend to accept the skb
891 * but store it away as pending.
892 */
893 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
894 return TX_DROP;
895
896 /* update duration/seq/flags of fragments */
897 fragnum = 0;
898 do {
899 int next_len;
900 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
901
902 hdr = (void *)skb->data;
903 info = IEEE80211_SKB_CB(skb);
904
905 if (skb->next) {
906 hdr->frame_control |= morefrags;
907 next_len = skb->next->len;
908 /*
909 * No multi-rate retries for fragmented frames, that
910 * would completely throw off the NAV at other STAs.
911 */
912 info->control.rates[1].idx = -1;
913 info->control.rates[2].idx = -1;
914 info->control.rates[3].idx = -1;
915 info->control.rates[4].idx = -1;
916 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
917 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
918 } else {
919 hdr->frame_control &= ~morefrags;
920 next_len = 0;
921 }
922 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
923 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
924 fragnum++;
925 } while ((skb = skb->next));
926
927 return TX_CONTINUE;
928 }
929
930 static ieee80211_tx_result debug_noinline
931 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
932 {
933 struct sk_buff *skb = tx->skb;
934
935 if (!tx->sta)
936 return TX_CONTINUE;
937
938 tx->sta->tx_packets++;
939 do {
940 tx->sta->tx_fragments++;
941 tx->sta->tx_bytes += skb->len;
942 } while ((skb = skb->next));
943
944 return TX_CONTINUE;
945 }
946
947 static ieee80211_tx_result debug_noinline
948 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
949 {
950 if (!tx->key)
951 return TX_CONTINUE;
952
953 switch (tx->key->conf.alg) {
954 case ALG_WEP:
955 return ieee80211_crypto_wep_encrypt(tx);
956 case ALG_TKIP:
957 return ieee80211_crypto_tkip_encrypt(tx);
958 case ALG_CCMP:
959 return ieee80211_crypto_ccmp_encrypt(tx);
960 case ALG_AES_CMAC:
961 return ieee80211_crypto_aes_cmac_encrypt(tx);
962 }
963
964 /* not reached */
965 WARN_ON(1);
966 return TX_DROP;
967 }
968
969 static ieee80211_tx_result debug_noinline
970 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
971 {
972 struct sk_buff *skb = tx->skb;
973 struct ieee80211_hdr *hdr;
974 int next_len;
975 bool group_addr;
976
977 do {
978 hdr = (void *) skb->data;
979 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
980 break; /* must not overwrite AID */
981 next_len = skb->next ? skb->next->len : 0;
982 group_addr = is_multicast_ether_addr(hdr->addr1);
983
984 hdr->duration_id =
985 ieee80211_duration(tx, group_addr, next_len);
986 } while ((skb = skb->next));
987
988 return TX_CONTINUE;
989 }
990
991 /* actual transmit path */
992
993 /*
994 * deal with packet injection down monitor interface
995 * with Radiotap Header -- only called for monitor mode interface
996 */
997 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
998 struct sk_buff *skb)
999 {
1000 /*
1001 * this is the moment to interpret and discard the radiotap header that
1002 * must be at the start of the packet injected in Monitor mode
1003 *
1004 * Need to take some care with endian-ness since radiotap
1005 * args are little-endian
1006 */
1007
1008 struct ieee80211_radiotap_iterator iterator;
1009 struct ieee80211_radiotap_header *rthdr =
1010 (struct ieee80211_radiotap_header *) skb->data;
1011 struct ieee80211_supported_band *sband;
1012 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1013 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
1014
1015 sband = tx->local->hw.wiphy->bands[tx->channel->band];
1016
1017 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1018 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1019
1020 /*
1021 * for every radiotap entry that is present
1022 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
1023 * entries present, or -EINVAL on error)
1024 */
1025
1026 while (!ret) {
1027 ret = ieee80211_radiotap_iterator_next(&iterator);
1028
1029 if (ret)
1030 continue;
1031
1032 /* see if this argument is something we can use */
1033 switch (iterator.this_arg_index) {
1034 /*
1035 * You must take care when dereferencing iterator.this_arg
1036 * for multibyte types... the pointer is not aligned. Use
1037 * get_unaligned((type *)iterator.this_arg) to dereference
1038 * iterator.this_arg for type "type" safely on all arches.
1039 */
1040 case IEEE80211_RADIOTAP_FLAGS:
1041 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
1042 /*
1043 * this indicates that the skb we have been
1044 * handed has the 32-bit FCS CRC at the end...
1045 * we should react to that by snipping it off
1046 * because it will be recomputed and added
1047 * on transmission
1048 */
1049 if (skb->len < (iterator.max_length + FCS_LEN))
1050 return false;
1051
1052 skb_trim(skb, skb->len - FCS_LEN);
1053 }
1054 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
1055 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT;
1056 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
1057 tx->flags |= IEEE80211_TX_FRAGMENTED;
1058 break;
1059
1060 /*
1061 * Please update the file
1062 * Documentation/networking/mac80211-injection.txt
1063 * when parsing new fields here.
1064 */
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
1072 return false;
1073
1074 /*
1075 * remove the radiotap header
1076 * iterator->max_length was sanity-checked against
1077 * skb->len by iterator init
1078 */
1079 skb_pull(skb, iterator.max_length);
1080
1081 return true;
1082 }
1083
1084 /*
1085 * initialises @tx
1086 */
1087 static ieee80211_tx_result
1088 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata,
1089 struct ieee80211_tx_data *tx,
1090 struct sk_buff *skb)
1091 {
1092 struct ieee80211_local *local = sdata->local;
1093 struct ieee80211_hdr *hdr;
1094 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1095 int hdrlen, tid;
1096 u8 *qc, *state;
1097 bool queued = false;
1098
1099 memset(tx, 0, sizeof(*tx));
1100 tx->skb = skb;
1101 tx->local = local;
1102 tx->sdata = sdata;
1103 tx->channel = local->hw.conf.channel;
1104 /*
1105 * Set this flag (used below to indicate "automatic fragmentation"),
1106 * it will be cleared/left by radiotap as desired.
1107 */
1108 tx->flags |= IEEE80211_TX_FRAGMENTED;
1109
1110 /* process and remove the injection radiotap header */
1111 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) {
1112 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1113 return TX_DROP;
1114
1115 /*
1116 * __ieee80211_parse_tx_radiotap has now removed
1117 * the radiotap header that was present and pre-filled
1118 * 'tx' with tx control information.
1119 */
1120 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP;
1121 }
1122
1123 /*
1124 * If this flag is set to true anywhere, and we get here,
1125 * we are doing the needed processing, so remove the flag
1126 * now.
1127 */
1128 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1129
1130 hdr = (struct ieee80211_hdr *) skb->data;
1131
1132 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
1133 tx->sta = rcu_dereference(sdata->u.vlan.sta);
1134 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr)
1135 return TX_DROP;
1136 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) {
1137 tx->sta = sta_info_get_bss(sdata, hdr->addr1);
1138 }
1139 if (!tx->sta)
1140 tx->sta = sta_info_get(sdata, hdr->addr1);
1141
1142 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1143 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1144 unsigned long flags;
1145 struct tid_ampdu_tx *tid_tx;
1146
1147 qc = ieee80211_get_qos_ctl(hdr);
1148 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1149
1150 spin_lock_irqsave(&tx->sta->lock, flags);
1151 /*
1152 * XXX: This spinlock could be fairly expensive, but see the
1153 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1154 * One way to solve this would be to do something RCU-like
1155 * for managing the tid_tx struct and using atomic bitops
1156 * for the actual state -- by introducing an actual
1157 * 'operational' bit that would be possible. It would
1158 * require changing ieee80211_agg_tx_operational() to
1159 * set that bit, and changing the way tid_tx is managed
1160 * everywhere, including races between that bit and
1161 * tid_tx going away (tid_tx being added can be easily
1162 * committed to memory before the 'operational' bit).
1163 */
1164 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1165 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1166 if (*state == HT_AGG_STATE_OPERATIONAL) {
1167 info->flags |= IEEE80211_TX_CTL_AMPDU;
1168 } else if (*state != HT_AGG_STATE_IDLE) {
1169 /* in progress */
1170 queued = true;
1171 info->control.vif = &sdata->vif;
1172 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1173 __skb_queue_tail(&tid_tx->pending, skb);
1174 }
1175 spin_unlock_irqrestore(&tx->sta->lock, flags);
1176
1177 if (unlikely(queued))
1178 return TX_QUEUED;
1179 }
1180
1181 if (is_multicast_ether_addr(hdr->addr1)) {
1182 tx->flags &= ~IEEE80211_TX_UNICAST;
1183 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1184 } else {
1185 tx->flags |= IEEE80211_TX_UNICAST;
1186 if (unlikely(local->wifi_wme_noack_test))
1187 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1188 else
1189 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1190 }
1191
1192 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1193 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1194 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1195 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1196 tx->flags |= IEEE80211_TX_FRAGMENTED;
1197 else
1198 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1199 }
1200
1201 if (!tx->sta)
1202 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1203 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1204 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1205
1206 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1207 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1208 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1209 tx->ethertype = (pos[0] << 8) | pos[1];
1210 }
1211 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1212
1213 return TX_CONTINUE;
1214 }
1215
1216 static int __ieee80211_tx(struct ieee80211_local *local,
1217 struct sk_buff **skbp,
1218 struct sta_info *sta,
1219 bool txpending)
1220 {
1221 struct sk_buff *skb = *skbp, *next;
1222 struct ieee80211_tx_info *info;
1223 struct ieee80211_sub_if_data *sdata;
1224 unsigned long flags;
1225 int ret, len;
1226 bool fragm = false;
1227
1228 while (skb) {
1229 int q = skb_get_queue_mapping(skb);
1230
1231 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1232 ret = IEEE80211_TX_OK;
1233 if (local->queue_stop_reasons[q] ||
1234 (!txpending && !skb_queue_empty(&local->pending[q])))
1235 ret = IEEE80211_TX_PENDING;
1236 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1237 if (ret != IEEE80211_TX_OK)
1238 return ret;
1239
1240 info = IEEE80211_SKB_CB(skb);
1241
1242 if (fragm)
1243 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1244 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1245
1246 next = skb->next;
1247 len = skb->len;
1248
1249 if (next)
1250 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES;
1251
1252 sdata = vif_to_sdata(info->control.vif);
1253
1254 switch (sdata->vif.type) {
1255 case NL80211_IFTYPE_MONITOR:
1256 info->control.vif = NULL;
1257 break;
1258 case NL80211_IFTYPE_AP_VLAN:
1259 info->control.vif = &container_of(sdata->bss,
1260 struct ieee80211_sub_if_data, u.ap)->vif;
1261 break;
1262 default:
1263 /* keep */
1264 break;
1265 }
1266
1267 ret = drv_tx(local, skb);
1268 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1269 dev_kfree_skb(skb);
1270 ret = NETDEV_TX_OK;
1271 }
1272 if (ret != NETDEV_TX_OK) {
1273 info->control.vif = &sdata->vif;
1274 return IEEE80211_TX_AGAIN;
1275 }
1276
1277 *skbp = skb = next;
1278 ieee80211_led_tx(local, 1);
1279 fragm = true;
1280 }
1281
1282 return IEEE80211_TX_OK;
1283 }
1284
1285 /*
1286 * Invoke TX handlers, return 0 on success and non-zero if the
1287 * frame was dropped or queued.
1288 */
1289 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1290 {
1291 struct sk_buff *skb = tx->skb;
1292 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1293 ieee80211_tx_result res = TX_DROP;
1294
1295 #define CALL_TXH(txh) \
1296 do { \
1297 res = txh(tx); \
1298 if (res != TX_CONTINUE) \
1299 goto txh_done; \
1300 } while (0)
1301
1302 CALL_TXH(ieee80211_tx_h_dynamic_ps);
1303 CALL_TXH(ieee80211_tx_h_check_assoc);
1304 CALL_TXH(ieee80211_tx_h_ps_buf);
1305 CALL_TXH(ieee80211_tx_h_select_key);
1306 CALL_TXH(ieee80211_tx_h_sta);
1307 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL))
1308 CALL_TXH(ieee80211_tx_h_rate_ctrl);
1309
1310 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION))
1311 goto txh_done;
1312
1313 CALL_TXH(ieee80211_tx_h_michael_mic_add);
1314 CALL_TXH(ieee80211_tx_h_sequence);
1315 CALL_TXH(ieee80211_tx_h_fragment);
1316 /* handlers after fragment must be aware of tx info fragmentation! */
1317 CALL_TXH(ieee80211_tx_h_stats);
1318 CALL_TXH(ieee80211_tx_h_encrypt);
1319 CALL_TXH(ieee80211_tx_h_calculate_duration);
1320 #undef CALL_TXH
1321
1322 txh_done:
1323 if (unlikely(res == TX_DROP)) {
1324 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1325 while (skb) {
1326 struct sk_buff *next;
1327
1328 next = skb->next;
1329 dev_kfree_skb(skb);
1330 skb = next;
1331 }
1332 return -1;
1333 } else if (unlikely(res == TX_QUEUED)) {
1334 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1335 return -1;
1336 }
1337
1338 return 0;
1339 }
1340
1341 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata,
1342 struct sk_buff *skb, bool txpending)
1343 {
1344 struct ieee80211_local *local = sdata->local;
1345 struct ieee80211_tx_data tx;
1346 ieee80211_tx_result res_prepare;
1347 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1348 struct sk_buff *next;
1349 unsigned long flags;
1350 int ret, retries;
1351 u16 queue;
1352
1353 queue = skb_get_queue_mapping(skb);
1354
1355 if (unlikely(skb->len < 10)) {
1356 dev_kfree_skb(skb);
1357 return;
1358 }
1359
1360 rcu_read_lock();
1361
1362 /* initialises tx */
1363 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
1364
1365 if (unlikely(res_prepare == TX_DROP)) {
1366 dev_kfree_skb(skb);
1367 rcu_read_unlock();
1368 return;
1369 } else if (unlikely(res_prepare == TX_QUEUED)) {
1370 rcu_read_unlock();
1371 return;
1372 }
1373
1374 tx.channel = local->hw.conf.channel;
1375 info->band = tx.channel->band;
1376
1377 if (invoke_tx_handlers(&tx))
1378 goto out;
1379
1380 retries = 0;
1381 retry:
1382 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending);
1383 switch (ret) {
1384 case IEEE80211_TX_OK:
1385 break;
1386 case IEEE80211_TX_AGAIN:
1387 /*
1388 * Since there are no fragmented frames on A-MPDU
1389 * queues, there's no reason for a driver to reject
1390 * a frame there, warn and drop it.
1391 */
1392 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1393 goto drop;
1394 /* fall through */
1395 case IEEE80211_TX_PENDING:
1396 skb = tx.skb;
1397
1398 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1399
1400 if (local->queue_stop_reasons[queue] ||
1401 !skb_queue_empty(&local->pending[queue])) {
1402 /*
1403 * if queue is stopped, queue up frames for later
1404 * transmission from the tasklet
1405 */
1406 do {
1407 next = skb->next;
1408 skb->next = NULL;
1409 if (unlikely(txpending))
1410 __skb_queue_head(&local->pending[queue],
1411 skb);
1412 else
1413 __skb_queue_tail(&local->pending[queue],
1414 skb);
1415 } while ((skb = next));
1416
1417 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1418 flags);
1419 } else {
1420 /*
1421 * otherwise retry, but this is a race condition or
1422 * a driver bug (which we warn about if it persists)
1423 */
1424 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1425 flags);
1426
1427 retries++;
1428 if (WARN(retries > 10, "tx refused but queue active\n"))
1429 goto drop;
1430 goto retry;
1431 }
1432 }
1433 out:
1434 rcu_read_unlock();
1435 return;
1436
1437 drop:
1438 rcu_read_unlock();
1439
1440 skb = tx.skb;
1441 while (skb) {
1442 next = skb->next;
1443 dev_kfree_skb(skb);
1444 skb = next;
1445 }
1446 }
1447
1448 /* device xmit handlers */
1449
1450 static int ieee80211_skb_resize(struct ieee80211_local *local,
1451 struct sk_buff *skb,
1452 int head_need, bool may_encrypt)
1453 {
1454 int tail_need = 0;
1455
1456 /*
1457 * This could be optimised, devices that do full hardware
1458 * crypto (including TKIP MMIC) need no tailroom... But we
1459 * have no drivers for such devices currently.
1460 */
1461 if (may_encrypt) {
1462 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1463 tail_need -= skb_tailroom(skb);
1464 tail_need = max_t(int, tail_need, 0);
1465 }
1466
1467 if (head_need || tail_need) {
1468 /* Sorry. Can't account for this any more */
1469 skb_orphan(skb);
1470 }
1471
1472 if (skb_header_cloned(skb))
1473 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1474 else
1475 I802_DEBUG_INC(local->tx_expand_skb_head);
1476
1477 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1478 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1479 wiphy_name(local->hw.wiphy));
1480 return -ENOMEM;
1481 }
1482
1483 /* update truesize too */
1484 skb->truesize += head_need + tail_need;
1485
1486 return 0;
1487 }
1488
1489 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata,
1490 struct sk_buff *skb)
1491 {
1492 struct ieee80211_local *local = sdata->local;
1493 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1494 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1495 struct ieee80211_sub_if_data *tmp_sdata;
1496 int headroom;
1497 bool may_encrypt;
1498
1499 rcu_read_lock();
1500
1501 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1502 int hdrlen;
1503 u16 len_rthdr;
1504
1505 info->flags |= IEEE80211_TX_CTL_INJECTED |
1506 IEEE80211_TX_INTFL_HAS_RADIOTAP;
1507
1508 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1509 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1510 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1511
1512 /* check the header is complete in the frame */
1513 if (likely(skb->len >= len_rthdr + hdrlen)) {
1514 /*
1515 * We process outgoing injected frames that have a
1516 * local address we handle as though they are our
1517 * own frames.
1518 * This code here isn't entirely correct, the local
1519 * MAC address is not necessarily enough to find
1520 * the interface to use; for that proper VLAN/WDS
1521 * support we will need a different mechanism.
1522 */
1523
1524 list_for_each_entry_rcu(tmp_sdata, &local->interfaces,
1525 list) {
1526 if (!ieee80211_sdata_running(tmp_sdata))
1527 continue;
1528 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP)
1529 continue;
1530 if (compare_ether_addr(tmp_sdata->vif.addr,
1531 hdr->addr2) == 0) {
1532 sdata = tmp_sdata;
1533 break;
1534 }
1535 }
1536 }
1537 }
1538
1539 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT);
1540
1541 headroom = local->tx_headroom;
1542 if (may_encrypt)
1543 headroom += IEEE80211_ENCRYPT_HEADROOM;
1544 headroom -= skb_headroom(skb);
1545 headroom = max_t(int, 0, headroom);
1546
1547 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) {
1548 dev_kfree_skb(skb);
1549 rcu_read_unlock();
1550 return;
1551 }
1552
1553 info->control.vif = &sdata->vif;
1554
1555 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1556 ieee80211_is_data(hdr->frame_control) &&
1557 !is_multicast_ether_addr(hdr->addr1))
1558 if (mesh_nexthop_lookup(skb, sdata)) {
1559 /* skb queued: don't free */
1560 rcu_read_unlock();
1561 return;
1562 }
1563
1564 ieee80211_set_qos_hdr(local, skb);
1565 ieee80211_tx(sdata, skb, false);
1566 rcu_read_unlock();
1567 }
1568
1569 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb,
1570 struct net_device *dev)
1571 {
1572 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1573 struct ieee80211_channel *chan = local->hw.conf.channel;
1574 struct ieee80211_radiotap_header *prthdr =
1575 (struct ieee80211_radiotap_header *)skb->data;
1576 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1577 u16 len_rthdr;
1578
1579 /*
1580 * Frame injection is not allowed if beaconing is not allowed
1581 * or if we need radar detection. Beaconing is usually not allowed when
1582 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1583 * Passive scan is also used in world regulatory domains where
1584 * your country is not known and as such it should be treated as
1585 * NO TX unless the channel is explicitly allowed in which case
1586 * your current regulatory domain would not have the passive scan
1587 * flag.
1588 *
1589 * Since AP mode uses monitor interfaces to inject/TX management
1590 * frames we can make AP mode the exception to this rule once it
1591 * supports radar detection as its implementation can deal with
1592 * radar detection by itself. We can do that later by adding a
1593 * monitor flag interfaces used for AP support.
1594 */
1595 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1596 IEEE80211_CHAN_PASSIVE_SCAN)))
1597 goto fail;
1598
1599 /* check for not even having the fixed radiotap header part */
1600 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1601 goto fail; /* too short to be possibly valid */
1602
1603 /* is it a header version we can trust to find length from? */
1604 if (unlikely(prthdr->it_version))
1605 goto fail; /* only version 0 is supported */
1606
1607 /* then there must be a radiotap header with a length we can use */
1608 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1609
1610 /* does the skb contain enough to deliver on the alleged length? */
1611 if (unlikely(skb->len < len_rthdr))
1612 goto fail; /* skb too short for claimed rt header extent */
1613
1614 /*
1615 * fix up the pointers accounting for the radiotap
1616 * header still being in there. We are being given
1617 * a precooked IEEE80211 header so no need for
1618 * normal processing
1619 */
1620 skb_set_mac_header(skb, len_rthdr);
1621 /*
1622 * these are just fixed to the end of the rt area since we
1623 * don't have any better information and at this point, nobody cares
1624 */
1625 skb_set_network_header(skb, len_rthdr);
1626 skb_set_transport_header(skb, len_rthdr);
1627
1628 memset(info, 0, sizeof(*info));
1629
1630 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1631
1632 /* pass the radiotap header up to xmit */
1633 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb);
1634 return NETDEV_TX_OK;
1635
1636 fail:
1637 dev_kfree_skb(skb);
1638 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1639 }
1640
1641 /**
1642 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1643 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1644 * @skb: packet to be sent
1645 * @dev: incoming interface
1646 *
1647 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1648 * not be freed, and caller is responsible for either retrying later or freeing
1649 * skb).
1650 *
1651 * This function takes in an Ethernet header and encapsulates it with suitable
1652 * IEEE 802.11 header based on which interface the packet is coming in. The
1653 * encapsulated packet will then be passed to master interface, wlan#.11, for
1654 * transmission (through low-level driver).
1655 */
1656 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb,
1657 struct net_device *dev)
1658 {
1659 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1660 struct ieee80211_local *local = sdata->local;
1661 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1662 int ret = NETDEV_TX_BUSY, head_need;
1663 u16 ethertype, hdrlen, meshhdrlen = 0;
1664 __le16 fc;
1665 struct ieee80211_hdr hdr;
1666 struct ieee80211s_hdr mesh_hdr;
1667 const u8 *encaps_data;
1668 int encaps_len, skip_header_bytes;
1669 int nh_pos, h_pos;
1670 struct sta_info *sta = NULL;
1671 u32 sta_flags = 0;
1672
1673 if (unlikely(skb->len < ETH_HLEN)) {
1674 ret = NETDEV_TX_OK;
1675 goto fail;
1676 }
1677
1678 nh_pos = skb_network_header(skb) - skb->data;
1679 h_pos = skb_transport_header(skb) - skb->data;
1680
1681 /* convert Ethernet header to proper 802.11 header (based on
1682 * operation mode) */
1683 ethertype = (skb->data[12] << 8) | skb->data[13];
1684 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1685
1686 switch (sdata->vif.type) {
1687 case NL80211_IFTYPE_AP_VLAN:
1688 rcu_read_lock();
1689 sta = rcu_dereference(sdata->u.vlan.sta);
1690 if (sta) {
1691 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1692 /* RA TA DA SA */
1693 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN);
1694 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1695 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1696 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1697 hdrlen = 30;
1698 sta_flags = get_sta_flags(sta);
1699 }
1700 rcu_read_unlock();
1701 if (sta)
1702 break;
1703 /* fall through */
1704 case NL80211_IFTYPE_AP:
1705 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1706 /* DA BSSID SA */
1707 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1708 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1709 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1710 hdrlen = 24;
1711 break;
1712 case NL80211_IFTYPE_WDS:
1713 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1714 /* RA TA DA SA */
1715 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1716 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1717 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1718 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1719 hdrlen = 30;
1720 break;
1721 #ifdef CONFIG_MAC80211_MESH
1722 case NL80211_IFTYPE_MESH_POINT:
1723 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1724 /* Do not send frames with mesh_ttl == 0 */
1725 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1726 ret = NETDEV_TX_OK;
1727 goto fail;
1728 }
1729
1730 if (compare_ether_addr(sdata->vif.addr,
1731 skb->data + ETH_ALEN) == 0) {
1732 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1733 skb->data, skb->data + ETH_ALEN);
1734 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr,
1735 sdata, NULL, NULL, NULL);
1736 } else {
1737 /* packet from other interface */
1738 struct mesh_path *mppath;
1739 int is_mesh_mcast = 1;
1740 const u8 *mesh_da;
1741
1742 rcu_read_lock();
1743 if (is_multicast_ether_addr(skb->data))
1744 /* DA TA mSA AE:SA */
1745 mesh_da = skb->data;
1746 else {
1747 static const u8 bcast[ETH_ALEN] =
1748 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1749
1750 mppath = mpp_path_lookup(skb->data, sdata);
1751 if (mppath) {
1752 /* RA TA mDA mSA AE:DA SA */
1753 mesh_da = mppath->mpp;
1754 is_mesh_mcast = 0;
1755 } else {
1756 /* DA TA mSA AE:SA */
1757 mesh_da = bcast;
1758 }
1759 }
1760 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc,
1761 mesh_da, sdata->vif.addr);
1762 rcu_read_unlock();
1763 if (is_mesh_mcast)
1764 meshhdrlen =
1765 ieee80211_new_mesh_header(&mesh_hdr,
1766 sdata,
1767 skb->data + ETH_ALEN,
1768 NULL,
1769 NULL);
1770 else
1771 meshhdrlen =
1772 ieee80211_new_mesh_header(&mesh_hdr,
1773 sdata,
1774 NULL,
1775 skb->data,
1776 skb->data + ETH_ALEN);
1777
1778 }
1779 break;
1780 #endif
1781 case NL80211_IFTYPE_STATION:
1782 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1783 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) {
1784 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1785 /* RA TA DA SA */
1786 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN);
1787 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1788 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1789 hdrlen = 30;
1790 } else {
1791 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1792 /* BSSID SA DA */
1793 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1794 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1795 hdrlen = 24;
1796 }
1797 break;
1798 case NL80211_IFTYPE_ADHOC:
1799 /* DA SA BSSID */
1800 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1801 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1802 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1803 hdrlen = 24;
1804 break;
1805 default:
1806 ret = NETDEV_TX_OK;
1807 goto fail;
1808 }
1809
1810 /*
1811 * There's no need to try to look up the destination
1812 * if it is a multicast address (which can only happen
1813 * in AP mode)
1814 */
1815 if (!is_multicast_ether_addr(hdr.addr1)) {
1816 rcu_read_lock();
1817 sta = sta_info_get(sdata, hdr.addr1);
1818 if (sta)
1819 sta_flags = get_sta_flags(sta);
1820 rcu_read_unlock();
1821 }
1822
1823 /* receiver and we are QoS enabled, use a QoS type frame */
1824 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1825 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1826 hdrlen += 2;
1827 }
1828
1829 /*
1830 * Drop unicast frames to unauthorised stations unless they are
1831 * EAPOL frames from the local station.
1832 */
1833 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1834 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1835 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1836 !(ethertype == ETH_P_PAE &&
1837 compare_ether_addr(sdata->vif.addr,
1838 skb->data + ETH_ALEN) == 0))) {
1839 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1840 if (net_ratelimit())
1841 printk(KERN_DEBUG "%s: dropped frame to %pM"
1842 " (unauthorized port)\n", dev->name,
1843 hdr.addr1);
1844 #endif
1845
1846 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1847
1848 ret = NETDEV_TX_OK;
1849 goto fail;
1850 }
1851
1852 hdr.frame_control = fc;
1853 hdr.duration_id = 0;
1854 hdr.seq_ctrl = 0;
1855
1856 skip_header_bytes = ETH_HLEN;
1857 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1858 encaps_data = bridge_tunnel_header;
1859 encaps_len = sizeof(bridge_tunnel_header);
1860 skip_header_bytes -= 2;
1861 } else if (ethertype >= 0x600) {
1862 encaps_data = rfc1042_header;
1863 encaps_len = sizeof(rfc1042_header);
1864 skip_header_bytes -= 2;
1865 } else {
1866 encaps_data = NULL;
1867 encaps_len = 0;
1868 }
1869
1870 skb_pull(skb, skip_header_bytes);
1871 nh_pos -= skip_header_bytes;
1872 h_pos -= skip_header_bytes;
1873
1874 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1875
1876 /*
1877 * So we need to modify the skb header and hence need a copy of
1878 * that. The head_need variable above doesn't, so far, include
1879 * the needed header space that we don't need right away. If we
1880 * can, then we don't reallocate right now but only after the
1881 * frame arrives at the master device (if it does...)
1882 *
1883 * If we cannot, however, then we will reallocate to include all
1884 * the ever needed space. Also, if we need to reallocate it anyway,
1885 * make it big enough for everything we may ever need.
1886 */
1887
1888 if (head_need > 0 || skb_cloned(skb)) {
1889 head_need += IEEE80211_ENCRYPT_HEADROOM;
1890 head_need += local->tx_headroom;
1891 head_need = max_t(int, 0, head_need);
1892 if (ieee80211_skb_resize(local, skb, head_need, true))
1893 goto fail;
1894 }
1895
1896 if (encaps_data) {
1897 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1898 nh_pos += encaps_len;
1899 h_pos += encaps_len;
1900 }
1901
1902 if (meshhdrlen > 0) {
1903 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1904 nh_pos += meshhdrlen;
1905 h_pos += meshhdrlen;
1906 }
1907
1908 if (ieee80211_is_data_qos(fc)) {
1909 __le16 *qos_control;
1910
1911 qos_control = (__le16*) skb_push(skb, 2);
1912 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1913 /*
1914 * Maybe we could actually set some fields here, for now just
1915 * initialise to zero to indicate no special operation.
1916 */
1917 *qos_control = 0;
1918 } else
1919 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1920
1921 nh_pos += hdrlen;
1922 h_pos += hdrlen;
1923
1924 dev->stats.tx_packets++;
1925 dev->stats.tx_bytes += skb->len;
1926
1927 /* Update skb pointers to various headers since this modified frame
1928 * is going to go through Linux networking code that may potentially
1929 * need things like pointer to IP header. */
1930 skb_set_mac_header(skb, 0);
1931 skb_set_network_header(skb, nh_pos);
1932 skb_set_transport_header(skb, h_pos);
1933
1934 memset(info, 0, sizeof(*info));
1935
1936 dev->trans_start = jiffies;
1937 ieee80211_xmit(sdata, skb);
1938
1939 return NETDEV_TX_OK;
1940
1941 fail:
1942 if (ret == NETDEV_TX_OK)
1943 dev_kfree_skb(skb);
1944
1945 return ret;
1946 }
1947
1948
1949 /*
1950 * ieee80211_clear_tx_pending may not be called in a context where
1951 * it is possible that it packets could come in again.
1952 */
1953 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1954 {
1955 int i;
1956
1957 for (i = 0; i < local->hw.queues; i++)
1958 skb_queue_purge(&local->pending[i]);
1959 }
1960
1961 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1962 struct sk_buff *skb)
1963 {
1964 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1965 struct ieee80211_sub_if_data *sdata;
1966 struct sta_info *sta;
1967 struct ieee80211_hdr *hdr;
1968 int ret;
1969 bool result = true;
1970
1971 sdata = vif_to_sdata(info->control.vif);
1972
1973 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1974 ieee80211_tx(sdata, skb, true);
1975 } else {
1976 hdr = (struct ieee80211_hdr *)skb->data;
1977 sta = sta_info_get(sdata, hdr->addr1);
1978
1979 ret = __ieee80211_tx(local, &skb, sta, true);
1980 if (ret != IEEE80211_TX_OK)
1981 result = false;
1982 }
1983
1984 return result;
1985 }
1986
1987 /*
1988 * Transmit all pending packets. Called from tasklet.
1989 */
1990 void ieee80211_tx_pending(unsigned long data)
1991 {
1992 struct ieee80211_local *local = (struct ieee80211_local *)data;
1993 unsigned long flags;
1994 int i;
1995 bool txok;
1996
1997 rcu_read_lock();
1998
1999 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
2000 for (i = 0; i < local->hw.queues; i++) {
2001 /*
2002 * If queue is stopped by something other than due to pending
2003 * frames, or we have no pending frames, proceed to next queue.
2004 */
2005 if (local->queue_stop_reasons[i] ||
2006 skb_queue_empty(&local->pending[i]))
2007 continue;
2008
2009 while (!skb_queue_empty(&local->pending[i])) {
2010 struct sk_buff *skb = __skb_dequeue(&local->pending[i]);
2011 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2012 struct ieee80211_sub_if_data *sdata;
2013
2014 if (WARN_ON(!info->control.vif)) {
2015 kfree_skb(skb);
2016 continue;
2017 }
2018
2019 sdata = vif_to_sdata(info->control.vif);
2020 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
2021 flags);
2022
2023 txok = ieee80211_tx_pending_skb(local, skb);
2024 if (!txok)
2025 __skb_queue_head(&local->pending[i], skb);
2026 spin_lock_irqsave(&local->queue_stop_reason_lock,
2027 flags);
2028 if (!txok)
2029 break;
2030 }
2031 }
2032 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
2033
2034 rcu_read_unlock();
2035 }
2036
2037 /* functions for drivers to get certain frames */
2038
2039 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
2040 struct sk_buff *skb,
2041 struct beacon_data *beacon)
2042 {
2043 u8 *pos, *tim;
2044 int aid0 = 0;
2045 int i, have_bits = 0, n1, n2;
2046
2047 /* Generate bitmap for TIM only if there are any STAs in power save
2048 * mode. */
2049 if (atomic_read(&bss->num_sta_ps) > 0)
2050 /* in the hope that this is faster than
2051 * checking byte-for-byte */
2052 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2053 IEEE80211_MAX_AID+1);
2054
2055 if (bss->dtim_count == 0)
2056 bss->dtim_count = beacon->dtim_period - 1;
2057 else
2058 bss->dtim_count--;
2059
2060 tim = pos = (u8 *) skb_put(skb, 6);
2061 *pos++ = WLAN_EID_TIM;
2062 *pos++ = 4;
2063 *pos++ = bss->dtim_count;
2064 *pos++ = beacon->dtim_period;
2065
2066 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2067 aid0 = 1;
2068
2069 if (have_bits) {
2070 /* Find largest even number N1 so that bits numbered 1 through
2071 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2072 * (N2 + 1) x 8 through 2007 are 0. */
2073 n1 = 0;
2074 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2075 if (bss->tim[i]) {
2076 n1 = i & 0xfe;
2077 break;
2078 }
2079 }
2080 n2 = n1;
2081 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2082 if (bss->tim[i]) {
2083 n2 = i;
2084 break;
2085 }
2086 }
2087
2088 /* Bitmap control */
2089 *pos++ = n1 | aid0;
2090 /* Part Virt Bitmap */
2091 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2092
2093 tim[1] = n2 - n1 + 4;
2094 skb_put(skb, n2 - n1);
2095 } else {
2096 *pos++ = aid0; /* Bitmap control */
2097 *pos++ = 0; /* Part Virt Bitmap */
2098 }
2099 }
2100
2101 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2102 struct ieee80211_vif *vif,
2103 u16 *tim_offset, u16 *tim_length)
2104 {
2105 struct ieee80211_local *local = hw_to_local(hw);
2106 struct sk_buff *skb = NULL;
2107 struct ieee80211_tx_info *info;
2108 struct ieee80211_sub_if_data *sdata = NULL;
2109 struct ieee80211_if_ap *ap = NULL;
2110 struct beacon_data *beacon;
2111 struct ieee80211_supported_band *sband;
2112 enum ieee80211_band band = local->hw.conf.channel->band;
2113 struct ieee80211_tx_rate_control txrc;
2114
2115 sband = local->hw.wiphy->bands[band];
2116
2117 rcu_read_lock();
2118
2119 sdata = vif_to_sdata(vif);
2120
2121 if (tim_offset)
2122 *tim_offset = 0;
2123 if (tim_length)
2124 *tim_length = 0;
2125
2126 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2127 ap = &sdata->u.ap;
2128 beacon = rcu_dereference(ap->beacon);
2129 if (ap && beacon) {
2130 /*
2131 * headroom, head length,
2132 * tail length and maximum TIM length
2133 */
2134 skb = dev_alloc_skb(local->tx_headroom +
2135 beacon->head_len +
2136 beacon->tail_len + 256);
2137 if (!skb)
2138 goto out;
2139
2140 skb_reserve(skb, local->tx_headroom);
2141 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2142 beacon->head_len);
2143
2144 /*
2145 * Not very nice, but we want to allow the driver to call
2146 * ieee80211_beacon_get() as a response to the set_tim()
2147 * callback. That, however, is already invoked under the
2148 * sta_lock to guarantee consistent and race-free update
2149 * of the tim bitmap in mac80211 and the driver.
2150 */
2151 if (local->tim_in_locked_section) {
2152 ieee80211_beacon_add_tim(ap, skb, beacon);
2153 } else {
2154 unsigned long flags;
2155
2156 spin_lock_irqsave(&local->sta_lock, flags);
2157 ieee80211_beacon_add_tim(ap, skb, beacon);
2158 spin_unlock_irqrestore(&local->sta_lock, flags);
2159 }
2160
2161 if (tim_offset)
2162 *tim_offset = beacon->head_len;
2163 if (tim_length)
2164 *tim_length = skb->len - beacon->head_len;
2165
2166 if (beacon->tail)
2167 memcpy(skb_put(skb, beacon->tail_len),
2168 beacon->tail, beacon->tail_len);
2169 } else
2170 goto out;
2171 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2172 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2173 struct ieee80211_hdr *hdr;
2174 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2175
2176 if (!presp)
2177 goto out;
2178
2179 skb = skb_copy(presp, GFP_ATOMIC);
2180 if (!skb)
2181 goto out;
2182
2183 hdr = (struct ieee80211_hdr *) skb->data;
2184 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2185 IEEE80211_STYPE_BEACON);
2186 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2187 struct ieee80211_mgmt *mgmt;
2188 u8 *pos;
2189
2190 /* headroom, head length, tail length and maximum TIM length */
2191 skb = dev_alloc_skb(local->tx_headroom + 400);
2192 if (!skb)
2193 goto out;
2194
2195 skb_reserve(skb, local->hw.extra_tx_headroom);
2196 mgmt = (struct ieee80211_mgmt *)
2197 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2198 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2199 mgmt->frame_control =
2200 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2201 memset(mgmt->da, 0xff, ETH_ALEN);
2202 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
2203 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
2204 mgmt->u.beacon.beacon_int =
2205 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2206 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2207
2208 pos = skb_put(skb, 2);
2209 *pos++ = WLAN_EID_SSID;
2210 *pos++ = 0x0;
2211
2212 mesh_mgmt_ies_add(skb, sdata);
2213 } else {
2214 WARN_ON(1);
2215 goto out;
2216 }
2217
2218 info = IEEE80211_SKB_CB(skb);
2219
2220 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2221 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2222 info->band = band;
2223
2224 memset(&txrc, 0, sizeof(txrc));
2225 txrc.hw = hw;
2226 txrc.sband = sband;
2227 txrc.bss_conf = &sdata->vif.bss_conf;
2228 txrc.skb = skb;
2229 txrc.reported_rate.idx = -1;
2230 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band];
2231 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1)
2232 txrc.max_rate_idx = -1;
2233 else
2234 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1;
2235 txrc.ap = true;
2236 rate_control_get_rate(sdata, NULL, &txrc);
2237
2238 info->control.vif = vif;
2239
2240 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2241 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2242 out:
2243 rcu_read_unlock();
2244 return skb;
2245 }
2246 EXPORT_SYMBOL(ieee80211_beacon_get_tim);
2247
2248 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2249 struct ieee80211_vif *vif)
2250 {
2251 struct ieee80211_sub_if_data *sdata;
2252 struct ieee80211_if_managed *ifmgd;
2253 struct ieee80211_pspoll *pspoll;
2254 struct ieee80211_local *local;
2255 struct sk_buff *skb;
2256
2257 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2258 return NULL;
2259
2260 sdata = vif_to_sdata(vif);
2261 ifmgd = &sdata->u.mgd;
2262 local = sdata->local;
2263
2264 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll));
2265 if (!skb) {
2266 printk(KERN_DEBUG "%s: failed to allocate buffer for "
2267 "pspoll template\n", sdata->name);
2268 return NULL;
2269 }
2270 skb_reserve(skb, local->hw.extra_tx_headroom);
2271
2272 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll));
2273 memset(pspoll, 0, sizeof(*pspoll));
2274 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
2275 IEEE80211_STYPE_PSPOLL);
2276 pspoll->aid = cpu_to_le16(ifmgd->aid);
2277
2278 /* aid in PS-Poll has its two MSBs each set to 1 */
2279 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14);
2280
2281 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN);
2282 memcpy(pspoll->ta, vif->addr, ETH_ALEN);
2283
2284 return skb;
2285 }
2286 EXPORT_SYMBOL(ieee80211_pspoll_get);
2287
2288 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2289 struct ieee80211_vif *vif)
2290 {
2291 struct ieee80211_hdr_3addr *nullfunc;
2292 struct ieee80211_sub_if_data *sdata;
2293 struct ieee80211_if_managed *ifmgd;
2294 struct ieee80211_local *local;
2295 struct sk_buff *skb;
2296
2297 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2298 return NULL;
2299
2300 sdata = vif_to_sdata(vif);
2301 ifmgd = &sdata->u.mgd;
2302 local = sdata->local;
2303
2304 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc));
2305 if (!skb) {
2306 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
2307 "template\n", sdata->name);
2308 return NULL;
2309 }
2310 skb_reserve(skb, local->hw.extra_tx_headroom);
2311
2312 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb,
2313 sizeof(*nullfunc));
2314 memset(nullfunc, 0, sizeof(*nullfunc));
2315 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
2316 IEEE80211_STYPE_NULLFUNC |
2317 IEEE80211_FCTL_TODS);
2318 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN);
2319 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN);
2320 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN);
2321
2322 return skb;
2323 }
2324 EXPORT_SYMBOL(ieee80211_nullfunc_get);
2325
2326 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2327 struct ieee80211_vif *vif,
2328 const u8 *ssid, size_t ssid_len,
2329 const u8 *ie, size_t ie_len)
2330 {
2331 struct ieee80211_sub_if_data *sdata;
2332 struct ieee80211_local *local;
2333 struct ieee80211_hdr_3addr *hdr;
2334 struct sk_buff *skb;
2335 size_t ie_ssid_len;
2336 u8 *pos;
2337
2338 sdata = vif_to_sdata(vif);
2339 local = sdata->local;
2340 ie_ssid_len = 2 + ssid_len;
2341
2342 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) +
2343 ie_ssid_len + ie_len);
2344 if (!skb) {
2345 printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
2346 "request template\n", sdata->name);
2347 return NULL;
2348 }
2349
2350 skb_reserve(skb, local->hw.extra_tx_headroom);
2351
2352 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr));
2353 memset(hdr, 0, sizeof(*hdr));
2354 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2355 IEEE80211_STYPE_PROBE_REQ);
2356 memset(hdr->addr1, 0xff, ETH_ALEN);
2357 memcpy(hdr->addr2, vif->addr, ETH_ALEN);
2358 memset(hdr->addr3, 0xff, ETH_ALEN);
2359
2360 pos = skb_put(skb, ie_ssid_len);
2361 *pos++ = WLAN_EID_SSID;
2362 *pos++ = ssid_len;
2363 if (ssid)
2364 memcpy(pos, ssid, ssid_len);
2365 pos += ssid_len;
2366
2367 if (ie) {
2368 pos = skb_put(skb, ie_len);
2369 memcpy(pos, ie, ie_len);
2370 }
2371
2372 return skb;
2373 }
2374 EXPORT_SYMBOL(ieee80211_probereq_get);
2375
2376 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2377 const void *frame, size_t frame_len,
2378 const struct ieee80211_tx_info *frame_txctl,
2379 struct ieee80211_rts *rts)
2380 {
2381 const struct ieee80211_hdr *hdr = frame;
2382
2383 rts->frame_control =
2384 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2385 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2386 frame_txctl);
2387 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2388 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2389 }
2390 EXPORT_SYMBOL(ieee80211_rts_get);
2391
2392 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2393 const void *frame, size_t frame_len,
2394 const struct ieee80211_tx_info *frame_txctl,
2395 struct ieee80211_cts *cts)
2396 {
2397 const struct ieee80211_hdr *hdr = frame;
2398
2399 cts->frame_control =
2400 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2401 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2402 frame_len, frame_txctl);
2403 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2404 }
2405 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2406
2407 struct sk_buff *
2408 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2409 struct ieee80211_vif *vif)
2410 {
2411 struct ieee80211_local *local = hw_to_local(hw);
2412 struct sk_buff *skb = NULL;
2413 struct sta_info *sta;
2414 struct ieee80211_tx_data tx;
2415 struct ieee80211_sub_if_data *sdata;
2416 struct ieee80211_if_ap *bss = NULL;
2417 struct beacon_data *beacon;
2418 struct ieee80211_tx_info *info;
2419
2420 sdata = vif_to_sdata(vif);
2421 bss = &sdata->u.ap;
2422
2423 rcu_read_lock();
2424 beacon = rcu_dereference(bss->beacon);
2425
2426 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2427 goto out;
2428
2429 if (bss->dtim_count != 0)
2430 goto out; /* send buffered bc/mc only after DTIM beacon */
2431
2432 while (1) {
2433 skb = skb_dequeue(&bss->ps_bc_buf);
2434 if (!skb)
2435 goto out;
2436 local->total_ps_buffered--;
2437
2438 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2439 struct ieee80211_hdr *hdr =
2440 (struct ieee80211_hdr *) skb->data;
2441 /* more buffered multicast/broadcast frames ==> set
2442 * MoreData flag in IEEE 802.11 header to inform PS
2443 * STAs */
2444 hdr->frame_control |=
2445 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2446 }
2447
2448 if (!ieee80211_tx_prepare(sdata, &tx, skb))
2449 break;
2450 dev_kfree_skb_any(skb);
2451 }
2452
2453 info = IEEE80211_SKB_CB(skb);
2454
2455 sta = tx.sta;
2456 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2457 tx.channel = local->hw.conf.channel;
2458 info->band = tx.channel->band;
2459
2460 if (invoke_tx_handlers(&tx))
2461 skb = NULL;
2462 out:
2463 rcu_read_unlock();
2464
2465 return skb;
2466 }
2467 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2468
2469 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb)
2470 {
2471 skb_set_mac_header(skb, 0);
2472 skb_set_network_header(skb, 0);
2473 skb_set_transport_header(skb, 0);
2474
2475 /* send all internal mgmt frames on VO */
2476 skb_set_queue_mapping(skb, 0);
2477
2478 /*
2479 * The other path calling ieee80211_xmit is from the tasklet,
2480 * and while we can handle concurrent transmissions locking
2481 * requirements are that we do not come into tx with bhs on.
2482 */
2483 local_bh_disable();
2484 ieee80211_xmit(sdata, skb);
2485 local_bh_enable();
2486 }